WO2019200811A1 - 光解络强化重金属络合废水资源化的方法 - Google Patents

光解络强化重金属络合废水资源化的方法 Download PDF

Info

Publication number
WO2019200811A1
WO2019200811A1 PCT/CN2018/103158 CN2018103158W WO2019200811A1 WO 2019200811 A1 WO2019200811 A1 WO 2019200811A1 CN 2018103158 W CN2018103158 W CN 2018103158W WO 2019200811 A1 WO2019200811 A1 WO 2019200811A1
Authority
WO
WIPO (PCT)
Prior art keywords
heavy metal
metal complex
complex wastewater
recycling
adsorbent
Prior art date
Application number
PCT/CN2018/103158
Other languages
English (en)
French (fr)
Inventor
刘福强
赵伟
袁媛
刘自成
宋丽
凌晨
李爱民
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学 filed Critical 南京大学
Publication of WO2019200811A1 publication Critical patent/WO2019200811A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Definitions

  • the invention relates to a method for photolysis-reinforcing heavy metal complex wastewater recycling, and belongs to the field of wastewater treatment.
  • NOM and DOM contain ligand functional groups such as hydroxyl, amino and carboxyl groups, which easily form soluble heavy metal chelate with heavy metals and prevent the deposition of heavy metal ions in natural water.
  • ligand functional groups such as hydroxyl, amino and carboxyl groups
  • complexing agent needs to be added to the plating solution, so that heavy metals in the electroplating wastewater are mostly in a complex state.
  • the migration of heavy metals is enhanced, which promotes bioabsorption and increases the enrichment of heavy metals. Therefore, the complexed heavy metals have a greater impact on aquatic organisms than ionic heavy metals. Therefore, how to remove complex heavy metals simply and effectively has become a difficult problem to be solved in the field of heavy metal wastewater treatment.
  • complexed heavy metals are surrounded by complex atoms such as N or O to form mononuclear or multinuclear polydentate chelates with high stability coefficients, making it difficult to pass traditional Removal by coagulation precipitation, chemical precipitation and ion exchange.
  • the chelate adsorption method has a good selective separation effect on free heavy metal ions, but the selective separation of heavy metals in the complex state is poor. This is because the complexing agent encapsulates heavy metal ions and completely occupies its coordination. The site makes it impossible to effectively separate the adsorption sites. To achieve selective separation of heavy metals, this requires the need to decompose the complexed heavy metals.
  • the decomplexing technology can be divided into ligand replacement and decomplexation technology, ligand oxidation decomposition technology and metal ion reduction decomplexation technology according to the principle of decomplexation.
  • the ligand displacement decomplexing technique achieves heavy metal decomplexation by adding a metal ion having a stronger complexing ability to the ligand to displace the target heavy metal ion.
  • the ligand oxidative decomplexing technique is a method of oxidizing a ligand compound to convert a ligand into a product that loses complexing ability or a fully mineralized ligand compound, and the complexation is broken to release heavy metal ions.
  • the metal ion reduction and decomplexation technology is to reduce the complexed heavy metal ions to a low-valent metal ion or a metal element by a reducing reagent, thereby reducing the stability of the complex, thereby realizing the destabilization and decomplexation of the complex state heavy metal.
  • These methods have a significant effect on the treatment of complexed heavy metals.
  • the metal ion reduction and decomplexation technology still has the problem of low purity of recovered metals.
  • the present invention provides a method for photoresolving and strengthening the recycling of heavy metal complex wastewater in order to solve the problems existing in the prior art in view of the deficiencies in the prior art.
  • the invention relates to a method for photolysis-reinforcing heavy metal complex wastewater recycling, in particular, based on Fe(III) ion and O 2 co-catalytic photocatalytic decomposing to break the interference of organic acid complexing agent on heavy metal adsorption, thereby strengthening the chelate Selective adsorption of target heavy metal ions by the adsorbent to achieve low-cost resource utilization of heavy metals in the presence of organic acids.
  • a method for photocatalyzing and strengthening the recycling of heavy metal complex wastewater the specific steps are as follows:
  • step (3) Iron recovery: The water from step (3) is pumped into a class II adsorption column packed with type B adsorbent, which is filled with an adsorbent having a high selective separation coefficient for Fe(III) ions, and extracts ferric ions. ;
  • step (4) Iron recycling: After the adsorption column in step (4) is penetrated, the regenerant is pumped into the second-stage adsorption column for regeneration, and the ferric ion-containing desorption liquid is recovered.
  • the heavy metal complex wastewater described in the step (1) refers to a heavy metal wastewater containing an organic acid complexing agent, wherein the organic acid complexing agent refers to an organic compound having a carboxyl group in its molecular structure.
  • the acid is preferably EDTA of an aminocarboxylic acid or citric acid of a hydroxycarboxylic acid.
  • the iron reagent in the step (1) is a ferric salt solution
  • the ferric salt solution is a ferric chloride solution, a ferric sulfate solution or a ferric nitrate solution
  • the iron reagent The concentration of iron ions in the medium is 0.1-1.0 mol/L.
  • the molar concentration of the iron reagent in the step (1) is 0.1 to 1.0 times the molar concentration of the complexing agent in the heavy metal complex wastewater.
  • the aeration mode in the step (1) is air aeration; the dissolved oxygen concentration in the heavy metal complex wastewater after the aeration in the step (1) is 8.0 mg/L at normal temperature. the above.
  • the hydraulic retention time of the heavy metal complex wastewater in the step (2) in the photoreactor is 10-60 min.
  • the effective wavelength of the light source of the photoreactor is 200-420 nm, and the light source of the photoreactor is a mercury lamp.
  • the class A adsorbent in the step (3) is a chelate adsorbent
  • the chelate adsorbent is an aminocarboxylic acid resin D463, a pyridine resin TP22, a pyridine resin M4195, Any one of the phosphoric acid resin Purolite S950 or the amidoxime resin Purolite S910.
  • the target heavy metal ion in the step (1) is one or more of cobalt, copper, zinc, cadmium and lead.
  • the class B adsorbent in the step (4) is a phosphinic acid resin Purolite S957.
  • the regenerant in the step (5) means 2% to 20% by weight of dilute sulfuric acid or 5% to 20% by weight of dilute hydrochloric acid or 5% to 20% by weight of dilute nitric acid.
  • the present invention has the following beneficial effects as compared with the prior art:
  • the photocatalytic decomplexation enhances the recovery of the target heavy metal ions by the highly selective adsorbent, improves the purity of the recovered metal, realizes the effective recovery of resources, and increases the economic value of the technology.
  • Figure 1 is a comparative diagram of the properties of the chelate adsorption resin before and after decomplexation
  • the first step, pretreatment, photocatalytic decomplexation to 1.0L of Cu-EDTA heavy metal complex wastewater (wherein Cu(II) concentration is 1.0mmol/L, typical complexing agent EDTA concentration is 2.0mmol/L)
  • the iron reagent is added, and the pH of the Cu-EDTA complex wastewater is maintained between 2.0 and 4.0, and then the air is exposed to the Cu-EDTA heavy metal complex wastewater, so that the dissolved oxygen concentration in the aerated wastewater reaches the normal temperature. 8.0mg / L or more.
  • the aerated wastewater is pumped into a photoreactor with a 300 W mercury lamp as a light source and an effective wavelength of 200-420 nm. Comparing the decomposition rate of EDTA under several sets of decomposing parameters in Table 1, it can be found that the Fe(III) ion and O 2 co-exensing optical decomposing technology can better realize the decomposition of EDTA.
  • the second step, heavy metal recovery Cu-EDTA heavy metal complex wastewater after decomposing the light (according to the decomposing condition of No. 5, the decomposition rate of EDTA is 98.7% of Cu-EDTA heavy metal complex wastewater), according to the solid-liquid ratio 1.0g/L was added to the I-stage adsorption column containing aminocarboxylic acid resin D463, aminophosphoric acid resin Purolite S950, pyridine resin TP220, pyridine resin M4195 or amidoxime resin Purolite S910, and maintained after photolysis.
  • the pH of the heavy metal complex wastewater of EDTA is between 5.0 and 7.0, placed in a constant temperature oscillator at 298 K, controlled at a speed of 160 rpm, and shaken for 24 hours to obtain Cu-EDTA heavy metal complex wastewater after adsorption of Cu(II). It can be seen from Fig. 1 that the adsorption properties of the chelate resin on Cu(II) before and after decomplexation under the same conditions can be found that the adsorption properties of Cu(II) by several chelating resins are greatly improved after decomplexation.
  • the third step iron recycling: S957 resin after adsorption of Fe(III) ions (according to the decomposing conditions of No. 14, the Fe (III) recovery rate is 98.0% after adsorption of the B-type adsorbent), using different regeneration The agent regenerates it. Comparing the desorption ratio of Fe(III) ions in Table 3 below, it can be found that the Fe(III) adsorbed by S957 resin has a good desorption rate.
  • the desorption solution with the desorption ratio of No. 19 and Fe(III) of 90.8% was detected, and the composition of the desorption solution was found to be 0.1-0.25 mol/L Fe(III) ion and 0.5-1.0 mol/L hydrogen ion. And a small amount of EDTA decomposition products, 300-1000 mg (TOC) / L.
  • the Cu-EDTA heavy metal complex wastewater was added as an iron reagent, and the pH of the wastewater was maintained between 1.5 and 3.5. Comparing the decomposition rate of EDTA in Table 4, it can be found that the desorption solution can also be used as an iron reagent to achieve EDTA. Decomposition.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

本发明公开了一种光解络强化重金属络合废水资源化的方法,具体步骤如下:将含有目标重金属的络合废水进行过滤处理后,加入铁试剂并进行曝气处理;将步骤(1)的出水泵入光反应器中进行光催化解络;将步骤(2)的出水泵入装填A类吸附剂的I级吸附柱,回收目标重金属离子;将步骤(3)的出水泵入装填树脂B类吸附剂的II级吸附柱,提取三价铁离子;待步骤(4)中的吸附柱穿透后,向II级吸附柱中泵入再生剂进行再生,回收含三价铁离子脱附液;本发明通过光催化解络的一体化强化以及选择性吸附工艺的集成化控制,实现了重金属离子与外加Fe(III)离子的选择性分离,实现了重金属的资源化以及铁的循环利用,大幅降低了药耗和能耗。

Description

光解络强化重金属络合废水资源化的方法 技术领域
本发明涉及一种光解络强化重金属络合废水资源化的方法,属于废水处理领域。
背景技术
络合态重金属在天然水体和工业水体中均有广泛的存在。天然水体中NOM和DOM多含有羟基、氨基和羧基等配体官能团,很容易与重金属形成可溶性的重金属螯合物,阻止了重金属离子在天然水体中的沉积。在电镀过程中为了保证镀层质量,需要向镀液中投加大量络合剂,造成电镀废水中重金属多以络合态存在。在无机或有机配体存在时,重金属的迁移能力得到增强,会促进了生物吸收而增加重金属的富集程度。因此,相比于离子态重金属,络合态的重金属对水生生物会带来的影响更大。因此,如何简单有效的去除络合态重金属已经成为重金属废水处理领域厄待解决的难题。
相比离子态重金属,络合态重金属因其被多个N或O等配位原子络合包围形成具有很高稳定性系数的单核或多核的多齿螯合物,使其难以通过传统的混凝沉淀、化学沉淀和离子交换等方法去除。螯合吸附法对游离的重金属离子有较好的选择性分离效果,但是对络合态的重金属的选择性分离效果差,这是由于络合剂将重金属离子包裹其中,完全占据了其配位位点,使得无法有效的选择性位吸附分离。要实现重金属的选择性分离,这就要求需要对络合态重金属进行解络。目前解络技术按照解络原理可以分为配体置换解络技术、配体氧化解 络技术和金属离子还原解络技术。
配体置换解络技术是通过添加与配体络合能力更强的金属离子置换出目标重金属离子,从而实现重金属解络。配体氧化解络技术是通过氧化配体化合物,使配体转化为丧失络合能力的产物或完全矿化配体化合物的方式,破除络合使重金属离子游离出来。而金属离子还原解络技术是通过还原性试剂将络合的重金属离子还原为低价态的金属离子或者金属单质,降低其络合物的稳定性,从而实现络合态重金属脱稳解络。这些方法在处理络合态重金属上都有较为显著的效果。但无论配体置换解络还是配体氧化解络都存在药剂消耗大,废物产量大,技术粗放的特点;而金属离子还原解络技术依然存在回收金属纯度低的问题。
因此,寻求一种集约型的解络耦合重金属选择性回收技术,已成为当代社会发展的需求。基于这一思路,我们提出来一种Fe(III)离子和O 2共促光催化的集约型解络技术,实现了Fe(III)离子的循环利用和目标重金属选择性回收。
发明内容
本发明针对现有技术中存在的不足,提供了光解络强化重金属络合废水资源化的方法,以解决现有技术中存在的问题。
本发明涉及光解络强化重金属络合废水资源化的方法,具体而言就是基于Fe(III)离子和O 2共促光催化解络破除有机酸络合剂对重金属吸附的干扰,从而强化螯合吸附剂对目标重金属离子的选择性吸附,实现有机酸共存下重金属低成本资源化。
为实现上述目的,本发明采用的技术方案如下:
一种光解络强化重金属络合废水资源化的方法,具体步骤如下:
(1)预处理:将含有目标重金属的络合废水进行过滤处理后,加入铁试剂并进行曝气处理;加入的Fe(III)离子起到配体置换解络和光催化脱羧的双重功能,曝入的氧气起到增强光化学脱羧的作用;
(2)光催化解络:将步骤(1)的出水泵入光反应器中进行光催化解络;
上述过程的技术原理如下式所示:
Cu(II)-EDTA+Fe(III)→Fe(III)-EDTA+Cu(II)(1-1)
Figure PCTCN2018103158-appb-000001
4Fe(II)+4H ++O 2→4Fe(III)+2H 2O(1-4)
(3)重金属回收:将步骤(2)的出水泵入装填A类吸附剂的I级吸附柱,回收目标重金属离子;其中装填了对目标重金属离子具有高选择性分离系数的吸附剂,通过选择性吸附回收目标重金属离子;
(4)铁回收:将步骤(3)的出水泵入装填B类吸附剂的II级吸附柱,其中装填了对Fe(III)离子具有高效选择性分离系数的吸附剂,提取三价铁离子;
(5)铁循环利用:待步骤(4)中的吸附柱穿透后,向II级吸附柱中泵入再生剂进行再生,回收含三价铁离子脱附液。
作为本发明的一种改进,所述步骤(1)中所述的重金属络合废 水是指含有有机酸络合剂的重金属废水,其中有机酸络合剂是指其分子结构中含有羧基的有机酸,优选为氨基羧酸类的EDTA,羟基羧酸类的柠檬酸。
作为本发明的一种改进,所述步骤(1)中的铁试剂为三价铁盐溶液,所述三价铁盐溶液为氯化铁溶液、硫酸铁溶液或硝酸铁溶液,所述铁试剂中铁离子浓度为0.1-1.0mol/L。
作为本发明的一种改进,所述步骤(1)中铁试剂的摩尔浓度为重金属络合废水中络合剂摩尔浓度的0.1-1.0倍。
作为本发明的一种改进,所述步骤(1)中曝气方式为空气曝气;所述步骤(1)中曝气后重金属络合废水中的溶解氧浓度在常温下为8.0mg/L以上。
作为本发明的一种改进,所述步骤(2)中重金属络合废水在光反应器内的水力停留时间为10-60min。
作为本发明的一种改进,所述步骤(2)中,光反应器的光源有效波长为200-420nm,所述光反应器的光源为汞灯。
作为本发明的一种改进,所述步骤(3)中的A类吸附剂为螯合吸附剂,所述螯合吸附剂为氨基羧酸类树脂D463、吡啶类树脂TP22、吡啶类树脂M4195、氨基磷酸树脂Purolite S950或偕胺肟树脂Purolite S910中任意一种。
作为本发明的一种改进,所述步骤(1)中目标重金属离子为钴、铜、锌、镉和铅中的一种或多种。
作为本发明的一种改进,所述步骤(4)中的B类吸附剂为膦磺 酸类树脂Purolite S957。
作为本发明的一种改进,所述步骤(5)中的再生剂是指2%-20%wt的稀硫酸或5%-20%wt稀盐酸或5%-20%wt的稀硝酸。
由于采用了以上技术,本发明较现有技术相比,具有的有益效果如下:
(1)通过Fe(III)离子和O 2共促光催化解络,大大缩短了光解络的水利停留时间,有效的节省了能源;
(2)采用高选择性吸附剂回收Fe(III)离子,再通过回用树脂脱附液作为加铁试剂,实现了光催化药剂的循环使用,大大削减了解络技术对药剂消耗量的依赖;
(3)通过光催化解络强化了高选择性吸附剂对目标重金属离子的回收,提高了回收金属的纯度,实现了资源的有效回收,增加了技术的经济价值。
附图说明
图1是解络前后螯合吸附树脂性能的对比图;
具体实施方式
下面结合具体实施方式,进一步阐明本发明。
实施例:Cu-EDTA重金属络合废水
第一步,预处理、光催化解络:向1.0L的Cu-EDTA重金属络合废水(其中,Cu(II)浓度为1.0mmol/L,典型络合剂EDTA浓度为2.0mmol/L)中投加铁试剂,并维持Cu-EDTA络合废水的pH在2.0-4.0之间,再向Cu-EDTA重金属络合废水中曝入空气,使得曝气后的废水 中溶解氧浓度在常温下达到8.0mg/L以上。再将曝气后的废水泵入以300W汞灯为光源,光源有效波长为200-420nm的光反应器中进行光催化解络。对比表1中几组解络参数下EDTA分解率,可以发现Fe(III)离子和O 2共促光解络技术能够较好的实现对EDTA的分解。
表1 解络过程控制参数及其解络效果
Figure PCTCN2018103158-appb-000003
第二步,重金属回收:将光解络后的Cu-EDTA重金属络合废水(按照序号5的解络条件,EDTA分解率为98.7%的Cu-EDTA重金属络合废水),按照固液比为1.0g/L分别加入至装有氨基羧酸类树脂D463、氨基磷酸树脂PuroliteS950、吡啶类树脂TP220、吡啶类树脂M4195或偕胺肟树脂PuroliteS910的I级吸附柱中,并维持光解络后Cu-EDTA重金属络合废水的pH在5.0-7.0之间,置入298K下的恒温振荡器中,控制转速160rpm,充分振荡吸附24h,得到吸附Cu(II) 后的Cu-EDTA重金属络合废水。从图1可知,相同条件下解络前后螯合树脂对Cu(II)的吸附性能可以发现,解络后几种螯合树脂对Cu(II)的吸附性能均有极大提升。
铁回收:将吸附Cu(II)后的Cu-EDTA重金属络合废水,按照固液比为1.0g/L分别加入至装有膦磺酸基树脂Purolite S957的II级吸附柱,并维持该废水的pH在5.0-7.0之间,置入298K下的恒温振荡器中,控制转速160rpm,充分振荡吸附24h,并对Fe(III)回收率进行检测。对比下表2中Fe(III)离子的回收率可知,Purolite S957对Fe(III)离子具有有益的回收效果。
表2 铁回收效果
Figure PCTCN2018103158-appb-000004
第三步,铁循环利用:将吸附Fe(III)离子后的S957树脂(按照序号14的解络条件,Fe(III)回收率为98.0%吸附后的B类吸附剂),采用不同的再生剂对其进行再生。对比下表3中Fe(III)离子脱附率可以发现,S957树脂吸附的Fe(III)均有较好脱附率。
表3 不同再生剂对S957的再生效果
序号 再生剂 Fe(III)脱附率(%)
17 2%wt稀硫酸 60.3
18 10%wt稀硫酸 76.7
19 20%wt稀硫酸 90.8
20 5%wt稀硝酸 66.9
21 10%wt稀硝酸 73.1
22 20%wt稀硝酸 85.9
23 20%wt稀硝酸 88.6
对序号19,Fe(III)脱附率为90.8%的脱附液进行检测,可知脱附液的组成:0.1-0.25mol/L的Fe(III)离子、0.5-1.0mol/L的氢离子以及少量的EDTA分解产物,300-1000mg(TOC)/L。将其作为铁试剂投加Cu-EDTA重金属络合废水,并维持该废水的pH在1.5-3.5之间,对比表4中EDTA的分解率,可以发现脱附液作为铁试剂也能够实现对EDTA的分解。
表4 脱附液作为铁试剂的解络效果
Figure PCTCN2018103158-appb-000005
上述实施例仅为本发明的优选技术方案,而不应视为对于本发明的限制,本发明的保护范围应以权利要求记载的技术方案,包括权利要求记载的技术方案中技术特征的等同替换方案为保护范围,即在此范围内的等同替换改进,也在本发明的保护范围之内。

Claims (10)

  1. 一种光解络强化重金属络合废水资源化的方法,其特征在于,具体步骤如下:
    (1)预处理:将含有目标重金属的络合废水进行过滤处理后,加入铁试剂并进行曝气处理;
    (2)光催化解络:将步骤(1)的出水泵入光反应器中进行光催化解络;
    (3)重金属回收:将步骤(2)的出水泵入装填A类吸附剂的I级吸附柱,回收目标重金属离子;
    (4)铁回收:将步骤(3)的出水泵入装填B类吸附剂的II级吸附柱,提取三价铁离子;
    (5)铁循环利用:待步骤(4)中的吸附柱穿透后,向II级吸附柱中泵入再生剂进行再生,回收含三价铁离子脱附液。
  2. 根据权利要求1所述的一种光解络强化重金属络合废水资源化的方法,其特征在于:所述步骤(1)中的铁试剂为三价铁盐溶液,所述三价铁盐溶液为氯化铁溶液、硫酸铁溶液或硝酸铁溶液,所述铁试剂中铁离子浓度为0.1-1.0mol/L。
  3. 根据权利要求1所述的一种光解络强化重金属络合废水资源化的方法,其特征在于:所述步骤(1)中铁试剂的摩尔浓度为重金属络合废水中络合剂摩尔浓度的0.1-1.0倍。
  4. 根据权利要求1所述的一种光解络强化重金属络合废水资源化的方法,其特征在于:所述步骤(1)中曝气方式为空气曝气;所述步 骤(1)中曝气后重金属络合废水中的溶解氧浓度在常温下为8.0mg/L以上。
  5. 根据权利要求1所述的一种光解络强化重金属络合废水资源化的方法,其特征在于:所述步骤(2)中重金属络合废水在光反应器内的水力停留时间为10-60min。
  6. 根据权利要求1所述的一种光解络强化重金属络合废水资源化的方法,其特征在于:所述步骤(2)中,光反应器的光源有效波长为200-420nm。
  7. 根据权利要求1所述的一种光解络强化重金属络合废水资源化的方法,其特征在于:所述步骤(3)中的A类吸附剂为螯合吸附剂,所述螯合吸附剂为氨基羧酸类树脂D463、吡啶类树脂TP22、吡啶类树脂M4195、氨基磷酸树脂Purolite S950或偕胺肟树脂Purolite S910中任意一种。
  8. 根据权利要求1所述的一种光解络强化重金属络合废水资源化的方法,其特征在于:所述步骤(1)中目标重金属离子为钴、铜、锌、镉和铅中的一种或多种。
  9. 根据权利要求1所述的一种光解络强化重金属络合废水资源化的方法,其特征在于:所述步骤(4)中的B类吸附剂为膦磺酸类树脂Purolite S957。
  10. 根据权利要求1所述的一种光解络强化重金属络合废水资源化的方法,其特征在于:所述步骤(5)中的再生剂是指2%-20%wt的稀硫酸或5%-20%wt稀盐酸或5%-20%wt的稀硝酸。
PCT/CN2018/103158 2018-04-21 2018-08-30 光解络强化重金属络合废水资源化的方法 WO2019200811A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810369780.5 2018-04-21
CN201810369780.5A CN108529799A (zh) 2018-04-21 2018-04-21 光解络强化重金属络合废水资源化的方法

Publications (1)

Publication Number Publication Date
WO2019200811A1 true WO2019200811A1 (zh) 2019-10-24

Family

ID=63479157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103158 WO2019200811A1 (zh) 2018-04-21 2018-08-30 光解络强化重金属络合废水资源化的方法

Country Status (2)

Country Link
CN (1) CN108529799A (zh)
WO (1) WO2019200811A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013040389A1 (en) * 2011-09-14 2013-03-21 University Of South Florida Cactus mucilage and ferric ions for the removal of arsenate (as(v)) from water
CN103241803A (zh) * 2013-05-14 2013-08-14 广东新大禹环境工程有限公司 电镀废水分离工艺
CN104108819A (zh) * 2014-06-13 2014-10-22 南京大学 一种处理重金属络合废水的组合工艺
US20150014253A1 (en) * 2013-07-15 2015-01-15 King Abdulaziz City For Science And Technology Removal of heavy metals from aqueous solutions using metal-doped titanium dioxide nanoparticles
CN105692768A (zh) * 2016-03-31 2016-06-22 南京大学 一种利用螯合树脂选择性提取重金属-氨络合废水中重金属的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104129831B (zh) * 2014-07-29 2017-01-18 南京大学 一种利用螯合树脂同时去除和回收重金属离子和有机酸的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013040389A1 (en) * 2011-09-14 2013-03-21 University Of South Florida Cactus mucilage and ferric ions for the removal of arsenate (as(v)) from water
CN103241803A (zh) * 2013-05-14 2013-08-14 广东新大禹环境工程有限公司 电镀废水分离工艺
US20150014253A1 (en) * 2013-07-15 2015-01-15 King Abdulaziz City For Science And Technology Removal of heavy metals from aqueous solutions using metal-doped titanium dioxide nanoparticles
CN104108819A (zh) * 2014-06-13 2014-10-22 南京大学 一种处理重金属络合废水的组合工艺
CN105692768A (zh) * 2016-03-31 2016-06-22 南京大学 一种利用螯合树脂选择性提取重金属-氨络合废水中重金属的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XU, ZHE ET AL.: "A New Combined Process for Efficient Removal of Cu(II) Organic Complexes from Wastewater Fe(III) Displacement/UV Degradation/Alkaline Precipitation", WATER RESEARCH, 1 October 2015 (2015-10-01), pages 378 - 384, XP029348266, ISSN: 0043-1354 *

Also Published As

Publication number Publication date
CN108529799A (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
CN103506065B (zh) 一种壳-核结构磁性重金属吸附剂及其制备方法
CN105238932B (zh) 钴锰废料中钴和锰的分离回收方法
CN109371259B (zh) 一种从硫酸锌溶液中去除氯的方法
WO2019037421A1 (zh) 碱性化学镍废水中镍的选择分离与综合回收方法
US20200140974A1 (en) Method of removing iron ions from a solution containing neodymium, praseodymium, dysprosium and iron
CN107828965B (zh) 一种分离回收钴锰废料中钴和锰的方法
CN110694590A (zh) 一种污水中重金属铬的处理方法
CN113003793A (zh) 一种基于两级树脂分离的氯化钴废水钴的回收方法
CN104355444B (zh) 一种络合重金属废水的处理方法
GB2530482A (en) Method of removing metal ions from aqueous solutions
CN105152433A (zh) 一种铜、钼萃余液混合废水去除cod的方法
WO2019200811A1 (zh) 光解络强化重金属络合废水资源化的方法
CN104108812B (zh) 一种焦磷酸铜电镀废水处理方法
CN116809034A (zh) 一种基于稀土改性煤矸石的除磷剂的制备方法
EA019142B1 (ru) Способ разделения платины (ii, iv) и родия (iii) в солянокислых водных растворах
CN110902872A (zh) 一种普碳钢盐酸酸洗废液的快速回收处理方法
JP6307276B2 (ja) セレン含有水の処理装置およびセレン含有水の処理方法
CN107739828A (zh) 一种用氨‑碳酸铵分离回收低钴高锰废料中钴和锰的方法
CN103351070B (zh) 草甘膦废水的处理方法
CN103572068A (zh) 从含铜载金炭中回收铜的方法
CN114192109A (zh) 一种用于水中除砷的石墨烯铜铁氧化物复合吸附剂及其制备方法
CN109811130B (zh) 一种从冶炼酸性废水回收铊和汞的方法
CN1752030A (zh) 脱除人造金红石母液中钙、镁和铝的方法
CN108754179B (zh) 一种氧化预处理含锌二次物料的方法
CN108408960B (zh) 一种回收处理含铁的酸洗报废液的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915310

Country of ref document: EP

Kind code of ref document: A1