WO2019198203A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2019198203A1
WO2019198203A1 PCT/JP2018/015408 JP2018015408W WO2019198203A1 WO 2019198203 A1 WO2019198203 A1 WO 2019198203A1 JP 2018015408 W JP2018015408 W JP 2018015408W WO 2019198203 A1 WO2019198203 A1 WO 2019198203A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
connection port
air conditioner
valve
compressor
Prior art date
Application number
PCT/JP2018/015408
Other languages
English (en)
French (fr)
Inventor
牧野 浩招
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/015408 priority Critical patent/WO2019198203A1/ja
Priority to JP2020513451A priority patent/JP6884272B2/ja
Priority to US16/976,568 priority patent/US11460229B2/en
Priority to EP19785462.3A priority patent/EP3779329B1/en
Priority to CN201980024180.8A priority patent/CN111936803A/zh
Priority to PCT/JP2019/015795 priority patent/WO2019198795A1/ja
Publication of WO2019198203A1 publication Critical patent/WO2019198203A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L37/00Couplings of the quick-acting type
    • F16L37/22Couplings of the quick-acting type in which the connection is maintained by means of balls, rollers or helical springs under radial pressure between the parts
    • F16L37/23Couplings of the quick-acting type in which the connection is maintained by means of balls, rollers or helical springs under radial pressure between the parts by means of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/001Charging refrigerant to a cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/002Collecting refrigerant from a cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/006Details for charging or discharging refrigerants; Service stations therefor characterised by charging or discharging valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants

Definitions

  • the present invention relates to an air conditioner using a flammable refrigerant.
  • R410A which is an HFC (hydrofluorocarbon) refrigerant
  • HFC hydrogen fluorocarbon
  • R410A has no ozone layer destruction coefficient (ODP: Ozone Depletion Potential), and therefore does not destroy the ozone layer.
  • ODP Ozone Depletion Potential
  • R410A has a property of having a high global warming potential (GWP). Therefore, recently, as part of the prevention of global warming, switching from an HFC refrigerant with a high GWP such as R410A to an HFC refrigerant with a low GWP such as R32 is proceeding.
  • GWP global warming potential
  • a flammable refrigerant region may be formed.
  • the refrigerant may ignite. In order to avoid the occurrence of such ignition, it is necessary not to form a flammable refrigerant region.
  • the amount of leakage needs to be suppressed to such an extent that the combustible concentration refrigerant region is not formed in the air-conditioning target space.
  • a refrigerant charging connection port is provided in addition to a stop valve provided with a flare joint for connecting pipes connected to each of the indoor unit and the outdoor unit, and depending on the type of refrigerant used.
  • An air conditioner is disclosed that prevents the refrigerant from being misfilled by changing the shape of the connection port.
  • the refrigerant filling connection port is used not only for filling refrigerant, but also for vacuuming the air inside the indoor unit and the internal / external connection pipe that connects the outdoor unit and the indoor unit.
  • Patent Document 2 discloses an air conditioner in which a valve having a flare joint for connecting pipes connected to each of an indoor unit and an outdoor unit is arranged in a machine room of the outdoor unit. This valve is also provided with a connection port shared for refrigerant filling and vacuuming.
  • the refrigerant charging connection port is also used when evacuating the indoor unit and the internal and external connection pipes, and thus is provided outside the machine room in the outdoor unit. Thereby, since anyone can easily access the refrigerant filling connection port, even an operator who does not have advanced expertise can charge the refrigerant.
  • the present invention has been made in view of the above problems, and provides an air conditioner capable of preventing erroneous work when charging a refrigerant and suppressing leakage of combustible refrigerant due to erroneous work. With the goal.
  • the air conditioner of the present invention is an air in which a refrigerant circuit is formed by connecting an outdoor unit having a compressor, an outdoor heat exchanger and an expansion valve, and an indoor unit having an indoor heat exchanger through an internal / external connection pipe.
  • a combustor wherein a combustible refrigerant is used as a refrigerant flowing through the refrigerant circuit, and the outdoor unit is provided in a machine room that houses the compressor and the expansion valve, and is filled with the refrigerant to fill the refrigerant
  • a dedicated connection port and a vacuum connection port provided outside the machine room for evacuating the refrigerant in the refrigerant circuit.
  • the refrigerant filling connection port and the evacuation connection port are provided separately, and the refrigerant filling connection port is provided in the machine room, thereby preventing an erroneous operation when charging the refrigerant.
  • leakage of the flammable refrigerant due to erroneous work can be suppressed.
  • FIG. It is the schematic which shows an example of a structure of the air conditioner which concerns on Embodiment 1.
  • FIG. It is a perspective view which shows an example of the external appearance of the outdoor unit of FIG.
  • It is a schematic cross section which shows an example of the structure of the charge valve which comprises the refrigerant charging exclusive connection port of FIG.
  • It is the schematic which shows an example of a structure of the tool connected to the refrigerant filling exclusive connection port of FIG.
  • FIG. 1 is a schematic diagram illustrating an example of a configuration of an air conditioner 100 according to the first embodiment.
  • the air conditioner 100 is, for example, a split type air conditioner, and includes an outdoor unit 1 and an indoor unit 2.
  • the refrigerant circuit is formed by connecting the outdoor unit 1 and the indoor unit 2 with the internal and external connection pipes 3 and 4.
  • the outdoor unit 1 includes a compressor 11, a refrigerant flow switching device 12, an outdoor heat exchanger 13, and an expansion valve 14.
  • the internal space of the outdoor unit 1 is partitioned into a machine room 1A and a blower room 1B.
  • a compressor 11, a refrigerant flow switching device 12, and an expansion valve 14 are accommodated in the machine room 1A.
  • An outdoor heat exchanger 13 is accommodated in the blower chamber 1B.
  • Compressor 11 sucks low-temperature and low-pressure refrigerant, compresses the sucked refrigerant, and discharges high-temperature and high-pressure refrigerant.
  • the compressor 11 is composed of, for example, an inverter compressor whose capacity, which is a delivery amount per unit time, is controlled by changing the compressor frequency.
  • the refrigerant flow switching device 12 is, for example, a four-way valve, and switches between a cooling operation and a heating operation by switching the direction in which the refrigerant flows.
  • the refrigerant flow switching device 12 is switched so that the discharge side of the compressor 11 and the outdoor heat exchanger 13 are connected as shown by the solid line in FIG.
  • coolant flow path switching apparatus 12 switches so that the discharge side of the compressor 11 and the indoor heat exchanger 25 of the indoor unit 2 may be connected as shown by the dotted line of FIG.
  • the outdoor heat exchanger 13 performs heat exchange between outdoor air supplied by a fan or the like (not shown) and the refrigerant.
  • the outdoor heat exchanger 13 functions as a condenser that radiates the heat of the refrigerant to the outdoor air and condenses the refrigerant during the cooling operation.
  • the outdoor heat exchanger 13 functions as an evaporator that evaporates the refrigerant during the heating operation and cools the outdoor air with the heat of vaporization.
  • the expansion valve 14 expands the refrigerant.
  • the expansion valve 14 is configured by a valve capable of controlling the opening degree, such as an electronic expansion valve.
  • the outdoor unit 1 includes a liquid pipe closing valve 15, a gas pipe closing valve 16, a vacuum drawing dedicated connection port 17, and a refrigerant charging dedicated connection port 18.
  • the liquid pipe closing valve 15 is attached to a pipe 1 a between the expansion valve 14 and the indoor heat exchanger 25 of the indoor unit 2, and opens and closes a flow path between the expansion valve 14 and the indoor heat exchanger 25.
  • the gas pipe closing valve 16 is attached to the pipe 1b between the refrigerant flow switching device 12 and the indoor heat exchanger 25, and opens and closes the flow channel between the refrigerant flow switching device 12 and the indoor heat exchanger 25. .
  • the vacuum pumping connection port 17 is a connection port to which a vacuum pump is connected when vacuuming is performed.
  • the vacuum evacuation connection port 17 is disposed outside the outer shell 10 of the machine room 1A.
  • the vacuum evacuation dedicated connection port 17 is provided in the gas pipe closing valve 16.
  • the refrigerant charging connection port 18 is a connection port for charging the refrigerant into the refrigerant circuit.
  • the refrigerant charging dedicated connection port 18 is disposed in the machine room 1A.
  • the refrigerant charging connection port 18 is attached to a pipe 1 c that connects the refrigerant flow switching device 12 and the suction side of the compressor 11.
  • the refrigerant filling dedicated connection port 18 is not limited to this, and may be attached to the pipe 1b connecting the gas pipe closing valve 16 and the refrigerant flow switching device 12. In other words, considering the case where the refrigerant flow switching device 12 is not provided, the refrigerant filling dedicated connection port 18 may be attached to a pipe connecting the suction side of the compressor 11 and the gas pipe closing valve 16.
  • FIG. 2 is a perspective view showing an example of the appearance of the outdoor unit 1 of FIG.
  • the outdoor unit 1 is formed of, for example, a rectangular outer shell 10, and a part of the outer shell 10 is removable.
  • the vacuum evacuation connection port 17 is arranged so as to be exposed to the outside of the outer shell 10.
  • the refrigerant charging dedicated connection port 18 is disposed in the machine room 1A in the outdoor unit 1 (not shown) so as to be exposed by removing a part of the outer shell 10.
  • the indoor unit 2 in FIG. 1 includes an indoor heat exchanger 25.
  • the indoor heat exchanger 25 exchanges heat between air supplied by a fan or the like (not shown) and the refrigerant. Thereby, heating air or cooling air supplied to the indoor space is generated.
  • the indoor heat exchanger 25 functions as an evaporator during the cooling operation, and cools the air in the air-conditioning target space.
  • the indoor heat exchanger 25 functions as a condenser during heating operation, and heats the air in the air-conditioning target space to perform heating.
  • FIG. 3 is a schematic cross-sectional view showing an example of the structure of the gas pipe closing valve 16 having the vacuum evacuation connection port 17 of FIG.
  • the gas pipe closing valve 16 is formed with an outdoor unit side connection port 16a, a gas pipe side connection port 16b, and an exclusive vacuum connection port 17.
  • a pipe 1b connected to the refrigerant flow switching device 12 is connected to the outdoor unit side connection port 16a.
  • An internal / external connection pipe 4 connected to the indoor unit 2 is connected to the gas pipe side connection port 16b.
  • the vacuum pumping connection port 17 is connected to a hose or the like of a vacuum pump (not shown) when vacuuming.
  • the vacuum evacuation dedicated connection port 17 is formed with a threaded portion on the outer periphery and a conical tip portion 17a inclined at about 45 °.
  • a cylindrical internal space having a screw portion is formed at the center of the vacuum evacuation connection port 17, and the valve core 17b is disposed in the internal space.
  • a cap 17c When the hose of the vacuum pump is not connected, a cap 17c is fastened with a screw to the vacuuming connection port 17.
  • the inner surface of the cap 17c has a conical shape inclined at approximately 45 ° so as to correspond to the tip portion 17a. Thereby, a sealing surface is formed between the cap 17c and the tip portion 17a of the vacuum evacuation dedicated connection port 17, and leakage of the refrigerant is prevented.
  • the gas pipe closing valve 16 is provided with a valve portion 16c for opening and closing a refrigerant flow path between the refrigerant flow switching device 12 and the inner / outer connection pipe 4, and an opening 16d capable of operating the valve section 16c. It has been.
  • the opening 16d is closed by a protective cap 16e when the valve portion 16c is not operated.
  • FIG. 4 is a schematic view showing an example of the shape of the refrigerant charging connection port 18 of FIG.
  • FIG. 5 is a schematic cross-sectional view showing an example of the structure of the charge valve 20 constituting the refrigerant filling dedicated connection port 18 of FIG.
  • a quick joint 30 attached to the tip of a hose connected to a tool such as a gauge manifold is connected to the refrigerant charging dedicated connection port 18 when the refrigerant circuit is filled with the refrigerant.
  • the refrigerant charging connection port 18 is constituted by a charge valve 20 and is provided in the pipe 1 c.
  • the charge valve 20 is joined to the pipe 1c by a branch pipe 18a for branching the refrigerant flowing through the pipe 1c.
  • the charge valve 20 is formed in a cylindrical shape, and an opening 20a for connecting the quick joint 30 is formed.
  • a valve-side screw portion 20b is formed on the inner periphery of the opening 20a.
  • a cylindrical internal space through which fluid passes is formed at the center of the charge valve 20, and the valve core 21 is disposed in this internal space.
  • an insect pin 21a extending in the insertion / extraction direction (the arrow Y direction in FIG. 5) is provided.
  • the groove part 20c is formed in the charge valve 20 along the outer periphery.
  • the groove 20c is for fixing the quick joint 30 when the quick joint 30 is connected.
  • the cap 22 is detachably attached to the opening 20a.
  • the cap 22 is formed of, for example, a metallic material, and is attached to the opening 20 a when the quick joint 30 is not connected to the charge valve 20.
  • a cap-side screw portion 22 a is formed in the cap 22 at a position corresponding to the valve-side screw portion 20 b of the charge valve 20. The cap 22 is in close contact with the charge valve 20 by screwing the cap-side screw portion 22 a and the valve-side screw portion 20 b of the charge valve 20.
  • FIG. 6 is a schematic diagram showing an example of the configuration of the tool 50 connected to the refrigerant filling dedicated connection port 18 of FIG. In FIG. 6, the example at the time of using a gauge manifold as the tool 50 is shown.
  • a hose 51 is attached to the gauge manifold as the tool 50, and a quick joint 30 is attached to the tip of the hose 51 for connection to the charge valve 20 of the refrigerant charging dedicated connection port 18.
  • a gauge manifold for a flammable refrigerant is used.
  • the connection between the gauge manifold for the flammable refrigerant and the hose 51 and the connection between the hose 51 and the quick joint 30 are fastened by using a tool such as a spanner, unlike the conventional case of fastening by hand tightening.
  • FIG. 7 is a schematic cross-sectional view showing an example of the structure of the quick joint 30 of FIG.
  • the quick joint 30 is formed in a cylindrical shape, and an opening 30a for connecting the charge valve 20 of FIGS. 4 and 5 is formed.
  • a cylindrical internal space through which a fluid passes is formed at the center of the quick joint 30, and a bar-shaped protruding portion 31 that protrudes in the insertion / extraction direction (arrow Y direction in FIG. 7) is provided in this internal space. Yes.
  • the protrusion 31 is provided so as to push the insect pin 21 a provided on the valve core 21 in the charge valve 20 when the charge valve 20 is connected to the quick joint 30. Thereby, when the charge valve 20 is connected to the quick joint 30, the valve core 21 can be opened to allow fluid to pass therethrough.
  • a plurality of through holes 30b are formed on the outer periphery of the quick joint 30 on the side of the opening 30a, and balls 32 serving as locking portions are provided in the respective through holes 30b.
  • the ball 32 is movable in the radial direction (arrow X direction) of the quick joint 30 inside the through hole 30b.
  • the through hole 30b has a structure in which the ball 32 does not fall into the internal space.
  • a spring 33 is wound around the outer periphery of the quick joint 30 on the opening 30a side, and a sleeve 34 is provided so as to cover the ball 32.
  • the sleeve 34 can slide the outer periphery of the quick joint 30 in the insertion / removal direction (arrow Y direction) according to the expansion and contraction of the spring 33.
  • the movement of the ball 32 in the outer peripheral direction is restricted by being covered by the sleeve 34. At this time, the movement of the ball 32 is restricted in a state where a part of the ball 32 protrudes into the internal space.
  • the spring 33 is contracted and the sleeve 34 is moved in the direction opposite to the opening 30a, the restriction of the movement of the ball 32 by the sleeve 34 is released. Thereby, the ball 32 can move in the outer peripheral direction (arrow X direction).
  • FIG. 8 is a schematic cross-sectional view showing a connection state between the charge valve 20 of FIG. 5 and the quick joint 30 of FIG. First, as shown in FIG. 8, when the quick joint 30 is connected to the charge valve 20, the charge valve 20 is connected to be inserted into the quick joint 30.
  • the sleeve 34 of the quick joint 30 is slid in the direction opposite to the opening 30 a so as to contract the spring 33. Then, the restriction on the movement of the ball 32 is released along with the movement of the sleeve 34.
  • a force is applied to the ball 32 from the inner space side of the quick joint 30, and the ball 32 moves in the outer circumferential direction by this force.
  • the quick joint 30 when the quick joint 30 is pulled out from the charge valve 20, the projecting portion 31 moves in the direction opposite to the opening 30a, and the projecting portion 31 does not press the insect pin 21a of the valve core 21. Therefore, the valve core 21 is closed.
  • the quick joint 30 has a valve (not shown), and when the quick joint 30 is pulled out from the charge valve 20, this valve is also closed. Thereby, the flow of the fluid with respect to the internal space of both the charge valve 20 and the quick joint 30 is blocked.
  • the hose connected to the vacuum pump is connected to the vacuuming connection port 17, and vacuuming is performed. After the evacuation is completed, the liquid pipe closing valve 15 and the gas pipe closing valve 16 are opened, and the refrigerant flows into the indoor unit 2 side. As a result, the air conditioner 100 can be operated.
  • tools such as a gauge manifold similar to the conventional air conditioner can be used for evacuation. Therefore, when vacuuming is performed, a special work tool is not required, and the installation work can be easily performed.
  • the refrigerant charging connection port 18 provided in the machine room 1A is exposed to the outside.
  • a tool 50 such as a gauge manifold for charging the combustible refrigerant is connected to the refrigerant charging connection port 18, and the refrigerant is supplied to the air conditioner 100. Filled.
  • a refrigerant cylinder and a hose 51 having a quick joint 30 attached to the tip are connected to the gauge manifold which is the tool 50. Then, after the air inside the gauge manifold and the hose 51 is pushed out by the refrigerant and exhausted, the quick joint 30 at the tip of the hose 51 is connected to the charge valve 20 of the dedicated refrigerant charging connection port 18, and the refrigerant is an air conditioner. 100 is filled. When the air conditioner 100 is filled with the refrigerant, the filling amount is measured.
  • the quick joint 30 when the quick joint 30 is connected to the charge valve 20, the quick joint 30 is pushed into the charge valve 20 so that both are immediately connected. Therefore, compared with the connection method by the conventional screw, the refrigerant
  • a left-hand screw is used for a base of a flammable refrigerant cylinder such as R290 (propane).
  • a right-hand screw is used for a base of a cylinder of non-combustible refrigerant such as R410A.
  • the charge valve 20 which is a valve different from the conventional one is used as the valve of the refrigerant charging dedicated connection port 18.
  • the charge valve 20 is used for the refrigerant charging connection port 18 and the quick joint 30 is used for the tool 50 used when charging the refrigerant.
  • the vacuum evacuation dedicated connection port 17 and the refrigerant charging dedicated connection port 18 are provided separately, and the vacuum evacuation dedicated connection port 17 is provided in the outdoor unit 1.
  • the refrigerant charging connection port 18 is provided in the machine room 1A. Accordingly, since it is necessary to remove a part of the outer shell 10 of the machine room 1A in order to access the refrigerant charging dedicated connection port 18, the refrigerant charging is performed by a procedure different from the conventional one, so that anyone can easily It is possible to prevent the refrigerant from being charged. And since the misoperation by workers other than the worker who has expert knowledge is prevented, the refrigerant
  • the charge valve 20 to which the quick joint 30 provided in the tool 50 is connected is used as the refrigerant charging dedicated connection port 18.
  • coolant at the time of attaching / detaching the quick joint 30 is suppressed, and it prevents that the leaked refrigerant fills in the machine room 1A. be able to.
  • the refrigerant charging connection port 18 is attached to the pipe 1b or 1c that connects the suction side of the compressor 11 and the gas pipe shut-off valve 16.
  • the dedicated refrigerant charging connection port 18 is provided closer to the compressor 11 than the gas pipe shut-off valve 16 provided outside the outdoor unit 1, and thus is provided inside the outdoor unit 1. That is, since it is necessary to access the inside of the outdoor unit 1 in order to access the refrigerant charging dedicated connection port 18, anyone can easily prevent the refrigerant from being charged.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Valve Housings (AREA)

Abstract

空気調和機は、圧縮機、室外熱交換器および膨張弁を有する室外機と、室内熱交換器を有する室内機とが内外接続配管で接続されることによって冷媒回路が形成された空気調和機であって、冷媒回路を流れる冷媒として可燃性冷媒が用いられ、室外機は、圧縮機および膨張弁を収容する機械室内に設けられ、冷媒を充填するための冷媒充填専用接続口と、機械室の外側に設けられ、冷媒回路内の冷媒を真空引きするための真空引き専用接続口とを備える。

Description

空気調和機
 本発明は、可燃性冷媒を用いた空気調和機に関するものである。
 従来、空気調和機では、冷媒回路に充填される冷媒として、HFC(ハイドロフルオロカーボン)冷媒であるR410Aが主に用いられている。R410Aは、以前に使用されていたR22等のHCFC(ハイドロクロロフルオロカーボン)冷媒と異なり、オゾン層破壊係数(ODP:Ozone Depletion Potential)がゼロであるため、オゾン層を破壊することはない。しかしながら、R410Aは、地球温暖化係数(GWP:Global Warming Potential)が高いという性質を有している。そのため、最近では、地球の温暖化防止の一環として、R410A等のGWPが高いHFC冷媒からR32等のGWPが低いHFC冷媒への切り替えが進んでいる。
 ところで、一般に、GWPが低い冷媒は燃焼性を有するものが多い。そのため、低GWP冷媒を使用する場合には、空気中への冷媒漏洩に対する注意が必要である。なお、燃焼性には微燃性から強燃性まであるが、ここでは、燃焼性を有する冷媒を可燃性冷媒と総称する。
 可燃性冷媒が室内に漏洩し、漏洩した冷媒が拡散することなく滞留すると、可燃濃度の冷媒領域が形成される可能性がある。可燃濃度の冷媒領域の近傍に着火源が存在する場合、冷媒に引火する虞がある。このような引火の発生を回避するためには、可燃濃度の冷媒領域が形成されないようにする必要がある。そして、可燃濃度の冷媒領域が形成されないようにするためには、仮に冷媒が漏洩しても、漏洩量が空調対象空間に可燃濃度の冷媒領域が形成されない程度に抑える必要がある。
 ところで、空気調和機において、必要な冷媒量以上の冷媒が充填され、かつ冷媒の漏洩が発生した場合には、上述したように可燃濃度の冷媒領域が形成される危険性がある。これに対し、特許文献1には、室内機および室外機それぞれに接続された配管同士を接続するためのフレア継手を備えた閉止弁に冷媒充填用接続口を併設し、使用する冷媒の種類によって接続口の形状を異ならせて冷媒の誤充填を防ぐ空気調和機が開示されている。冷媒充填用接続口は、冷媒を充填する用途に加えて、室内機、および室外機と室内機とを接続する内外接続配管の内部の空気を真空引きする用途にも用いられる。
 また、特許文献2には、室内機および室外機それぞれに接続された配管同士を接続するためのフレア継手を備えたバルブを室外機の機械室内に配置した空気調和機が開示されている。このバルブにも、冷媒の充填および真空引きの用途で共用される接続口が設けられている。
特開平7-269904号公報 特開2010-25459号公報
 特許文献1に記載の空気調和機において、冷媒充填用接続口は、室内機および内外接続配管の真空引きを行う際にも使用されるため、室外機における機械室の外側に設けられる。これにより、冷媒充填用接続口に対して誰でもが容易にアクセスすることができるので、高度な専門知識を有さない作業者であっても、冷媒を充填することができる。
 しかしながら、専門知識を有さない作業者が冷媒を充填すると、過充填等の誤作業が発生する虞がある。冷媒としてR290(プロパン)といった燃焼性の強い冷媒が用いられる場合に、冷媒が過充填されて漏洩すると、閉空間で冷媒漏洩が発生した際に、漏洩した空間の一部の領域が可燃濃度に到達する危険性が高まる。そのため、安全性が低下する虞がある。
 また、特許文献2に記載されているように、内外接続配管を接続するフレア継手が機械室の内部に配置されている場合に、フレア継手から冷媒が漏洩すると、漏洩した冷媒が、着火源となり得る電気部品が収納された機械室に充満する虞がある。
 本発明は、上記課題に鑑みてなされたものであって、冷媒を充填する際の誤作業を防止するとともに、誤作業による可燃性冷媒の漏洩を抑制することができる空気調和機を提供することを目的とする。
 本発明の空気調和機は、圧縮機、室外熱交換器および膨張弁を有する室外機と、室内熱交換器を有する室内機とが内外接続配管で接続されることによって冷媒回路が形成された空気調和機であって、前記冷媒回路を流れる冷媒として可燃性冷媒が用いられ、前記室外機は、前記圧縮機および前記膨張弁を収容する機械室内に設けられ、前記冷媒を充填するための冷媒充填専用接続口と、前記機械室の外側に設けられ、前記冷媒回路内の前記冷媒を真空引きするための真空引き専用接続口とを備えるものである。
 本発明によれば、冷媒充填専用接続口と真空引き専用接続口とが別体で設けられるとともに、冷媒充填専用接続口が機械室内に設けられることにより、冷媒を充填する際の誤作業を防止するとともに、誤作業による可燃性冷媒の漏洩を抑制することができる。
実施の形態1に係る空気調和機の構成の一例を示す概略図である。 図1の室外機の外観の一例を示す斜視図である。 図1の真空引き専用接続口を有するガス管閉止弁の構造の一例を示す模式断面図である。 図1の冷媒充填専用接続口の形状の一例を示す概略図である。 図4の冷媒充填専用接続口を構成するチャージバルブの構造の一例を示す模式断面図である。 図4の冷媒充填専用接続口に接続される工具の構成の一例を示す概略図である。 図6のクイックジョイントの構造の一例を示す模式断面図である。 図5のチャージバルブと図7のクイックジョイントとの接続状態を示す模式断面図である。
実施の形態1.
 以下、本発明の実施の形態1に係る空気調和機について説明する。図1は、本実施の形態1に係る空気調和機100の構成の一例を示す概略図である。図1に示すように、空気調和機100は、例えばスプリット型の空気調和機であり、室外機1および室内機2で構成されている。室外機1と室内機2とが内外接続配管3および4で接続されることにより、冷媒回路が形成される。
[空気調和機100の構成]
(室外機1)
 室外機1は、圧縮機11、冷媒流路切替装置12、室外熱交換器13および膨張弁14を備えている。室外機1の内部空間は、機械室1Aおよび送風室1Bに区画されている。機械室1Aには、圧縮機11、冷媒流路切替装置12および膨張弁14が収容されている。送風室1Bには、室外熱交換器13が収容されている。
 圧縮機11は、低温低圧の冷媒を吸入し、吸入した冷媒を圧縮し、高温高圧の冷媒を吐出する。圧縮機11は、例えば、圧縮機周波数を変化させることにより、単位時間あたりの送出量である容量が制御されるインバータ圧縮機等からなる。
 冷媒流路切替装置12は、例えば四方弁であり、冷媒の流れる方向を切り替えることにより、冷房運転および暖房運転の切り替えを行う。冷媒流路切替装置12は、冷房運転時に、図1の実線で示すように、圧縮機11の吐出側と室外熱交換器13とが接続されるように切り替わる。また、冷媒流路切替装置12は、暖房運転時に、図1の点線で示すように、圧縮機11の吐出側と室内機2の室内熱交換器25とが接続されるように切り替わる。
 室外熱交換器13は、図示しないファン等によって供給される室外空気と冷媒との間で熱交換を行う。室外熱交換器13は、冷房運転の際に、冷媒の熱を室外空気に放熱して冷媒を凝縮させる凝縮器として機能する。また、室外熱交換器13は、暖房運転の際に、冷媒を蒸発させ、その際の気化熱により室外空気を冷却する蒸発器として機能する。
 膨張弁14は、冷媒を膨張させる。膨張弁14は、例えば、電子式膨張弁等の開度の制御が可能な弁で構成される。
 また、室外機1は、液管閉止弁15、ガス管閉止弁16、真空引き専用接続口17および冷媒充填専用接続口18を備えている。液管閉止弁15は、膨張弁14と室内機2の室内熱交換器25との間の配管1aに取り付けられ、膨張弁14と室内熱交換器25との間の流路を開閉する。ガス管閉止弁16は、冷媒流路切替装置12と室内熱交換器25との間の配管1bに取り付けられ、冷媒流路切替装置12と室内熱交換器25との間の流路を開閉する。
 真空引き専用接続口17は、真空引きを行う際に真空ポンプが接続され接続口である。真空引き専用接続口17は、機械室1Aの外殻10の外側に配置されている。本実施の形態1において、真空引き専用接続口17は、ガス管閉止弁16に設けられている。
 冷媒充填専用接続口18は、冷媒回路に冷媒を充填するための接続口である。冷媒充填専用接続口18は、機械室1A内に配置されている。冷媒充填専用接続口18は、冷媒流路切替装置12と圧縮機11の吸入側とを接続する配管1cに取り付けられている。
 なお、冷媒充填専用接続口18は、これに限られず、ガス管閉止弁16と冷媒流路切替装置12とを接続する配管1bに取り付けられてもよい。すなわち、冷媒流路切替装置12が設けられない場合を考慮すると、冷媒充填専用接続口18は、圧縮機11の吸入側とガス管閉止弁16とを接続する配管に取り付けられればよい。
 図2は、図1の室外機1の外観の一例を示す斜視図である。図2に示すように、室外機1は、例えば矩形状の外殻10で形成され、外殻10の一部が取り外し可能とされている。真空引き専用接続口17は、外殻10の外側に露出するようにして配置されている。一方、冷媒充填専用接続口18は、外殻10の一部を取り外すことによって露出するように、図示しない室外機1内の機械室1Aに配置されている。
(室内機2)
 図1の室内機2は、室内熱交換器25を備えている。室内熱交換器25は、図示しないファン等によって供給される空気と冷媒との間で熱交換を行う。これにより、室内空間に供給される暖房用空気または冷房用空気が生成される。室内熱交換器25は、冷房運転の際に蒸発器として機能し、空調対象空間の空気を冷却して冷房を行う。また、室内熱交換器25は、暖房運転の際に凝縮器として機能し、空調対象空間の空気を加熱して暖房を行う。
[接続口の構造]
(真空引き専用接続口17の構造)
 図3は、図1の真空引き専用接続口17を有するガス管閉止弁16の構造の一例を示す模式断面図である。ガス管閉止弁16には、室外機側接続口16a、ガス管側接続口16bおよび真空引き専用接続口17が形成されている。
 室外機側接続口16aには、冷媒流路切替装置12に接続された配管1bが接続される。ガス管側接続口16bには、室内機2に接続された内外接続配管4が接続される。真空引き専用接続口17は、真空引きを行う際の図示しない真空ポンプのホース等が接続される。
 真空引き専用接続口17は、従来と同様に、外周にネジ部が形成され、略45°に傾斜した円錐状の先端部17aが形成されている。真空引き専用接続口17の中心部には、ネジ部を有する円柱状の内部空間が形成され、この内部空間内にバルブコア17bが配置される。
 真空ポンプのホースが接続されていない場合、真空引き専用接続口17にはキャップ17cがネジで締結されている。キャップ17cの内面は、先端部17aに対応するように、略45°に傾斜した円錐状とされている。これにより、キャップ17cと真空引き専用接続口17の先端部17aとの間にシール面が形成され、冷媒の漏洩が防止される。
 また、ガス管閉止弁16には、冷媒流路切替装置12と内外接続配管4との間の冷媒流路を開閉するための弁部16cと、弁部16cを操作可能な開口部16dが設けられている。開口部16dは、弁部16cの操作を行わない場合に、保護キャップ16eによって閉塞されている。
(冷媒充填専用接続口18)
 図4は、図1の冷媒充填専用接続口18の形状の一例を示す概略図である。図5は、図4の冷媒充填専用接続口18を構成するチャージバルブ20の構造の一例を示す模式断面図である。冷媒充填専用接続口18には、冷媒を冷媒回路に充填する際に、ゲージマニホールド等の工具に接続されるホースの先端に取り付けられたクイックジョイント30が接続される。図4に示すように、冷媒充填専用接続口18は、チャージバルブ20で構成され、配管1cに設けられている。チャージバルブ20は、配管1cを流れる冷媒を分岐するための分岐管18aによって配管1cに接合されている。
 図4および図5に示すように、チャージバルブ20は、円筒状に形成され、クイックジョイント30を接続するための開口部20aが形成されている。開口部20aの内周には、バルブ側ネジ部20bが形成されている。
 チャージバルブ20の中心部には、流体が通過する円柱状の内部空間が形成され、この内部空間内にバルブコア21が配置される。バルブコア21の開口部20a側には、挿抜方向(図5の矢印Y方向)に延出する虫ピン21aが設けられている。チャージバルブ20にクイックジョイント30が接続された際に、虫ピン21aが押圧されることによってバルブコア21が開き、流体を通過させることができる。
 チャージバルブ20には、外周に沿って溝部20cが形成されている。溝部20cは、クイックジョイント30が接続された際に、クイックジョイント30を固定するためのものである。
 また、開口部20aには、キャップ22が着脱可能に取り付けられる。キャップ22は、例えば金属性材料で形成され、チャージバルブ20にクイックジョイント30が接続されない場合に、開口部20aに取り付けられる。キャップ22には、チャージバルブ20のバルブ側ネジ部20bに対応する位置に、キャップ側ネジ部22aが形成されている。キャップ側ネジ部22aとチャージバルブ20のバルブ側ネジ部20bとが螺合することにより、キャップ22がチャージバルブ20に密着する。
(工具50の構成)
 図6は、図4の冷媒充填専用接続口18に接続される工具50の構成の一例を示す概略図である。図6では、工具50としてゲージマニホールドを用いた場合の例が示されている。
 工具50としてのゲージマニホールドには、ホース51が取り付けられ、ホース51の先端には、冷媒充填専用接続口18のチャージバルブ20に接続するためのクイックジョイント30が取り付けられている。特に、本実施の形態1において、ゲージマニホールドは、可燃性冷媒用のものが用いられている。この場合に、可燃性冷媒用のゲージマニホールドとホース51との接続、ならびに、ホース51とクイックジョイント30との接続は、手締めによって締結される従来と異なり、スパナ等の工具を用いて締結される。
(クイックジョイント30の構造)
 図7は、図6のクイックジョイント30の構造の一例を示す模式断面図である。図7に示すように、クイックジョイント30は、円筒状に形成され、図4および図5のチャージバルブ20を接続するための開口部30aが形成されている。クイックジョイント30の中心部には、流体が通過する円柱状の内部空間が形成され、この内部空間には、挿抜方向(図7の矢印Y方向)に突出する棒状の突出部31が設けられている。
 突出部31は、クイックジョイント30にチャージバルブ20が接続された際に、チャージバルブ20内のバルブコア21に設けられた虫ピン21aを押すように設けられている。これにより、クイックジョイント30にチャージバルブ20が接続された際に、バルブコア21が開いて流体を通過させることができる。
 クイックジョイント30の開口部30a側の外周には、複数の貫通孔30bが穿設され、それぞれの貫通孔30bに係止部であるボール32が設けられている。ボール32は、貫通孔30bの内部でクイックジョイント30の径方向(矢印X方向)に移動可能とされている。ただし、貫通孔30bは、ボール32が内部空間に落下しない構造となっている。
 また、クイックジョイント30の開口部30a側の外周には、バネ33が巻回されるとともに、ボール32を覆うようにしてスリーブ34が設けられている。スリーブ34は、バネ33の伸縮に応じてクイックジョイント30の外周を挿抜方向(矢印Y方向)にスライドすることができる。
 ここで、ボール32は、スリーブ34によって覆われることにより、外周方向(矢印X方向)への移動が規制されている。このとき、ボール32は、一部が内部空間に突出した状態で移動が規制されている。一方、バネ33を縮め、スリーブ34を開口部30a側とは反対方向に移動させると、スリーブ34によるボール32の移動の規制が解除される。これにより、ボール32は、外周方向(矢印X方向)に移動可能となる。
[チャージバルブ20とクイックジョイント30との接続]
 図8は、図5のチャージバルブ20と図7のクイックジョイント30との接続状態を示す模式断面図である。まず、図8に示すように、チャージバルブ20にクイックジョイント30を接続する場合、チャージバルブ20がクイックジョイント30に挿入されるように接続される。
 このとき、クイックジョイント30のスリーブ34は、バネ33を縮めるようにして開口部30aとは反対方向にスライドされる。すると、スリーブ34の移動に伴ってボール32の移動の規制が解除される。そして、チャージバルブ20がクイックジョイント30に挿入されることにより、クイックジョイント30の内部空間側からボール32に対して力が加わり、この力によってボール32が外周方向に移動する。
 チャージバルブ20がクイックジョイント30に正しく挿入されると、チャージバルブ20の溝部20cの位置とクイックジョイント30のボール32の位置とが一致し、ボール32が内部空間側に突出して溝部20cに係合する。そして、スリーブ34が開口部30a側にスライドされると、ボール32の移動が規制され、ボール32が溝部20cに係止される。これにより、クイックジョイント30は、チャージバルブ20に固定される。
 また、チャージバルブ20がクイックジョイント30に挿入されると、チャージバルブ20におけるバルブコア21の虫ピン21aは、クイックジョイント30の突出部31に押される。そのため、バルブコア21が開放され、チャージバルブ20およびクイックジョイント30の双方の内部空間を流体が通過することができる。
 次に、チャージバルブ20からクイックジョイント30を取り外す場合、スリーブ34は、バネ33を縮めるようにして開口部30aとは反対方向にスライドされ、ボール32の移動の規制が解除される。この状態でクイックジョイント30が引き抜かれると、溝部20cに係止していたボール32は、内部空間側からの力によって外周方向に移動し、溝部20cとの係合が外れる。
 また、チャージバルブ20からクイックジョイント30が引き抜かれることによって突出部31が開口部30aとは反対方向に移動し、突出部31によるバルブコア21の虫ピン21aに対する押圧がなくなる。そのため、バルブコア21が閉止する。なお、クイックジョイント30は、図示しない弁を有しており、クイックジョイント30がチャージバルブ20から引き抜かれた際に、この弁も閉止する。これにより、チャージバルブ20およびクイックジョイント30の双方の内部空間に対する流体の流れが阻止される。
[空気調和機100の設置]
(真空引き)
 空気調和機100が新規に設置される場合、まず、室外機1と室内機2とが内外接続配管3および4で接続される。このとき、室外機1の液管閉止弁15およびガス管閉止弁16は閉止した状態となっている。
 真空ポンプに接続されたホースが真空引き専用接続口17に接続され、真空引きが行われる。真空引きが終了した後、液管閉止弁15およびガス管閉止弁16が開放され、冷媒が室内機2側に流れる状態とする。これにより、空気調和機100の運転が可能となる。
 このように、真空引きは、従来の空気調和機と同様のゲージマニホールド等の工具を使用することができる。そのため、真空引きを行う際に、特殊な作業用工具を必要とせず、設置作業を容易に行うことができる。
(冷媒の充填)
 空気調和機100では、例えば、冷媒回路部品の修理および交換等を行うために空気調和機100内の冷媒を一旦抜いた場合に、冷媒が再充填される。また、空気調和機100では、例えば、設置の際に内外接続配管3および4が長く、予め充填されている冷媒量では冷媒が不足した運転状態となる場合に、冷媒が追加充填される。
 このように冷媒の充填が必要な場合には、まず、機械室1Aの外殻10の一部が取り外され、機械室1A内に設けられた冷媒充填専用接続口18が外部に露出される。そして、冷媒充填専用接続口18にアクセスできる状態となった場合に、可燃性冷媒を充填するためのゲージマニホールド等の工具50が冷媒充填専用接続口18に接続され、冷媒が空気調和機100に充填される。
 このとき、工具50であるゲージマニホールドには、冷媒ボンベと、先端にクイックジョイント30が取り付けられたホース51とが接続されている。そして、ゲージマニホールドおよびホース51の内部の空気が冷媒によって押し出されて排気された後、ホース51の先端のクイックジョイント30が冷媒充填専用接続口18のチャージバルブ20に接続され、冷媒が空気調和機100に充填される。冷媒を空気調和機100に充填する際には、充填量が計量された状態で行われる。
 このように、チャージバルブ20にクイックジョイント30が接続される場合には、チャージバルブ20にクイックジョイント30が押し込まれることで、直ちに両者が接続される。そのため、従来のネジによる接続方式と比較して、接続時の冷媒漏洩量を抑制することができる。
 なお、例えばR290(プロパン)のような可燃性冷媒のボンベの口金には、左ネジが用いられる。一方、R410A等の不燃性冷媒のボンベの口金には、右ネジが用いられている。このように、冷媒ボンベの口金に用いられるネジの締結方向は、冷媒の燃性に応じて異なるため、冷媒の取り違えを起こすことがない。
 このように、本実施の形態1では、冷媒充填専用接続口18のバルブとして、従来とは異なるバルブであるチャージバルブ20が用いられる。これにより、専門知識を有する作業者以外の作業者が容易に作業することができなくなるため、冷媒を充填する際の誤作業を防止することができる。
 また、本実施の形態1では、冷媒充填専用接続口18にチャージバルブ20が用いられるとともに、冷媒を充填する際に使用される工具50にクイックジョイント30が用いられる。これにより、従来のようにネジによって接続する場合と比較して、着脱時の冷媒漏洩量を低減することができる。
 以上のように、本実施の形態1に係る空気調和機100では、真空引き専用接続口17と冷媒充填専用接続口18とが別体で設けられ、真空引き専用接続口17が室外機1の機械室1Aの外側に、冷媒充填専用接続口18が機械室1A内にそれぞれ設けられる。これにより、冷媒充填専用接続口18にアクセスするためには、機械室1Aの外殻10の一部を取り外す必要があるため、従来とは異なる手順で冷媒充填が行われるので、誰でも容易に冷媒充填を行うことを防止することができる。そして、専門知識を有する作業者以外の作業者による誤作業が防止されるため、充填の際の冷媒漏洩を抑制することができる。
 また、本実施の形態1に係る空気調和機100において、冷媒充填専用接続口18として、工具50に設けられたクイックジョイント30が接続されるチャージバルブ20が用いられる。これにより、作業者は、従来と異なる作業手順で、従来と異なる工具を使用して冷媒を充填するので、高度な専門知識を有する作業者のみが冷媒を充填することができる。そのため、冷媒の過充填および冷媒種類の誤充填を防ぐことができる。また、従来の空気調和機で使用されるネジによる接続方式と比較して、クイックジョイント30を着脱する際の冷媒の漏洩量を抑制され、漏洩した冷媒が機械室1A内に充満するのを防ぐことができる。
 さらに、本実施の形態1に係る空気調和機100において、冷媒充填専用接続口18は、圧縮機11の吸入側とガス管閉止弁16とを接続する配管1bまたは1cに取り付けられている。これにより、冷媒充填専用接続口18は、室外機1の外側に設けられたガス管閉止弁16よりも圧縮機11側に設けられるので、室外機1の内部に設けられることになる。すなわち、冷媒充填専用接続口18にアクセスするためには、室外機1の内部にアクセスする必要があるため、誰でも容易に冷媒充填を行うことを防止することができる。
 1 室外機、1A 機械室、1B 送風室、1a、1b、1c 配管、2 室内機、3、4 内外接続配管、10 外殻、11 圧縮機、12 冷媒流路切替装置、13 室外熱交換器、14 膨張弁、15 液管閉止弁、16 ガス管閉止弁、16a 室外機側接続口、16b ガス管側接続口、16c 弁部、16d 開口部、16e 保護キャップ、17 真空引き専用接続口、17a 先端部、17b バルブコア、17c キャップ、18 冷媒充填専用接続口、18a 分岐管、20 チャージバルブ、20a 開口部、20b バルブ側ネジ部、20c 溝部、21 バルブコア、21a 虫ピン、22 キャップ、22a キャップ側ネジ部、25 室内熱交換器、30 クイックジョイント、30a 開口部、30b 貫通孔、31 突出部、32 ボール、33 バネ、34 スリーブ、50 工具、51 ホース、100 空気調和機。

Claims (5)

  1.  圧縮機、室外熱交換器および膨張弁を有する室外機と、室内熱交換器を有する室内機とが内外接続配管で接続されることによって冷媒回路が形成された空気調和機であって、
     前記冷媒回路を流れる冷媒として可燃性冷媒が用いられ、
     前記室外機は、
     前記圧縮機および前記膨張弁を収容する機械室内に設けられ、前記冷媒を充填するための冷媒充填専用接続口と、
     前記機械室の外側に設けられ、前記冷媒回路内の前記冷媒を真空引きするための真空引き専用接続口と
    を備える空気調和機。
  2.  前記冷媒充填専用接続口として、前記冷媒を充填する際の工具に設けられたクイックジョイントが接続されるチャージバルブが用いられる
    請求項1に記載の空気調和機。
  3.  前記冷媒充填専用接続口は、
     前記圧縮機の吸入側と、前記圧縮機の吸入側と前記室内熱交換器との間の配管に設けられたガス管閉止弁とを接続する配管に取り付けられている
    請求項1または2に記載の空気調和機。
  4.  前記室外機は、
     前記圧縮機から吐出された前記冷媒の流れを切り替える冷媒流路切替装置をさらに有し、
     前記冷媒充填専用接続口は、前記冷媒流路切替装置と前記圧縮機の吸入側とを接続する配管に取り付けられている
    請求項3に記載の空気調和機。
  5.  前記室外機は、
     前記圧縮機から吐出された前記冷媒の流れを切り替える冷媒流路切替装置をさらに有し、
     前記冷媒充填専用接続口は、前記ガス管閉止弁と前記冷媒流路切替装置とを接続する配管に取り付けられている
    請求項3に記載の空気調和機。
PCT/JP2018/015408 2018-04-12 2018-04-12 空気調和機 WO2019198203A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2018/015408 WO2019198203A1 (ja) 2018-04-12 2018-04-12 空気調和機
JP2020513451A JP6884272B2 (ja) 2018-04-12 2019-04-11 空気調和機
US16/976,568 US11460229B2 (en) 2018-04-12 2019-04-11 Air-conditioning apparatus
EP19785462.3A EP3779329B1 (en) 2018-04-12 2019-04-11 Air conditioner
CN201980024180.8A CN111936803A (zh) 2018-04-12 2019-04-11 空调机
PCT/JP2019/015795 WO2019198795A1 (ja) 2018-04-12 2019-04-11 空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/015408 WO2019198203A1 (ja) 2018-04-12 2018-04-12 空気調和機

Publications (1)

Publication Number Publication Date
WO2019198203A1 true WO2019198203A1 (ja) 2019-10-17

Family

ID=68163191

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/015408 WO2019198203A1 (ja) 2018-04-12 2018-04-12 空気調和機
PCT/JP2019/015795 WO2019198795A1 (ja) 2018-04-12 2019-04-11 空気調和機

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015795 WO2019198795A1 (ja) 2018-04-12 2019-04-11 空気調和機

Country Status (5)

Country Link
US (1) US11460229B2 (ja)
EP (1) EP3779329B1 (ja)
JP (1) JP6884272B2 (ja)
CN (1) CN111936803A (ja)
WO (2) WO2019198203A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108139129A (zh) * 2015-08-11 2018-06-08 特灵国际有限公司 制冷剂回收和再利用
CN113847761B (zh) * 2021-10-26 2023-08-18 漳州科华电气技术有限公司 在空调系统中充注制冷剂的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009018624A1 (en) * 2007-08-09 2009-02-12 Ariazone International Pty Ltd Refrigerant filling apparatus and method
JP2012021770A (ja) * 2011-11-02 2012-02-02 Mitsubishi Electric Corp 冷凍サイクル装置、及び冷凍サイクル装置の冷媒回収方法
GB2504280A (en) * 2012-07-23 2014-01-29 Imi Cornelius Uk Ltd Discharging refrigerant from a refrigeration system by means of a capillary tube
JP2016121850A (ja) * 2014-12-25 2016-07-07 デンゲン株式会社 冷媒回収充填用マニホールド
US9448140B2 (en) * 2012-10-01 2016-09-20 Refco Manufacturing Ltd. Service device for air-conditioning systems

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3504711B2 (ja) * 1994-03-30 2004-03-08 東芝キヤリア株式会社 スプリット形空気調和機
CN1120971C (zh) * 1995-11-14 2003-09-10 松下电器产业株式会社 建立包括除氧处理的制冷系统的方法
US6471694B1 (en) * 2000-08-09 2002-10-29 Cryogen, Inc. Control system for cryosurgery
JP5407173B2 (ja) * 2008-05-08 2014-02-05 ダイキン工業株式会社 冷凍装置
JP4906792B2 (ja) 2008-06-19 2012-03-28 三菱電機株式会社 蒸気圧縮式ヒートポンプ装置
JP2010025459A (ja) 2008-07-22 2010-02-04 Fujitsu General Ltd 空気調和機の室外機
CN101749970B (zh) * 2008-12-19 2012-02-01 李迪文 制冷系统余热回收装置
JP5968281B2 (ja) 2013-08-07 2016-08-10 三菱電機株式会社 室外ユニット及び空気調和機
JP5865529B1 (ja) * 2014-07-15 2016-02-17 三菱電機株式会社 空気調和装置
CN204963324U (zh) * 2015-09-30 2016-01-13 黄石东贝制冷有限公司 一种具有快速抽真空和灌氟功能的制冷装置
CN206361846U (zh) * 2016-12-30 2017-07-28 广东美的暖通设备有限公司 用于空调器的室外机和空调器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009018624A1 (en) * 2007-08-09 2009-02-12 Ariazone International Pty Ltd Refrigerant filling apparatus and method
JP2012021770A (ja) * 2011-11-02 2012-02-02 Mitsubishi Electric Corp 冷凍サイクル装置、及び冷凍サイクル装置の冷媒回収方法
GB2504280A (en) * 2012-07-23 2014-01-29 Imi Cornelius Uk Ltd Discharging refrigerant from a refrigeration system by means of a capillary tube
US9448140B2 (en) * 2012-10-01 2016-09-20 Refco Manufacturing Ltd. Service device for air-conditioning systems
JP2016121850A (ja) * 2014-12-25 2016-07-07 デンゲン株式会社 冷媒回収充填用マニホールド

Also Published As

Publication number Publication date
EP3779329A1 (en) 2021-02-17
JPWO2019198795A1 (ja) 2020-10-22
US11460229B2 (en) 2022-10-04
CN111936803A (zh) 2020-11-13
US20210003330A1 (en) 2021-01-07
EP3779329A4 (en) 2021-05-26
EP3779329B1 (en) 2023-04-05
WO2019198795A1 (ja) 2019-10-17
JP6884272B2 (ja) 2021-06-09

Similar Documents

Publication Publication Date Title
US10222098B2 (en) Refrigeration cycle apparatus
EP3144601A1 (en) Refrigeration cycle device
WO2019198203A1 (ja) 空気調和機
WO2015140876A1 (ja) 冷凍サイクル装置
AU2017201891C1 (en) Air-conditioning apparatus
CN110446898B (zh) 空调装置
JP4906792B2 (ja) 蒸気圧縮式ヒートポンプ装置
KR102158196B1 (ko) 연속 사용이 가능한 냉매회수장치
JP6417775B2 (ja) 冷凍装置
JP6565277B2 (ja) 冷凍装置
JP2006275457A (ja) 空気調和システム
JP2015021683A (ja) 冷凍装置
AU2014345151B2 (en) Refrigeration cycle apparatus, method of manufacturing the same, and method of installing the same
JP6238202B2 (ja) 空気調和機
WO2012137260A1 (ja) 冷凍サイクル装置の冷媒回収方法及び冷凍サイクル装置
JP2017067397A (ja) 冷凍装置
JP3284720B2 (ja) 冷凍装置の施工方法及び冷凍装置
KR102044377B1 (ko) 냉동시스템의 냉 용적 산출방법 및 이를 이용한 냉매 주입 방법
JP3813317B2 (ja) 冷凍サイクル装置
JP4415770B2 (ja) 冷凍装置
JP2022150675A (ja) ヒートポンプ装置
JP4342194B2 (ja) コンデンシングユニットの接続方法
KR20220021678A (ko) 펌프다운 보조장치
JP2004263998A (ja) コンデンシングユニット及び冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18914695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP