JP4342194B2 - コンデンシングユニットの接続方法 - Google Patents

コンデンシングユニットの接続方法 Download PDF

Info

Publication number
JP4342194B2
JP4342194B2 JP2003057381A JP2003057381A JP4342194B2 JP 4342194 B2 JP4342194 B2 JP 4342194B2 JP 2003057381 A JP2003057381 A JP 2003057381A JP 2003057381 A JP2003057381 A JP 2003057381A JP 4342194 B2 JP4342194 B2 JP 4342194B2
Authority
JP
Japan
Prior art keywords
refrigerant
condensing unit
pipe
evaporator
refrigerant pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003057381A
Other languages
English (en)
Other versions
JP2004263999A (ja
Inventor
晴久 山崎
茂弥 石垣
兼三 松本
正司 山中
一昭 藤原
恒久 湯本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003057381A priority Critical patent/JP4342194B2/ja
Publication of JP2004263999A publication Critical patent/JP2004263999A/ja
Application granted granted Critical
Publication of JP4342194B2 publication Critical patent/JP4342194B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • F25B23/006Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect boiling cooling systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コンプレッサ及び凝縮器などを備え、所定量の冷媒が封入されたコンデンシングユニットを、蒸発器を備えた冷却器本体に接続する方法に関するものである。
【0002】
【従来の技術】
従来の冷却装置、例えば店舗に設置されるショーケースは、コンデンシングユニットを構成するコンプレッサ、ガスクーラ(凝縮器)及び絞り手段(キャピラリチューブ等)と、冷却機器本体側に設けられた蒸発器とを順次環状に配管接続して冷媒サイクル(冷媒回路)が構成されている。そして、コンプレッサにて圧縮され、高温高圧となった冷媒ガスは、ガスクーラに吐出される。このガスクーラにて冷媒ガスは放熱した後、絞り手段で絞られて蒸発器に供給される。そこで冷媒が蒸発し、そのときに周囲から吸熱することにより冷却作用を発揮して、ショーケースの庫内を冷却するものであった(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開平11−257830号公報
【0004】
【発明が解決しようとする課題】
ところで、このような冷却装置に使用される冷媒は通常フロンを含むHFC系冷媒であるが、フロンはオゾン層を破壊するなど、地球環境に悪影響を及ぼす危険性が高い。
【0005】
また、前述のようなショーケースなどで故障が生じた場合には、従来では店舗において前記コンデンシングユニットと冷却機器本体とを接続している高圧側(冷却機器本体の蒸発器の入口側)と低圧側(冷却機器本体の蒸発器の出口側)の両配管を切断して、コンデンシングユニットを取り出し、故障箇所の修理を行った後、再び切断した配管を溶接し、冷媒の封入を行っていた。
【0006】
このように配管を溶接にて接続した場合には、溶接により焼きなましが発生して、配管の強度が劣化してしまう。特に、前述の如く環境問題に対応するため、二酸化炭素のような自然冷媒を使用した場合には、冷媒回路内の圧力が高圧となるため、最悪、配管が破損する恐れがあった。
【0007】
また、炭化水素を冷媒として使用した場合、炭化水素は可燃性であるため、店舗において配管の切断や接続、冷媒の充填を行うことは極めて危険である。
【0008】
本発明は、係る従来の技術的課題を解決するために成されたものであり、冷却機器本体との分離・接続を容易、且つ、安全に行うことができるコンデンシングユニットの接続方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
即ち、本発明は、コンプレッサ及び凝縮器などを備え、冷媒として二酸化炭素、又は、炭化水素、又は、亜酸化窒素が所定量封入されたコンデンシングユニットを、蒸発器を備えた冷却器本体に接続する方法であって、冷却器本体の蒸発器の入口側及び出口側の冷媒配管とそれぞれ接続されるコンデンシングユニットの各冷媒配管にそれぞれ設けられた弁装置を閉じた状態で、冷却器本体の蒸発器の出口側の冷媒配管とコンデンシングユニットの冷媒配管の端部とを溶接すると共に、冷却器本体の蒸発器の入口側の冷媒配管とコンデンシングユニットの冷媒配管とを着脱可能な接続手段にて接続し、蒸発器の出口側の冷媒配管と接続されたコンデンシングユニットの冷媒配管に設けられた弁装置から冷却器本体内の空気を真空引きした後、両弁装置を開くことを特徴とする。
【0010】
【発明の実施の形態】
次に、図面に基づき本発明の実施形態を詳述する。図1は本発明を適用する冷却装置110の冷媒回路図である。この冷却装置110は、コンデンシングユニット100と冷却機器本体となる冷蔵機器本体105とから構成される。尚、実施例の冷却装置110は例えば店舗に設置されるショーケースであり、従って、冷蔵機器本体105はショーケースの本体である。
【0011】
前記コンデンシングユニット100はコンプレッサ10、ガスクーラ(凝縮器)40、減圧手段としてのキャピラリチューブ58等を備えて構成され、後述する冷蔵機器本体105の蒸発器92と配管接続されてコンプレッサ10、ガスクーラ40及びキャピラリチューブ58が蒸発器92と共に所定の冷媒回路を構成する。
【0012】
即ち、コンプレッサ10の冷媒吐出管24はガスクーラ40の入口に接続されている。ここで、実施例のコンプレッサ10は二酸化炭素(CO2)を冷媒として使用する内部中間圧型多段(2段)圧縮式ロータリコンプレッサで、このコンプレッサ10は図示しない密閉容器内に設けられた駆動要素としての電動要素とこの電動要素により駆動される第1の回転圧縮要素(1段目)及び第2の回転圧縮要素(2段目)にて構成されている。
【0013】
図中20はコンプレッサ10の第1の回転圧縮要素で圧縮され、密閉容器内に吐出された冷媒を一旦、外部に吐出させて、第2の回転圧縮要素に導入するための冷媒導入管であり、この冷媒導入管20の一端は図示しない第2の回転圧縮要素のシリンダと連通する。冷媒導入管20はガスクーラ40に設けられた中間冷却回路35を経て、他端は密閉容器内に連通する。
【0014】
図中22はコンプレッサ10の図示しない第1の回転圧縮要素のシリンダ内に冷媒を導入するための冷媒導入管であり、この冷媒導入管22の一端は図示しない第1の回転圧縮要素のシリンダと連通している。この冷媒導入管22の他端はストレーナ56の一端に接続されている。このストレーナ56は冷媒回路内を循環する冷媒ガスに混入した塵埃や切削屑などの異物を確保して濾過するためのものであり、ストレーナ56の他端側に形成された開口部とこの開口部からストレーナ56の一端側に向けて細くなる略円錐形状を呈した図示しないフィルターを備えて構成されている。このフィルターの開口部はストレーナ56の他端に接続された冷媒配管28に密着した状態で装着されている。
【0015】
また、前記冷媒吐出管24は、前記第2の回転圧縮要素で圧縮された冷媒をガスクーラ40に吐出させるための冷媒配管である。
【0016】
前記ガスクーラ40は図示しない複数のフィンと当該フィンの中心部に設けられた孔に挿通された冷媒配管にて構成されている。また、このガスクーラ40には外気温度を検出するための外気温度センサ74が設けられており、この外気温度センサ74はコンデンシングユニット100の制御手段としての後述するマイクロコンピュータ80に接続されている。
【0017】
ガスクーラ40を出た冷媒配管26は前述同様のストレーナ54と電磁弁45を経て内部熱交換器50を通過する。この内部熱交換器50はガスクーラ40から出た第2の回転圧縮要素からの高圧側の冷媒と冷蔵機器本体105に設けられた蒸発器92から出た低圧側の冷媒とを熱交換させるためのものである。また、電磁弁45はマイクロコンピュータ80に接続されている。そして、マイクロコンピュータ80は電磁弁45をコンプレッサ10の起動に伴い開放して、コンプレッサ10の運転が停止すると閉じるように制御する。
【0018】
そして、内部熱交換器50を通過した高圧側の冷媒配管26は、絞り手段であるキャピラリチューブ58に至る。キャピラリチューブ58を出た冷媒配管26は弁装置60(高圧側の弁装置)の入口に接続されている。また、冷蔵機器本体105の冷媒配管94の一端には接続手段としてのスエッジロック継ぎ手55が取り付けられる。
【0019】
前記スエッジロック継ぎ手55は、弁装置60と冷蔵機器本体105から出ている冷媒配管94の一端とを着脱可能に接続するためのものである。即ち、冷媒配管26に接続された弁装置60は冷却機器本体105の蒸発器92の入口側の冷媒配管94とスエッジロック継ぎ手55にて着脱可能に接続される。
【0020】
このスエッジロック継ぎ手55は冷媒配管94の一端に取り付けられた金属製のナット部材と、このナット部材に内包された金属製のリング部材とから構成されている。ナット部材の内壁には弁装置60の出口のネジ溝と螺合するネジ溝が形成されており、中央には冷媒配管94を挿通するための貫通孔を有している。
【0021】
そして、このスエッジロック継ぎ手55を弁装置60の出口に取り付ける際には、冷媒配管94の端部からナット部材を挿入した後、リング部材を挿入する。そして、ナット部材にリング部材を内包した状態で、弁装置60の出口のネジ溝とナット部材のネジ溝とを相互に螺合させる。螺合させることで、ナット部材の内側のリング部材がナット部材内面と冷媒配管94に密着し、これにより、弁装置60と冷媒配管94とは密封状態で接続される。この状態で配管内の圧力が高圧に上昇しても接続部分からの冷媒のリークを極力避ける、若しくは解消することができるようになると共に螺合を解除することで取り外しも容易に行えるようになる。
【0022】
一方、前記ストレーナ56の他端に接続された冷媒配管28は、前記内部熱交換器50を経て弁装置66(低圧側の弁装置)の出口に接続されている。また、冷蔵機器本体105の冷媒配管94の他端は弁装置66の入口に接続されている冷媒配管28と溶接することにより接続される。
【0023】
このように、高圧側となる冷媒配管24に取り付けられた弁装置60と冷媒配管94とをスエッジロック継ぎ手55にて接続することで、従来のような溶接による配管の強度低下を防ぐことができるようになる。更に、高圧側の冷媒配管24及び蒸発器92の入口側の冷媒配管94のような耐圧性を必要としない低圧側の冷媒配管28と冷媒配管94とを溶接にて接続することで生産コストの増大を極力抑えることができるようになる。また、溶接にて接続することで、冷媒配管28と冷媒配管94との接続箇所からの冷媒ガスのリークは生じない。
【0024】
前記冷媒吐出管24にはコンプレッサ10から吐出される冷媒ガスの温度を検出するためのディスチャージセンサ70及び冷媒ガスの圧力を検出するための高圧スイッチ72が設けられており、これらはマイクロコンピュータ80に接続されている。また、マイクロコンピュータ80には後述するポンプダウン運転を指示するためのポンプダウンスイッチ81が接続されている。
【0025】
また、キャピラリチューブ58と弁装置60との間の冷媒配管26には、キャピラリチューブ58から出た冷媒の温度を検出するための冷媒温度センサ76が設けられており、これも前記マイクロコンピュータ80に接続されている。
【0026】
尚、40Fはガスクーラ40に通風して空冷するためのファンであり、92Fは冷蔵機器本体105の図示しないダクト内に設けられた蒸発器92と熱交換した冷気を、冷蔵機器本体105の庫内に循環するためのファンである。また、65はコンプレッサ10の前述した電動要素の通電電流を検出し、運転を制御するための電流センサである。ファン40Fと電流センサ65はコンデンシングユニット100のマイクロコンピュータ80に接続され、ファン92Fは冷蔵機器本体105の後述する制御装置90に接続される。
【0027】
ここで、マイクロコンピュータ80はコンデンシングユニット100の制御を司る制御装置であり、マイクロコンピュータ80の入力には前記ディスチャージセンサ70、高圧スイッチ72、外気温度センサ74、冷媒温度センサ76、電流センサ65及び冷蔵機器本体105の制御手段としての制御装置90からの信号が接続されている。そして、これらの出力に基づいて、出力に接続されたコンプレッサ10や電磁弁45、ファン40Fが制御される。
【0028】
冷蔵機器本体105の前記制御装置90には、庫内温度を検出するための図示しない庫内温度センサ、庫内温度を調節するための温度調節ダイヤルや、その他コンプレッサ10を停止するための機能が設けられている。そして、制御装置90はこれらの出力に基づき、ファン92Fを制御すると共に、コンデンシングユニット100のマイクロコンピュータ80に信号を送出する。
【0029】
係る冷却装置110の冷媒としては地球環境にやさしく、可燃性及び毒性等を考慮して自然冷媒である前述した二酸化炭素(CO2)が使用され、潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油、PAG(ポリアルキレングリコール)など既存のオイルが使用される。
【0030】
また、前記冷蔵機器本体105は蒸発器92と当該蒸発器92内を通過する前記冷媒配管94にて構成されている。冷媒配管94は蒸発器92内を蛇行状に通過しており、この蛇行状の部分には熱交換用のフィンが取り付けられて蒸発器92が構成されている。冷媒配管94の一端は前述した接続方法により、前記コンデンシングユニット100の弁装置60とスエッジロック継ぎ手55により着脱可能に接続される。また、冷媒配管94の他端は溶接によりコンデンシングユニット100の冷媒配管28と接続される。
【0031】
(1)コンデンシングユニットと冷蔵機器本体との接続
次に、コンデンシングユニット100と冷蔵機器本体105の接続方法について説明する。弁装置60及び66が閉じられた状態で、図示しないサービスバルブなどからコンデンシングユニット100のコンプレッサ10内に、各冷媒配管の内径、使用冷媒の圧力、使用冷媒の温度、冷媒密度及び冷媒体積などに基づき、所定量の冷媒を封入する。この状態で、コンデンシングユニット100を前記冷蔵機器本体105の機械室内にセットする。このとき、弁装置60、66が全閉とされているため、コンデンシングユニット100内に封入された冷媒が漏れ出ることなく搬送することができる。
【0032】
そして、冷蔵機器本体105の冷媒配管94の他端とコンデンシングユニット100の冷媒配管28の端部とを溶接して、コンデンシングユニット100の弁装置60の出口に、冷蔵機器本体105の前記冷媒配管94の一端をスエッジロック継ぎ手55により前述の如く接続する。
【0033】
これにより、コンデンシングユニット100のコンプレッサ10、ガスクーラ40、キャピラリチューブ58と、冷蔵機器本体105の蒸発器92は環状の冷媒回路を構成する。この状態で作業者は弁装置60、66を閉じ、弁装置66に図示しない真空引き用のバルブを設けておいて、そこから冷媒配管94内の空気を真空引きする。
【0034】
そして、作業者が弁装置60、66を全開にすることにより、コンデンシングユニット100側の回路と冷蔵機器本体105側の回路とが連通され、冷却装置110が構成される。このようにして、コンデンシングユニット100の弁装置60を冷蔵機器本体105の冷媒配管94とスエッジロック継ぎ手55にて接続することで、冷媒のリークを最小限に抑えながら、冷媒配管94内の空気を排出してコンデンシングユニット100との接続が容易に行えるようになる。
【0035】
(2)通常運転
次に、上記方法で構成された冷却装置110の動作を説明する。尚、弁装置60、66は全開した状態である。冷蔵機器本体105に設けられた図示しない始動スイッチを入れるか、或いは、冷蔵機器本体105の電源ソケットがコンセントに接続されると、制御装置90からマイクロコンピュータ80に通信信号が送られて、当該出力により、マイクロコンピュータ80は電磁弁45を開放して、コンプレッサ10の図示しない電動要素を起動する。これにより、コンプレッサ10の第1回転圧縮要素に冷媒が吸い込まれて圧縮され、密閉容器内に吐出された冷媒ガスは冷媒導入管20に入り、コンプレッサ10から出て中間冷却回路35に流入する。そして、この中間冷却回路35がガスクーラ40を通過する過程で空冷方式により放熱する。
【0036】
これにより、第2の回転圧縮要素に吸い込まれる冷媒を冷却することができるので、密閉容器内の温度上昇を抑え、第2の回転圧縮要素における圧縮効率も向上させることができるようになる。また、第2の回転圧縮要素で圧縮され、吐出される冷媒の温度上昇も抑えることができるようになる。
【0037】
そして、冷却された中間圧の冷媒ガスはコンプレッサ10の第2の回転圧縮要素に吸入され、2段目の圧縮が行われて高圧高温の冷媒ガスとなり、冷媒吐出管24より外部に吐出される。冷媒吐出管24から吐出された冷媒ガスはガスクーラ40に流入し、そこで空冷方式により放熱した後、ストレーナ54、電磁弁45を経て内部熱交換器50を通過する。冷媒はそこで低圧側の冷媒に熱を奪われて更に冷却される。
【0038】
この内部熱交換器50の存在により、ガスクーラ40を出て、内部熱交換器50を通過する冷媒は、低圧側の冷媒に熱を奪われるので、この分、当該冷媒の過冷却度が大きくなる。そのため、蒸発器92における冷却能力が向上する。
【0039】
係る内部熱交換器50で冷却された高圧側の冷媒ガスはキャピラリチューブ58に至る。冷媒はキャピラリチューブ58において圧力が低下して、その後、弁装置60、スエッジロック継ぎ手55を経て冷蔵機器本体105の冷媒配管94から蒸発器92内に流入する。そこで冷媒は蒸発し、周囲の空気から吸熱することにより冷却作用を発揮して冷蔵機器本体105(ショーケース)の庫内を冷却する。
【0040】
その後、冷媒は蒸発器92から流出して、冷媒配管94から当該冷媒配管94と溶接接続された冷媒配管28に入り、弁装置66を経て内部熱交換器50に至る。そこで前述の高圧側の冷媒から熱を奪い、加熱作用を受ける。ここで、蒸発器92で蒸発して低温となり、蒸発器92を出た冷媒は、完全に気体の状態ではなく液体が混在した状態となる場合もあるが、内部熱交換器50を通過させて高圧側の冷媒と熱交換させることで、冷媒が加熱される。この時点で、冷媒の過熱度が確保され、完全に気体となる。
【0041】
これにより、蒸発器92から出た冷媒を確実にガス化させることができるようになるので、低圧側にアキュムレータなどを設けること無く、コンプレッサ10に液冷媒が吸い込まれる液バックを確実に防止し、コンプレッサ10が液圧縮にて損傷を受ける不都合を回避することができるようになる。従って、冷却装置110の信頼性の向上を図ることができるようになる。
【0042】
尚、内部熱交換器50で加熱された冷媒は、ストレーナ56を経て冷媒導入管22からコンプレッサ10の第1の回転圧縮要素内に吸い込まれるサイクルを繰り返す。
【0043】
(3)ポンプダウン運転及びコンデンシングユニットと冷蔵機器本体との分離
次に、コンデンシングユニット100に故障等が生じて、コンデンシングユニット100を取り外す際の取り外し方法を説明する。先ず、作業者により冷蔵機器本体105に設けられた図示しない停止スイッチが押され、或いは、電源ソケットがコンセントから抜かれると、制御装置90からマイクロコンピュータ80に通信信号が送られて、マイクロコンピュータ80はコンプレッサ10の運転を停止し、電磁弁45が全閉される。
【0044】
次に、作業者は弁装置60を閉じ(弁装置66は開いたまま)、マイクロコンピュータ80に取り付けられたポンプダウンスイッチ81を操作する。するとマイクロコンピュータ80はコンプレッサ10を起動し、比較的高い回転数で運転を開始する。尚、このポンプダウン運転時、電磁弁45は閉じられる。
【0045】
コンプレッサ10が運転されることで、弁装置60より下流側の冷蔵機器本体105内の蒸発器92及び冷媒配管94内の冷媒はコンプレッサ10に吸引されていく。このコンプレッサ10から吐出された冷媒は電磁弁45にて閉塞された冷媒配管26の電磁弁45までの間に溜まっていく。そして、コンプレッサ10の吐出側の冷媒吐出管24内の圧力が上昇し、高圧スイッチ72が検出する圧力が冷媒吐出管24の設計圧力より低い所定の圧力、例えば15MPa(通常運転中に高圧スイッチ72によりコンプレッサ10の高圧停止が行われる圧力)に達するとマイクロコンピュータ10はコンプレッサ10を停止し、ポンプダウン運転を終了する。
【0046】
この時点で弁装置60から下流側の冷蔵機器本体105側の冷媒はコンデンシングユニット100側に回収されるので弁装置66を閉じる。その後、弁装置60、66を閉じた状態で、冷媒配管28若しくは蒸発器92の出口側の冷媒配管94を切断して、冷媒配管94の一端に設けられたスエッジロック継ぎ手55を緩めて取り外し、弁装置60を冷媒配管94から外してコンデンシングユニット100と冷蔵機器本体105とを分離する。
【0047】
このようにしてコンデンシングユニット100と冷蔵機器本体105を容易に分離することができる。これにより、コンデンシングユニット100と冷蔵機器本体105とを分離する作業が容易となり、メンテナンス作業性の向上を図ることができるようになる。また、コンデンシングユニット100と分離された冷蔵機器本体105の冷媒配管94には冷媒が残存していないので、分離後に、冷蔵機器本体105の冷媒配管94から冷媒が漏れるといった恐れもない。
【0048】
また、コンデンシングユニット100の配管は冷媒が漏れないように冷媒配管26に設けられた弁装置60及び冷媒配管28に設けられた弁装置66にて密閉されているので、配管から冷媒が漏れ出す恐れもない。これにより、冷媒(二酸化炭素)漏れを殆ど生じること無くコンデンシングユニット100を冷却機器本体105から容易に分離することができるようになり、当該コンデンシシングユニット100の安全性を確保することができるようになる。
【0049】
また、高耐圧性が求められる高圧側の配管のみをスエッジロック継ぎ手55にて着脱可能に接続することで、生産コストの増大を極力抑えることができるようになる。
【0050】
更に、高圧スイッチ72にて、冷媒吐出管24内の圧力が15MPaGに達するとマイクロコンピュータ10によりコンプレッサ10が停止されるので、冷媒吐出管24の設計圧力を越えて圧力が上昇して、冷媒吐出管24を劣化させるといった不都合も未然に回避することができるようになる。
【0051】
更にまた、このようなコンデンシングユニット100を備えることで、冷却装置110の信頼性の向上を図ることができるようになる。尚、コンデンシングユニット100はその後サービス工場などで修理を行う。その間は別途コンデンシングユニット100を準備しておいて冷蔵機器本体105に前述した如く接続し、運転を継続する。
【0052】
新たな或いは修理後のコンデンシングユニット100と冷蔵機器本体105とを再度接続する際には、冷媒配管28と冷媒配管94の他端とを溶接にて接続し、冷媒配管94の一端に取り付けられたスエッジロック継ぎ手55にて前述した手順で弁装置60に接続することができるので、接続作業も容易に行うことができる。
【0053】
これにより、総じて、コンデンシングユニット100を冷却機器本体105と容易且つ、安全に分離・接続することができるようになり、このようなコンデンシングユニット100にて構成される冷却装置110の信頼性及び性能の向上を図ることができるようになる。
【0054】
尚、本実施例ではコンデンシングユニット100と冷蔵機器本体105とを接続する接続手段として、スエッジロック継ぎ手55を用いたが、これに限らず、着脱可能に接続できるもの、例えばラチェット継ぎ手にて接続するものであっても構わない。これによれば、取り外した際には同時に封止されるので、冷媒漏れを一層防止若しくは低減できる。
【0055】
また、実施例ではコンデンシングユニット100の高圧側の冷媒配管24と低圧側の冷媒配管28に弁装置60、66を設けるものとしたが、弁装置60を廃止して、電磁弁45にて前述した弁装置60の役割を担わせても構わない。この場合には部品点数の削減を図ることができるようになるので、コンデンシングユニット100の生産コストの削減をより一層図ることができるようになる。
【0056】
更に、弁装置を冷蔵機器本体105側の冷媒配管94の両端にも設けてもよい。更にまた、本実施例においては冷媒として二酸化炭素を用いたが、これに限らず、炭化水素(HC)や亜酸化窒素(N2O)などの冷媒を用いた場合においても本発明は有効であり、環境問題にも寄与することができる。
【0057】
ここで、炭化水素は可燃性冷媒であるため、冷媒として使用した場合には、従来のようにコンデンシングユニット100と冷蔵機器本体105とを溶接にて接続することで、溶接時の火花等が冷媒に引火する恐れがあり、接続作業は非常に危険なものとなっていた。
【0058】
他方、亜酸化窒素は麻酔作用を有するガスであるため、多量に吸込むと意識障害を起こす恐れがある。従来のような切断・接続方法では、有害ガスが配管から漏れ出る恐れがあった。
【0059】
しかしながら、コンデンシングユニット100側に全て冷媒を収納して、弁装置60、66にて漏れ出ないように密栓した後に、低圧側となるコンデンシングユニット100の冷媒配管28と冷蔵機器本体105の冷媒配管94の他端とを溶接し、高圧側となるコンデンシングユニット100の冷媒配管24と冷蔵機器本体105の冷媒配管94の一端とをスエッジロック継ぎ手により着脱することで、上記のような危険性を解消することができるようになり、作業性の向上を図ることができるようになる。
【0060】
【発明の効果】
以上詳述した如く本発明によれば、コンプレッサ及び凝縮器などを備え、冷媒として二酸化炭素、又は、炭化水素、又は、亜酸化窒素が所定量封入されたコンデンシングユニットを、蒸発器を備えた冷却器本体に接続する方法であって、冷却器本体の蒸発器の入口側及び出口側の冷媒配管とそれぞれ接続されるコンデンシングユニットの各冷媒配管にそれぞれ設けられた弁装置を閉じた状態で、冷却器本体の蒸発器の出口側の冷媒配管とコンデンシングユニットの冷媒配管の端部とを溶接すると共に、冷却器本体の蒸発器の入口側の冷媒配管とコンデンシングユニットの冷媒配管とを着脱可能な接続手段にて接続し、蒸発器の出口側の冷媒配管と接続されたコンデンシングユニットの冷媒配管に設けられた弁装置から冷却器本体内の空気を真空引きした後、両弁装置を開くことで、コンデンシングユニットを冷却器本体に容易に且つ安全に接続することができるようになる。
【0061】
特に、冷却器本体の蒸発器の入口側の冷媒配管とコンデンシングユニットの冷媒配管との接続のみを着脱可能な接続手段にて接続することで、生産コストの増大を極力抑えて、コンデンシングユニットと冷却機器本体との接続を容易、且つ安全に行うことができるようになる。
【図面の簡単な説明】
【図1】 本発明のコンデンシングユニットを備えた冷却装置の冷媒回路図である。
【符号の説明】
10 コンプレッサ
20、22 冷媒導入管
24 冷媒吐出管
26、28 冷媒配管
35 中間冷却回路
40 ガスクーラ
45 電磁弁
50 内部熱交換器
54、56 ストレーナ
55 スエッジロック継ぎ手
58 キャピラリチューブ
60、66 弁装置
70 ディスチャージセンサ
72 高圧スイッチ
74 外気温度センサ
76 冷媒温度センサ
80 マイクロコンピュータ
90 制御装置
92 蒸発器
94 冷媒配管
100 コンデンシングユニット
105 冷蔵機器本体
110 冷却装置

Claims (1)

  1. コンプレッサ及び凝縮器などを備え、冷媒として二酸化炭素、又は、炭化水素、又は、亜酸化窒素が所定量封入されたコンデンシングユニットを、蒸発器を備えた冷却器本体に接続する方法であって、
    前記冷却器本体の前記蒸発器の入口側及び出口側の冷媒配管とそれぞれ接続される前記コンデンシングユニットの各冷媒配管にそれぞれ設けられた弁装置を閉じた状態で、前記冷却器本体の前記蒸発器の出口側の前記冷媒配管と前記コンデンシングユニットの前記冷媒配管の端部とを溶接すると共に、
    前記冷却器本体の前記蒸発器の入口側の前記冷媒配管と前記コンデンシングユニットの前記冷媒配管とを着脱可能な接続手段にて接続し、
    前記蒸発器の出口側の前記冷媒配管と接続された前記コンデンシングユニットの前記冷媒配管に設けられた前記弁装置から前記冷却器本体内の空気を真空引きした後、前記両弁装置を開くことを特徴とするコンデンシングユニットの接続方法。
JP2003057381A 2003-03-04 2003-03-04 コンデンシングユニットの接続方法 Expired - Fee Related JP4342194B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003057381A JP4342194B2 (ja) 2003-03-04 2003-03-04 コンデンシングユニットの接続方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003057381A JP4342194B2 (ja) 2003-03-04 2003-03-04 コンデンシングユニットの接続方法

Publications (2)

Publication Number Publication Date
JP2004263999A JP2004263999A (ja) 2004-09-24
JP4342194B2 true JP4342194B2 (ja) 2009-10-14

Family

ID=33120826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003057381A Expired - Fee Related JP4342194B2 (ja) 2003-03-04 2003-03-04 コンデンシングユニットの接続方法

Country Status (1)

Country Link
JP (1) JP4342194B2 (ja)

Also Published As

Publication number Publication date
JP2004263999A (ja) 2004-09-24

Similar Documents

Publication Publication Date Title
JP6935720B2 (ja) 冷凍装置
JP3109500B2 (ja) 冷凍装置
KR20040086562A (ko) 냉매 사이클 장치
CN101910758B (zh) 压力释放装置在高压致冷系统中的固定
JPWO2017191814A1 (ja) 冷凍サイクル装置
CN110869683B (zh) 制冷剂回收装置
JP4906792B2 (ja) 蒸気圧縮式ヒートポンプ装置
JP2005214575A (ja) 冷凍装置
WO2002046664A1 (fr) Refrigerateur
JP4342194B2 (ja) コンデンシングユニットの接続方法
JP4963971B2 (ja) ヒートポンプ式設備機器
JP4183517B2 (ja) 冷却装置
JP4307878B2 (ja) 冷媒サイクル装置
JP2004286322A (ja) 冷媒サイクル装置
JP4245363B2 (ja) 冷却装置
KR100792458B1 (ko) 압축기의 오일분리장치
JP2004257665A (ja) コンデンシングユニット及び冷却装置
JP2004263998A (ja) コンデンシングユニット及び冷却装置
JP4661561B2 (ja) 冷凍装置
WO2015104822A1 (ja) 冷凍サイクル装置
JP2009162423A (ja) 冷凍装置
JP2010025418A (ja) 冷凍装置
JP3959409B2 (ja) 冷媒回収装置
JP2007139346A (ja) 冷凍装置及び冷凍装置の施工方法
JP6150907B2 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090707

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees