CN111952956A - 一种考虑电压敏感负荷备用的电力系统调度方法 - Google Patents

一种考虑电压敏感负荷备用的电力系统调度方法 Download PDF

Info

Publication number
CN111952956A
CN111952956A CN202010625594.0A CN202010625594A CN111952956A CN 111952956 A CN111952956 A CN 111952956A CN 202010625594 A CN202010625594 A CN 202010625594A CN 111952956 A CN111952956 A CN 111952956A
Authority
CN
China
Prior art keywords
node
voltage
power
scheduling
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010625594.0A
Other languages
English (en)
Other versions
CN111952956B (zh
Inventor
王彬
于浩然
孙宏斌
李子衿
郭庆来
王存平
潘昭光
宋一凡
田兴涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
State Grid Beijing Electric Power Co Ltd
Original Assignee
Tsinghua University
State Grid Beijing Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, State Grid Beijing Electric Power Co Ltd filed Critical Tsinghua University
Priority to CN202010625594.0A priority Critical patent/CN111952956B/zh
Publication of CN111952956A publication Critical patent/CN111952956A/zh
Priority to US17/332,682 priority patent/US20220006292A1/en
Application granted granted Critical
Publication of CN111952956B publication Critical patent/CN111952956B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/144Demand-response operation of the power transmission or distribution network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/04Power grid distribution networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/06Wind turbines or wind farms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)

Abstract

本发明涉及一种考虑电压敏感负荷备用的电力系统调度方法,属于电力系统的运行控制技术领域。本方法建立了由电力系统基态运行点模型、电压敏感负荷范围评估模型和电力系统调度的优化目标共同构成的电力系统调度模型,通过求解该调度模型,获得考虑电压敏感负荷备用的电力系统调度方案。本方法能够充分利用电压敏感负荷的调节能力对电力系统备用容量进行补充,帮助电力系统进行有功功率控制。同时,该本发明方法能够在满足电压稳定指标约束的前提下实现电力系统售电收益最大化,保证电力系统安全经济运行。

Description

一种考虑电压敏感负荷备用的电力系统调度方法
技术领域
本发明涉及一种考虑电压敏感负荷备用的电力系统调度方法,属于电力系统的运行控制技术领域。
技术背景
为了有效应对有功功率波动,电力系统通常会预留出一定的发电容量,用作向上或向下调节的备用,以保证电力系统的有功功率平衡和频率稳定。由于电压敏感负荷具有一定的调节能力,因此可以将电压敏感负荷视为对发电机有功备用容量的补充,以帮助电力系统进行有功功率调控。
当电压敏感负荷作为备用时,面临以下两个个问题:1)当前运行点的电压设定值如何选取,以保证电压敏感负荷有一定的调节范围的同时,最大化当前电力系统的售电收益;2)未来电压敏感负荷作为备用投入后,必然影响未来的售电收益,电压敏感负荷调节对未来售电收益的影响如何刻画。为了解决这些问题,需要提出考虑电压敏感负荷备用的电力系统调度方法。
发明内容
本发明的目的是提出一种考虑电压敏感负荷备用的电力系统调度方法,旨在有效利用电压敏感负荷的调节能力增加电力系统中的备用容量。建立了由电力系统基态运行点模型、电压敏感负荷范围评估模型和电力系统调度的优化目标共同构成的电力系统调度模型,通过求解该调度模型,获得考虑电压敏感负荷备用的电力系统调度方案。
本发明提出的考虑电压敏感负荷备用的电力系统调度方法,包括以下步骤:
(1)建立电力系统基态运行点模型:
(1-1)建立电力系统基态运行点模型的变量集合Ω:
Figure BDA0002566386530000011
式中,iG为发电机的编号,t为调度时刻,
Figure BDA0002566386530000021
为t调度时刻发电机iG的有功功率,
Figure BDA0002566386530000022
为t调度时刻发电机iG提供的向上备用容量,
Figure BDA0002566386530000023
为t调度时刻发电机iG提供的向下备用容量,
Figure BDA0002566386530000024
为t调度时刻发电机iG的无功功率,i为节点编号,
Figure BDA0002566386530000025
为t调度时刻节点i上注入的有功功率,
Figure BDA0002566386530000026
为t调度时刻节点i上注入的无功功率,
Figure BDA0002566386530000027
为t调度时刻节点i的电压幅值,
Figure BDA0002566386530000028
为t调度时刻节点i的电压相角,j为与节点i相连的节点编号,
Figure BDA0002566386530000029
为节点i与节点j之间的电力线路中t调度时刻的电流,
Figure BDA00025663865300000210
为t调度时刻节点i处负荷的有功功率,
Figure BDA00025663865300000211
为t调度时刻节点i处负荷的无功功率,Li,t为t调度时刻节点i的电压稳定指标;
(1-2)建立发电机有功功率的约束:
Figure BDA00025663865300000212
式中,
Figure BDA00025663865300000213
为发电机iG有功功率的下限,
Figure BDA00025663865300000214
为发电机iG有功功率的上限,IG为所有发电机构成的集合,T为总的调度时刻数目;
(1-3)建立发电机备用容量和爬坡速率的约束:
Figure BDA00025663865300000215
Figure BDA00025663865300000216
Figure BDA00025663865300000217
Figure BDA00025663865300000218
式中,
Figure BDA00025663865300000219
为t+1调度时刻发电机iG的有功功率,
Figure BDA00025663865300000220
为t+1调度时刻发电机iG提供的向上备用容量,
Figure BDA00025663865300000221
为发电机iG的向下爬坡速率,
Figure BDA00025663865300000222
为发电机iG的向上爬坡速率;
(1-4)建立发电机无功功率的约束:
Figure BDA00025663865300000223
式中,
Figure BDA00025663865300000224
为发电机iG无功功率的下限,
Figure BDA00025663865300000225
为发电机iG无功功率的上限;
(1-5)建立电力系统潮流的约束:
Figure BDA00025663865300000226
Figure BDA0002566386530000031
Figure BDA0002566386530000032
Figure BDA0002566386530000033
式中,IB为电力系统中所有母线的集合,
Figure BDA0002566386530000034
为t调度时刻节点j的电压幅值,
Figure BDA0002566386530000035
为电网节点导纳矩阵Y中第i行、第j列元素的实部,
Figure BDA0002566386530000036
为电网节点导纳矩阵Y中第i行、第j列元素的虚部,电网节点导纳矩阵Y从电-热耦合多能流系统的能量管理系统中获取,
Figure BDA0002566386530000037
为节点i与节点j之间t时刻电压相角的差值;
(1-6)建立线路容量的约束:
Figure BDA0002566386530000038
式中,
Figure BDA0002566386530000039
为节点i与节点j之间的电力线路中电流的上限;
(1-7)建立节点电压幅值和电压相角的约束:
Figure BDA00025663865300000310
Figure BDA00025663865300000311
式中,
Figure BDA00025663865300000312
为节点i电压幅值的下限,
Figure BDA00025663865300000313
为节点i电压幅值的上限,
Figure BDA00025663865300000314
为节点i电压相角的下限,
Figure BDA00025663865300000315
为节点i电压相角的上限;
(1-8)建立节点注入的有功功率和无功功率的约束:
Figure BDA00025663865300000316
Figure BDA00025663865300000317
式中,
Figure BDA00025663865300000318
为t调度时刻节点i处切除负荷的有功功率,
Figure BDA00025663865300000319
为连接在节点i上的所有发电机构成的集合,iW为风电场的编号,
Figure BDA00025663865300000320
为连接在节点i上的所有风电场构成的集合,
Figure BDA00025663865300000321
为t调度时刻风电场iW的有功功率,
Figure BDA00025663865300000322
为t调度时刻节点i切除负荷的无功功率;
(1-9)建立切除负荷的有功功率的约束:
Figure BDA0002566386530000041
(1-10)建立负荷有功功率、无功功率与电压幅值的约束:
Figure BDA0002566386530000042
Figure BDA0002566386530000043
式中,
Figure BDA0002566386530000044
为t调度时刻节点i在额定电压下的有功功率,
Figure BDA0002566386530000045
为额定电压,
Figure BDA0002566386530000046
Figure BDA0002566386530000047
为节点注入有功功率模型中的二次系数、一次系数和常数项,
Figure BDA0002566386530000048
为t调度时刻节点i在额定电压下的无功功率,
Figure BDA0002566386530000049
为t调度时刻节点i上投入的无功补偿装置容量,
Figure BDA00025663865300000410
Figure BDA00025663865300000411
为节点注入无功功率模型中的二次系数、一次系数和常数项;
(1-11)建立电压稳定指标的范围约束:
Figure BDA00025663865300000412
Li,t≤Lmax,i∈IB,t∈[1,T]
式中;θG表示接有发电机的节点的集合,Fij为混合参数矩阵的子矩阵,Lmax电压稳定指标的上限;
(1-12)建立风电场有功功率和弃用的有功功率的约束:
Figure BDA00025663865300000413
Figure BDA00025663865300000414
式中,
Figure BDA00025663865300000415
为t调度时刻风电场iW有功功率的预测值,
Figure BDA00025663865300000416
为t调度时刻风电场iW弃用的有功功率,IW为所有风电场构成的集合;
(1-13)建立电力系统总向上备用容量和总向下备用容量的约束:
Figure BDA00025663865300000417
Figure BDA00025663865300000418
式中,
Figure BDA0002566386530000051
为t调度时刻节点i处的电压敏感负荷提供的向上备用容量,
Figure BDA0002566386530000052
为t调度时刻节点i处的电压敏感负荷提供的向下备用容量,
Figure BDA0002566386530000053
为t调度时刻电力系统需要的总向上备用容量,
Figure BDA0002566386530000054
为t调度时刻电力系统需要的总向下备用容量;
(1-14)建立电压敏感负荷的备用容量约束:
Figure BDA0002566386530000055
Figure BDA0002566386530000056
式中,
Figure BDA0002566386530000057
为电压敏感负荷提供向上备用容量时t调度时刻节点i处负荷的有功功率变化量,
Figure BDA0002566386530000058
电压敏感负荷提供向上备用容量时t调度时刻节点i的电压幅值变化量,
Figure BDA0002566386530000059
为电压敏感负荷提供向下备用容量时t调度时刻节点i处负荷的有功功率变化量,
Figure BDA00025663865300000510
电压敏感负荷提供向下备用容量时t调度时刻节点i的电压幅值变化量;
(2)建立电压敏感负荷调节范围评估模型:
(2-1)建立电压敏感负荷提供向上备用容量时电力系统中调节变量的调节范围模型:
(2-1-1)建立电压敏感负荷提供向上备用容量时电力系统中调节变量集合ΩΔ′:
Figure BDA00025663865300000511
式中,
Figure BDA00025663865300000512
为电压敏感负荷提供向上备用容量时t调度时刻发电机iG的有功功率变化量,
Figure BDA00025663865300000513
为电压敏感负荷提供向上备用容量时t调度时刻发电机iG的无功功率变化量,
Figure BDA00025663865300000514
为电压敏感负荷提供向上备用容量时t调度时刻节点i上注入的有功功率变化量,
Figure BDA00025663865300000515
为电压敏感负荷提供向上备用容量时t调度时刻节点i上注入的无功功率变化量,
Figure BDA00025663865300000516
为电压敏感负荷提供向上备用容量时t调度时刻节点i的电压幅值变化量,
Figure BDA00025663865300000517
为电压敏感负荷提供向上备用容量时t调度时刻节点i的电压相角变化量,
Figure BDA00025663865300000518
为电压敏感负荷提供向上备用容量时节点i与节点j之间的电力线路中t调度时刻的电流变化量,ΔLi,t′为电压敏感负荷提供向上备用容量时节点i的电压稳定指标变化量;
(2-1-2)建立各个节点上注入的有功功率变化量、无功功率变化量、电压幅值变化量和电压相角变化量之间的约束:
Figure BDA0002566386530000061
式中,
Figure BDA0002566386530000062
为电压敏感负荷提供向上备用容量时t调度时刻各个节点i上注入的有功功率变化量
Figure BDA0002566386530000063
共同构成的列向量,
Figure BDA0002566386530000064
为电压敏感负荷提供向上备用容量时t调度时刻各个节点i上注入的无功功率变化量
Figure BDA0002566386530000065
共同构成的列向量,
Figure BDA0002566386530000066
为电压敏感负荷提供向上备用容量时t调度时刻各个节点i的电压相角变化量
Figure BDA0002566386530000067
共同构成的列向量,ΔUt pf′为电压敏感负荷提供向上备用容量时t调度时刻各个节点i的电压幅值变化量
Figure BDA0002566386530000068
共同构成的列向量,Jpf为潮流方程雅克比矩阵,Jpf从电-热耦合多能流系统的能量管理系统中获取;
(2-1-3)建立各个节点上注入的有功功率变化量和无功功率变化量的约束:
Figure BDA0002566386530000069
Figure BDA00025663865300000610
Figure BDA00025663865300000611
式中,
Figure BDA00025663865300000612
为电压敏感负荷提供向上备用容量时t调度时刻节点i处负荷的有功功率变化量,
Figure BDA00025663865300000613
为电压敏感负荷提供向上备用容量时t调度时刻节点i处负荷的无功功率变化量;
(2-1-4)建立电力线路中电流变化量的约束方程:
Figure BDA00025663865300000614
Figure BDA00025663865300000615
式中,Upf为电压幅值,
Figure BDA00025663865300000616
Figure BDA00025663865300000617
对电压幅值的灵敏度,
Figure BDA00025663865300000618
从电-热耦合多能流系统的能量管理系统中获取,δpf为电压相角,
Figure BDA0002566386530000071
Figure BDA0002566386530000072
对电压相角的灵敏度,
Figure BDA0002566386530000073
从电-热耦合多能流系统的能量管理系统中获取;
(2-1-5)建立电压幅值和电压相角的约束:
Figure BDA0002566386530000074
Figure BDA0002566386530000075
(2-1-6)建立发电机有功功率和无功功率的约束:
Figure BDA0002566386530000076
Figure BDA0002566386530000077
(2-1-7)建立负荷有功功率变化量和无功功率变化量的约束:
Figure BDA0002566386530000078
Figure BDA0002566386530000079
(2-1-8)建立电压稳定指标约束方程:
Li,t+ΔLi,t′≤Lmax
Figure BDA00025663865300000710
式中,
Figure BDA00025663865300000711
为电压稳定指标对电压幅值的灵敏度,
Figure BDA00025663865300000712
从电-热耦合多能流系统的能量管理系统中获取;
Figure BDA00025663865300000713
为电压稳定指标对电压相角的灵敏度,
Figure BDA00025663865300000714
从电-热耦合多能流系统的能量管理系统中获取;
(2-2)建立电压敏感负荷提供向下备用容量时电力系统中调节变量的调节范围模型:
(2-2-1)建立电压敏感负荷提供向下备用容量时电力系统中调节变量集合ΩΔ″
Figure BDA00025663865300000715
式中,
Figure BDA00025663865300000817
为电压敏感负荷提供向下备用容量时t调度时刻发电机iG的有功功率变化量,
Figure BDA0002566386530000081
为电压敏感负荷提供向下备用容量时t调度时刻发电机iG的无功功率变化量,
Figure BDA0002566386530000082
为电压敏感负荷提供向下备用容量时t调度时刻节点i上注入的有功功率变化量,
Figure BDA0002566386530000083
为电压敏感负荷提供向下备用容量时t调度时刻节点i上注入的无功功率变化量,
Figure BDA0002566386530000084
为电压敏感负荷提供向下备用容量时t调度时刻节点i的电压幅值变化量,
Figure BDA0002566386530000085
为电压敏感负荷提供向下备用容量时t调度时刻节点i的电压相角变化量,
Figure BDA0002566386530000086
为电压敏感负荷提供向下备用容量时节点i与节点j之间的电力线路中t调度时刻的电流变化量,ΔLi,t″为电压敏感负荷提供向下备用容量时节点i的电压稳定指标变化量;
(2-2-2)建立各个节点上注入的有功功率变化量、无功功率变化量、电压幅值变化量和电压相角变化量之间的约束:
Figure BDA0002566386530000087
式中,
Figure BDA0002566386530000088
为电压敏感负荷提供向下备用容量时t调度时刻各个节点i上注入的有功功率变化量
Figure BDA0002566386530000089
共同构成的列向量,ΔQt pf″为电压敏感负荷提供向下备用容量时t调度时刻各个节点i上注入的无功功率变化量
Figure BDA00025663865300000810
共同构成的列向量,Δδt pf″为电压敏感负荷提供向下备用容量时t调度时刻各个节点i的电压相角变化量
Figure BDA00025663865300000811
共同构成的列向量,ΔUt pf″为电压敏感负荷提供向下备用容量时t调度时刻各个节点i的电压幅值变化量
Figure BDA00025663865300000812
共同构成的列向量;
(2-2-3)建立各个节点上注入的有功功率变化量和无功功率变化量的约束:
Figure BDA00025663865300000813
Figure BDA00025663865300000814
Figure BDA00025663865300000815
式中,
Figure BDA00025663865300000816
为电压敏感负荷提供向下备用容量时t调度时刻节点i处负荷的有功功率变化量,
Figure BDA0002566386530000091
为电压敏感负荷提供向下备用容量时t调度时刻节点i处负荷的无功功率变化量;
(2-2-4)建立电力线路中电流变化量的约束:
Figure BDA0002566386530000092
Figure BDA0002566386530000093
(2-2-5)建立电压幅值和电压相角的约束:
Figure BDA0002566386530000094
Figure BDA0002566386530000095
(2-2-6)建立发电机有功功率和无功功率约束:
Figure BDA0002566386530000096
Figure BDA0002566386530000097
(2-2-7)建立负荷有功功率变化量和无功功率变化量的约束:
Figure BDA0002566386530000098
Figure BDA0002566386530000099
(2-2-8)建立电压稳定指标约束方程:
Li,t+ΔLi,t″≤Lmax
Figure BDA00025663865300000910
(3)建立电力系统调度的优化目标:
minFG(Pt G,rt G,u,rt G,d)+FP(Pt wd,Pt lc)-FB(Pt L)
式中,Pt G为电力系统中所有发电机的有功功率
Figure BDA00025663865300000911
构成的列向量,rt G,u为电力系统中所有发电机提供的向上备用容量
Figure BDA00025663865300000912
构成的列向量,rt G,d为电力系统中所有发电机提供的向下备用容量
Figure BDA0002566386530000101
构成的列向量,FG(Pt G,rt G,u,rt G,d)为电力系统中所有发电机提供有功功率和备用容量的成本,Pt wd为电力系统中所有风电场弃用的有功功率
Figure BDA0002566386530000102
构成的列向量,
Figure BDA0002566386530000103
为电力系统中所有切负荷的有功功率
Figure BDA0002566386530000104
构成的列向量,FP(Pt wd,Pt lc)为电力系统弃风和切负荷的成本,Pt L为电力系统中所有电负荷有功功率
Figure BDA0002566386530000105
构成的列向量,FB(Pt L)为电力系统售电收益;
(4)将步骤(1)中建立的电力系统基态运行点模型、步骤(2)中建立的电压敏感负荷调节范围评估模型和步骤(3)中建立的电力系统调度的优化目标共同构成一个考虑电压敏感负荷备用的电力系统调度的优化模型,采用内点法求解该优化模型,得到电力系统的调度参数,包括:发电机iG的有功功率
Figure BDA0002566386530000106
发电机iG的无功功率
Figure BDA0002566386530000107
节点i处负荷的有功功率
Figure BDA0002566386530000108
以及节点i处负荷的无功功率
Figure BDA0002566386530000109
实现考虑电压敏感负荷备用的电力系统调度。
本发明提出的考虑电压敏感负荷备用的电力系统调度方法,其优点是:
本发明的考虑电压敏感负荷备用的电力系统调度方法,建立了由电力系统基态运行点模型、电压敏感负荷范围评估模型和电力系统调度的优化目标共同构成的电力系统调度模型,通过求解该调度模型,获得考虑电压敏感负荷备用的电力系统调度方案。本方法能够充分利用电压敏感负荷的调节能力对电力系统备用容量进行补充,帮助电力系统进行有功功率控制。同时,该本发明方法能够在满足电压稳定指标约束的前提下实现电力系统售电收益最大化,保证电力系统安全经济运行。
具体实施方式
本发明提出的考虑电压敏感负荷备用的电力系统调度方法,包括以下步骤:
(1)建立电力系统基态运行点模型:
(1-1)建立电力系统基态运行点模型的变量集合Ω:
Figure BDA00025663865300001010
式中,iG为发电机的编号,t为调度时刻,
Figure BDA00025663865300001011
为t调度时刻发电机iG的有功功率,
Figure BDA00025663865300001012
为t调度时刻发电机iG提供的向上备用容量,
Figure BDA00025663865300001013
为t调度时刻发电机iG提供的向下备用容量,
Figure BDA0002566386530000111
为t调度时刻发电机iG的无功功率,i为节点编号,
Figure BDA0002566386530000112
为t调度时刻节点i上注入的有功功率,
Figure BDA0002566386530000113
为t调度时刻节点i上注入的无功功率,
Figure BDA0002566386530000114
为t调度时刻节点i的电压幅值,
Figure BDA0002566386530000115
为t调度时刻节点i的电压相角,j为与节点i相连的节点编号,
Figure BDA0002566386530000116
为节点i与节点j之间的电力线路中t调度时刻的电流,
Figure BDA0002566386530000117
为t调度时刻节点i处负荷的有功功率,
Figure BDA0002566386530000118
为t调度时刻节点i处负荷的无功功率,Li,t为t调度时刻节点i的电压稳定指标;
(1-2)建立发电机有功功率的约束:
Figure BDA0002566386530000119
式中,
Figure BDA00025663865300001110
为发电机iG有功功率的下限,
Figure BDA00025663865300001111
为发电机iG有功功率的上限,IG为所有发电机构成的集合,T为总的调度时刻数目;
(1-3)建立发电机备用容量和爬坡速率的约束:
Figure BDA00025663865300001112
Figure BDA00025663865300001113
Figure BDA00025663865300001114
Figure BDA00025663865300001115
式中,
Figure BDA00025663865300001116
为t+1调度时刻发电机iG的有功功率,
Figure BDA00025663865300001117
为t+1调度时刻发电机iG提供的向上备用容量,
Figure BDA00025663865300001118
为发电机iG的向下爬坡速率,
Figure BDA00025663865300001119
为发电机iG的向上爬坡速率;
(1-4)建立发电机无功功率的约束:
Figure BDA00025663865300001120
式中,
Figure BDA00025663865300001121
为发电机iG无功功率的下限,
Figure BDA00025663865300001122
为发电机iG无功功率的上限;
(1-5)建立电力系统潮流的约束:
Figure BDA00025663865300001123
Figure BDA00025663865300001124
Figure BDA00025663865300001125
Figure BDA0002566386530000121
式中,IB为电力系统中所有母线的集合,
Figure BDA0002566386530000122
为t调度时刻节点j的电压幅值,
Figure BDA0002566386530000123
为电网节点导纳矩阵Y中第i行、第j列元素的实部,
Figure BDA0002566386530000124
为电网节点导纳矩阵Y中第i行、第j列元素的虚部,电网节点导纳矩阵Y从电-热耦合多能流系统的能量管理系统中获取,
Figure BDA0002566386530000125
为节点i与节点j之间t时刻电压相角的差值;
(1-6)建立线路容量的约束:
Figure BDA0002566386530000126
式中,
Figure BDA0002566386530000127
为节点i与节点j之间的电力线路中电流的上限;
(1-7)建立节点电压幅值和电压相角的约束:
Figure BDA00025663865300001221
Figure BDA0002566386530000128
式中,
Figure BDA0002566386530000129
为节点i电压幅值的下限,
Figure BDA00025663865300001210
为节点i电压幅值的上限,
Figure BDA00025663865300001211
为节点i电压相角的下限,
Figure BDA00025663865300001212
为节点i电压相角的上限;
(1-8)建立节点注入的有功功率和无功功率的约束:
Figure BDA00025663865300001213
Figure BDA00025663865300001214
式中,
Figure BDA00025663865300001215
为t调度时刻节点i处切除负荷的有功功率,
Figure BDA00025663865300001216
为连接在节点i上的所有发电机构成的集合,iW为风电场的编号,
Figure BDA00025663865300001217
为连接在节点i上的所有风电场构成的集合,
Figure BDA00025663865300001218
为t调度时刻风电场iW的有功功率,
Figure BDA00025663865300001219
为t调度时刻节点i切除负荷的无功功率;
(1-9)建立切除负荷的有功功率的约束:
Figure BDA00025663865300001220
(1-10)建立负荷有功功率、无功功率与电压幅值的约束:
Figure BDA0002566386530000131
Figure BDA0002566386530000132
式中,
Figure BDA0002566386530000133
为t调度时刻节点i在额定电压下的有功功率,
Figure BDA0002566386530000134
为额定电压,
Figure BDA0002566386530000135
Figure BDA0002566386530000136
为节点注入有功功率模型中的二次系数、一次系数和常数项,
Figure BDA0002566386530000137
为t调度时刻节点i在额定电压下的无功功率,
Figure BDA0002566386530000138
为t调度时刻节点i上投入的无功补偿装置容量,
Figure BDA0002566386530000139
Figure BDA00025663865300001310
为节点注入无功功率模型中的二次系数、一次系数和常数项;
(1-11)建立电压稳定指标的范围约束:
Figure BDA00025663865300001311
Li,t≤Lmax,i∈IB,t∈[1,T]
式中;θG表示接有发电机的节点的集合,Fij为混合参数矩阵的子矩阵,Lmax电压稳定指标的上限;
(1-12)建立风电场有功功率和弃用的有功功率的约束:
Figure BDA00025663865300001312
Figure BDA00025663865300001313
式中,
Figure BDA00025663865300001314
为t调度时刻风电场iW有功功率的预测值,
Figure BDA00025663865300001315
为t调度时刻风电场iW弃用的有功功率,IW为所有风电场构成的集合;
(1-13)建立电力系统总向上备用容量和总向下备用容量的约束:
Figure BDA00025663865300001316
Figure BDA00025663865300001317
式中,
Figure BDA00025663865300001318
为t调度时刻节点i处的电压敏感负荷提供的向上备用容量,
Figure BDA00025663865300001319
为t调度时刻节点i处的电压敏感负荷提供的向下备用容量,
Figure BDA00025663865300001320
为t调度时刻电力系统需要的总向上备用容量,
Figure BDA0002566386530000141
为t调度时刻电力系统需要的总向下备用容量;
(1-14)建立电压敏感负荷的备用容量约束:
Figure BDA0002566386530000142
Figure BDA0002566386530000143
式中,
Figure BDA0002566386530000144
为电压敏感负荷提供向上备用容量时t调度时刻节点i处负荷的有功功率变化量,
Figure BDA0002566386530000145
电压敏感负荷提供向上备用容量时t调度时刻节点i的电压幅值变化量,
Figure BDA0002566386530000146
为电压敏感负荷提供向下备用容量时t调度时刻节点i处负荷的有功功率变化量,
Figure BDA0002566386530000147
电压敏感负荷提供向下备用容量时t调度时刻节点i的电压幅值变化量;
(2)建立电压敏感负荷调节范围评估模型:
(2-1)建立电压敏感负荷提供向上备用容量时电力系统中调节变量的调节范围模型:
(2-1-1)建立电压敏感负荷提供向上备用容量时电力系统中调节变量集合ΩΔ′:
Figure BDA0002566386530000148
式中,
Figure BDA0002566386530000149
为电压敏感负荷提供向上备用容量时t调度时刻发电机iG的有功功率变化量,
Figure BDA00025663865300001410
为电压敏感负荷提供向上备用容量时t调度时刻发电机iG的无功功率变化量,
Figure BDA00025663865300001411
为电压敏感负荷提供向上备用容量时t调度时刻节点i上注入的有功功率变化量,
Figure BDA00025663865300001412
为电压敏感负荷提供向上备用容量时t调度时刻节点i上注入的无功功率变化量,
Figure BDA00025663865300001413
为电压敏感负荷提供向上备用容量时t调度时刻节点i的电压幅值变化量,
Figure BDA00025663865300001414
为电压敏感负荷提供向上备用容量时t调度时刻节点i的电压相角变化量,
Figure BDA00025663865300001415
为电压敏感负荷提供向上备用容量时节点i与节点j之间的电力线路中t调度时刻的电流变化量,ΔLi,t′为电压敏感负荷提供向上备用容量时节点i的电压稳定指标变化量;
(2-1-2)建立各个节点上注入的有功功率变化量、无功功率变化量、电压幅值变化量和电压相角变化量之间的约束:
Figure BDA0002566386530000151
式中,ΔPt pf′为电压敏感负荷提供向上备用容量时t调度时刻各个节点i上注入的有功功率变化量
Figure BDA0002566386530000152
共同构成的列向量,ΔQt pf′为电压敏感负荷提供向上备用容量时t调度时刻各个节点i上注入的无功功率变化量
Figure BDA0002566386530000153
共同构成的列向量,Δδt pf′为电压敏感负荷提供向上备用容量时t调度时刻各个节点i的电压相角变化量
Figure BDA0002566386530000154
共同构成的列向量,ΔUt pf′为电压敏感负荷提供向上备用容量时t调度时刻各个节点i的电压幅值变化量
Figure BDA0002566386530000155
共同构成的列向量,Jpf为潮流方程雅克比矩阵,Jpf从电-热耦合多能流系统的能量管理系统中获取;
(2-1-3)建立各个节点上注入的有功功率变化量和无功功率变化量的约束:
Figure BDA0002566386530000156
Figure BDA0002566386530000157
Figure BDA0002566386530000158
式中,
Figure BDA0002566386530000159
为电压敏感负荷提供向上备用容量时t调度时刻节点i处负荷的有功功率变化量,
Figure BDA00025663865300001510
为电压敏感负荷提供向上备用容量时t调度时刻节点i处负荷的无功功率变化量;
(2-1-4)建立电力线路中电流变化量的约束方程:
Figure BDA00025663865300001511
Figure BDA00025663865300001512
式中,Upf为电压幅值,
Figure BDA00025663865300001513
Figure BDA00025663865300001514
对电压幅值的灵敏度,
Figure BDA00025663865300001515
从电-热耦合多能流系统的能量管理系统中获取,δpf为电压相角,
Figure BDA00025663865300001516
Figure BDA00025663865300001517
对电压相角的灵敏度,
Figure BDA00025663865300001518
从电-热耦合多能流系统的能量管理系统中获取;
(2-1-5)建立电压幅值和电压相角的约束:
Figure BDA0002566386530000161
Figure BDA0002566386530000162
(2-1-6)建立发电机有功功率和无功功率的约束:
Figure BDA0002566386530000163
Figure BDA0002566386530000164
(2-1-7)建立负荷有功功率变化量和无功功率变化量的约束:
Figure BDA0002566386530000165
Figure BDA0002566386530000166
(2-1-8)建立电压稳定指标约束方程:
Li,t+ΔLi,t′≤Lmax
Figure BDA0002566386530000167
式中,
Figure BDA0002566386530000168
为电压稳定指标对电压幅值的灵敏度,
Figure BDA0002566386530000169
从电-热耦合多能流系统的能量管理系统中获取;
Figure BDA00025663865300001610
为电压稳定指标对电压相角的灵敏度,
Figure BDA00025663865300001611
从电-热耦合多能流系统的能量管理系统中获取;
(2-2)建立电压敏感负荷提供向下备用容量时电力系统中调节变量的调节范围模型:
(2-2-1)建立电压敏感负荷提供向下备用容量时电力系统中调节变量集合ΩΔ″
Figure BDA00025663865300001612
式中,
Figure BDA00025663865300001613
为电压敏感负荷提供向下备用容量时t调度时刻发电机iG的有功功率变化量,
Figure BDA00025663865300001614
为电压敏感负荷提供向下备用容量时t调度时刻发电机iG的无功功率变化量,
Figure BDA0002566386530000171
为电压敏感负荷提供向下备用容量时t调度时刻节点i上注入的有功功率变化量,
Figure BDA0002566386530000172
为电压敏感负荷提供向下备用容量时t调度时刻节点i上注入的无功功率变化量,
Figure BDA0002566386530000173
为电压敏感负荷提供向下备用容量时t调度时刻节点i的电压幅值变化量,
Figure BDA0002566386530000174
为电压敏感负荷提供向下备用容量时t调度时刻节点i的电压相角变化量,
Figure BDA0002566386530000175
为电压敏感负荷提供向下备用容量时节点i与节点j之间的电力线路中t调度时刻的电流变化量,ΔLi,t″为电压敏感负荷提供向下备用容量时节点i的电压稳定指标变化量;
(2-2-2)建立各个节点上注入的有功功率变化量、无功功率变化量、电压幅值变化量和电压相角变化量之间的约束:
Figure BDA0002566386530000176
式中,ΔPt pf″为电压敏感负荷提供向下备用容量时t调度时刻各个节点i上注入的有功功率变化量
Figure BDA0002566386530000177
共同构成的列向量,ΔQt pf″为电压敏感负荷提供向下备用容量时t调度时刻各个节点i上注入的无功功率变化量
Figure BDA0002566386530000178
共同构成的列向量,Δδt pf″为电压敏感负荷提供向下备用容量时t调度时刻各个节点i的电压相角变化量
Figure BDA0002566386530000179
共同构成的列向量,ΔUt pf″为电压敏感负荷提供向下备用容量时t调度时刻各个节点i的电压幅值变化量
Figure BDA00025663865300001710
共同构成的列向量;
(2-2-3)建立各个节点上注入的有功功率变化量和无功功率变化量的约束:
Figure BDA00025663865300001711
Figure BDA00025663865300001712
Figure BDA00025663865300001713
式中,
Figure BDA00025663865300001714
为电压敏感负荷提供向下备用容量时t调度时刻节点i处负荷的有功功率变化量,
Figure BDA00025663865300001715
为电压敏感负荷提供向下备用容量时t调度时刻节点i处负荷的无功功率变化量;
(2-2-4)建立电力线路中电流变化量的约束:
Figure BDA0002566386530000181
Figure BDA0002566386530000182
(2-2-5)建立电压幅值和电压相角的约束:
Figure BDA0002566386530000183
Figure BDA0002566386530000184
(2-2-6)建立发电机有功功率和无功功率约束:
Figure BDA0002566386530000185
Figure BDA0002566386530000186
(2-2-7)建立负荷有功功率变化量和无功功率变化量的约束:
Figure BDA0002566386530000187
Figure BDA0002566386530000188
(2-2-8)建立电压稳定指标约束方程:
Li,t+ΔLi,t″≤Lmax
Figure BDA0002566386530000189
(3)建立电力系统调度的优化目标:
min FG(Pt G,rt G,u,rt G,d)+FP(Pt wd,Pt lc)-FB(Pt L)
式中,Pt G为电力系统中所有发电机的有功功率
Figure BDA00025663865300001810
构成的列向量,
Figure BDA00025663865300001811
为电力系统中所有发电机提供的向上备用容量
Figure BDA00025663865300001812
构成的列向量,rt G,d为电力系统中所有发电机提供的向下备用容量
Figure BDA00025663865300001813
构成的列向量,FG(Pt G,rt G,u,rt G,d)为电力系统中所有发电机提供有功功率和备用容量的成本,Pt wd为电力系统中所有风电场弃用的有功功率
Figure BDA00025663865300001814
构成的列向量,Pt lc为电力系统中所有切负荷的有功功率
Figure BDA0002566386530000191
构成的列向量,FP(Pt wd,Pt lc)为电力系统弃风和切负荷的成本,Pt L为电力系统中所有电负荷有功功率
Figure BDA0002566386530000192
构成的列向量,FB(Pt L)为电力系统售电收益;
(4)将步骤(1)中建立的电力系统基态运行点模型、步骤(2)中建立的电压敏感负荷调节范围评估模型和步骤(3)中建立的电力系统调度的优化目标共同构成一个考虑电压敏感负荷备用的电力系统调度的优化模型,采用内点法求解该优化模型,得到电力系统的调度参数,包括:发电机iG的有功功率
Figure BDA0002566386530000193
发电机iG的无功功率
Figure BDA0002566386530000194
节点i处负荷的有功功率
Figure BDA0002566386530000195
以及节点i处负荷的无功功率
Figure BDA0002566386530000196
实现考虑电压敏感负荷备用的电力系统调度。本发明的一个实施例中通过Ipopt求解器求解该优化模型。

Claims (1)

1.一种考虑电压敏感负荷备用的电力系统调度方法,其特征在于该方法包括以下步骤:
(1)建立电力系统基态运行点模型:
(1-1)建立电力系统基态运行点模型的变量集合Ω:
Figure FDA0002566386520000011
式中,iG为发电机的编号,t为调度时刻,
Figure FDA0002566386520000012
为t调度时刻发电机iG的有功功率,
Figure FDA0002566386520000013
为t调度时刻发电机iG提供的向上备用容量,
Figure FDA0002566386520000014
为t调度时刻发电机iG提供的向下备用容量,
Figure FDA0002566386520000015
为t调度时刻发电机iG的无功功率,i为节点编号,
Figure FDA0002566386520000016
为t调度时刻节点i上注入的有功功率,
Figure FDA0002566386520000017
为t调度时刻节点i上注入的无功功率,
Figure FDA0002566386520000018
为t调度时刻节点i的电压幅值,
Figure FDA0002566386520000019
为t调度时刻节点i的电压相角,j为与节点i相连的节点编号,
Figure FDA00025663865200000110
为节点i与节点j之间的电力线路中t调度时刻的电流,
Figure FDA00025663865200000111
为t调度时刻节点i处负荷的有功功率,
Figure FDA00025663865200000112
为t调度时刻节点i处负荷的无功功率,Li,t为t调度时刻节点i的电压稳定指标;
(1-2)建立发电机有功功率的约束:
Figure FDA00025663865200000113
式中,
Figure FDA00025663865200000114
为发电机iG有功功率的下限,
Figure FDA00025663865200000115
为发电机iG有功功率的上限,IG为所有发电机构成的集合,T为总的调度时刻数目;
(1-3)建立发电机备用容量和爬坡速率的约束:
Figure FDA00025663865200000116
Figure FDA00025663865200000117
Figure FDA00025663865200000118
Figure FDA00025663865200000119
式中,
Figure FDA00025663865200000120
为t+1调度时刻发电机iG的有功功率,
Figure FDA00025663865200000121
为t+1调度时刻发电机iG提供的向上备用容量,
Figure FDA0002566386520000021
为发电机iG的向下爬坡速率,
Figure FDA0002566386520000022
为发电机iG的向上爬坡速率;
(1-4)建立发电机无功功率的约束:
Figure FDA0002566386520000023
式中,
Figure FDA0002566386520000024
为发电机iG无功功率的下限,
Figure FDA0002566386520000025
为发电机iG无功功率的上限;
(1-5)建立电力系统潮流的约束:
Figure FDA0002566386520000026
Figure FDA0002566386520000027
Figure FDA0002566386520000028
Figure FDA0002566386520000029
式中,IB为电力系统中所有母线的集合,
Figure FDA00025663865200000210
为t调度时刻节点j的电压幅值,
Figure FDA00025663865200000211
为电网节点导纳矩阵Y中第i行、第j列元素的实部,
Figure FDA00025663865200000212
为电网节点导纳矩阵Y中第i行、第j列元素的虚部,电网节点导纳矩阵Y从电-热耦合多能流系统的能量管理系统中获取,
Figure FDA00025663865200000213
为节点i与节点j之间t时刻电压相角的差值;
(1-6)建立线路容量的约束:
Figure FDA00025663865200000214
式中,
Figure FDA00025663865200000215
为节点i与节点j之间的电力线路中电流的上限;
(1-7)建立节点电压幅值和电压相角的约束:
Figure FDA00025663865200000216
Figure FDA00025663865200000217
式中,
Figure FDA00025663865200000218
为节点i电压幅值的下限,
Figure FDA00025663865200000219
为节点i电压幅值的上限,
Figure FDA00025663865200000220
为节点i电压相角的下限,
Figure FDA00025663865200000221
为节点i电压相角的上限;
(1-8)建立节点注入的有功功率和无功功率的约束:
Figure FDA0002566386520000031
Figure FDA0002566386520000032
式中,
Figure FDA0002566386520000033
为t调度时刻节点i处切除负荷的有功功率,
Figure FDA0002566386520000034
为连接在节点i上的所有发电机构成的集合,iW为风电场的编号,
Figure FDA0002566386520000035
为连接在节点i上的所有风电场构成的集合,
Figure FDA0002566386520000036
为t调度时刻风电场iW的有功功率,
Figure FDA0002566386520000037
为t调度时刻节点i切除负荷的无功功率;
(1-9)建立切除负荷的有功功率的约束:
Figure FDA0002566386520000038
(1-10)建立负荷有功功率、无功功率与电压幅值的约束:
Figure FDA0002566386520000039
Figure FDA00025663865200000310
式中,
Figure FDA00025663865200000311
为t调度时刻节点i在额定电压下的有功功率,
Figure FDA00025663865200000312
为额定电压,
Figure FDA00025663865200000313
Figure FDA00025663865200000314
为节点注入有功功率模型中的二次系数、一次系数和常数项,
Figure FDA00025663865200000315
为t调度时刻节点i在额定电压下的无功功率,
Figure FDA00025663865200000316
为t调度时刻节点i上投入的无功补偿装置容量,
Figure FDA00025663865200000317
Figure FDA00025663865200000318
为节点注入无功功率模型中的二次系数、一次系数和常数项;
(1-11)建立电压稳定指标的范围约束:
Figure FDA00025663865200000319
Li,t≤Lmax,i∈IB,t∈[1,T]
式中;θG表示接有发电机的节点的集合,Fij为混合参数矩阵的子矩阵,Lmax电压稳定指标的上限;
(1-12)建立风电场有功功率和弃用的有功功率的约束:
Figure FDA00025663865200000320
Figure FDA0002566386520000041
式中,
Figure FDA0002566386520000042
为t调度时刻风电场iW有功功率的预测值,
Figure FDA0002566386520000043
为t调度时刻风电场iW弃用的有功功率,IW为所有风电场构成的集合;
(1-13)建立电力系统总向上备用容量和总向下备用容量的约束:
Figure FDA0002566386520000044
Figure FDA0002566386520000045
式中,
Figure FDA0002566386520000046
为t调度时刻节点i处的电压敏感负荷提供的向上备用容量,
Figure FDA0002566386520000047
为t调度时刻节点i处的电压敏感负荷提供的向下备用容量,rt sys,u为t调度时刻电力系统需要的总向上备用容量,rt sys,d为t调度时刻电力系统需要的总向下备用容量;
(1-14)建立电压敏感负荷的备用容量约束:
Figure FDA0002566386520000048
Figure FDA0002566386520000049
式中,
Figure FDA00025663865200000410
为电压敏感负荷提供向上备用容量时t调度时刻节点i处负荷的有功功率变化量,
Figure FDA00025663865200000411
电压敏感负荷提供向上备用容量时t调度时刻节点i的电压幅值变化量,
Figure FDA00025663865200000412
为电压敏感负荷提供向下备用容量时t调度时刻节点i处负荷的有功功率变化量,
Figure FDA00025663865200000413
电压敏感负荷提供向下备用容量时t调度时刻节点i的电压幅值变化量;
(2)建立电压敏感负荷调节范围评估模型:
(2-1)建立电压敏感负荷提供向上备用容量时电力系统中调节变量的调节范围模型:
(2-1-1)建立电压敏感负荷提供向上备用容量时电力系统中调节变量集合ΩΔ′
Figure FDA00025663865200000414
式中,
Figure FDA00025663865200000415
为电压敏感负荷提供向上备用容量时t调度时刻发电机iG的有功功率变化量,
Figure FDA00025663865200000416
为电压敏感负荷提供向上备用容量时t调度时刻发电机iG的无功功率变化量,
Figure FDA0002566386520000051
为电压敏感负荷提供向上备用容量时t调度时刻节点i上注入的有功功率变化量,
Figure FDA0002566386520000052
为电压敏感负荷提供向上备用容量时t调度时刻节点i上注入的无功功率变化量,
Figure FDA0002566386520000053
为电压敏感负荷提供向上备用容量时t调度时刻节点i的电压幅值变化量,
Figure FDA0002566386520000054
为电压敏感负荷提供向上备用容量时t调度时刻节点i的电压相角变化量,
Figure FDA0002566386520000055
为电压敏感负荷提供向上备用容量时节点i与节点j之间的电力线路中t调度时刻的电流变化量,ΔLi,t′为电压敏感负荷提供向上备用容量时节点i的电压稳定指标变化量;
(2-1-2)建立各个节点上注入的有功功率变化量、无功功率变化量、电压幅值变化量和电压相角变化量之间的约束:
Figure FDA0002566386520000056
式中,ΔPt pf′为电压敏感负荷提供向上备用容量时t调度时刻各个节点i上注入的有功功率变化量
Figure FDA0002566386520000057
共同构成的列向量,ΔQt pf′为电压敏感负荷提供向上备用容量时t调度时刻各个节点i上注入的无功功率变化量
Figure FDA0002566386520000058
共同构成的列向量,Δδt pf′为电压敏感负荷提供向上备用容量时t调度时刻各个节点i的电压相角变化量
Figure FDA0002566386520000059
共同构成的列向量,ΔUt pf′为电压敏感负荷提供向上备用容量时t调度时刻各个节点i的电压幅值变化量
Figure FDA00025663865200000510
共同构成的列向量,Jpf为潮流方程雅克比矩阵,Jpf从电-热耦合多能流系统的能量管理系统中获取;
(2-1-3)建立各个节点上注入的有功功率变化量和无功功率变化量的约束:
Figure FDA00025663865200000511
Figure FDA00025663865200000512
Figure FDA00025663865200000513
式中,
Figure FDA00025663865200000514
为电压敏感负荷提供向上备用容量时t调度时刻节点i处负荷的有功功率变化量,
Figure FDA00025663865200000515
为电压敏感负荷提供向上备用容量时t调度时刻节点i处负荷的无功功率变化量;
(2-1-4)建立电力线路中电流变化量的约束方程:
Figure FDA0002566386520000061
Figure FDA0002566386520000062
式中,Upf为电压幅值,
Figure FDA0002566386520000063
Figure FDA0002566386520000064
对电压幅值的灵敏度,
Figure FDA0002566386520000065
从电-热耦合多能流系统的能量管理系统中获取,δpf为电压相角,
Figure FDA0002566386520000066
Figure FDA0002566386520000067
对电压相角的灵敏度,
Figure FDA0002566386520000068
从电-热耦合多能流系统的能量管理系统中获取;
(2-1-5)建立电压幅值和电压相角的约束:
Figure FDA0002566386520000069
Figure FDA00025663865200000610
(2-1-6)建立发电机有功功率和无功功率的约束:
Figure FDA00025663865200000611
Figure FDA00025663865200000612
(2-1-7)建立负荷有功功率变化量和无功功率变化量的约束:
Figure FDA00025663865200000613
Figure FDA00025663865200000614
(2-1-8)建立电压稳定指标约束方程:
Li,t+ΔLi,t′≤Lmax
Figure FDA00025663865200000615
式中,
Figure FDA00025663865200000616
为电压稳定指标对电压幅值的灵敏度,
Figure FDA00025663865200000617
从电-热耦合多能流系统的能量管理系统中获取;
Figure FDA0002566386520000071
为电压稳定指标对电压相角的灵敏度,
Figure FDA0002566386520000072
从电-热耦合多能流系统的能量管理系统中获取;
(2-2)建立电压敏感负荷提供向下备用容量时电力系统中调节变量的调节范围模型:
(2-2-1)建立电压敏感负荷提供向下备用容量时电力系统中调节变量集合ΩΔ″
Figure FDA0002566386520000073
式中,
Figure FDA0002566386520000074
为电压敏感负荷提供向下备用容量时t调度时刻发电机iG的有功功率变化量,
Figure FDA0002566386520000075
为电压敏感负荷提供向下备用容量时t调度时刻发电机iG的无功功率变化量,
Figure FDA0002566386520000076
为电压敏感负荷提供向下备用容量时t调度时刻节点i上注入的有功功率变化量,
Figure FDA0002566386520000077
为电压敏感负荷提供向下备用容量时t调度时刻节点i上注入的无功功率变化量,
Figure FDA0002566386520000078
为电压敏感负荷提供向下备用容量时t调度时刻节点i的电压幅值变化量,
Figure FDA0002566386520000079
为电压敏感负荷提供向下备用容量时t调度时刻节点i的电压相角变化量,
Figure FDA00025663865200000710
为电压敏感负荷提供向下备用容量时节点i与节点j之间的电力线路中t调度时刻的电流变化量,ΔLi,t″为电压敏感负荷提供向下备用容量时节点i的电压稳定指标变化量;
(2-2-2)建立各个节点上注入的有功功率变化量、无功功率变化量、电压幅值变化量和电压相角变化量之间的约束:
Figure FDA00025663865200000711
式中,ΔPt pf″为电压敏感负荷提供向下备用容量时t调度时刻各个节点i上注入的有功功率变化量
Figure FDA00025663865200000712
共同构成的列向量,ΔQt pf″为电压敏感负荷提供向下备用容量时t调度时刻各个节点i上注入的无功功率变化量
Figure FDA00025663865200000713
共同构成的列向量,Δδt pf″为电压敏感负荷提供向下备用容量时t调度时刻各个节点i的电压相角变化量
Figure FDA00025663865200000714
共同构成的列向量,ΔUt pf″为电压敏感负荷提供向下备用容量时t调度时刻各个节点i的电压幅值变化量
Figure FDA0002566386520000081
共同构成的列向量;
(2-2-3)建立各个节点上注入的有功功率变化量和无功功率变化量的约束:
Figure FDA0002566386520000082
Figure FDA0002566386520000083
Figure FDA0002566386520000084
式中,
Figure FDA0002566386520000085
为电压敏感负荷提供向下备用容量时t调度时刻节点i处负荷的有功功率变化量,
Figure FDA0002566386520000086
为电压敏感负荷提供向下备用容量时t调度时刻节点i处负荷的无功功率变化量;
(2-2-4)建立电力线路中电流变化量的约束:
Figure FDA0002566386520000087
Figure FDA0002566386520000088
(2-2-5)建立电压幅值和电压相角的约束:
Figure FDA0002566386520000089
Figure FDA00025663865200000810
(2-2-6)建立发电机有功功率和无功功率约束:
Figure FDA00025663865200000811
Figure FDA00025663865200000812
(2-2-7)建立负荷有功功率变化量和无功功率变化量的约束:
Figure FDA00025663865200000813
Figure FDA00025663865200000814
(2-2-8)建立电压稳定指标约束方程:
Li,t+ΔLi,t″≤Lmax
Figure FDA0002566386520000091
(3)建立电力系统调度的优化目标:
minFG(Pt G,rt G,u,rt G,d)+FP(Pt wd,Pt lc)-FB(Pt L)
式中,Pt G为电力系统中所有发电机的有功功率
Figure FDA0002566386520000092
构成的列向量,rt G,u为电力系统中所有发电机提供的向上备用容量
Figure FDA0002566386520000093
构成的列向量,rt G,d为电力系统中所有发电机提供的向下备用容量
Figure FDA0002566386520000094
构成的列向量,FG(Pt G,rt G,u,rt G,d)为电力系统中所有发电机提供有功功率和备用容量的成本,Pt wd为电力系统中所有风电场弃用的有功功率
Figure FDA0002566386520000095
构成的列向量,Pt lc为电力系统中所有切负荷的有功功率
Figure FDA0002566386520000096
构成的列向量,FP(Pt wd,Pt lc)为电力系统弃风和切负荷的成本,Pt L为电力系统中所有电负荷有功功率
Figure FDA0002566386520000097
构成的列向量,FB(Pt L)为电力系统售电收益;
(4)将步骤(1)中建立的电力系统基态运行点模型、步骤(2)中建立的电压敏感负荷调节范围评估模型和步骤(3)中建立的电力系统调度的优化目标共同构成一个考虑电压敏感负荷备用的电力系统调度的优化模型,采用内点法求解该优化模型,得到电力系统的调度参数,包括:发电机iG的有功功率
Figure FDA0002566386520000098
发电机iG的无功功率
Figure FDA0002566386520000099
节点i处负荷的有功功率
Figure FDA00025663865200000910
以及节点i处负荷的无功功率
Figure FDA00025663865200000911
实现考虑电压敏感负荷备用的电力系统调度。
CN202010625594.0A 2020-07-02 2020-07-02 一种考虑电压敏感负荷备用的电力系统调度方法 Active CN111952956B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010625594.0A CN111952956B (zh) 2020-07-02 2020-07-02 一种考虑电压敏感负荷备用的电力系统调度方法
US17/332,682 US20220006292A1 (en) 2020-07-02 2021-05-27 Power system dispatching method considering voltage sensitive load reserve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010625594.0A CN111952956B (zh) 2020-07-02 2020-07-02 一种考虑电压敏感负荷备用的电力系统调度方法

Publications (2)

Publication Number Publication Date
CN111952956A true CN111952956A (zh) 2020-11-17
CN111952956B CN111952956B (zh) 2024-07-09

Family

ID=73337782

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010625594.0A Active CN111952956B (zh) 2020-07-02 2020-07-02 一种考虑电压敏感负荷备用的电力系统调度方法

Country Status (2)

Country Link
US (1) US20220006292A1 (zh)
CN (1) CN111952956B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106953354A (zh) * 2017-03-10 2017-07-14 国网山东省电力公司经济技术研究院 考虑电压支撑的含风电电力系统机组组合方法
CN107257129A (zh) * 2017-06-28 2017-10-17 国网山东省电力公司经济技术研究院 一种考虑电网结构灵活调整的鲁棒调度方法
WO2018049737A1 (zh) * 2016-09-18 2018-03-22 国电南瑞科技股份有限公司 一种基于分区负荷控制的安全校正计算方法
CN108054789A (zh) * 2017-12-22 2018-05-18 清华大学 一种内嵌无功和电压的安全约束经济调度方法
CN108667007A (zh) * 2018-04-16 2018-10-16 清华大学 计及电-气耦合系统约束的电压稳定裕度计算方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5796628A (en) * 1995-04-20 1998-08-18 Cornell Research Foundation, Inc. Dynamic method for preventing voltage collapse in electrical power systems
US5745368A (en) * 1996-03-29 1998-04-28 Siemens Energy & Automation, Inc. Method for voltage stability analysis of power systems
US6775597B1 (en) * 1998-05-13 2004-08-10 Siemens Power Transmission & Distribution Security constrained optimal power flow method
US7991512B2 (en) * 2007-08-28 2011-08-02 General Electric Company Hybrid robust predictive optimization method of power system dispatch
US8775136B2 (en) * 2010-12-13 2014-07-08 Siemens Aktiengesellschaft Primal-dual interior point methods for solving discrete optimal power flow problems implementing a chain rule technique for improved efficiency
CN103116704B (zh) * 2013-02-06 2016-02-10 清华大学 一种基于局部几何参数化的连续潮流计算方法
CN103927590B (zh) * 2014-03-20 2017-01-25 清华大学 信息不对称情况下的电力系统优化控制及费用计算方法
US9960637B2 (en) * 2015-07-04 2018-05-01 Sunverge Energy, Inc. Renewable energy integrated storage and generation systems, apparatus, and methods with cloud distributed energy management services
CN107069706B (zh) * 2017-02-17 2019-08-16 清华大学 一种基于多参数规划的输配电网协调的动态经济调度方法
CN106815661B (zh) * 2017-02-22 2020-10-20 清华大学 一种热电联合系统的分解协调调度方法
CN106998079B (zh) * 2017-04-28 2020-05-05 东南大学 一种热电联合优化调度模型的建模方法
CN110890752B (zh) * 2019-11-28 2020-10-20 清华大学 一种可参与电网辅助服务的集中式云储能运行决策方法
CN111476440B (zh) * 2020-05-18 2022-06-03 清华大学 多区域电力系统经济调度方法和装置
US20230187938A1 (en) * 2020-06-23 2023-06-15 Mitsubishi Electric Corporation Reactive power supplier control device and reactive power supplier control method
CN112787337B (zh) * 2021-01-11 2022-03-08 重庆大学 考虑换流站独立控制约束的交直流系统静态无功优化方法
CN115117871A (zh) * 2021-03-22 2022-09-27 清华大学 一种双边随机电网调度方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018049737A1 (zh) * 2016-09-18 2018-03-22 国电南瑞科技股份有限公司 一种基于分区负荷控制的安全校正计算方法
CN106953354A (zh) * 2017-03-10 2017-07-14 国网山东省电力公司经济技术研究院 考虑电压支撑的含风电电力系统机组组合方法
CN107257129A (zh) * 2017-06-28 2017-10-17 国网山东省电力公司经济技术研究院 一种考虑电网结构灵活调整的鲁棒调度方法
CN108054789A (zh) * 2017-12-22 2018-05-18 清华大学 一种内嵌无功和电压的安全约束经济调度方法
CN108667007A (zh) * 2018-04-16 2018-10-16 清华大学 计及电-气耦合系统约束的电压稳定裕度计算方法

Also Published As

Publication number Publication date
US20220006292A1 (en) 2022-01-06
CN111952956B (zh) 2024-07-09

Similar Documents

Publication Publication Date Title
Akram et al. A review on rapid responsive energy storage technologies for frequency regulation in modern power systems
Ito et al. DC microgrid based distribution power generation system
CN102299527B (zh) 一种风电场无功功率控制方法和系统
EP2573895B1 (en) Method for operating a wind farm, wind farm controller and wind farm
CN100578911C (zh) 变速恒频风电机组风电场的电压无功快速控制方法
KR101297082B1 (ko) 풍력 발전단지의 출력제어 시스템을 위한 단지 통합 출력제어 장치 및 그 제어 방법
CN104538980B (zh) 一种微电网自平衡快速减负荷控制方法
CN104348189B (zh) 一种分布式电源系统
CN103199542A (zh) 一种风电场无功电压优化控制方法
KR101687900B1 (ko) 풍력발전단지에서의 배터리 에너지 저장 시스템에 기반한 풍력 발전 변동의 평활화 방법
CN104410105A (zh) 基于直流母线网状结构的智能风电场控制方法
EP3566278A1 (en) Renewable energy system having a distributed energy storage systems and photovoltaic cogeneration
CN103825307A (zh) 控制发电厂的方法
CN110401217B (zh) 一种微电网并网联络线恒功率控制方法及装置
Esmaili et al. Energy storage for short-term and long-term wind energy support
El-Bahay et al. Computational methods to mitigate the effect of high penetration of renewable energy sources on power system frequency regulation: a comprehensive review
CN111009912B (zh) 一种基于配电网场景下的火电厂储能配置系统及策略
Abadi et al. Active management of LV residential networks under high PV penetration
CN104505907A (zh) 一种具有无功调节功能的电池储能系统的监控装置
Le et al. Increasing wind farm transient stability by dynamic reactive compensation: Synchronous-machine-based ESS versus SVC
CN104795843A (zh) 一种具有电压稳定装置的并网风电系统及其控制方法
CN111952956A (zh) 一种考虑电压敏感负荷备用的电力系统调度方法
Medveď et al. Energy Storage System Utilization, in a Distribution Power System
CN107317342B (zh) 一种分散式风电场无功规划与无功控制方法
CN115441435A (zh) 基于临界割集识别的储能系统参与电网第二道防线紧急控制的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant