CN116444270A - 一种高压电性能和高介电性能弛豫铁电陶瓷的制备方法 - Google Patents

一种高压电性能和高介电性能弛豫铁电陶瓷的制备方法 Download PDF

Info

Publication number
CN116444270A
CN116444270A CN202310260465.XA CN202310260465A CN116444270A CN 116444270 A CN116444270 A CN 116444270A CN 202310260465 A CN202310260465 A CN 202310260465A CN 116444270 A CN116444270 A CN 116444270A
Authority
CN
China
Prior art keywords
ceramic
dielectric
property
temperature
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310260465.XA
Other languages
English (en)
Inventor
王妍
钱森
陈川
李楠
晋萃萃
刘�东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Smart Grid Research Institute Co ltd
State Grid Tianjin Electric Power Co Ltd
Original Assignee
State Grid Smart Grid Research Institute Co ltd
State Grid Tianjin Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Smart Grid Research Institute Co ltd, State Grid Tianjin Electric Power Co Ltd filed Critical State Grid Smart Grid Research Institute Co ltd
Priority to CN202310260465.XA priority Critical patent/CN116444270A/zh
Publication of CN116444270A publication Critical patent/CN116444270A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • C04B35/497Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides
    • C04B35/499Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides containing also titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Abstract

一种高压电性能和高介电性能弛豫铁电陶瓷的制备方法,属于压电陶瓷技术领域,克服现有技术中提升压电陶瓷介电性能和压电性能的方法工作量大、效率低的缺陷。本发明高压电性能和高介电性能弛豫铁电陶瓷的制备方法包括以下步骤:步骤1、配制不同组分的陶瓷样品;步骤2、通过介电温谱测试系统测得各陶瓷样品介电常数随温度的变化关系;采用X射线衍射仪对各陶瓷样品不同温度下的晶体结构进行表征;步骤3、根据步骤2获得的数据绘制陶瓷体系的温度‑组分相图;步骤4、根据室温与相界交点对应的组分获得压电陶瓷。本发明能够快速锁定室温下压电陶瓷体系最优的成分配方,通过采用最优成分配提高压电陶瓷的压电性能和介电性能。

Description

一种高压电性能和高介电性能弛豫铁电陶瓷的制备方法
技术领域
本发明属于压电陶瓷技术领域,具体涉及一种高压电性能和高介电性能弛豫铁电陶瓷的制备方法。
背景技术
铁电材料因其特有的功能特性(如介电性能、压电性能、热释电性能和铁电性能等)成为传感器的核心传感材料,其功能性能的高低是传感器灵敏度大小的主要决定因素。在各类传感器的设计过程中灵敏度是必须考虑的重要环节,通常由材料的功能特性来表征。随着现代工业的发展,重要先进设备的运行状态需要进行监测与检测,以及时发现设备的各种劣化过程的发展,以求在可能出现故障或性能下降到影响正常工作之前,及时维修、更换,避免发生危及安全的事故,这就对传感器的灵敏度提出了更高的要求。
弛豫铁电体具有许多特殊的特性,如与频率相关的弥散介电常数、细长的极化电滞回线和应变回线,因此在电容器、变送器和传感器等应用中具有相当重要的技术意义。然而弛豫特性会降低铁电体系的功能特性峰值,即压峰效应,影响材料的能量转换效率,因此需要提升弛豫铁电体的功能特性。
在弛豫铁电体中,短程有序弛豫铁电体在大电场作用下可以转化为长程有序铁电体,从而提高铁电体的功能特性。除此,Chu等人1993年在Pb(Sc1/2Ta1/2)O3中发现在没有外部场的情况下,弛豫铁电体在冷却过程中也经历了自发的弛豫到铁电转变。这种特殊现象在几个铁电系统中均被报道,例如基于铅的钪铌酸铅(Pb(Sc1/2Nb1/2)O3),钛酸铅镧((Pb,La)TiO3),锆钛酸铅镧((Pb,La)(Zr,Ti)O3)和无铅钛酸铋钾((Bi1/2K1/2)TiO3),引起了广泛关注。
现有的提升压电陶瓷介电性能和压电性能的方法往往通过工作量较大的掺杂试错法,效率低没有明确目标。
发明内容
因此,本发明要解决的技术问题在于克服现有技术中提升压电陶瓷介电性能和压电性能的方法工作量大、效率低的缺陷,从而提供一种提高压电陶瓷压电性能和介电性能的方法。
为此,本发明提供了以下技术方案。
一种高压电性能和高介电性能弛豫铁电陶瓷的制备方法,包括以下步骤:
步骤1、配制不同组分的陶瓷样品;
步骤2、通过介电温谱测试系统测得各陶瓷样品介电常数随温度的变化关系,从而获得不同组分陶瓷样品对应的相变温度点;
采用X射线衍射仪对各陶瓷样品不同温度下的晶体结构进行表征;
步骤3、根据步骤2获得的数据绘制陶瓷体系的温度-组分相图;
步骤4、在陶瓷体系的温度-组分相图中通过观察各相交点确认弛豫-铁电相界,根据室温与相界交点对应的组分获得压电陶瓷。
进一步的,所述步骤1中,不同组分的陶瓷样品为掺杂12%镧的(1-x)Pb(Mg1/ 3Nb2/3)O3-xPbTiO3,且0.35≤x≤0.51,其中Pb(Mg1/3Nb2/3)O3与PbTiO3的物质的量之比为(1-x):x。
进一步的,所述步骤1包括:
A、按照化学计量比称量原料,并通过球磨混合得到混合粉体;
B、将混合粉体进行预烧;
C、将预烧后的物质进行二次球磨、造粒;
D、压制生胚;
E、对生胚进行烧结;
F、退火。
进一步的,所述原料包括MgNb2O6、PbO、TiO2和La2O3
进一步的,所述MgNb2O6的制备包括:
(1)将氧化镁在800~900℃烧结1h;
(2)将烧结后的氧化镁和Nb2O5按照化学计量比混合得到混合物;
(3)将混合物在1200~1250℃下烧结6h。
进一步的,步骤B中,预烧温度为850~875℃,保温时间为2~3h,升温速率为5~5.5℃/min,之后随炉冷却。
进一步的,步骤D包括:在10~12Mpa下保压2~5min。
进一步的,步骤D还包括使用等静压机200~210Mpa下保压3~5min。
进一步的,步骤E中,烧结温度1220~1245℃,保温2~3h,随炉冷却。
进一步的,步骤F包括:900~925℃保温1~1.5小时。
对于制得的MgNb2O6,进行X射线衍射分析判断其是否为纯相。
采用球磨可使原料充分混合,使混合粉体在后续过程中反应充分。
在退火后制得的陶瓷两面被银。
本发明技术方案,具有如下优点:
1.本发明提供的高压电性能和高介电性能弛豫铁电陶瓷的制备方法,包括以下步骤:步骤1、配制不同组分的陶瓷样品;步骤2、通过介电温谱测试系统测得各陶瓷样品介电常数随温度的变化关系,从而获得不同组分陶瓷样品对应的相变温度点;采用X射线衍射仪对各陶瓷样品不同温度下的晶体结构进行表征;步骤3、根据步骤2获得的数据绘制陶瓷体系的温度-组分相图;步骤4、在陶瓷体系的温度-组分相图中通过观察各相交点确认弛豫-铁电相界,根据室温与相界交点对应的组分获得压电陶瓷。
本发明方法步骤简单、易于操作、重复性好,主要应用于电力传感、储能电容和MLCC等领域。相比于传统的盲目试错式性能寻优方法,本发明通过构造体系的温度-组分相图,能够有目标的快速锁定室温下压电陶瓷体系最优的成分配方(室温下自发弛豫-铁电跃迁相变的成分配方),通过采用最优成分配提高压电陶瓷的压电性能和介电性能,有效的指导压电陶瓷在传感器、电容器中的应用。由自发相变引起的铁电材料的压电和介电性质的增强,可能源于铁电相和弛豫铁电相共存的自发相变的不稳定状态。
2.本发明提供的方法中,步骤B中,预烧温度为850-875℃,保温时间为2-3h,升温速率为5-5.5℃/min,之后随炉冷却。预烧可除去混合粉体中的结晶水等挥发物质,使原料粉末在高温下发生化学反应而成瓷,合成需要的PMN-PT粉体。
本发明将预烧温度控制在850-875℃范围,可使混合粉体反应充分,合成的物相纯度高,同时避免PMN-PT粉体失去活性,避免Pb的挥发,保证陶瓷的性能。
3.本发明提供的方法中,步骤E中,烧结温度1220-1245℃,保温2-3h。本发明烧结温度可提高陶瓷的致密性。
4.本发明提供的方法中,步骤F退火包括:900-925℃保温1-1.5小时。可以排除PMN-PT陶瓷中表面的PbO,以免造成铅在PMN-PT陶瓷中形成杂质影响材料整体性能。
5.制备MgNb2O6时将氧化镁在800-900℃烧结1h,去除结晶水可确保化学计量比的准确性。
6.采用冷等静压二次压片成型的方法,保证陶瓷的致密性和稳定性。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是实施例1中MgNb2O6前驱体XRD示意图与标准PDF卡片对比;
图2是x分别为0.43、0.44和0.47的陶瓷在不同频率和温度下的介电常数曲线;
图3是x分别为0.43、0.44和0.47的陶瓷在室温和低温下测量压电陶瓷{200}和{220}峰的原位XRD曲线;
图4是12%掺杂镧的(1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3温度-组分相图;
图5是室温下介电常数和压电常数随成分的变化;
图6是(1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3(x=0.48)压电陶瓷压电性能随温度变化曲线。
具体实施方式
提供下述实施例是为了更好地进一步理解本发明,并不局限于所述最佳实施方式,不对本发明的内容和保护范围构成限制,任何人在本发明的启示下或是将本发明与其他现有技术的特征进行组合而得出的任何与本发明相同或相近似的产品,均落在本发明的保护范围之内。
实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品。
实施例1
本实施例提供了一种高压电性能和高介电性能弛豫铁电陶瓷的制备方法,包括以下步骤:
步骤1、配制不同组分的陶瓷样品掺杂12%镧的(1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3,本实施例中x分别为0.35、0.40、0.43、0.44、0.45、0.46、0.47、0.48、0.49。
A、首先,以MgO和Nb2O5作为原料制备MgNb2O6前驱体:
(1)将MgO在高温箱式炉中900℃烧结1小时以去除结晶水,避免MgO在环境中潮解造成称量过程的化学计量比失衡。
(2)将烧结后的MgO和Nb2O5按照化学计量比混合。
(3)将混合物在1200℃下烧结6h。烧结后粉体会收缩变成致密的块体,本实施例烧结后采用研钵将块体研磨捣碎均匀,以确保后续的球磨充分。
(4)对制得的MgNb2O6前驱体进行X射线衍射分析,图1为实施例1的MgNb2O6前驱体与标准PDF卡片(#88-0708)的对比图,结合标准卡片与前驱体的XRD衍射图谱对比分析,发现MgNb2O6前驱体基本无杂相产生,可以用在后续的配料中。
然后,将MgNb2O6,PbO(纯度99.9%),TiO2(纯度99.9%)和La2O3(纯度99.9%)按照化学计量比精准称量,并通过球磨混合得到混合粉体。本实施例球磨选用的是高密度聚乙烯球磨罐进行球磨(0.3L),球磨罐中放置氧化锆球200g,粒径大小分别为3mm和5mm,倒入150ml的无水乙醇。将原料置于球磨罐中与氧化锆球充分接触,通过湿磨的方式球磨以获得颗粒细小且分布均匀的颗粒。本实施例采用的球磨速率为900RPM,球磨时间为12h,球磨后70℃下烘干。烘干过程采用带有孔洞的锡箔纸覆盖混合粉体,避免空气中的灰尘造成污染。
完全烘干的混合粉体过筛处理,以去除混合在一起的氧化锆球。
B、将混合粉体进行预烧:预烧温度为850℃,保温时间为2h,升温速率为5℃/min,之后随炉冷却。
C、将预烧后的物质进行二次球磨、造粒:
将预烧过后的物质敲碎研磨成粉末进行二次球磨,球磨时间为12小时,以确保颗粒分布更均匀。二次球磨后在干净的玻璃盘中于70℃温度下烘干,过筛后的粉末取部分用于XRD检测以确保样品无杂相。
通过造粒提升粉体的可塑性。使用聚乙烯醇PVA作为粘合剂,加入去离子水加热搅拌获得浓度为5%的PVA水溶液,在粉体中加入粉体质量1/5的PVA并置于研钵中搅拌以形成流动性较好的颗粒。
D、压制生胚:
选择粒径0.12~0.18mm的粉体压制生胚。选择φ12的模具进行圆片的压制。称料质量0.5g,缓慢加压至手动压片机仪表盘指针读数为10MPa,保压2min。
另外为了使其更为致密,将其密封于无油橡胶套中抽真空,使用等静压机在200Mpa压强下保压3分钟。
E、对生胚进行烧结:
先将生胚在550℃保温2h,去除生胚中的PVA;在生胚和承烧板(氧化铝板)之间铺一层C中二次球磨并干燥后的粉末(未加入PVA),确保升温过程中生胚不与承烧板发生作用;然后在1220℃烧结2h,随炉冷却。
F、退火:将冷却后的陶瓷置于疏松的耐火砖中900℃保温1h。
将制得的陶瓷先后采用500目和2000目的砂纸在酒精中湿磨,直至陶瓷表面呈现镜面,后用真丝绸布上进行抛光,将抛光后的陶片置于无水乙醇中超声,将湿磨产生的依附在表面的杂质清洗干净。
将高温银浆均匀涂铺在样品两面,并确保两端银浆不接触,将制备好的样品在600℃下烧结,保温1小时保证银浆固化。
步骤2、通过介电温谱测试系统测得各陶瓷样品介电常数随温度的变化关系,从而获得不同组分陶瓷样品对应的相变温度点,如图2和表1所示。
其中,Tm为100Hz下介电常数峰值对应的温度;Ts为100Hz下弛豫-铁电相自发转变温度,表示冷却过程中从弛豫状态到铁电状态的转变温度;TB为纳米畴出现的温度。
表1不同组分陶瓷样品100Hz下测得的性能参数
采用X射线衍射仪对各陶瓷样品不同温度下的晶体结构进行表征,如图3所示,由图3可知各个相变温度点之间区域的晶体结构,确定图4中的相分布。
步骤3、根据步骤2获得的数据绘制陶瓷体系的温度-组分相图,如图4所示;
步骤4、在陶瓷体系的温度-组分相图中通过观察各相交点确认弛豫-铁电相界,根据室温与相界交点对应的组分获得压电陶瓷。本实施例中室温下12%掺杂镧的(1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3压电陶瓷的介电性能和压电性能最优成分在x=0.48处。
对掺杂12%镧的(1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3,x分别为0.43、0.44、0.45、0.46、0.47、0.48、0.49、0.50、0.51的压电陶瓷介电性能和压电性能进行测试,测试结果如图5所示。由图5可知,x=0.48可提高压电陶瓷的介电性能和压电性能。
测试x=0.48时压电陶瓷压电性能随温度的变化,测试结果如图6所示,由图6可知x=0.48时压电陶瓷压电性能的最优温度对应在Ts温度处。综合测试结果可知构造自发弛豫-铁电相变区能够提高压电陶瓷的介电性能和压电性能。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

1.一种高压电性能和高介电性能弛豫铁电陶瓷的制备方法,其特征在于,包括以下步骤:
步骤1、配制不同组分的陶瓷样品;
步骤2、通过介电温谱测试系统测得各陶瓷样品介电常数随温度的变化关系,从而获得不同组分陶瓷样品对应的相变温度点;
采用X射线衍射仪对各陶瓷样品不同温度下的晶体结构进行表征;
步骤3、根据步骤2获得的数据绘制陶瓷体系的温度-组分相图;
步骤4、在陶瓷体系的温度-组分相图中通过观察各相交点确认弛豫-铁电相界,根据室温与相界交点对应的组分获得压电陶瓷。
2.根据权利要求1所述的高压电性能和高介电性能弛豫铁电陶瓷的制备方法,其特征在于,所述步骤1中,不同组分的陶瓷样品为掺杂12%镧的(1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3,且0.35≤x≤0.51。
3.根据权利要求2所述的高压电性能和高介电性能弛豫铁电陶瓷的制备方法,其特征在于,所述步骤1包括:
A、按照化学计量比称量原料,并通过球磨混合得到混合粉体;
B、将混合粉体进行预烧;
C、将预烧后的物质进行二次球磨、造粒;
D、压制生胚;
E、对生胚进行烧结;
F、退火。
4.根据权利要求3所述的高压电性能和高介电性能弛豫铁电陶瓷的制备方法,其特征在于,所述原料包括MgNb2O6、PbO、TiO2和La2O3
5.根据权利要求4所述的高压电性能和高介电性能弛豫铁电陶瓷的制备方法,其特征在于,所述MgNb2O6的制备包括:
(1)将氧化镁在800~900℃烧结1h;
(2)将烧结后的氧化镁和Nb2O5按照化学计量比混合得到混合物;
(3)将混合物在1200~1250℃下烧结6h。
6.根据权利要求3-5任一项所述的高压电性能和高介电性能弛豫铁电陶瓷的制备方法,其特征在于,步骤B中,预烧温度为850~875℃,保温时间为2~3h,升温速率为5~5.5℃/min;将混合粉体进行预烧后随炉冷却。
7.根据权利要求3-5任一项所述的高压电性能和高介电性能弛豫铁电陶瓷的制备方法,其特征在于,步骤D包括:在10~12Mpa下保压2~5min。
8.根据权利要求7所述的高压电性能和高介电性能弛豫铁电陶瓷的制备方法,其特征在于,步骤D还包括使用等静压机200~210Mpa下保压3~5min。
9.根据权利要求3-5任一项所述的高压电性能和高介电性能弛豫铁电陶瓷的制备方法,其特征在于,步骤E中,烧结温度1220~1245℃,保温2~3h,随炉冷却。
10.根据权利要求3-5任一项所述的高压电性能和高介电性能弛豫铁电陶瓷的制备方法,其特征在于,步骤F包括:900~925℃保温1~1.5小时。
CN202310260465.XA 2023-03-13 2023-03-13 一种高压电性能和高介电性能弛豫铁电陶瓷的制备方法 Pending CN116444270A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310260465.XA CN116444270A (zh) 2023-03-13 2023-03-13 一种高压电性能和高介电性能弛豫铁电陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310260465.XA CN116444270A (zh) 2023-03-13 2023-03-13 一种高压电性能和高介电性能弛豫铁电陶瓷的制备方法

Publications (1)

Publication Number Publication Date
CN116444270A true CN116444270A (zh) 2023-07-18

Family

ID=87121091

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310260465.XA Pending CN116444270A (zh) 2023-03-13 2023-03-13 一种高压电性能和高介电性能弛豫铁电陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN116444270A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101628810A (zh) * 2009-08-12 2010-01-20 中国科学院上海硅酸盐研究所 高透明和高电光特性掺杂pmn-pt电光陶瓷材料及制备方法
CN106083039A (zh) * 2016-05-31 2016-11-09 天津大学 La掺杂PSN‑PNN‑PZT压电陶瓷及其制备方法
CN106495686A (zh) * 2016-10-27 2017-03-15 西安交通大学 一种基于三临界效应提高铁电陶瓷电容率的方法
CN110182855A (zh) * 2019-04-24 2019-08-30 南京航空航天大学 稀土元素掺杂pmn-pt弛豫铁电粉体的制备方法
US20220037584A1 (en) * 2018-04-21 2022-02-03 Xi'an Jiaotong University Method for Obtaining Lead-free Piezoelectric Materials and Corresponding Lead-free Piezoelectric Materials
CN114163234A (zh) * 2021-12-27 2022-03-11 佛山(华南)新材料研究院 铌酸铅镁-钛酸铅弛豫铁电陶瓷及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101628810A (zh) * 2009-08-12 2010-01-20 中国科学院上海硅酸盐研究所 高透明和高电光特性掺杂pmn-pt电光陶瓷材料及制备方法
CN106083039A (zh) * 2016-05-31 2016-11-09 天津大学 La掺杂PSN‑PNN‑PZT压电陶瓷及其制备方法
CN106495686A (zh) * 2016-10-27 2017-03-15 西安交通大学 一种基于三临界效应提高铁电陶瓷电容率的方法
US20220037584A1 (en) * 2018-04-21 2022-02-03 Xi'an Jiaotong University Method for Obtaining Lead-free Piezoelectric Materials and Corresponding Lead-free Piezoelectric Materials
CN110182855A (zh) * 2019-04-24 2019-08-30 南京航空航天大学 稀土元素掺杂pmn-pt弛豫铁电粉体的制备方法
CN114163234A (zh) * 2021-12-27 2022-03-11 佛山(华南)新材料研究院 铌酸铅镁-钛酸铅弛豫铁电陶瓷及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
袁镇;贺立龙;: "制备工艺对PMN铁电陶瓷性能的影响", 现代电子技术, no. 14, pages 2 *

Similar Documents

Publication Publication Date Title
Wada et al. Dielectric and piezoelectric properties of (A0. 5Bi0. 5) TiO3–ANbO3 (A= Na, K) systems
Lucuta et al. Structural dependence on sintering temperature of lead zirconate‐titanate solid solutions
Zhang et al. Microstructure and electrical properties of (Pb0. 87Ba0. 1La0. 02)(Zr0. 68Sn0. 24Ti0. 08) O3 anti-ferroelectric ceramics fabricated by the hot-press sintering method
CN102815938B (zh) 一种钛酸钡基无铅电致伸缩陶瓷及其制备方法
CN102850050B (zh) 一种低温烧结压电陶瓷材料及其制备方法
Zeng et al. Effects of Bi2O3–Li2CO3 additions on dielectric and pyroelectric properties of Mn doped Pb (Zr0. 9Ti0. 1) O3 thick films
Lin et al. Structure, electrical properties and temperature characteristics of Bi 0.5 Na 0.5 TiO 3–Bi 0.5 K 0.5 TiO 3–Bi 0.5 Li 0.5 TiO 3 lead-free piezoelectric ceramics
Wu et al. Piezoelectric Er3+-doped (Ba1-xCax)(Sn0. 06Ti0. 94) O3 ceramic: Photoluminescence sensitive to morphotropic phase boundary
CN113149639A (zh) 一种二元系压电陶瓷及其制备方法
Zhang et al. Effects of scandium oxide on domain structure, dielectric and ferroelectric properties of barium zirconate titanate ceramics
CN105036736A (zh) 一种钛酸铋钠基无铅电致伸缩陶瓷材料及其制备方法
Dul’kin et al. Peculiar properties of phase transitions in Na 0. 5 Bi 0. 5 TiO 3− 0.06 BaTiO3 lead-free relaxor ferroelectrics seen via acoustic emission
CN116444270A (zh) 一种高压电性能和高介电性能弛豫铁电陶瓷的制备方法
KR100901463B1 (ko) 센서 및 액추에이터용 비납계 압전 세라믹 조성물 및 그제조방법
CN112759390A (zh) 一种具有高kp值的PSN-PZT压电陶瓷及其制备方法
Kim et al. Lead magnesium tantalate–lead titanate perovskite ceramic system: preparation and characterization
Ananta et al. Relationships between sintering conditions, microstructure and dielectric properties of lead magnesium niobate
Ravindranathan et al. Processing of Pb (Zn⅓Nb⅔) O3 ceramics at high pressures
Fang et al. Preparation and electrical properties of high-Curie temperature ferroelectrics
CN115353385A (zh) 一种增强无铅压电陶瓷热稳定性的制备方法
CN113563073A (zh) 一种高稳定的无铅压电陶瓷及其制备方法
CN114478006A (zh) 一种KNNS-BNZ+CuO压电陶瓷材料及其制备方法、应用
CN114149258B (zh) 一种具有叠层结构的压电陶瓷及其制备方法和应用
Bućko et al. Photoluminescence and electrical properties in Pr-modified (Ba1-xCax) TiO3 multifunctional ceramics
CN103964845A (zh) 一种各向异性压电陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination