WO2019200875A1 - 一类含羰基的有机电致发光材料及在oled中的应用 - Google Patents

一类含羰基的有机电致发光材料及在oled中的应用 Download PDF

Info

Publication number
WO2019200875A1
WO2019200875A1 PCT/CN2018/111933 CN2018111933W WO2019200875A1 WO 2019200875 A1 WO2019200875 A1 WO 2019200875A1 CN 2018111933 W CN2018111933 W CN 2018111933W WO 2019200875 A1 WO2019200875 A1 WO 2019200875A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic electroluminescent
electroluminescent material
formula
containing organic
carbonyl
Prior art date
Application number
PCT/CN2018/111933
Other languages
English (en)
French (fr)
Inventor
唐本忠
赵祖金
刘慧君
秦安军
胡蓉蓉
王志明
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US17/048,373 priority Critical patent/US12075698B2/en
Priority to JP2020556882A priority patent/JP7129111B2/ja
Priority to SG11202010281SA priority patent/SG11202010281SA/en
Publication of WO2019200875A1 publication Critical patent/WO2019200875A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the invention belongs to the technical field of organic photoelectric materials, and particularly relates to a class of organic electroluminescent materials containing carbonyl groups and applications in the field of organic electroluminescence.
  • OLEDs organic light-emitting diodes
  • OLEDs organic light-emitting diodes
  • TADF pure organic thermally activated delayed fluorescence
  • these materials can also make full use of the single and triplet excitons formed by electrical excitation, and can achieve high device efficiency, but the efficiency roll-off is severe, and the existing pure organic TADF materials are single.
  • these TADF materials are also affected by the aggregation to cause the luminescence quenching (ACQ) effect, resulting in low solid-state luminescence efficiency, which reduces the performance of the corresponding device to some extent.
  • ACQ luminescence quenching
  • the material has both AIE and delayed fluorescence characteristics. This material has a weak luminescence in a dilute solution and almost no delayed fluorescence is observed, but the luminescence is enhanced in the aggregated state and exhibits significant delayed fluorescence.
  • the organic electroluminescent material of the invention has the characteristics of high-efficiency solid-state luminescence, high-electric excitation exciton utilization, and bipolarity, and can prepare a high-efficiency, low-efficiency roll-off, undoped organic electroluminescent device.
  • Another object of the present invention is to provide a process for producing the above carbonyl group-containing organic electroluminescent material.
  • the method of the invention has simple process, easy availability of raw materials and high yield.
  • a further object of the present invention is to provide an application of the above carbonyl group-containing organic electroluminescent material in the field of organic electroluminescence, particularly in organic electroluminescent devices.
  • R 1 , R 1 ' and R 2 are respectively different aromatic ring derivative electron donating groups.
  • R 1 , R 1 ' is an electron-donating group of a hole transporting host material or an electron-donating group of a bipolar transport host material.
  • the R 1 is one of the following 1 to 32:
  • R' is a hydrogen atom or an alkyl chain
  • n is a natural number from 0 to 10.
  • the R 1 ' is a structure of 33 to 57:
  • R' is a hydrogen atom or an alkyl group
  • n is a natural number of 0 to 10.
  • the R 2 is one of the following a to o structures:
  • R' is a hydrogen atom or an alkyl chain
  • n is a natural number from 0 to 10.
  • R 1 and R 1 ' provided by the present invention belong to a host material for preparing an organic electroluminescence device, a hole transport type host material containing an electron donating group or a bipolar having both electron donating and electron withdrawing groups. The host material is transported, and these groups have excellent charge transport properties, which are advantageous for improving the performance of the electroluminescent device, and R 1 and R 1 ' respectively represent a single-sided connection and a bilateral connection.
  • R 2 is a commonly used aromatic ring derivative electron donating group.
  • the method for preparing the above carbonyl group-containing organic electroluminescent material comprises the steps of: obtaining a organic fluoride by a Friedel-Craft reaction using p-fluorobenzoyl chloride and an aromatic ring derivative R 1 H or HR 1 'H as a raw material; Under the action of a strong basic catalyst, the organic fluoride reacts with the aromatic ring derivative R 2 H to obtain a carbonyl-containing organic electroluminescent material; R 1 H or HR 1 'H in which R 1 and R 1 ' are respectively I and formula II correspond; H R 2 R 2 in formula I and formula II R 2 correspond.
  • the strongly basic catalyst is potassium t-butoxide, sodium t-butoxide, a strong base NaH or the like.
  • the obtained molecular structure is distorted, and a strong ⁇ - ⁇ interaction is not easily formed between molecules in an aggregate state; in addition, electron-donating (D)-electron absorption (A) And the distorted molecular structure is beneficial to separate the spatial distribution of the highest occupied orbit (HOMO) and the lowest empty orbit (LUMO), so that the molecule is easy to have a small singlet-triplet energy level difference ( ⁇ E ST ), so that the obtained material can At the same time, it has AIE and delayed fluorescence characteristics; therefore, the material of the invention has the characteristics of high-efficiency solid-state luminescence, high-electric excitation exciton utilization, and bipolarity.
  • the material of the invention fully utilizes singlet and triplet excitons, effectively alleviating the quenching problem of excitons in an aggregate state, and simple and efficient synthesis method, excellent thermal stability and electrochemical stability, so that such materials can Large-scale synthesis and purification have great development prospects.
  • the present invention has the following advantages and beneficial effects:
  • the carbonyl group-containing organic electroluminescent material of the invention has both AIE and delayed fluorescence characteristics, has high-efficiency solid-state luminescence, high electric excitation exciton utilization, and bipolar characteristics, and can produce high efficiency and low efficiency. Roll-off, undoped organic electroluminescent device;
  • the carbonyl group-containing organic electroluminescent material of the invention has simple synthesis method, easy availability of raw materials and high yield, and the obtained material has stable structure and simple storage;
  • the carbonyl group-containing organic electroluminescent material of the present invention is excellent in electroluminescence property and can be widely used in fields such as organic electroluminescence.
  • Example 1 is a J-V-L graph of a doped and undoped OLED device fabricated using the carbonyl-containing organic electroluminescent material of Example 1.
  • Example 2 is a graph showing the efficiency as a function of brightness of a doped and undoped OLED device fabricated using the carbonyl-containing organic electroluminescent material of Example 1.
  • Example 3 is a J-V-L graph of a doped and undoped OLED device fabricated using the carbonyl-containing organic electroluminescent material of Example 2;
  • FIG. 4 is a graph showing the efficiency as a function of brightness of a doped and undoped OLED device fabricated using the carbonyl-containing organic electroluminescent material of Example 2.
  • FIG. 5 is a J-V-L graph of a doped and undoped OLED device fabricated using the carbonyl-containing organic electroluminescent material of Example 3.
  • FIG. 5 is a J-V-L graph of a doped and undoped OLED device fabricated using the carbonyl-containing organic electroluminescent material of Example 3.
  • Example 6 is a graph showing the efficiency as a function of brightness of a doped and undoped OLED device fabricated using the carbonyl-containing organic electroluminescent material of Example 3;
  • Example 7 is a J-V-L graph of a doped and undoped OLED device fabricated using the carbonyl-containing organic electroluminescent material of Example 4;
  • Figure 8 is a graph showing the efficiency as a function of brightness for a doped and undoped OLED device fabricated using the carbonyl containing organic electroluminescent material of Example 4.
  • the synthetic route is as follows:
  • the synthetic route is as follows:
  • the synthetic route is as follows:
  • the synthetic route is as follows:
  • the synthetic route is as follows:
  • the synthetic route is as follows:
  • Example 7 OLEDs device performance of carbonyl-containing organic electroluminescent materials (DCB-BP-PXZ)
  • ITO/TAPC 25 nm
  • emitter 30 wt%): CBP (35 nm) / TmPyPB (55 nm) / LiF (1 nm) / Al (doped structure);
  • ITO/TAPC 25 nm
  • emitter 35 nm
  • TmPyPB 55 nm
  • LiF 1 nm
  • Al unoped structure
  • Figure 1 is a JVL graph of a doped and undoped OLED device fabricated using the carbonyl-containing organic electroluminescent material of Example 1.
  • the maximum brightness of the doped and undoped devices based on DCB-BP-PXZ is high and the starting voltage is low, 91981 cd/m 2 , 2.7 V and 95577 cd/m 2 , 2.5 V, respectively.
  • FIG. 2 is a graph showing the efficiency as a function of brightness of a doped and undoped OLED device fabricated using the carbonyl-containing organic electroluminescent material of Example 1.
  • FIG. It can be seen from the figure that the doped and undoped devices based on DCB-BP-PXZ have good efficiency and the efficiency roll is reduced.
  • the maximum current efficiency and external quantum efficiency are 74.1 cd/A, 22.7% and 72.9, respectively.
  • Example 8 OLEDs device performance of carbonyl-containing organic electroluminescent materials (CBP-BP-PXZ)
  • ITO/TAPC 25 nm
  • emitter 30 wt%): CBP (35 nm) / TmPyPB (55 nm) / LiF (1 nm) / Al (doped structure);
  • ITO/TAPC 25 nm
  • emitter 35 nm
  • TmPyPB 55 nm
  • LiF 1 nm
  • Al unoped structure
  • Example 3 is a JVL graph of a doped and undoped OLED device fabricated using the carbonyl-containing organic electroluminescent material of Example 2.
  • the maximum brightness of the doped and undoped devices based on CBP-BP-PXZ is high and the starting voltage is low, being 76488 cd/m 2 , 2.7 V and 98089 cd/m 2 , respectively, 2.5 V.
  • FIG. 4 is a graph showing the efficiency as a function of brightness of a doped and undoped OLED device fabricated using the carbonyl-containing organic electroluminescent material of Example 2.
  • FIG. It can be seen from the figure that both the doped and undoped devices based on CBP-BP-PXZ have good efficiency and the efficiency roll is reduced.
  • the maximum current efficiency and external quantum efficiency are 81.2 cd/A, 25.1% and 69.0, respectively.
  • Example 9 OLEDs device performance of carbonyl-containing organic electroluminescent materials (mCP-BP-PXZ)
  • ITO/TAPC 25 nm
  • emitter 30 wt%): CBP (35 nm) / TmPyPB (55 nm) / LiF (1 nm) / Al (doped structure);
  • ITO/TAPC 25 nm
  • emitter 35 nm
  • TmPyPB 55 nm
  • LiF 1 nm
  • Al unoped structure
  • Example 5 is a JVL graph of a doped and undoped OLED device fabricated using the carbonyl-containing organic electroluminescent material of Example 3.
  • the maximum brightness of the doped and undoped devices based on mCP-BP-PXZ is high and the starting voltage is low, being 80873 cd/m 2 , 2.7 V and 100 126 cd/m 2 , respectively, 2.5 V.
  • Figure 6 is a graph showing the efficiency as a function of brightness for a doped and undoped OLED device fabricated using the carbonyl-containing organic electroluminescent material of Example 3. It can be seen from the figure that the doped and undoped devices based on mCP-BP-PXZ have good efficiency and efficiency roll reduction, and their maximum current efficiency and external quantum efficiency are 74.3 cd/A, 22.7% and 72.3, respectively.
  • Example 10 OLEDs device performance of carbonyl-containing organic electroluminescent materials (mCBP-BP-PXZ)
  • ITO/TAPC 25 nm
  • emitter 30 wt%): CBP (35 nm) / TmPyPB (55 nm) / LiF (1 nm) / Al (doped structure);
  • ITO/TAPC 25 nm
  • emitter 35 nm
  • TmPyPB 55 nm
  • LiF 1 nm
  • Al unoped structure
  • Figure 7 is a JVL graph of doped and undoped OLEDs fabricated using the carbonyl containing organic electroluminescent material of Example 4.
  • the maximum brightness of the doped and undoped devices based on mCBP-BP-PXZ is high and the starting voltage is low, being 79644 cd/m 2 , 2.7 V and 96815 cd/m 2 , respectively, 2.5 V.
  • Figure 8 is a graph showing the efficiency as a function of brightness for a doped and undoped OLED device fabricated using the carbonyl containing organic electroluminescent material of Example 4. It can be seen from the figure that the doped and undoped devices based on mCP-BP-PXZ have good efficiency and efficiency roll reduction, and their maximum current efficiency and external quantum efficiency are 76.3 cd/A, 23.5% and 76.5, respectively.
  • the present invention obtains molecules having both AIE and delayed fluorescence characteristics by attaching different electron-donating groups to both sides of the benzoyl group, and the doped OLEDs prepared by using such materials as the light-emitting layer have high efficiency and efficiency.
  • the degree of roll-off is small; the simple structure of non-doped OLEDs based on such materials has a lower starting voltage, higher efficiency, and a lower efficiency roll-off. In short, such materials have broad application prospects in the field of organic electroluminescence.
  • the structure of the organic electroluminescent material of the present invention is preferably

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明属于有机光电材料技术领域,公开了一类含羰基的有机电致发光材料及在OLED中的应用。所述含羰基的有机电致发光材料具有式I或式II结构,式I中R1与R2不同,式II中R1'和R2不同,R1、R1'和R 2分别为不同的芳香环衍生物给电子基团;R1、R1'为空穴传输型主体材料的给电子基团或双极性传输主体材料的给电子基团。本发明的发光材料是基于主体材料和苯甲酰基结合的衍生物的有机电致发光材料,同时具有AIE和延迟荧光特性,兼具高效固态发光、高电激发激子利用率、双极性的特征;本发明有机电致发光材料制备的有机电致发光器件具有非常好的性能,在有机电致发光领域具有广泛的应用前景。(I), (II)

Description

一类含羰基的有机电致发光材料及在OLED中的应用 技术领域
本发明属于有机光电材料技术领域,特别涉及一类含羰基的有机电致发光材料及在有机电致发光领域中的应用。
背景技术
有机电致发光器件又称有机发光二极管(OLEDs),是一类基于有机半导体材料、将电能转换为光能的器件。继1987年邓青云博士等的开创性工作以来,OLEDs在平板显示和固态照明等方面展现出广阔的应用前景,由此引起了学术界和产业界的极大兴趣和广泛关注。OLEDs器件的综合性能与其中的有机发光材料直接相关,故开发新型优异的有机电致发光材料已成为OLEDs领域的研究热点。
基于传统荧光材料的OLEDs中,只有25%的单线态激子能被利用来发光,75%的三线态激子以非辐射的形式耗散掉,故而其效率很低。为了充分利用75%的三线态激子,科研工作者们开发出了第二代发光材料(过渡金属配合物磷光材料)。基于此类磷光材料的OLEDs掺杂器件能够同时利用单线态和三线态激子,故而使器件效率得到明显改善,但是磷光材料所用的金属价格昂贵,稳定性较差,器件效率滚降厉害,限制了其在电致发光器件中的实际应用。2012年,九州大学Adachi教授课题组研发出第三代有机发光材料,纯有机热激活延迟荧光(TADF)材料。在掺杂OLEDs器件中,这类材料同样能充分利用电激发形成的单、三线态激子,也能实现很高的器件效率,但效率滚降厉害,且现有的纯有机TADF材料种类单一,同时这些TADF材料还受到聚集导致发光猝灭(ACQ)效应的影响,导致其固态发光效率不高,一定程度上降低了相应器件的性能。
在2001年,唐本忠课题组报道了一个新颖的概念:在单分子状态下,某些发光分子发光弱,但是当聚集之后,这些分子的发光得到明显增强,此称为“聚集诱导发光”(AIE),为解决发光材料的ACQ问题提供了新思路。自此 之后,越来越多的、覆盖全可见光色的、高效固态发光的AIE材料被开发出来。基于这类材料,科研工作者们已制备出相对高效的、器件结构简单的非掺杂OLEDs,且效率滚降程度小,但这类材料通常都是荧光材料,只能利用单线态激子来发光,故器件效率仍有很大的提升空间。
发明内容
为了克服上述现有技术的缺点与不足,本发明的首要目的在于提供一类含羰基的有机电致发光材料。该材料同时具有AIE和延迟荧光特性,这种材料在稀溶液中发光微弱并几乎观察不到延迟荧光,但是在聚集态下发光增强并表现出显著的延迟荧光。本发明的有机电致发光材料具有高效固态发光、高电激发激子利用率、双极性的特征,可制备出高效率、低程度效率滚降、非掺杂的有机电致发光器件。
本发明另一目的在于提供上述含羰基的有机电致发光材料的制备方法。本发明的方法工艺简单、原料易得、产率高。
本发明再一目的在于提供上述含羰基的有机电致发光材料在有机电致发光领域中的应用,特别是有机电致发光器件中的应用。
本发明的目的通过下述方案实现:
一类含羰基的有机电致发光材料,具有式I或式II结构:
Figure PCTCN2018111933-appb-000001
其中,R 1、R 1'和R 2分别为不同的芳香环衍生物给电子基团。R 1、R 1'为空穴传输型主体材料的给电子基团或双极性传输主体材料的给电子基团。
所述R 1为以下1~32中一种:
Figure PCTCN2018111933-appb-000002
其中,R'为氢原子或烷基链,n为0~10的自然数。
所述的R 1'为33~57中一种结构:
Figure PCTCN2018111933-appb-000003
其中,R'为氢原子或烷基,n为0~10的自然数。
所述R 2为以下a~o结构中的一种:
Figure PCTCN2018111933-appb-000004
其中,R'为氢原子或烷基链,n为0~10的自然数。
本发明所提供的R 1和R 1'均属于制备有机电致发光器件的主体材料,包含有供电子基团的空穴传输型主体材料或同时具有供电子和吸电子基团的双极性传输主体材料,这些基团的电荷传输性能优异,有利于提高电致发光器件的性能,R 1和R 1'分别表示单边连接和双边连接。R 2是常用的芳香环衍生物给电子基团。
上述含羰基的有机电致发光材料的制备方法,包含以下步骤:以对氟苯甲酰氯和芳香环衍生物R 1H或HR 1'H为原料,通过傅-克反应得到有机氟化物;然后在强碱性催化剂的作用下,有机氟化物与芳香环衍生物R 2H反应,得到含羰基的有机电致发光材料;R 1H或HR 1'H中R 1、R 1'分别与式I和式II中对应; R 2H中R 2与式I和式II中R 2对应。
所述强碱性催化剂为叔丁醇钾、叔丁醇钠、强碱NaH等。
本发明通过在苯甲酰基两边接上不同的给电子基团,所得分子结构扭曲,聚集状态下分子间不易形成很强的π-π相互作用;此外,给电子(D)-吸电子(A)及扭曲的分子结构,有利于分离最高占据轨道(HOMO)和最低空轨道(LUMO)的空间分布,使分子易具有较小的单线态-三线态能级差(ΔE ST),从而所得材料能够同时具有AIE和延迟荧光特性;因此本发明材料具有高效固态发光、高电激发激子利用率、双极性的特征。基于此类材料可制备出高效率、低程度效率滚降、非掺杂的有机电致发光器件,在有机电致发光领域具有广泛的应用前景,有望在平板显示和固态照明等领域广泛应用。
本发明的材料充分利用单线态和三线态激子,有效的缓解了聚集状态下激子的湮灭问题,而且简单高效的合成方法、优良的热稳定性和电化学稳定性,使得这类材料可以大规模合成与纯化,有着极大的发展前景。
本发明相对于现有技术,具有如下的优点及有益效果:
(1)本发明的含羰基的有机电致发光材料同时具有AIE和延迟荧光特性,具有高效固态发光、高电激发激子利用率、双极性的特征,可制备出高效率、低程度效率滚降、非掺杂的有机电致发光器件;
(2)本发明的含羰基的有机电致发光材料合成方法简单、原料易得、产率较高,得到的材料结构稳定,存放简单;
(3)本发明的含羰基的有机电致发光材料,电致发光性能优异,可以广泛应用于有机电致发光等领域。
附图说明
图1为利用实施例1含羰基的有机电致发光材料制备得到的掺杂和非掺杂OLEDs器件的J-V-L曲线图;
图2为利用实施例1含羰基的有机电致发光材料制备得到的掺杂和非掺杂OLEDs器件的效率随亮度变化的曲线图;
图3为利用实施例2含羰基的有机电致发光材料制备得到的掺杂和非掺杂OLEDs器件的J-V-L曲线图;
图4为利用实施例2含羰基的有机电致发光材料制备得到的掺杂和非掺杂 OLEDs器件的效率随亮度变化的曲线图;
图5为利用实施例3含羰基的有机电致发光材料制备得到的掺杂和非掺杂OLEDs器件的J-V-L曲线图;
图6为利用实施例3含羰基的有机电致发光材料制备得到的掺杂和非掺杂OLEDs器件的效率随亮度变化的曲线图;
图7为利用实施例4含羰基的有机电致发光材料制备得到的掺杂和非掺杂OLEDs器件的J-V-L曲线图;
图8为利用实施例4含羰基的有机电致发光材料制备得到的掺杂和非掺杂OLEDs器件的效率随亮度变化的曲线图。
具体实施方式
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。下列实施例中使用的试剂均可从商业渠道获得。
实施例1:含羰基的有机电致发光材料(DCB-BP-PXZ)的制备:
Figure PCTCN2018111933-appb-000005
合成路线如下:
Figure PCTCN2018111933-appb-000006
(1)将对氟苯甲酰氯(0.232g,1.46mmol)和DCB(0.716g,1.75mmol)溶于50mL的超干二氯甲烷溶液中,混合均匀后,缓慢加入AlCl 3(0.557g,2.04mmol),在室温下反应(合成路线中r.t.表示室温反应)3个小时,加入冰盐酸溶 液,经二氯甲烷萃取,浓缩后做粉过柱,得到白色固体DCB-BP-F,产率70%;
(2)将中间体DCB-BP-F(0.36g,0.68mmol)和吩噁嗪(化合物2)(0.15g,0.81mmol)溶于20mL超干DMF中,抽换气三次,在氮气保护下加入t-BuOK(0.153g,1.36mmol),加热至120℃,在此温度下反应12个小时,经二氯甲烷和水萃取,浓缩后做粉过柱,得到黄绿色最终产物DCB-BP-PXZ,产率84%。
1H NMR(500MHz,CDCl 3)δ8.78(s,1H),8.27(d,J=10.3Hz,1H),8.23–8.16(m,2H),8.16–7.93(m,3H),7.92–7.78(m,4H),7.69–7.38(m,10H),7.39–7.29(m,2H),7.04–6.69(m,6H),6.05(m,2H)。
实施例2:含羰基的有机电致发光材料(CBP-BP-PXZ)的制备
Figure PCTCN2018111933-appb-000007
合成路线如下:
Figure PCTCN2018111933-appb-000008
(1)将对氟苯甲酰氯(0.476g,3.0mmol)和CBP(1.745g,3.60mmol)溶于50mL的超干二氯甲烷溶液中,混合均匀后,缓慢加入AlCl 3(0.56g,4.2mmol),在室温下反应(合成路线中r.t.表示室温反应)3个小时,加入冰盐酸溶液,经二氯甲烷萃取,浓缩后做粉过柱,得到白色固体CBP-BP-F,产率75%;
(2)将中间体CBP-BP-F(0.728g,1.2mmol)和吩噁嗪(0.264g,1.44mmol)溶于20mL超干DMF中,抽换气三次,在氮气保护下加入t-BuOK(0.269g,2.4mmol),加热至120℃,在此温度下反应12个小时,经二氯甲烷和水萃取,浓缩后做粉过柱,得到黄绿色最终产物CBP-BP-PXZ,产率87%。
1H NMR(500MHz,CDCl 3)δ8.77(s,1H),8.25(d,J=7.8Hz,1H),8.18(d,J=7.7Hz,2H),8.11(d,J=7.9Hz,2H),8.04(d,J=8.6Hz,1H),8.00–7.91(m,4H),7.74(d,J=7.9Hz,4H),7.63–7.49(m,7H),7.49–7.38(m,3H),7.37–7.29(m,2H),6.82–6.55(m,6H),6.06(m,2H)。
实施例3:含羰基的有机电致发光材料(mCP-BP-PXZ)的制备
Figure PCTCN2018111933-appb-000009
合成路线如下:
Figure PCTCN2018111933-appb-000010
(1)将对氟苯甲酰氯(1.11g,7.0mmol)和mCP(3.43g,8.4mmol)溶于50mL的超干二氯甲烷溶液中,混合均匀后,缓慢加入AlCl 3(1.307g,9.8mmol),在室温下反应(合成路线中r.t.表示室温反应)3个小时,加入冰盐酸溶液,经二氯甲烷萃取,浓缩后做粉过柱,得到白色固体mCP-BP-F,产率70%;
(2)将中间体mCP-BP-F(0.739g,1.5mmol)和吩噁嗪(0.343g,1.875mmol)溶于20mL超干DMF溶液中,抽换气三次,在氮气保护下加入t-BuOK(0.337g,3.0mmol),加热至120℃,在此温度下反应12个小时,经二氯甲烷和水萃取,浓缩后做粉过柱,得到最终产物mCP-BP-PXZ,产率83%。
1H NMR(500MHz,CDCl 3)δ8.75(d,J=1.3Hz,1H),8.23(d,J=7.7Hz,1H),8.19–8.13(m,2H),8.12–8.06(m,2H),8.05–7.99(m,1H),7.94–7.87(m,1H),7.86–7.83(m,1H),7.81–7.76(m,1H),7.74–7.70(m,1H),7.63–7.49(m,7H),7.48–7.42(m,2H),7.42–7.36(m,1H),7.35–7.29(m,2H),6.75–6.62(m,6H),6.09–6.00(m,2H)。
实施例4:含羰基的有机电致发光材料(mCBP-BP-PXZ)的制备
Figure PCTCN2018111933-appb-000011
合成路线如下:
Figure PCTCN2018111933-appb-000012
(1)将对氟苯甲酰氯(0.396g,2.5mmol)和mCBP(1.454g,3.0mmol)溶于50mL的超干二氯甲烷中,混合均匀后,缓慢加入AlCl 3(0.467g,3.5mmol),在室温下反应(合成路线中r.t.表示室温反应)3个小时,加入冰盐酸溶液,经二氯甲烷萃取,浓缩后做粉过柱,得到白色固体mCBP-BP-F,产率73%;
(2)将中间体mCBP-BP-F(0.8g,1.2mmol)和吩噁嗪(0.274g,1.5mmol)溶于20mL超干DMF中,抽换气三次,在氮气保护下加入t-BuOK(0.269g,2.4mmol),加热至120℃,在此温度下反应12个小时,经二氯甲烷和水萃取,浓缩后做粉过柱,得到黄绿色最终产物mCBP-BP-PXZ,产率90%。
1H NMR(500MHz,CDCl 3)δ8.76(d,J=1.4Hz,1H),8.22(d,J=7.8Hz,1H),8.18–8.12(m,2H),8.11–8.05(m,2H),8.02–7.97(m,1H),7.91–7.85(m,2H),7.83–7.78(m,1H),7.78–7.69(m,3H),7.65–7.58(m,2H),7.56–7.33(m,10H),7.33–7.27(m,2H),6.75–6.63(m,6H),6.09–6.00(m,2H)。
实施例5:含羰基的有机电致发光材料(TCTA-BP-PXZ)的制备
Figure PCTCN2018111933-appb-000013
合成路线如下:
Figure PCTCN2018111933-appb-000014
(1)将对氟苯甲酰氯(0.2378g,1.50mmol)和TCTA(2.2268g,3.01mmol)溶于50mL的超干二氯甲烷中,混合均匀后,缓慢加入AlCl 3(0.28g,2.1mmol),在室温下反应(合成路线中r.t.表示室温反应)3个小时,加入冰盐酸溶液,经二氯甲烷萃取,浓缩后做粉过柱,得到白色固体TCTA-BP-F,产率77.3%;
(2)将中间体TCTA-BP-F(1.121g,1.3mmol)和吩噁嗪(0.286g,1.56mmol)溶于20mL超干DMF中,抽换气三次,在氮气保护下加入t-BuOK(0.292g,2.6mmol),加热至120℃,在此温度下反应12个小时,经二氯甲烷和水萃取,浓缩后做粉过柱,得到黄绿色最终产物TCTA-BP-PXZ,产率90%。
HRMS(C 73H 47N 5O 2):m/z 1025.3733[M+,calcd 1025.3730]。
实施例6:含羰基的有机电致发光材料(TCTA-BP-DMAC)的制备
Figure PCTCN2018111933-appb-000015
合成路线如下:
Figure PCTCN2018111933-appb-000016
(1)将对氟苯甲酰氯(0.2378g,1.50mmol)和TCTA(2.2268g,3.01mmol) 溶于50mL的超干二氯甲烷中,混合均匀后,缓慢加入AlCl 3(0.28g,2.1mmol),在室温下反应(合成路线中r.t.表示室温反应)3个小时,加入冰盐酸溶液,经二氯甲烷萃取,浓缩后做粉过柱,得到白色固体TCTA-BP-F,产率77.3%;
(2)将中间体TCTA-BP-F(0.862g,1mmol)和吩噁嗪(0.251g,1.2mmol)溶于20mL超干DMF中,抽换气三次,在氮气保护下加入t-BuOK(0.224g,2.0mmol),加热至120℃,在此温度下反应12个小时,经二氯甲烷和水萃取,浓缩后做粉过柱,得到黄绿色最终产物TCTA-BP-DMAC,产率66.6%。
HRMS(C 76H 53N 5O):m/z 1051.4280[M+,calcd 1051.4250]。
实施例7:含羰基的有机电致发光材料(DCB-BP-PXZ)的OLEDs器件性能
利用实施例1制备得到的含羰基的有机电致发光材料DCB-BP-PXZ(固态荧光量子产率=69.0%)作为发光材料制备得到掺杂器件和非掺杂器件,并对其器件性能进行测试表征,结果见图1~2。
器件结构:ITO/TAPC(25nm)/emitter(30wt%):CBP(35nm)/TmPyPB(55nm)/LiF(1nm)/Al(掺杂结构);
ITO/TAPC(25nm)/emitter(35nm)/TmPyPB(55nm)/LiF(1nm)/Al(非掺杂结构)。
图1为利用实施例1含羰基的有机电致发光材料制备得到的掺杂和非掺杂OLEDs器件的J-V-L曲线图。从图中可以看出,基于DCB-BP-PXZ的掺杂和非掺杂器件的最大亮度高并且启动电压低,分别为91981cd/m 2,2.7V和95577cd/m 2,2.5V。
图2为利用实施例1含羰基的有机电致发光材料制备得到的掺杂和非掺杂OLEDs器件的效率随亮度变化的曲线图。从图中可以看出,基于DCB-BP-PXZ的掺杂和非掺杂器件都具有良好的效率且效率滚降低,其最大电流效率和外量子效率分别为74.1cd/A,22.7%和72.9cd/A,22.6%;当亮度为100cd/m 2时,外量子效率还分别维持在22.4%和22.1%;当亮度为1000cd/m 2时,外量子效率分别为22.0%和21.5%;当亮度为10000cd/m 2时,外量子效率分别为18.8%和18.7%。
实施例8:含羰基的有机电致发光材料(CBP-BP-PXZ)的OLEDs器件性能
利用实施例2制备得到的含羰基的有机电致发光材料CBP-BP-PXZ(固态荧光量子产率=71.6%)作为发光材料制备得到掺杂器件和非掺杂器件,并对其器件进行测试表征,结果见图3~4。
器件结构:ITO/TAPC(25nm)/emitter(30wt%):CBP(35nm)/TmPyPB(55nm)/LiF(1nm)/Al(掺杂结构);
ITO/TAPC(25nm)/emitter(35nm)/TmPyPB(55nm)/LiF(1nm)/Al(非掺杂结构)。
图3为利用实施例2含羰基的有机电致发光材料制备得到的掺杂和非掺杂OLEDs器件的J-V-L曲线图。从图中可以看出,基于CBP-BP-PXZ的掺杂和非掺杂器件的最大亮度高并且启动电压低,分别为76488cd/m 2,2.7V和98089cd/m 2,2.5V。
图4为利用实施例2含羰基的有机电致发光材料制备得到的掺杂和非掺杂OLEDs器件的效率随亮度变化的曲线图。从图中可以看出,基于CBP-BP-PXZ的掺杂和非掺杂器件都具有良好的效率且效率滚降低,其最大电流效率和外量子效率分别为81.2cd/A,25.1%和69.0cd/A,21.4%;当亮度为100cd/m 2时,外量子效率分别为24.8%和21.1%;当亮度为1000cd/m 2时,外量子效率分别为23.6%和21.0%;当亮度为10000cd/m 2时,外量子效率分别为20.0%和17.5%。
实施例9:含羰基的有机电致发光材料(mCP-BP-PXZ)的OLEDs器件性能
利用实施例3制备得到的含羰基的有机电致发光材料mCP-BP-PXZ(固态荧光量子产率=66.0%)作为发光材料制备得到掺杂器件和非掺杂器件,并对其器件进行测试表征,结果见图5~6。
器件结构:ITO/TAPC(25nm)/emitter(30wt%):CBP(35nm)/TmPyPB(55nm)/LiF(1nm)/Al(掺杂结构);
ITO/TAPC(25nm)/emitter(35nm)/TmPyPB(55nm)/LiF(1nm)/Al(非掺杂结构)。
图5为利用实施例3含羰基的有机电致发光材料制备得到的掺杂和非掺杂OLEDs器件的J-V-L曲线图。从图中可以看出,基于mCP-BP-PXZ的掺杂和非掺杂器件的最大亮度高并且启动电压低,分别为80873cd/m 2,2.7V和100126cd/m 2,2.5V。
图6为利用实施例3含羰基的有机电致发光材料制备得到的掺杂和非掺杂OLEDs器件的效率随亮度变化的曲线图。从图中可以看出,基于mCP-BP-PXZ的掺杂和非掺杂器件都具有良好的效率且效率滚降低,其最大电流效率和外量子效率分别为74.3cd/A,22.7%和72.3cd/A,22.1%;当亮度为100cd/m 2时,外量子效率分别为24.8%和21.2%;当亮度为1000cd/m 2时,外量子效率分别为23.6%和21.0%;当亮度为10000cd/m 2时,外量子效率分别为18.1%和18.4%。
实施例10:含羰基的有机电致发光材料(mCBP-BP-PXZ)的OLEDs器件性能
利用实施例4制备得到的含羰基的有机电致发光材料mCBP-BP-PXZ(固态荧光量子产率=71.2%)作为发光材料制备得到掺杂器件和非掺杂器件,并对其器件进行测试表征,结果见图7~8。
器件结构:ITO/TAPC(25nm)/emitter(30wt%):CBP(35nm)/TmPyPB(55nm)/LiF(1nm)/Al(掺杂结构);
ITO/TAPC(25nm)/emitter(35nm)/TmPyPB(55nm)/LiF(1nm)/Al(非掺杂结构)。
图7为利用实施例4含羰基的有机电致发光材料制备得到的掺杂和非掺杂OLEDs器件的J-V-L曲线图。从图中可以看出,基于mCBP-BP-PXZ的掺杂和非掺杂器件的最大亮度高并且启动电压低,分别为79644cd/m 2,2.7V和96815cd/m 2,2.5V。
图8为利用实施例4含羰基的有机电致发光材料制备得到的掺杂和非掺杂OLEDs器件的效率随亮度变化的曲线图。从图中可以看出,基于mCP-BP-PXZ的掺杂和非掺杂器件都具有良好的效率且效率滚降低,其最大电流效率和外量子效率分别为76.3cd/A,23.5%和76.5cd/A,21.8%;当亮度为100cd/m 2时,外量子效率分别为22.6%和22.5%;当亮度为1000cd/m 2时,外量子效率分别 为22.4%和22.2%;当亮度为10000cd/m 2时,外量子效率分别为18.5%和18.3%。
上述数据表明,本发明通过在苯甲酰基两边接上不同的给电子基团,获得同时具有AIE和延迟荧光特性的分子,将这类材料作为发光层制备出的掺杂OLEDs器件效率高,效率滚降程度较小;基于这类材料制备出的结构简单的非掺杂OLEDs器件,具有更低的启动电压,较高的效率,且效率滚降程度更小。总之,这类材料在有机电致发光领域有很广阔的应用前景。
本发明的有机电致发光材料的结构优选为
Figure PCTCN2018111933-appb-000017
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (7)

  1. 一类含羰基的有机电致发光材料,其特征在于:具有式I或式II结构:
    Figure PCTCN2018111933-appb-100001
    其中,式I中R 1与R 2不同,式II中R 1'和R 2不同,R 1、R 1'和R 2分别为不同的芳香环衍生物给电子基团;R 1、R 1'为空穴传输型主体材料的给电子基团或双极性传输主体材料的给电子基团。
  2. 根据权利要求1所述含羰基的有机电致发光材料,其特征在于:所述R 1为以下1~32中一种:
    Figure PCTCN2018111933-appb-100002
    其中,R'为氢原子或烷基链,n为0~10的自然数。
  3. 根据权利要求1所述含羰基的有机电致发光材料,其特征在于:所述的R 1'为33~57中一种结构:
    Figure PCTCN2018111933-appb-100003
    其中,R'为氢原子或烷基,n为0~10的自然数。
  4. 根据权利要求1所述含羰基的有机电致发光材料,其特征在于:所述R 2为以下a~o结构中的一种:
    Figure PCTCN2018111933-appb-100004
    其中,R'为氢原子或烷基链,n为0~10的自然数。
  5. 根据权利要求1所述含羰基的有机电致发光材料的制备方法,其特征在于:包含以下步骤:以对氟苯甲酰氯和芳香环衍生物R 1H或HR 1'H为原料,通过傅-克反应得到有机氟化物;然后在强碱性催化剂的作用下,有机氟化物与芳香环衍生物R 2H反应,得到含羰基的有机电致发光材料;R 1H或HR 1'H中R 1、R 1'分别与式I和式II中对应;R 2H中R 2与式I和式II中R 2对应。
  6. 根据权利要求1~4任一项所述含羰基的有机电致发光材料在有机电致发光领域中的应用。
  7. 根据权利要求6所述的应用,其特征在于:所述含羰基的有机电致发光材料在有机电致发光器件中的应用。
PCT/CN2018/111933 2018-04-16 2018-10-25 一类含羰基的有机电致发光材料及在oled中的应用 WO2019200875A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/048,373 US12075698B2 (en) 2018-04-16 2018-10-25 Electroluminscent material containing carbonyl group, and application thereof to OLED
JP2020556882A JP7129111B2 (ja) 2018-04-16 2018-10-25 カルボニル基を含む有機エレクトロルミネセント材料とそれらのoledにおける使用
SG11202010281SA SG11202010281SA (en) 2018-04-16 2018-10-25 Carbonyl containing organic electroluminescent materials and use thereof in OLEDs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810339446.5A CN108359442B (zh) 2018-04-16 2018-04-16 一类含羰基的有机电致发光材料及在oled中的应用
CN201810339446.5 2018-04-16

Publications (1)

Publication Number Publication Date
WO2019200875A1 true WO2019200875A1 (zh) 2019-10-24

Family

ID=63008581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111933 WO2019200875A1 (zh) 2018-04-16 2018-10-25 一类含羰基的有机电致发光材料及在oled中的应用

Country Status (5)

Country Link
US (1) US12075698B2 (zh)
JP (1) JP7129111B2 (zh)
CN (1) CN108359442B (zh)
SG (1) SG11202010281SA (zh)
WO (1) WO2019200875A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110305121A (zh) * 2019-07-25 2019-10-08 硕明(常州)光源科技有限公司 一种n-酰基咔唑类化合物及其制备方法和应用
CN112812766B (zh) * 2020-12-30 2023-08-08 广州大学 化合物在制备电化学发光材料中的应用和电化学发光器件
CN112898964A (zh) * 2021-02-05 2021-06-04 华南理工大学 天蓝光有机电致发光材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106279203A (zh) * 2016-04-25 2017-01-04 中节能万润股份有限公司 一种含酮和氮杂环的化合物及其在有机电致发光器件上的应用
CN107068880A (zh) * 2016-04-25 2017-08-18 中节能万润股份有限公司 一种含有二芳基酮类化合物的有机电致发光器件及其应用
CN107641117A (zh) * 2017-06-30 2018-01-30 华南理工大学 一系列含羰基的有机电致发光材料及其制备方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7064717B2 (ja) 2018-05-15 2022-05-11 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106279203A (zh) * 2016-04-25 2017-01-04 中节能万润股份有限公司 一种含酮和氮杂环的化合物及其在有机电致发光器件上的应用
CN107068880A (zh) * 2016-04-25 2017-08-18 中节能万润股份有限公司 一种含有二芳基酮类化合物的有机电致发光器件及其应用
CN107641117A (zh) * 2017-06-30 2018-01-30 华南理工大学 一系列含羰基的有机电致发光材料及其制备方法与应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GUO, JINGJING ET AL.: "Achieving High-Performance Nondoped OLEDs with Extremely Small Efficiency Roll-Off by Combining Aggregation-Induced Emission and Thermally Activated Delayed Fluorescence", ADVANCED FUNCTIONAL MATERIALS, vol. 27, no. 13, 10 February 2017 (2017-02-10), XP055647501 *
GUO, JINGJING ET AL.: "Robust Luminescent Materials with Prominent Aggregation-Induced Emission", CHEMISTRY OF MATERIALS, vol. 29, no. 8, 31 March 2017 (2017-03-31), pages 3623 - 3631, XP055647504 *
HUANG, JIAN ET AL.: "Highly Efficient Nondoped OLEDs with Negligible Efficiency Roll-Off Fabricated from Aggregation‐Induced Delayed Fluorescence Luminogens", ANGEWANDTE CHEMIE, vol. 56, no. 42, 13 September 2017 (2017-09-13), pages 12971 - 12976, XP055647508, DOI: 10.1002/anie.201706752 *
LIU, HUIJUN ET AL.: "High-Performance Non-doped OLEDs with Nearly 100% Exciton Use and Negligible Efficiency Roll-Off.", ANGEWANDTE CHEMIE, vol. 57, no. 30, 21 June 2018 (2018-06-21), pages 9291, XP055647498, DOI: 10.1002/anie.201802060 *

Also Published As

Publication number Publication date
CN108359442A (zh) 2018-08-03
JP7129111B2 (ja) 2022-09-01
US12075698B2 (en) 2024-08-27
US20210376251A1 (en) 2021-12-02
CN108359442B (zh) 2020-09-22
SG11202010281SA (en) 2020-11-27
JP2021518871A (ja) 2021-08-05

Similar Documents

Publication Publication Date Title
Xiao et al. Highly efficient hybridized local and Charge-transfer (HLCT) Deep-blue electroluminescence with excellent molecular horizontal orientation
Zheng et al. Highly efficient non-doped deep-blue organic light-emitting diodes based on anthracene derivatives
CN110862381B (zh) 一种有机电致发光化合物及其制备方法和应用
Wan et al. Multifunctional electron-transporting indolizine derivatives for highly efficient blue fluorescence, orange phosphorescence host and two-color based white OLEDs
Tagare et al. Efficient solution-processed deep-blue CIE y∈(0.05) and pure-white CIE x, y∈(0.34, 0.32) organic light-emitting diodes: experimental and theoretical investigation
CN108069951B (zh) 一类基于苯甲酰基衍生物的有机电致发光材料及制备方法
Xiao et al. Efficient and stable deep-blue narrow-spectrum electroluminescence based on hybridized local and charge-transfer (HLCT) state
WO2019200875A1 (zh) 一类含羰基的有机电致发光材料及在oled中的应用
CN113004290A (zh) 一种有机化合物、有机电致发光材料及其应用
Yang et al. Rational design of pyridine-containing emissive materials for high performance deep-blue organic light-emitting diodes with CIEy~ 0.06
Zhang et al. Novel blue fluorescent emitters structured by linking triphenylamine and anthracene derivatives for organic light-emitting devices with EQE exceeding 5%
CN113372370B (zh) 一种有机化合物及其应用
JP2023503663A (ja) 金属錯体及びその用途
WO2020199997A1 (zh) 一种取代的1,3,5-三嗪化合物、组合物及其应用
Wang et al. Efficient thermally activated delayed fluorescence emitters with regioisomeric effects for red/near-infrared organic light-emitting diodes
Wang et al. Purine-based thermally activated delayed fluorescence emitters for efficient organic light-emitting diodes
CN112079841A (zh) 一种有机化合物、电致发光材料及其应用
Tao et al. Molecular engineering with triptycene groups endows homoleptic Ir (III) complexes with enhanced electroluminescence properties
CN106898709B (zh) 一种红色磷光有机电致发光器件
Zhou et al. tert-Butyl-substituted bicarbazole as a bipolar host material for efficient green and yellow PhOLEDs
Wang et al. Novel thioxanthone host material with thermally activated delayed fluorescence for reduced efficiency roll-off of phosphorescent OLEDs
Li et al. Novel thieno-[3, 4-b]-pyrazine derivatives for non-doped red organic light-emitting diodes
Choi et al. Highly effective nicotinonitrile-derivatives-based thermally activated delayed fluorescence emitter with asymmetric molecular architecture for high-performance organic light-emitting diodes
Feng et al. Achieving phthalide-based fluorescent materials with hybridized local and charge-transfer characteristics for efficient deep blue OLEDs
CN108690091A (zh) 一种铱配合物及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915231

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2020556882

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1)EPC DATED 29.01.2021 (EPO FORM 1205A)

122 Ep: pct application non-entry in european phase

Ref document number: 18915231

Country of ref document: EP

Kind code of ref document: A1