WO2019200891A1 - 计及电-气系统耦合的电力系统电压稳定裕度计算方法 - Google Patents

计及电-气系统耦合的电力系统电压稳定裕度计算方法 Download PDF

Info

Publication number
WO2019200891A1
WO2019200891A1 PCT/CN2018/113635 CN2018113635W WO2019200891A1 WO 2019200891 A1 WO2019200891 A1 WO 2019200891A1 CN 2018113635 W CN2018113635 W CN 2018113635W WO 2019200891 A1 WO2019200891 A1 WO 2019200891A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
node
power system
natural gas
equation
Prior art date
Application number
PCT/CN2018/113635
Other languages
English (en)
French (fr)
Inventor
孙宏斌
郭庆来
王彬
乔铮
张伯明
吴文传
张明晔
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2019200891A1 publication Critical patent/WO2019200891A1/zh
Priority to US17/021,445 priority Critical patent/US20200410145A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/04Constraint-based CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/04Power grid distribution networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/08Fluids
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Definitions

  • the feedback of the present application relates to a power system voltage stability margin calculation method that takes into account the coupling of the electric-gas system, and belongs to the technical field of safety analysis and evaluation considering the multi-energy coupling characteristics in the power system.
  • the purpose of the feedback of this application is to propose a power system voltage stability margin calculation method that takes into account the coupling of the electric-gas system to avoid the voltage stability margin calculated by considering the safety constraints of the natural gas system and the influence of the natural gas load. There is a potential risk.
  • the method for calculating the voltage stability margin of the power system coupled with the electro-pneumatic system coupling proposed by the present application includes the following steps:
  • P Gi is the active power injected into the i-th node in the power system
  • P Li is the active power injected into the i-th node in the power system
  • Q Gi is the injected reactive power of the i-th node in the power system
  • Q Li is the reactive power of the i-th node in the power system
  • V i and V j are the voltage amplitudes of the i-th node and the j-th node in the power system, respectively
  • ⁇ i and ⁇ j are respectively in the power system.
  • the voltage phase angle of the i-th node and the j-th node G ij is the conductance corresponding to the i-th row and the j-th column in the node admittance matrix Y of the power system, and B ij is the node admittance matrix of the power system
  • the gamma corresponding to the i-th row and the j-th column in Y, the power system node admittance matrix Y is obtained from the power system dispatching center, and N e is the number of all nodes in the power system, and N PQ is given in the power system.
  • f km is the volumetric flow of natural gas in the pipeline between the kth node and the mth node in the natural gas system
  • p k , p m are the pressures of the kth node and the mth node, respectively
  • C km is the kth
  • L sm is the injection volume flow rate of the mth node in the natural gas system
  • L Lm is the injection volume flow rate of the mth node in the natural gas system
  • P Li0 node i is the initial time of the injection of active power
  • Q Li0 node i is the initial time of injection of reactive power
  • N e is the number of nodes in the power system
  • N PQ is the number of PQ nodes in the power system
  • L Lm0 is the injection volume flow of the mth node at the initial time, which is obtained by the operation data of the natural gas system
  • r is the correlation coefficient between the gas load of the power system and the load of the natural gas system, and is related to the region, climate, season, etc. Data from the Energy Statistics Department;
  • the output active power P gen of the generator set in the power system is greater than or equal to 0, less than or equal to the maximum power given on the generator nameplate of the generator set.
  • the voltage amplitude U i of the i-th node of the power system is at the upper limit of the set safe operating voltage of the power system And lower limit Running between, Take 0.9 times or 0.95 times the rated voltage of the i-th node, It is 1.1 times or 1.05 times the rated voltage of the i-th node, namely:
  • the pressure p k of the kth node in the natural gas system is at the upper and lower limits of the set safe operating air pressure Inside, namely:
  • the gas supply amount L s of the natural gas system is greater than or equal to 0, less than or equal to the maximum value L s,max of the natural gas flow that the gas source can provide, namely:
  • step (1) and step (3-3) Taking X't+1 as the initial point, recalculating the power flow equation constructed by step (1) and step (3-3), obtaining the correction value X t+1 , and judging whether X t+1 satisfies the step (4) In the constraint and d ⁇ t >0, if the constraint of step (4) and the condition of d ⁇ t >0 are satisfied at the same time, X t+1 is taken as the initial solution X t , and step (6) is returned, if the step is not satisfied If the constraint of (4) or the condition of d ⁇ t >0 is not satisfied, it is further determined whether X t+1 satisfies d ⁇ t / ⁇ t ⁇ and d ⁇ t >0.
  • step h is re-adjusted.
  • ⁇ at this time is output as a voltage stability margin that accounts for the constraints of the electro-pneumatic coupling system.
  • the feedback of the present application relates to a power system voltage stability margin calculation method that takes into account the coupling of the electric-gas system, and its characteristics and effects are:
  • the feedback method of the present application fully considers the tight coupling between the power system and the natural gas system, and finds the voltage stability margin of the power system in the coupled system.
  • the impact of the safety and capacity constraints of natural gas systems on the power system is fully considered.
  • the influence of the correlation between the electric load and the natural gas load on the voltage stability margin is considered according to the actual situation of the application area, avoiding the traditional
  • the calculation results in the calculation method that simply consider the constraints of the power system are too optimistic.
  • the method can be used in the operational risk analysis of the power system to provide risk assessment indicators for the operation and management personnel of the power system, which is beneficial to reducing potential risks and improving the safety of the system operation.
  • the method for calculating the voltage stability margin of the power system coupled with the electro-pneumatic system coupling proposed by the present application includes the following steps:
  • P Gi is the active power injected into the i-th node in the power system
  • P Li is the active power injected into the i-th node in the power system
  • Q Gi is the injected reactive power of the i-th node in the power system
  • Q Li is the reactive power of the i-th node in the power system
  • V i and V j are the voltage amplitudes of the i-th node and the j-th node in the power system, respectively
  • ⁇ i and ⁇ j are respectively in the power system.
  • the voltage phase angle of the i-th node and the j-th node G ij is the conductance corresponding to the i-th row and the j-th column in the node admittance matrix Y of the power system, and B ij is the node admittance matrix of the power system
  • the gamma corresponding to the i-th row and the j-th column in Y, the power system node admittance matrix Y is obtained from the power system dispatching center, and N e is the number of all nodes in the power system, and N PQ is given in the power system.
  • f km is the volumetric flow of natural gas in the pipeline between the kth node and the mth node in the natural gas system
  • p k , p m are the pressures of the kth node and the mth node, respectively
  • C km is the kth
  • L G is the gas load (volume flow rate) of the gas turbine
  • P G is the active power output of the gas turbine
  • H gas is the combustion heat value of the natural gas
  • the value is 37.59 MJ/m 3
  • ⁇ G is the efficiency coefficient of the gas turbine, by the gas turbine Factory instructions obtained;
  • L sm is the injection volume flow rate of the mth node in the natural gas system
  • L Lm is the injection volume flow rate of the mth node in the natural gas system
  • P Li0 node i is the initial time of the injection of active power
  • Q Li0 node i is the initial time of injection of reactive power
  • N e is the number of nodes in the power system
  • N PQ is the number of PQ nodes in the power system
  • L Lm0 is the injection volume flow of the mth node at the initial time, which is obtained by the operation data of the natural gas system
  • r is the correlation coefficient between the gas load of the power system and the load of the natural gas system, and is related to the region, climate, season, etc. Data from the Energy Statistics Department;
  • the output active power P gen of the generator set in the power system is greater than or equal to 0, less than or equal to the maximum power given on the generator nameplate of the generator set.
  • the voltage amplitude U i of the i-th node of the power system is at the upper limit of the set safe operating voltage of the power system And lower limit Running between, Take 0.9 times or 0.95 times the rated voltage of the i-th node, It is 1.1 times or 1.05 times the rated voltage of the i-th node, namely:
  • the pressure p k of the kth node in the natural gas system is at the upper and lower limits of the set safe operating air pressure Inside, namely:
  • the gas supply amount L s of the natural gas system is greater than or equal to 0, less than or equal to the maximum value L s,max of the natural gas flow that the gas source can provide, namely:
  • step (1) and step (3-3) Taking X't+1 as the initial point, recalculating the power flow equation constructed by step (1) and step (3-3), obtaining the correction value X t+1 , and judging whether X t+1 satisfies the step (4) In the constraint and d ⁇ t >0, if the constraint of step (4) and the condition of d ⁇ t >0 are satisfied at the same time, X t+1 is taken as the initial solution X t , and step (6) is returned, if the step is not satisfied If the constraint of (4) or the condition of d ⁇ t >0 is not satisfied, it is further determined whether X t+1 satisfies d ⁇ t / ⁇ t ⁇ and d ⁇ t >0.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Public Health (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Primary Health Care (AREA)
  • Marketing (AREA)
  • Human Resources & Organizations (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种计及电-气系统耦合的电力系统电压稳定裕度计算方法,属于电力系统中考虑多能流耦合特性的安全分析与评估技术领域,充分考虑电力系统与天然气系统的紧密耦合,求出了耦合系统中电力系统的电压稳定裕度。一方面充分考虑了天然气系统的安全与容量约束对电力系统的影响,另一方面也根据应用地区的实际情况考虑了电力负荷与天然气负荷的相关性对电压稳定裕度的影响,避免了传统的计算方法中的单纯考虑电力系统的约束而导致的计算结果过于乐观。该方法可用于电力系统的运行风险分析中,为电力系统的运行管理人员提供风险评估指标,有利于降低潜在风险,提高系统运行的安全性。

Description

计及电-气系统耦合的电力系统电压稳定裕度计算方法
相关申请的交叉引用
本申请要求清华大学于2018年04月16日提交的、发明名称为“计及电-气耦合系统约束的电压稳定裕度计算方法”的、中国专利申请号“201810335838.4”的优先权。
技术领域
本申请反馈涉及一种计及电-气系统耦合的电力系统电压稳定裕度计算方法,属于电力系统中考虑多能流耦合特性的安全分析与评估技术领域。
背景技术
由于燃气发电机的成本较低、对环境的破坏力较小、响应速度快,燃气站的建造周期较短等巨大优势,天然气已在世界范围内成为供电能源的重要组成部分。因此随着天然气在电力系统一次能源供应中的比例日益增加,天然气的可靠供应对于电力系统的安全具有至关重要的要作用。
然而,天然气与煤炭等可以较大规模储存的能源不同,其供应的方式大多通过管道进行远距离传输。一方面,由于压力安全约束,管道传输的天然气流量具有一定的限制。另一方面,天然气负荷在年、月、日间的波动性非常剧烈,而在很多国家规定中,其他商业、民用天然气负荷的优先级高于燃气电厂的燃气负荷。因此,电力系统的燃气供应受限于天然气系统的管道传输容量和其他天然气负荷,仅仅考虑电力系统约束的电压稳定裕度的计算方法不再适用,亟须提出一种新的计及电-气系统耦合的电力系统电压稳定裕度计算方法。
发明内容
本申请反馈的目的是提出一种计及电-气系统耦合的电力系统电压稳定裕度计算方法,以避免因未考虑天然气系统的安全约束以及天然气负荷的影响计算出的电压稳定裕度过于乐观,存在潜在风险。
本申请反馈提出的计及电-气系统耦合的电力系统电压稳定裕度计算方法,包括以下步骤:
(1)建立电-气耦合系统稳态安全运行的等式约束方程,包括:
(1-1)一个电-气耦合系统中电力系统的潮流方程如下:
Figure PCTCN2018113635-appb-000001
其中,P Gi为电力系统中第i个节点的注入有功功率,P Li为电力系统中第i个节点的注出有功功率,Q Gi为电力系统中第i个节点的注入无功功率,Q Li为电力系统中第i个节点的注出无功功率,V i、V j分别为电力系统中第i个节点、第j个节点的电压幅值,θ i、θ j分别为电力系统中第i个节点、第j个节点的电压相角,G ij为与电力系统的节点导纳矩阵Y中第i行、第j列相对应的电导,B ij为与电力系统的节点导纳矩阵Y中第i行、第j列相对应的电纳,电力系统节点导纳矩阵Y从电力系统调度中心获取,N e为电力系统中所有节点的个数,N PQ为电力系统中给定了有功功率P和无功功率Q的PQ节点的个数;
(1-2)一个电-气耦合系统中天然气系统中管道的水力方程如下:
Figure PCTCN2018113635-appb-000002
其中,f km为天然气系统中第k个节点和第m个节点之间的管道中天然气体积流量,p k,p m分别为第k个节点和第m个节点的压强,C km为第k个节点和第m个节点之间管道km的阻力系数,从管道的设计报告中获取,上述天然气系统中管道的水力方程中,当
Figure PCTCN2018113635-appb-000003
时,上式中的sgn p(p k,p m)=1,当
Figure PCTCN2018113635-appb-000004
时,sgn p(p k,p m)=-1;
(1-3)一个电-气耦合系统中通过燃气轮机耦合的电力系统与天然气系统之间的耦合方程如下:
μ G×L G×H gas=P G
其中,L G为燃气轮机的燃气负荷,P G为燃气轮机的有功功率输出,H gas为天然气的燃烧热值,取值为37.59MJ/m3,μ G为燃气轮机的效率系数,由燃气轮机的出厂说明书获取;(1-4)一个电-气耦合系统中天然气系统的节点气流平衡方程如下:
Figure PCTCN2018113635-appb-000005
其中,L sm为天然气系统中第m个节点的注入体积流量,L Lm为天然气系统中第m个节点的注出体积流量;
(2)选择负荷裕度指标λ作为电压稳定裕度的指标,并在下述三种负荷增长方式中选 择一种:①其他负荷保持不变,单一负荷的有功功率和无功功率保持原功率因数同时增加;②其他负荷保持不变,选定区域内负荷的有功功率和无功功率保持原功率因数同时增加;③所有负荷的有功功率和无功功率保持原功率因数同时增加;
(3)利用负荷裕度指标λ建立电-气耦合系统的连续潮流模型:
(3-1)建立一个电-气耦合系统中电力系统注入与注出功率变化方程如下:
Figure PCTCN2018113635-appb-000006
其中,P Li0为初始时刻节点i的注出有功功率,P Gi0为初始时刻节点i的注入有功功率,Q Li0为初始时刻节点i的注入无功功率,
Figure PCTCN2018113635-appb-000007
N e为电力系统中的节点个数,N PQ为电力系统中PQ节点的个数;
(3-2)建立一个电-气耦合系统中天然气系统中天然气负荷的变化方程如下:
L Lm(λ)=(1+rλ)L Lm0
其中,L Lm0为初始时刻第m个节点的注出体积流量,通过天然气系统的运行数据获得;r为电力系统燃气负荷与天然气系统负荷的相关系数,与地域、气候、季节等相关,由当地能源统计部门的数据获得;
(3-3)将步骤(3-1)和(3-2)中的连续变化方程代入步骤(1-1)和(1-4)中的方程后得到如下方程:
Figure PCTCN2018113635-appb-000008
Figure PCTCN2018113635-appb-000009
(4)设定电-气耦合系统稳态安全运行的不等式约束条件,包括:
(4-1)电力系统中发电机组的输出有功功率P gen大于或等于0,小于或等于该发电机组出厂铭牌上给出的最大功率
Figure PCTCN2018113635-appb-000010
即:
Figure PCTCN2018113635-appb-000011
(4-2)电力系统中发电机组的输出无功功率
Figure PCTCN2018113635-appb-000012
大于或等于该发电机组出厂铭牌上给出的最小功率
Figure PCTCN2018113635-appb-000013
小于或等于该发电机组出厂铭牌上给出的最大功率
Figure PCTCN2018113635-appb-000014
即:
Figure PCTCN2018113635-appb-000015
(4-3)电力系统第i个节点的电压幅值U i在设定的电力系统安全运行电压的上限值
Figure PCTCN2018113635-appb-000016
和下限值
Figure PCTCN2018113635-appb-000017
之间运行,
Figure PCTCN2018113635-appb-000018
取第i个节点额定电压的0.9倍或0.95倍,
Figure PCTCN2018113635-appb-000019
为第i个节点额定电压的1.1倍或1.05倍,即:
Figure PCTCN2018113635-appb-000020
(4-4)天然气系统中第k个节点的压强p k在设定的管道安全运行气压的上限值、下限值
Figure PCTCN2018113635-appb-000021
内,即:
Figure PCTCN2018113635-appb-000022
(4-5)天然气系统中气源供气量L s大于或等于0,小于或等于该气源能提供天然气流的最大值L s,max,即:
0≤L s≤L s,max
(5)利用优化法(如内点法)或迭代法(如牛顿法)求解λ为0时由步骤(1)和步骤(3-3)构建的潮流方程F(X),得到初始潮流解X t(V ttt),其中下标t表示当前计算点;
(6)在上述初始解X t处求得切向量dX t(dV t,dθ t,dλ t),并设置潮流解变化的步长h,得到预测值X' t+1(V' t+1,θ' t+1,λ' t+1),其中下标t+1表示下一个计算点:
Figure PCTCN2018113635-appb-000023
X' t+1=X t+h·dX t
(7)以X' t+1为初始点,重新计算由步骤(1)和步骤(3-3)构建的潮流方程,得到修正值X t+1,判断X t+1是否满足步骤(4)中的约束且dλ t>0,若同时满足步骤(4)的约束和dλ t>0的条件,则以X t+1作为初始解X t,返回执行步骤(6),若不满足步骤(4)的约束或不满足dλ t>0的条件,则进一步判断X t+1是否满足dλ tt<ε且dλ t>0,若不满足该条件,则重新调整步长h,返回执行步骤(6),若满足该条件,输出此时的λ,作为计及电-气耦合系统约束的电压稳定裕度。
本申请反馈涉及一种计及电-气系统耦合的电力系统电压稳定裕度计算方法,其特点和效果是:
本申请反馈方法充分考虑电力系统与天然气系统的紧密耦合,求出了耦合系统中电力系统的电压稳定裕度。一方面充分考虑了天然气系统的安全与容量约束对电力系统的影响,另一方面也根据应用地区的实际情况考虑了电力负荷与天然气负荷的相关性对电压稳定裕度的影响,避免了传统的计算方法中的单纯考虑电力系统的约束而导致的计算结果过于乐观。该方法可用于电力系统的运行风险分析中,为电力系统的运行管理人员提供风险评估指标,有利于降低潜在风险,提高系统运行的安全性。
具体实施方式
本申请反馈提出的计及电-气系统耦合的电力系统电压稳定裕度计算方法,包括以下步骤:
(1)建立电-气耦合系统稳态安全运行的等式约束方程,包括:
(1-1)一个电-气耦合系统中电力系统的潮流方程如下:
Figure PCTCN2018113635-appb-000024
其中,P Gi为电力系统中第i个节点的注入有功功率,P Li为电力系统中第i个节点的注出有功功率,Q Gi为电力系统中第i个节点的注入无功功率,Q Li为电力系统中第i个节点的注出无功功率,V i、V j分别为电力系统中第i个节点、第j个节点的电压幅值,θ i、θ j分别为电力系统中第i个节点、第j个节点的电压相角,G ij为与电力系统的节点导纳矩阵Y中第i行、第j列相对应的电导,B ij为与电力系统的节点导纳矩阵Y中第i行、第j列相对应的电纳,电力系统节点导纳矩阵Y从电力系统调度中心获取,N e为电力系统中所有节点的个数,N PQ为电力系统中给定了有功功率P和无功功率Q的PQ节点的个数;
(1-2)一个电-气耦合系统中天然气系统中管道的水力方程如下:
Figure PCTCN2018113635-appb-000025
其中,f km为天然气系统中第k个节点和第m个节点之间的管道中天然气体积流量,p k,p m分别为第k个节点和第m个节点的压强,C km为第k个节点和第m个节点之间管道 km的阻力系数,从管道的设计报告中获取,上述天然气系统中管道的水力方程中,当
Figure PCTCN2018113635-appb-000026
时,上式中的sgn p(p k,p m)=1,当
Figure PCTCN2018113635-appb-000027
时,sgn p(p k,p m)=-1;
(1-3)一个电-气耦合系统中通过燃气轮机耦合的电力系统与天然气系统之间的耦合方程如下:
μ G×L G×H gas=P G
其中,L G为燃气轮机的燃气负荷(体积流量),P G为燃气轮机的有功功率输出,H gas为天然气的燃烧热值,取值为37.59MJ/m3,μ G为燃气轮机的效率系数,由燃气轮机的出厂说明书获取;
(1-4)一个电-气耦合系统中天然气系统的节点气流平衡方程如下:
Figure PCTCN2018113635-appb-000028
其中,L sm为天然气系统中第m个节点的注入体积流量,L Lm为天然气系统中第m个节点的注出体积流量;
(2)选择负荷裕度指标λ作为电压稳定裕度的指标,并在下述三种负荷增长方式中选择一种:①其他负荷保持不变,单一负荷的有功功率和无功功率保持原功率因数同时增加;②其他负荷保持不变,选定区域内负荷的有功功率和无功功率保持原功率因数同时增加;③所有负荷的有功功率和无功功率保持原功率因数同时增加;
(3)利用负荷裕度指标λ建立电-气耦合系统的连续潮流模型:
(3-1)建立一个电-气耦合系统中电力系统注入与注出功率变化方程如下:
Figure PCTCN2018113635-appb-000029
其中,P Li0为初始时刻节点i的注出有功功率,P Gi0为初始时刻节点i的注入有功功率,Q Li0为初始时刻节点i的注入无功功率,
Figure PCTCN2018113635-appb-000030
N e为电力系统中的节点个数,N PQ为电力系统中PQ节点的个数;
(3-2)建立一个电-气耦合系统中天然气系统中天然气负荷的变化方程如下:
L Lm(λ)=(1+rλ)L Lm0
其中,L Lm0为初始时刻第m个节点的注出体积流量,通过天然气系统的运行数据获得;r为电力系统燃气负荷与天然气系统负荷的相关系数,与地域、气候、季节等相关,由当地 能源统计部门的数据获得;
(3-3)将步骤(3-1)和(3-2)中的连续变化方程代入步骤(1-1)和(1-4)中的方程后得到如下方程:
Figure PCTCN2018113635-appb-000031
Figure PCTCN2018113635-appb-000032
(4)设定电-气耦合系统稳态安全运行的不等式约束条件,包括:
(4-1)电力系统中发电机组的输出有功功率P gen大于或等于0,小于或等于该发电机组出厂铭牌上给出的最大功率
Figure PCTCN2018113635-appb-000033
即:
Figure PCTCN2018113635-appb-000034
(4-2)电力系统中发电机组的输出无功功率
Figure PCTCN2018113635-appb-000035
大于或等于该发电机组出厂铭牌上给出的最小功率
Figure PCTCN2018113635-appb-000036
小于或等于该发电机组出厂铭牌上给出的最大功率
Figure PCTCN2018113635-appb-000037
即:
Figure PCTCN2018113635-appb-000038
(4-3)电力系统第i个节点的电压幅值U i在设定的电力系统安全运行电压的上限值
Figure PCTCN2018113635-appb-000039
和下限值
Figure PCTCN2018113635-appb-000040
之间运行,
Figure PCTCN2018113635-appb-000041
取第i个节点额定电压的0.9倍或0.95倍,
Figure PCTCN2018113635-appb-000042
为第i个节点额定电压的1.1倍或1.05倍,即:
Figure PCTCN2018113635-appb-000043
(4-4)天然气系统中第k个节点的压强p k在设定的管道安全运行气压的上限值、下限值
Figure PCTCN2018113635-appb-000044
内,即:
Figure PCTCN2018113635-appb-000045
(4-5)天然气系统中气源供气量L s大于或等于0,小于或等于该气源能提供天然气流的最大值L s,max,即:
0≤L s≤L s,max
(5)利用优化法(如内点法)或迭代法(如牛顿法)求解λ为0时由步骤(1)和步骤(3-3)构建的潮流方程F(X),得到初始潮流解X t(V ttt),其中下标t表示当前计算 点;
(6)在上述初始解X t处求得切向量dX t(dV t,dθ t,dλ t),并设置潮流解变化的步长h,得到预测值X’ t+1(V' t+1,θ' t+1,λ' t+1),其中下标t+1表示下一个计算点:
Figure PCTCN2018113635-appb-000046
X' t+1=X t+h·dX t
(7)以X' t+1为初始点,重新计算由步骤(1)和步骤(3-3)构建的潮流方程,得到修正值X t+1,判断X t+1是否满足步骤(4)中的约束且dλ t>0,若同时满足步骤(4)的约束和dλ t>0的条件,则以X t+1作为初始解X t,返回执行步骤(6),若不满足步骤(4)的约束或不满足dλ t>0的条件,则进一步判断X t+1是否满足dλ tt<ε且dλ t>0,若不满足该条件,则重新调整步长h,如使步长h=1/2h,返回执行步骤(6),若满足该条件,输出此时的λ,作为计及电-气耦合系统约束的电压稳定裕度。

Claims (1)

  1. 一种计及电-气系统耦合的电力系统电压稳定裕度计算方法,其特征在于该方法包括以下步骤::
    (1)建立电-气耦合系统稳态安全运行的等式约束方程,包括:
    (1-1)一个电-气耦合系统中电力系统的潮流方程如下:
    Figure PCTCN2018113635-appb-100001
    其中,P Gi为电力系统中第i个节点的注入有功功率,P Li为电力系统中第i个节点的注出有功功率,Q Gi为电力系统中第i个节点的注入无功功率,Q Li为电力系统中第i个节点的注出无功功率,V i、V j分别为电力系统中第i个节点、第j个节点的电压幅值,θ i、θ j分别为电力系统中第i个节点、第j个节点的电压相角,G ij为与电力系统的节点导纳矩阵Y中第i行、第j列相对应的电导,B ij为与电力系统的节点导纳矩阵Y中第i行、第j列相对应的电纳,电力系统节点导纳矩阵Y从电力系统调度中心获取,N e为电力系统中所有节点的个数,N PQ为电力系统中给定了有功功率P和无功功率Q的PQ节点的个数;
    (1-2)一个电-气耦合系统中天然气系统中管道的水力方程如下:
    Figure PCTCN2018113635-appb-100002
    其中,f km为天然气系统中第k个节点和第m个节点之间的管道中天然气体积流量,p k,p m分别为第k个节点和第m个节点的压强,C km为第k个节点和第m个节点之间管道km的阻力系数,从管道的设计报告中获取,上述天然气系统中管道的水力方程中,当
    Figure PCTCN2018113635-appb-100003
    时,上式中的sgn p(p k,p m)=1,当
    Figure PCTCN2018113635-appb-100004
    时,sgn p(p k,p m)=-1;
    (1-3)一个电-气耦合系统中通过燃气轮机耦合的电力系统与天然气系统之间的耦合方程如下:
    μ G×L G×H gas=P G
    其中,L G为燃气轮机的燃气负荷,P G为燃气轮机的有功功率输出,H gas为天然气的燃烧热值,取值为37.59MJ/m3,μ G为燃气轮机的效率系数,由燃气轮机的出厂说明书获取;
    (1-4)一个电-气耦合系统中天然气系统的节点气流平衡方程如下:
    Figure PCTCN2018113635-appb-100005
    其中,L sm为天然气系统中第m个节点的注入体积流量,L Lm为天然气系统中第m个节点的注出体积流量;
    (2)选择负荷裕度指标λ作为电压稳定裕度的指标,并在下述三种负荷增长方式中选择一种:①其他负荷保持不变,单一负荷的有功功率和无功功率保持原功率因数同时增加;②其他负荷保持不变,选定区域内负荷的有功功率和无功功率保持原功率因数同时增加;③所有负荷的有功功率和无功功率保持原功率因数同时增加;
    (3)利用负荷裕度指标λ建立电-气耦合系统的连续潮流模型:
    (3-1)建立一个电-气耦合系统中电力系统注入与注出功率变化方程如下:
    Figure PCTCN2018113635-appb-100006
    其中,P Li0为初始时刻节点i的注出有功功率,P Gi0为初始时刻节点i的注入有功功率,Q Li0为初始时刻节点i的注入无功功率,
    Figure PCTCN2018113635-appb-100007
    N e为电力系统中的节点个数,N PQ为电力系统中PQ节点的个数;
    (3-2)建立一个电-气耦合系统中天然气系统中天然气负荷的变化方程如下:
    L Lm(λ)=(1+rλ)L Lm0
    其中,L Lm0为初始时刻第m个节点的注出体积流量,通过天然气系统的运行数据获得;r为电力系统燃气负荷与天然气系统负荷的相关系数,由当地能源统计部门的数据获得;
    (3-3)将步骤(3-1)和(3-2)中的连续变化方程代入步骤(1-1)和(1-4)中的方程后得到如下方程:
    Figure PCTCN2018113635-appb-100008
    Figure PCTCN2018113635-appb-100009
    (4)设定电-气耦合系统稳态安全运行的不等式约束条件,包括:
    (4-1)电力系统中发电机组的输出有功功率P gen大于或等于0,小于或等于该发电机组出厂铭牌上给出的最大功率
    Figure PCTCN2018113635-appb-100010
    即:
    Figure PCTCN2018113635-appb-100011
    (4-2)电力系统中发电机组的输出无功功率
    Figure PCTCN2018113635-appb-100012
    大于或等于该发电机组出厂铭牌上给出的最小功率
    Figure PCTCN2018113635-appb-100013
    小于或等于该发电机组出厂铭牌上给出的最大功率
    Figure PCTCN2018113635-appb-100014
    即:
    Figure PCTCN2018113635-appb-100015
    (4-3)电力系统第i个节点的电压幅值U i在设定的电力系统安全运行电压的上限值
    Figure PCTCN2018113635-appb-100016
    和下限值 U i之间运行, U i取第i个节点额定电压的0.9倍或0.95倍,
    Figure PCTCN2018113635-appb-100017
    为第i个节点额定电压的1.1倍或1.05倍,即:
    Figure PCTCN2018113635-appb-100018
    (4-4)天然气系统中第k个节点的压强p k在设定的管道安全运行气压的上限值、下限值 p k
    Figure PCTCN2018113635-appb-100019
    内,即:
    Figure PCTCN2018113635-appb-100020
    (4-5)天然气系统中气源供气量L s大于或等于0,小于或等于该气源能提供天然气流的最大值L s,max,即:
    0≤L s≤L s,max
    (5)利用优化法(如内点法)或迭代法(如牛顿法)求解λ为0时由步骤(1)和步骤(3-3)构建的潮流方程F(X),得到初始潮流解X t(V ttt),其中下标t表示当前计算点;
    (6)在上述初始解X t处求得切向量dX t(dV t,dθ t,dλ t),并设置潮流解变化的步长h,得到预测值X′ t+1(V′ t+1,θ′ t+1,λ′ t+1),其中下标t+1表示下一个计算点:
    Figure PCTCN2018113635-appb-100021
    X′ t+1=X t+h·dX t
    (7)以X′ t+1为初始点,重新计算由步骤(1)和步骤(3-3)构建的潮流方程,得到修正值X t+1,判断X t+1是否满足步骤(4)中的约束且dλ t>0,若同时满足步骤(4)的约束 和dλ t>0的条件,则以X t+1作为初始解X t,返回执行步骤(6),若不满足步骤(4)的约束或不满足dλ t>0的条件,则进一步判断X t+1是否满足dλ tt<ε且dλ t>0,若不满足该条件,则重新调整步长h,返回执行步骤(6),若满足该条件,输出此时的λ,作为计及电-气耦合系统约束的电压稳定裕度。
PCT/CN2018/113635 2018-04-16 2018-11-02 计及电-气系统耦合的电力系统电压稳定裕度计算方法 WO2019200891A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/021,445 US20200410145A1 (en) 2018-04-16 2020-09-15 Method for calculating voltage stability margin of power system considering the coupling of electric-gas system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810335838.4 2018-04-16
CN201810335838.4A CN108667007B (zh) 2018-04-16 2018-04-16 计及电-气耦合系统约束的电压稳定裕度计算方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/021,445 Continuation US20200410145A1 (en) 2018-04-16 2020-09-15 Method for calculating voltage stability margin of power system considering the coupling of electric-gas system

Publications (1)

Publication Number Publication Date
WO2019200891A1 true WO2019200891A1 (zh) 2019-10-24

Family

ID=63783514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113635 WO2019200891A1 (zh) 2018-04-16 2018-11-02 计及电-气系统耦合的电力系统电压稳定裕度计算方法

Country Status (3)

Country Link
US (1) US20200410145A1 (zh)
CN (1) CN108667007B (zh)
WO (1) WO2019200891A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111125880A (zh) * 2019-11-25 2020-05-08 国网四川省电力公司电力科学研究院 一种暂态稳定视角下电力系统仿真数据生成方法
CN111241479A (zh) * 2020-01-10 2020-06-05 河海大学 基于交叉熵及客观熵权法的电-热互联综合能源系统风险评估方法
CN113221358A (zh) * 2021-05-13 2021-08-06 浙江大学 基于可靠性参数的电-气耦合系统的备用出力优化方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108667007B (zh) * 2018-04-16 2019-12-13 清华大学 计及电-气耦合系统约束的电压稳定裕度计算方法
CN109378834A (zh) * 2018-11-01 2019-02-22 三峡大学 基于信息最大相关的大规模电网电压稳定裕度评估系统
CN109242366B (zh) * 2018-11-06 2020-08-07 国电南瑞科技股份有限公司 一种电-气互联综合能源系统的多时段潮流优化方法
CN110070213B (zh) * 2019-03-28 2022-05-20 广东工业大学 一种电-气综合能源系统的日前调度方法
CN110277785B (zh) * 2019-06-26 2021-08-03 国网浙江省电力有限公司电力科学研究院 基于连续多能流的电气耦合系统负荷裕度计算方法及系统
CN111952956A (zh) * 2020-07-02 2020-11-17 清华大学 一种考虑电压敏感负荷备用的电力系统调度方法
CN111769603B (zh) * 2020-07-13 2022-04-08 国网天津市电力公司 一种基于电-气耦合系统安全裕度的机组优化调度方法
CN112101726B (zh) * 2020-08-14 2022-10-21 国网宁夏电力有限公司中卫供电公司 天然气网络受电压暂降影响的评估方法、介质及系统
CN112528480B (zh) * 2020-12-02 2022-08-12 清华大学 一种提升负荷裕度的热电耦合系统灾前预防方法
CN112861292B (zh) * 2021-01-12 2022-08-05 浙江大学 一种电-气综合能源系统恢复改善方法
CN112928753B (zh) * 2021-02-03 2023-01-06 东北电力大学 一种多能协同的配电网主动解列控制方法
CN113326605B (zh) * 2021-05-08 2022-07-26 华南理工大学 考虑灵活性冷负荷调控的多模式集中供冷系统优化方法
CN114060825B (zh) * 2021-11-15 2024-01-26 南方电网电力科技股份有限公司 一种垃圾焚烧炉中多污染物协同处置方法及相关装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103336882A (zh) * 2013-05-23 2013-10-02 国家电网公司 一种基于时域仿真的全过程动态电压稳定裕度评估方法
CN106056478A (zh) * 2016-06-12 2016-10-26 清华大学 一种电‑热耦合系统中热网的区间潮流计算方法
CN106096269A (zh) * 2016-06-12 2016-11-09 清华大学 一种电‑气耦合系统中天然气网的区间潮流计算方法
US9921602B2 (en) * 2013-05-14 2018-03-20 Rensselaer Polytechnic Institute Methods of computing steady-state voltage stability margins of power systems
CN108667007A (zh) * 2018-04-16 2018-10-16 清华大学 计及电-气耦合系统约束的电压稳定裕度计算方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60144367D1 (de) * 2001-05-21 2011-05-19 Abb Research Ltd Stabilität-Vorhersage für elektrisches Energieversorgungsnetz
US7603203B2 (en) * 2006-10-09 2009-10-13 Electric Power Research Institute, Inc. Method for voltage instability load shedding using local measurements
JP6412822B2 (ja) * 2015-04-22 2018-10-24 株式会社日立製作所 電力系統電圧無効電力監視制御装置及び方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9921602B2 (en) * 2013-05-14 2018-03-20 Rensselaer Polytechnic Institute Methods of computing steady-state voltage stability margins of power systems
CN103336882A (zh) * 2013-05-23 2013-10-02 国家电网公司 一种基于时域仿真的全过程动态电压稳定裕度评估方法
CN106056478A (zh) * 2016-06-12 2016-10-26 清华大学 一种电‑热耦合系统中热网的区间潮流计算方法
CN106096269A (zh) * 2016-06-12 2016-11-09 清华大学 一种电‑气耦合系统中天然气网的区间潮流计算方法
CN108667007A (zh) * 2018-04-16 2018-10-16 清华大学 计及电-气耦合系统约束的电压稳定裕度计算方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111125880A (zh) * 2019-11-25 2020-05-08 国网四川省电力公司电力科学研究院 一种暂态稳定视角下电力系统仿真数据生成方法
CN111125880B (zh) * 2019-11-25 2022-07-22 国网四川省电力公司电力科学研究院 一种暂态稳定视角下电力系统仿真数据生成方法
CN111241479A (zh) * 2020-01-10 2020-06-05 河海大学 基于交叉熵及客观熵权法的电-热互联综合能源系统风险评估方法
CN111241479B (zh) * 2020-01-10 2024-03-01 河海大学 基于交叉熵及客观熵权法的电-热互联综合能源系统风险评估方法
CN113221358A (zh) * 2021-05-13 2021-08-06 浙江大学 基于可靠性参数的电-气耦合系统的备用出力优化方法
CN113221358B (zh) * 2021-05-13 2022-09-27 浙江大学 基于可靠性参数的电-气耦合系统的备用出力优化方法

Also Published As

Publication number Publication date
US20200410145A1 (en) 2020-12-31
CN108667007A (zh) 2018-10-16
CN108667007B (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
WO2019200891A1 (zh) 计及电-气系统耦合的电力系统电压稳定裕度计算方法
LU500360B1 (en) Method for configuring park integrated energy system reserve with gas and thermal inertia reserves
CN102063566B (zh) 一种水力热力耦合仿真模型的多气源蒸汽管网计算系统
Chehouri et al. Review of performance optimization techniques applied to wind turbines
Li et al. Effects of collector radius and chimney height on power output of a solar chimney power plant with turbines
Mukherjee et al. Wind induced pressure on'Y'plan shape tall building
Fu et al. Failure probability estimation of the gas supply using a data-driven model in an integrated energy system
Zlotnik et al. Model reduction and optimization of natural gas pipeline dynamics
Sarhaddi et al. Exergetic optimization of a solar photovoltaic thermal (PV/T) air collector
Karimipour-Fard et al. Performance enhancement and environmental impact analysis of a solar chimney power plant: Twenty-four-hour simulation in climate condition of isfahan province, iran
CN106096269A (zh) 一种电‑气耦合系统中天然气网的区间潮流计算方法
CN109740242A (zh) 考虑天然气热力过程的电-气综合能源系统统一能流计算方法
CN104935017B (zh) 基于改进轻鲁棒优化模型的风电与火电机组组合方法
CN111563315B (zh) 一种基于拓扑分析的电-气综合能源系统稳态能量流计算方法
CN109800968A (zh) 考虑天然气系统热力过程的电-气互联系统概率能流分析方法
CN105930980B (zh) 一种电转气的综合能源系统多点线性概率能量流方法
WO2023015923A1 (zh) 一种基于序列凸规划的电气互联系统最优能流计算方法
Sitranon et al. Performance enhancement of solar water heater with a thermal water pump
Liu et al. An adaptive double-Newton-iteration hydraulic calculation method for optimal operation of the meshed district heating network
CN208044655U (zh) 烟气热水型溴化锂制冷机组的故障预测系统
CN202033612U (zh) 一种火力发电机组冷端设备的优化指导系统
Ma et al. Thermal and hydraulic characteristics of a large-scaled parabolic trough solar field (PTSF) under cloud passages
CN103544654A (zh) 电网经济调度局部最小解确定和全局最小解搜索方法
CN105160062A (zh) 一种同程管网水力校核方法
CN115906411B (zh) 考虑全动态的电热综合能源系统最优能流建模方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915325

Country of ref document: EP

Kind code of ref document: A1