WO2019196431A1 - 波长转换装置 - Google Patents

波长转换装置 Download PDF

Info

Publication number
WO2019196431A1
WO2019196431A1 PCT/CN2018/118824 CN2018118824W WO2019196431A1 WO 2019196431 A1 WO2019196431 A1 WO 2019196431A1 CN 2018118824 W CN2018118824 W CN 2018118824W WO 2019196431 A1 WO2019196431 A1 WO 2019196431A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
phosphor
emitting layer
wavelength conversion
layer
Prior art date
Application number
PCT/CN2018/118824
Other languages
English (en)
French (fr)
Inventor
周萌
段银祥
田梓峰
许颜正
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2019196431A1 publication Critical patent/WO2019196431A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence

Definitions

  • the present invention relates to the field of projection display, and in particular to a wavelength conversion device.
  • excitation light having a first wavelength such as a laser diode (LD) or a light emitting diode (LED)
  • LD laser diode
  • LED light emitting diode
  • the fluorescence is excited.
  • the luminescent center ie, the phosphor particles
  • Fluorescent materials are required to have high light extraction efficiency.
  • quantum efficiencies of commercial phosphors such as YAG:Ce, LuAG:Ce have reached more than 80%. Therefore, how to optimize the packaging scheme of phosphors, improve the light extraction efficiency of the device and reduce the occurrence of phosphor quenching phenomenon has become a hot topic in current research.
  • silica gel or glass is usually used to encapsulate the phosphor particles.
  • a silicone package although a better distribution of the center of the luminescence can be provided, the heat dissipation of the silica gel material is poor, resulting in poor thermal stability of the device.
  • glass encapsulation the ratio of phosphor to glass powder directly affects the light conversion efficiency of the device. When the ratio of phosphor:glass powder is small, the light conversion efficiency of the wavelength conversion device is low; when the phosphor: glass powder When the proportion is large, the light conversion efficiency of the wavelength conversion device is high, but as the laser light power increases, the thermal saturation phenomenon becomes more serious.
  • the present invention is intended to provide a wavelength conversion device capable of reducing the occurrence of thermal quenching in a light-emitting center and improving light-emitting efficiency.
  • a wavelength conversion device including a first light emitting layer and a second light emitting layer which are disposed in a stacked manner, the first light emitting layer being located on a light incident side and having a light incident surface, The second luminescent layer is located on the light exit side and has a light exiting surface.
  • the first luminescent layer is formed of at least a first phosphor and a glass frit
  • the second luminescent layer is formed of at least a second phosphor and a glass frit
  • the first phosphor has a larger particle diameter than the second phosphor Particle size
  • a volume ratio of the first phosphor to the glass frit in the first luminescent layer is smaller than a volume ratio of the second phosphor to the glass frit in the second luminescent layer .
  • the light exiting surface has a roughness of 1 to 10 microns.
  • fluorescent particles of the second phosphor protrude from the light-emitting surface.
  • a portion of the fluorescent particles of the second phosphor protruding from the light-emitting surface is not less than 1/3 of a particle diameter of the fluorescent particles.
  • the first phosphor in the first luminescent layer, may have a particle size of 10 to 50 micrometers, and the volume ratio of the first phosphor to the glass powder may be 0.5 ⁇ . 1.0, and the thickness of the first luminescent layer may be 50 to 100 ⁇ m.
  • the second phosphor in the second luminescent layer, may have a particle size of 1 to 10 micrometers, and a volume ratio of the second phosphor to the glass powder may be 1.0 to 2.0. And the thickness of the second luminescent layer may be 50 to 100 microns.
  • the refractive index of the glass frit is in the range of 1.55 to 1.70.
  • At least one intermediate light-emitting layer may be disposed between the first light-emitting layer and the second light-emitting layer.
  • a volume ratio of the phosphor to the glass frit in each of the light-emitting layers and a particle diameter of the phosphor particles are gradually changed in a stacking order so that the closer to the light The smaller the volume ratio of the phosphor to the glass frit in the light-emitting layer on the incident side and the larger the particle diameter of the phosphor particles.
  • a third luminescent layer may be disposed between the first luminescent layer and the second luminescent layer, and the third luminescent layer is formed of at least a third phosphor and a glass frit.
  • the first phosphor may have a particle size of 30 to 50 ⁇ m, and the volume ratio of the first phosphor to the glass frit may be 0.5 to 1.0, and the first illuminating
  • the thickness of the layer may be 50 to 100 ⁇ m; in the second luminescent layer, the particle size of the second phosphor may be 1 to 10 ⁇ m, and the volume ratio of the second phosphor to the glass powder
  • the thickness of the second luminescent layer may be from 50 to 100 ⁇ m, and the third phosphor may have a particle size of 10 to 30 ⁇ m.
  • the volume ratio of the third phosphor to the glass frit may be 1.0 to 1.5, and the thickness of the third luminescent layer may be 50 to 100 ⁇ m.
  • the interface between the first luminescent layer and the second luminescent layer does not have a distinct interface.
  • the wavelength conversion device has at least the following advantages:
  • the wavelength conversion device comprises at least two light-emitting layers, wherein the phosphor powder and the glass powder in the light-emitting layer on the light incident side are relatively small in volume, and the phosphor particles have a large particle diameter, thereby enabling It reduces the occurrence of thermal quenching and has better thermal stability.
  • the volume of phosphor and glass powder in the luminescent layer on the light exit side is relatively large, and the particle size of the phosphor particles is small, which can enhance the wavelength-converted light. Effective and able to improve light extraction efficiency;
  • the refractive index of the glass powder in the light-emitting layer is between 1.55 and 1.70, which can be suitable for a high-power laser light source, which can ensure high light conversion efficiency and can improve light-emitting efficiency;
  • the phosphor particles protrude from the light-emitting surface and the proportion of the protruding portion is preferably not less than 1/3 of the particle diameter of the phosphor particles, which can further enhance the light-emitting efficiency.
  • 1 is a block diagram showing the structure of a wavelength conversion device according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view showing a wavelength conversion device according to another embodiment of the present invention.
  • FIG. 3 is a scanning electron micrograph showing a rough state of a light-emitting surface of a second light-emitting layer of a wavelength conversion device according to an embodiment of the present invention
  • FIG. 4 is a scanning electron micrograph showing an interface structure of a first light emitting layer and a second light emitting layer of a wavelength conversion device according to an embodiment of the present invention
  • FIG. 5 is a schematic view showing a state in which phosphor particles protrude from a light-emitting surface in a second light-emitting layer of a wavelength conversion device according to an embodiment of the present invention
  • FIG. 6 is a scanning electron micrograph showing a state for verifying that a phosphor particle protrudes from a light-emitting surface in a second light-emitting layer
  • Fig. 7 is a scanning electron micrograph showing a state of a comparative sample of a prior art wavelength conversion device under high power laser irradiation.
  • the light-emitting layer of the wavelength conversion device according to the present invention employs a glass-encapsulated phosphor and has a laminated structure of a plurality of light-emitting layers.
  • the particle diameter of the phosphor is different, and the volume ratio of the phosphor to the glass frit is also different.
  • FIG. 1 shows a schematic structural view of a wavelength conversion device 100 according to an embodiment of the present invention.
  • a wavelength conversion device 100 according to an embodiment of the present invention has a light incident surface 101 and a light exit surface 102.
  • the excitation light L1 having the first wavelength range is incident on the light-input surface 101 to the wavelength conversion device 100, undergoes wavelength conversion during the traveling of the wavelength-exchange device 100, and emits light having a second wavelength range at the light-emitting surface 102.
  • L2 The wavelength conversion device 100 according to an embodiment of the present invention has a two-layer structure in the optical path direction. Specifically, along the optical path direction, the wavelength conversion device 100 has a first light emitting layer 110 and a second light emitting layer 120 which are stacked.
  • the first light emitting layer 110 is disposed on the light incident side of the wavelength conversion device 100 and has the light incident surface 101
  • the second light emitting layer 120 is disposed on the light exit side of the wavelength conversion device 100 and has the light emitting surface 102 .
  • the first light emitting layer 110 is mainly formed of a phosphor 111 (also referred to as a first phosphor) and a glass frit.
  • the phosphor 111 has a particle size of 10 to 50 ⁇ m, and the volume ratio of the phosphor 111 to the glass frit is 0.5 to 1.0.
  • the first light emitting layer 110 has a thickness of 50 to 100 ⁇ m.
  • the second light emitting layer 120 is mainly formed of a phosphor 121 (also referred to as a second phosphor) and a glass frit.
  • the phosphor 121 has a particle size of 1 to 10 ⁇ m.
  • the volume ratio of the phosphor 121 to the glass frit is from 1.0 to 2.0.
  • the second light emitting layer 120 has a thickness of 50 to 100 ⁇ m.
  • the occurrence of the extinction phenomenon improves the thermal stability; and on the light exit side which has a large influence on the light extraction efficiency, since the second luminescent layer 120 has a larger volume ratio of the phosphor/glass powder and the particle size of the phosphor particles is larger It is small, so that the luminous efficiency of the wavelength conversion can be improved, and the surface roughness of the light-emitting surface can be increased, thereby improving the light-emitting efficiency.
  • the phosphor 111 and the phosphor 121 may be any suitable phosphor known in the art.
  • the glass powder can be any known glass frit used.
  • the refractive index of the glass in the luminescent layer should be within a suitable range.
  • the refractive index of the encapsulating glass is lower than 1.55, the backscattering of the luminescent layer is large, which is disadvantageous for improving the forward light-emitting efficiency of the luminescent layer; and when the refractive index of the encapsulating glass is greater than 1.70, the transparency of the luminescent layer is too high, incident.
  • the excitation light (for example, the blue laser light) is weakly scattered and easily transmitted, resulting in a shorter optical path length of the excitation light and thus lowering the light conversion absorption efficiency of the excitation light. Therefore, in the wavelength conversion device according to the present invention, the refractive index of the luminescent glass made of the glass frit is preferably in the range of 1.55 to 1.70, and such a glass frit is suitable for a high-power laser light source, which can ensure a higher The light conversion efficiency can also help to improve the light extraction efficiency. Further, the sintering temperature of the high refractive index glass as described above should be greater than the Tf temperature (softening temperature) of the material to ensure sufficient sintering fluidity during the manufacturing process.
  • the second light-emitting layer 120 has a larger volume ratio of the phosphor/glass powder and the particle diameter of the phosphor particles is smaller, the light-emitting surface 102 of the second light-emitting layer 10 has a larger roughness.
  • a scanning electron micrograph of the light-emitting surface 102 of the second light-emitting layer 120 of the sample of the wavelength conversion device 100 according to the present embodiment is shown in FIG. It is shown by the scanning electron micrograph that the light-emitting surface 102 has a large roughness.
  • the roughness of the light-emitting surface 102 is in the range of 1 to 10 microns. Additionally, preferably, as shown in the schematic view of FIG.
  • FIG. 6 is a scanning electron micrograph of a cross section of the second light emitting layer 120 of the sample of the wavelength conversion device 100 according to the present embodiment. In the figure, it is clearly seen that part of the phosphor particles protrude from the light-emitting surface 102. More preferably, the protruding portion of the phosphor particles has a size not less than 1/3 of the particle diameter of the phosphor particles.
  • FIG. 2 A schematic diagram of a structure of a wavelength conversion device 200 according to another embodiment of the present invention is illustrated in FIG.
  • the wavelength conversion device 200 of the present embodiment is different from the wavelength conversion device 100 of FIG. 1 in that a first light-emitting layer 210, a third light-emitting layer 230, and a second light-emitting layer 220 are sequentially laminated in the optical path direction.
  • the first luminescent layer 210 on the light incident side has a light incident surface 201
  • the second luminescent layer 220 on the light exit side has a light exiting surface 202.
  • the wavelength conversion device 200 of the present embodiment adds an intermediate light-emitting layer, the third light-emitting layer 230, to the wavelength conversion device 100 of FIG.
  • the wavelength conversion device 200 according to another embodiment of the present invention has the same or similar features and functions as the embodiment shown in FIG.
  • the first light-emitting layer 210 is mainly composed of a phosphor 211 and a glass frit.
  • the phosphor 211 has a particle size of 30 to 50 ⁇ m, and the volume ratio of the phosphor 211 to the glass frit is 0.5 to 1.0.
  • the first light-emitting layer 210 has a thickness of 50 to 100 ⁇ m.
  • the third light emitting layer 230 is mainly composed of a phosphor 231 and a glass frit.
  • the phosphor 231 has a particle size of 10 to 30 ⁇ m.
  • the volume ratio of the phosphor 231 to the glass frit is from 1.0 to 1.5.
  • the third light emitting layer 230 has a thickness of 50 to 100 ⁇ m.
  • the second light-emitting layer 220 is mainly composed of a phosphor 221 and a glass frit.
  • the phosphor 221 has a particle size of 1 to 10 ⁇ m.
  • the volume ratio of the phosphor 221 to the glass frit is from 1.5 to 2.0.
  • the second light emitting layer 220 has a thickness of 50 to 100 ⁇ m.
  • other features and functions possessed by the above-described wavelength conversion device 100 are equally applicable to the wavelength conversion device 200 of the present embodiment.
  • the wavelength conversion device 200 can obtain a specific wavelength conversion device because it has three light-emitting layers and the volume ratio of the phosphor to the glass frit in each of the light-emitting layers and the particle diameter of the phosphor particles are gradually changed in the stacking order. 100 is more effective in reducing the occurrence of heat quenching and improving the efficiency of light extraction.
  • the number of stacked layers of the light-emitting layer in the wavelength conversion device according to the present invention is not limited thereto, and a suitable n-layer laminated structure may be employed according to design requirements and process levels, and it is only necessary to ensure phosphors in the respective light-emitting layers.
  • the volume ratio of the glass frit and the particle diameter of the phosphor particles may be changed in a gradient in the order of lamination. That is, the smaller the volume ratio of the phosphor to the glass powder in the light-emitting layer closer to the light incident side and the larger the particle diameter of the phosphor particles, the closer to the volume ratio of the phosphor to the glass powder in the light-emitting layer on the light-emitting side. The larger and the smaller the particle size of the phosphor particles.
  • YAG:Ce phosphor was used as the luminescent center material, and YAG:Ce phosphor powder was encapsulated using glass.
  • the specific preparation process is as follows:
  • Step S1 Two different luminescent layer pastes are separately prepared.
  • the slurry 1 is composed of a large particle size phosphor, a glass powder and an organic carrier, wherein the particle size of the phosphor particles is 10 to 50 ⁇ m, and the volume ratio of the phosphor to the glass powder is 0.5 to 1.0;
  • 2 is composed of a small particle size phosphor, a glass powder and an organic carrier, wherein the phosphor particles have a particle size of 1 to 10 microns, and the volume ratio of the phosphor to the glass powder is 1.0 to 2.0.
  • the glass frit used for the two slurries is the same glass frit, and the sintered glass has a refractive index in the range of 1.55 to 1.70, and the sintering temperature of the glass is greater than the Tf temperature;
  • Step S2 Brushing the slurry 1 on the substrate to prepare a first light-emitting layer 110 having a thickness of 50 to 100 ⁇ m, and drying it at 80 to 150 ° C; and then brushing the slurry 2 to prepare a second light-emitting layer 210 , having a thickness of 50 to 100 ⁇ m, and being dried at 80 to 150 ° C;
  • Step S3 The dried device is placed in a box furnace for sintering, the sintering temperature is 800 to 900 ° C, and the sintering time is 10 to 60 minutes.
  • Step S4 The sintered laminated light-emitting layer on the substrate is subjected to overall mold release treatment to obtain a wavelength conversion device 100.
  • the above phosphor is not limited to the YAG:Ce phosphor, but any suitable phosphor material known in the art may be employed.
  • any suitable phosphor material known in the art may be employed.
  • the thermal conductivity (about 1 W/(m ⁇ K)) of the glass as the encapsulating material in the present invention is higher than that of the silica gel.
  • each of the light-emitting layers is pre-baked in the formation process, and then sintered together, since the sintering temperature of the high refractive index glass is larger than that of the material The Tf temperature, so the interface between the respective light-emitting layers during the sintering process is sufficiently melted to make the interface contact denser, so that the bonding at the interface between the respective light-emitting layers is better.
  • 4 shows a scanning electron micrograph of an interface structure between the first light emitting layer 110 and the second light emitting layer 120 of the wavelength conversion device 100 according to an embodiment of the present invention. As can be seen from FIG.
  • the inventors made a comparison sample of the sample of the wavelength conversion device 100 according to the embodiment of the present invention and the prior art wavelength conversion device.
  • the samples were excited with excitation light of different powers (indicated by the magnitude of the current of the source of the excitation light in the table), and then the luminance and chromaticity of the emitted light were measured separately.
  • Sample 1# is a sample of the wavelength conversion device 100 according to an embodiment of the present invention.
  • the volume ratio of the phosphor to the glass frit in the first luminescent layer 110 is 0.5, and the particle size of the phosphor is larger, about 10 to 50 ⁇ m, and the thickness of the first luminescent layer 110 is about 100 ⁇ m;
  • the volume ratio of the phosphor to the glass frit in the light-emitting layer 120 is 2.0, and the particle diameter of the phosphor is small, about 1 to 10 ⁇ m, and the thickness of the second light-emitting layer 120 is about 100 ⁇ m.
  • Sample 2# is a comparative sample of a commercially available double-layer wavelength conversion device for a silica gel encapsulated phosphor.
  • the volume ratio of the phosphor to the silica gel in the first luminescent layer is 0.5, and the particle size of the phosphor is larger, about 10 to 50 microns, and the thickness of the first luminescent layer is about 100 microns; in the second luminescent layer
  • the volume ratio of the phosphor to the silica gel is 2.0, and the particle size of the phosphor is small, about 1 to 10 ⁇ m, and the thickness of the second luminescent layer is about 100 ⁇ m.
  • the comparative sample can only withstand a low-power excitation light generated by a current of 0.6 A, and when the power of the excitation light increases again, the luminescent layer fails.
  • 7 is a graph showing test results of a 2# comparative sample in the case of high-power excitation light generated by a current greater than 0.6 A. As can be seen from Fig. 7, the luminescent center (i.e., the black spot at the center of Fig.
  • the luminescent layer i.e., the luminescent layer encapsulated by the silica gel. It can therefore be confirmed that the power of the excitation light that the comparative sample can withstand is much lower than that of the sample according to the embodiment of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Luminescent Compositions (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明涉及一种波长转换装置,所述波长转换装置包括层叠设置的第一发光层和第二发光层,所述第一发光层位于光入射侧并具有入光表面,所述第二发光层位于光出射侧并具有出光表面。所述第一发光层至少由第一荧光粉和玻璃粉形成,所述第二发光层至少由第二荧光粉和玻璃粉形成,所述第一荧光粉的粒径大于所述第二荧光粉的粒径。所述第一发光层中的所述第一荧光粉与所述玻璃粉的体积比小于所述第二发光层中的所述第二荧光粉与所述玻璃粉的体积比。根据本发明的波长转换装置,既能够减少发光中心的热猝灭现象的发生又能够提高出光效率。

Description

波长转换装置 技术领域
本发明涉及投影显示领域,具体地,涉及波长转换装置。
背景技术
近年来,激光投影设备逐渐获得了人们的关注。在这样的设备中,使用诸如激光二极管(LD,Laser Diode)或发光二极管(LED,Light Emitting Diode)发出的具有第一波长的激发光来激发荧光材料,由此产生高亮度的具有第二波长的被激发荧光。在上述波长转换的过程中,如果想要实现高的转换效率,就要求荧光材料中的发光中心(即,荧光粉颗粒)需要具有较高的量子效率以及较少的热猝灭现象,并且还要求荧光材料具有较高的出光效率。目前,诸如YAG:Ce、LuAG:Ce等商用荧光粉的量子效率已达到80%以上。因此,如何优化荧光粉的封装方案,提高装置的出光效率并且减少荧光粉热猝灭现象的发生成为当前研究的热点。
在传统的波长转换装置中,通常采用硅胶或者玻璃来封装荧光粉颗粒。在采用硅胶封装的情况下,虽然能够提供较好的发光中心分布效果,但是硅胶材料的散热性差,导致装置的热稳定性较差。在采用玻璃封装的情况下,荧光粉和玻璃粉的配比直接影响装置的光转换效率,当荧光粉:玻璃粉的比例较小时,波长转换装置的光效率较低;当荧光粉:玻璃粉的比例较大时,波长转换装置的光效率较高,但随着激光光功率的增大,又会导致热饱和现象愈发严重。
发明内容
针对上述问题,本发明期望提供一种既能够减少发光中心的热猝灭现象的发生又能够提高出光效率的波长转换装置。
根据本发明的实施例,提供了一种波长转换装置,所述波长转换装置包括层叠设置的第一发光层和第二发光层,所述第一发光层位于光入射侧并具有入光表面,所述第二发光层位于光出射侧并具有出光表面。所述第一发光层至少由第一荧光粉和玻璃粉形成,所述第二发光层至少 由第二荧光粉和玻璃粉形成,所述第一荧光粉的粒径大于所述第二荧光粉的粒径,并且所述第一发光层中的所述第一荧光粉与所述玻璃粉的体积比小于所述第二发光层中的所述第二荧光粉与所述玻璃粉的体积比。
优选地,所述出光表面具有1~10微米的粗糙度。
优选地,在所述第二发光层中,所述第二荧光粉的荧光颗粒突出于所述出光表面。
优选地,所述第二荧光粉的荧光颗粒突出于所述出光表面的部分不小于所述荧光颗粒的粒径的1/3。
在一个实施例中,在所述第一发光层中,所述第一荧光粉的粒径大小可以为10~50微米,所述第一荧光粉与所述玻璃粉的体积比可以为0.5~1.0,并且第一发光层的厚度可以为50~100微米。此外,例如,在所述第二发光层中,所述第二荧光粉的粒径大小可以为1~10微米,所述第二荧光粉与所述玻璃粉的体积比可以为1.0~2.0,并且所述第二发光层的厚度可以为50~100微米。
优选地,在所述第一发光层和所述第二发光层中,所述玻璃粉的折射率在1.55~1.70的范围内。
此外,在所述第一发光层与所述第二发光层之间还可以设置有至少一层中间发光层。在从所述光入射侧至所述光出射侧的方向上,各发光层中的荧光粉与玻璃粉的体积比以及荧光粉颗粒的粒径按照层叠顺序而梯度变化,使得越靠近所述光入射侧的发光层中的荧光粉与玻璃粉的体积比越小并且荧光粉颗粒的粒径越大。
例如,在所述第一发光层与所述第二发光层之间,还可以设置有第三发光层,所述第三发光层至少由第三荧光粉和玻璃粉形成。在所述第一发光层中,所述第一荧光粉的粒径大小可以为30~50微米,所述第一荧光粉与所述玻璃粉的体积比可以为0.5~1.0,并且第一发光层的厚度可以为50~100微米;在所述第二发光层中,所述第二荧光粉的粒径大小可以为1~10微米,所述第二荧光粉与所述玻璃粉的体积比可以为1.5~2.0,并且所述第二发光层的厚度可以为50~100微米;在所述第三发光层中,所述第三荧光粉的粒径大小可以为10~30微米,所述第三荧光粉与所述玻璃粉的体积比可以为1.0~1.5,并且所述第三发光层的厚度可以为 50~100微米。
优选地,所述第一发光层与所述第二发光层的交界处不具有明显的界面。
鉴于以上,根据本发明的波长转换装置至少具有如下优点:
(1)根据本发明的波长转换装置包含至少两层发光层,其中,位于光入射侧的发光层中的荧光粉与玻璃粉的体积比较小,且荧光粉颗粒的粒径较大,因此能够减少热猝灭现象的发生,具有较好的热稳定性能;位于光出射侧的发光层中荧光粉与玻璃粉的体积比较大,且荧光粉颗粒的粒径较小,能够提升波长转换的光效并且能够提高出光效率;
(2)发光层中的玻璃粉的折射率在1.55~1.70之间,能够适合高功率的激光光源,既能保证较高的光转化效率又能有利于提升出光效率;
(3)在位于最靠近光出射侧的发光层中,荧光粉颗粒突出于出光表面且突出部分的比例优选为不小于荧光粉颗粒粒径的1/3,能够进一步提升出光效率。
应当理解,本发明的有益效果不限于上述效果,而可以是本文中说明的任何有益效果。
附图说明
图1是示出了根据本发明实施例的波长转换装置的结构示意图;
图2是示出了根据本发明另一实施例的波长转换装置的结构示意图;
图3是示出了根据本发明实施例的波长转换装置的第二发光层的出光表面的粗糙状态的扫描电镜图;
图4是示出了根据本发明实施例的波长转换装置的第一发光层和第二发光层的界面结构的扫描电镜图;
图5是示出了根据本发明实施例的波长转换装置的第二发光层中荧光粉颗粒突出于出光表面的状态的示意图;
图6是示出了用于验证第二发光层中荧光粉颗粒突出于出光表面的状态的的扫描电镜图;
图7是示出了现有技术中的波长转换装置的比较样品在大功率激光照射下的状态的扫描电镜图。
具体实施方式
下面,将参照附图详细说明根据本发明的各具体实施例。需要强调的是,附图中的所有尺寸仅是示意性的并且不一定是按照真实比例图示的,因而不具有限定性。例如,应当理解,图示出的各层材料的厚度、形状、大小以及荧光粉颗粒的尺寸和分布位置等并不是按照实际的尺寸和比例示出的,仅是为了图示方便。
根据本发明的波长转换装置的发光层采用玻璃封装荧光粉,并且具有多层发光层的层叠结构。在各发光层中,荧光粉的粒径不同,并且荧光粉与玻璃粉的体积比也不同。
图1示出了根据本发明实施例的波长转换装置100的结构示意图。如图1所示,根据本发明的实施例的波长转换装置100具有入光表面101和出光表面102。具有第一波长范围的激发光L1在入光表面101处入射至波长转换装置100,在波长装换装置100的行进过程中经过波长转换,在出光表面102处出射具有第二波长范围的出射光L2。根据本发明的实施例的波长转换装置100在光路方向上具有双层结构。具体地,沿着光路方向,波长转换装置100具有层叠设置的第一发光层110和第二发光层120。换言之,第一发光层110设置于波长转换装置100的光入射侧并且具有入光表面101,第二发光层120设置于波长转换装置100的光出射侧并且具有出光表面102。
第一发光层110主要由荧光粉111(也称为第一荧光粉)和玻璃粉形成。荧光粉111的粒径大小为10~50微米,并且荧光粉111与玻璃粉的体积比为0.5~1.0。第一发光层110的厚度为50~100微米。第二发光层120主要由荧光粉121(也称为第二荧光粉)和玻璃粉形成。荧光粉121的粒径大小为1~10微米。荧光粉121与玻璃粉的体积比为1.0~2.0。第二发光层120的厚度为50~100微米。通过设置这样的双层结构,在热效应较高的光入射侧,由于第一发光层110具有较小的荧光粉/玻璃粉的体积比并且荧光粉颗粒的粒径较大,因此能够减少热淬灭现象的发生,提高热稳定性;而在对出光效率有较大影响的光出射侧,由于第二发光层120具有较大的荧光粉/玻璃粉的体积比并且荧光粉颗粒的粒径较小,因此能够提升波长转换的发光效率,并且能够增大出光表面的表面粗糙度,因而提高出光效率。
荧光粉111和荧光粉121可以采用已知的任何适合的荧光粉。玻璃粉可以采用已知的任何使用的玻璃粉。此外,由于根据本发明实施例的波长转换装置采用玻璃封装发光中心(即,荧光粉颗粒)的方案,因此发光层中的玻璃的折射率应当处于合适的范围内。当封装玻璃的折射率低于1.55时,发光层的后向散射较大,不利于提升发光层的前向出光效率;而当封装玻璃的折射率大于1.70时,发光层的透明度过高,入射的激发光(例如,蓝色激光)受到的散射较弱而容易透射,导致激发光的光程较短并因而降低了激发光的光转化吸收效率。因此,在根据本发明的波长转换装置中,由玻璃粉制成的发光玻璃的折射率在1.55~1.70的范围内是优选的,这样的玻璃粉适合高功率的激光光源,既能保证较高的光转化效率,也能有利于提升出光效率。此外,如上所述的高折射率玻璃的烧结温度应该大于材料的Tf温度(软化温度),以确保在制造过程中能够具有充分的烧结流动性。
此外,由于第二发光层120具有较大的荧光粉/玻璃粉的体积比并且荧光粉颗粒的粒径较小,因此第二发光层10的出光表面102具有较大的粗糙度。图3中示出了根据本实施例的波长转换装置100的样品的第二发光层120的出光表面102的扫描电镜图。由该扫描电镜图表明,出光表面102具有较大的粗糙度。例如,出光表面102的粗糙度在1~10微米的范围内。另外,优选地,如图5的示意图中所示,部分荧光粉颗粒突出于出光表面102。换言之,在第二发光层120的出光表面102上,荧光粉颗粒露出于封装的玻璃材料。图6是根据本实施例的波长转换装置100的样品的第二发光层120的横截面的扫描电镜图。在该图中,能够清晰地看见部分荧光粉颗粒突出于出光表面102。更加优选地,荧光粉颗粒的突出部分的尺寸不小于荧光粉颗粒的粒径的1/3。
图2中图示了根据根据本发明另一实施例的波长转换装置200的结构示意图。本实施例的波长转换装置200与图1中的波长转换装置100的不同之处在于:在光路方向上,依次层叠有第一发光层210、第三发光层230和第二发光层220。位于光入射侧的第一发光层210具有入光表面201,位于光出射侧的第二发光层220具有出光表面202。换言之,本实施例的波长转换装置200在图1的波长转换装置100的基础上增加了一层中间发光层——第三发光层230。除此之外,根据根据本发明另一实施 例的波长转换装置200具有跟图1所示的实施例相同或相似的特征和功能。
第一发光层210主要由荧光粉211和玻璃粉构成。荧光粉211的粒径大小为30~50微米,并且荧光粉211与玻璃粉的体积比为0.5~1.0。第一发光层210的厚度为50~100微米。第三发光层230主要由荧光粉231和玻璃粉构成。荧光粉231的粒径大小为10~30微米。荧光粉231与玻璃粉的体积比为1.0~1.5。第三发光层230的厚度为50~100微米。第二发光层220主要由荧光粉221和玻璃粉构成。荧光粉221的粒径大小为1~10微米。荧光粉221与玻璃粉的体积比为1.5~2.0。第二发光层220的厚度为50~100微米。除此之外,上述波长转换装置100具有的其它特征和功能同样适用于本实施例的波长转换装置200。根据本实施例的波长转换装置200由于具有三层发光层并且各发光层中的荧光粉与玻璃粉的体积比以及荧光粉颗粒的粒径按照层叠顺序而梯度变化,因此能够获得比波长转换装置100中更加良好的减少热猝灭现象的发生和提高出光效率的效果。
应当理解的是,根据本发明的波长转换装置中的发光层的层叠数量不限于此,而可以根据设计需要和工艺水平而采用适合的n层层叠结构,只需要确保各发光层中的荧光粉与玻璃粉的体积比以及荧光粉颗粒的粒径按照层叠顺序而梯度变化即可。即,越靠近光入射侧的发光层中的荧光粉与玻璃粉的体积比越小并且荧光粉颗粒的粒径越大,越靠近光出射侧的发光层中的荧光粉与玻璃粉的体积比越大并且荧光粉颗粒的粒径越小。
下面,将具体说明图1所示实施例的波长转换装置100的制备过程。
使用YAG:Ce荧光粉作为发光中心材料,使用玻璃对YAG:Ce荧光粉进行封装。具体制备过程如下:
步骤S1:分别制备两种不同的发光层浆料。浆料1由大粒径的荧光粉、玻璃粉及有机载体混合而成,其中荧光粉颗粒的粒径大小为10~50微米,并且荧光粉与玻璃粉的体积比为0.5~1.0;浆料2由小粒径的荧光粉、玻璃粉及有机载体混合而成,其中荧光粉颗粒的粒径大小为1~10微米,并且荧光粉与玻璃粉的体积比为1.0~2.0。两种浆料所用的玻璃粉为 相同的玻璃粉,且烧结的玻璃折射率为1.55~1.70范围内,且玻璃的烧结温度大于Tf温度;
步骤S2:在基板上刷涂浆料1制备第一发光层110,其厚度为50~100微米,将其置于80~150℃下干燥;然后再刷涂浆料2制备第二发光层210,其厚度为50~100微米,将其置于于80~150℃下干燥;
步骤S3:将干燥后的器件置于箱式炉中进行烧结,烧结温度为800~900℃,烧结时间为10~60分钟。
步骤S4:将基板上的烧结后的层叠发光层进行整体脱模处理,得到波长转换装置100。
以上荧光粉不限制于YAG:Ce荧光粉,而是可以采用本领域内已知的任何适合的荧光粉材料。例如,还可以采用(SrCa)AlSiN 3:Eu,(LuYGd) 3(AlGa) 5O 12:Ce,(CaSrBa) 2Si 5N 8:Eu,(CaSrBa)Si 2O 2N 2:Eu,(LaY) 3Si 6N 11:Ce,Ca 3Sc 2Si 3O 12:Ce等其它稀土离子掺杂的稀土发光材料。
由以上制备方法可知,与现有的采用硅胶封装荧光粉的技术方案相比,首先,在本发明中作为封装材料的玻璃的热导率(大约为1W/(m·K))高于硅胶(热导率为0.1~0.2W/(m·K));其次,在本发明中,各发光层在形成过程中先预烘干,然后一起烧结,由于高折射率玻璃的烧结温度大于材料的Tf温度,所以烧结过程中各发光层之间的界面充分熔融使界面接触更致密因此各发光层之间的界面处结合更好。图4示出了根据本发明实施例的波长转换装置100的第一发光层110和第二发光层120之间的界面结构的扫描电镜图。由图4可以看出,位于图中下侧的第一发光层110与位于图中上侧的第二发光层120之间几乎看不出明显的界面。因此,与不同的发光层分步固化并因此具有明显的发光层间界面的硅胶封装的技术方案相比,根据本发明的波长转换装置的热传导更好。另外,应当理解的是,在图1和图2中,图示的各发光层之间的界面是为了便于说明,并不是根据本发明的波长转换装置的发光层之间的界面的真实状态。
为了进一步检测并确认根据本发明的波长转换装置的上述效果和优点,发明人对根据本发明的实施例的波长转换装置100的样品和现有技术中的波长转换装置的比较样品进行了如表1中所示的对比测试。在该 测试中,分别用不同功率的激发光(表中以激发光的光源的电流大小表示)对样品进行激发,然后分别测量出射光的亮度和色度。
Figure PCTCN2018118824-appb-000001
表1
在表1中,样品1#是根据本发明的实施例的波长转换装置100的样品。其中,第一发光层110中荧光粉和玻璃粉的体积比为0.5,且荧光粉的粒径较大,约为10~50微米,并且第一发光层110的厚度为大约100微米;第二发光层120中荧光粉和玻璃粉的体积比为2.0,且荧光粉的粒径较小,约为1~10微米,并且第二发光层120的厚度为大约100微米。样品2#是市售的一种硅胶封装荧光粉的双层波长转换装置的比较样品。其中,第一发光层中荧光粉和硅胶的体积比为0.5,且荧光粉的粒径较大,约为10~50微米,并且第一发光层的厚度为大约100微米;第二发光层中荧光粉和硅胶的体积比为2.0,且荧光粉的粒径较小,约为1~10微米,并且第二发光层的厚度为大约100微米。
由表1可知,随着激发光的功率增大(即,表中的脉冲电流增大),根据本发明的实施例的波长转换装置100的样品的亮度增大,色度基本保持稳定,展现出良好的热稳定性能。与之相比,比较样品最大只能承受0.6A的电流产生的低功率的激发光,当激发光的功率再升高时,则发光层失效。图7是示出了2#比较样品在大于0.6A电流产生的高功率激发光的情况下的测试结果的示图。由图7可见,发光层(即,由硅胶封装的发光层)中出现被破坏的发光中心(即,图7中心的黑点)。因此能够 确认,比较样品可承受的激发光的功率远低于根据本发明的实施例的样品。
尽管在上面已经参照附图说明了根据本发明的波长转换装置,但是本发明不限于此,且本领域技术人员应理解,在不偏离本发明随附权利要求书限定的实质或范围的情况下,可以做出各种改变、组合、次组合以及变型。

Claims (10)

  1. 一种波长转换装置,所述波长转换装置包括层叠设置的第一发光层和第二发光层,所述第一发光层位于光入射侧并具有入光表面,所述第二发光层位于光出射侧并具有出光表面,其特征在于,
    所述第一发光层至少由第一荧光粉和玻璃粉形成,所述第二发光层至少由第二荧光粉和玻璃粉形成,所述第一荧光粉的粒径大于所述第二荧光粉的粒径,并且
    所述第一发光层中的所述第一荧光粉与所述玻璃粉的体积比小于所述第二发光层中的所述第二荧光粉与所述玻璃粉的体积比。
  2. 根据权利要求1所述的波长转换装置,其特征在于,所述出光表面具有1~10微米的粗糙度。
  3. 根据权利要求1所述的波长转换装置,其特征在于,在所述第二发光层中,所述第二荧光粉的荧光颗粒突出于所述出光表面。
  4. 根据权利要求3所述的波长转换装置,其特征在于,所述第二荧光粉的荧光颗粒突出于所述出光表面的部分不小于所述荧光颗粒的粒径的1/3。
  5. 根据权利要求1至4中任一项所述的波长转换装置,其特征在于,
    在所述第一发光层中,所述第一荧光粉的粒径大小为10~50微米,所述第一荧光粉与所述玻璃粉的体积比为0.5~1.0,并且所述第一发光层的厚度为50~100微米。
  6. 根据权利要求5所述的波长转换装置,其特征在于,
    在所述第二发光层中,所述第二荧光粉的粒径大小为1~10微米,所述第二荧光粉与所述玻璃粉的体积比为1.0~2.0,并且所述第二发光层的厚度为50~100微米。
  7. 根据权利要求1至4中任一项所述的波长转换装置,其特征在于,在所述第一发光层和所述第二发光层中,所述玻璃粉的折射率在1.55~1.70的范围内。
  8. 根据权利要求1至4中任一项所述的波长转换装置,其特征在于,在所述第一发光层与所述第二发光层之间,还设置有至少一层中间发光层,并且
    在从所述光入射侧至所述光出射侧的方向上,各发光层中的荧光粉与玻璃粉的体积比以及荧光粉颗粒的粒径按照层叠顺序而梯度变化,使得越靠近所述光入射侧的发光层中的荧光粉与玻璃粉的体积比越小并且荧光粉颗粒的粒径越大。
  9. 根据权利要求8所述的波长转换装置,其特征在于,在所述第一发光层与所述第二发光层之间,还设置有作为所述中间发光层的第三发光层,所述第三发光层至少由第三荧光粉和玻璃粉形成,并且
    在所述第一发光层中,所述第一荧光粉的粒径大小为30~50微米,所述第一荧光粉与所述玻璃粉的体积比为0.5~1.0,并且所述第一发光层的厚度为50~100微米;
    在所述第二发光层中,所述第二荧光粉的粒径大小为1~10微米,所述第二荧光粉与所述玻璃粉的体积比为1.5~2.0,并且所述第二发光层的厚度为50~100微米;
    在所述第三发光层中,所述第三荧光粉的粒径大小为10~30微米,所述第三荧光粉与所述玻璃粉的体积比为1.0~1.5,并且所述第三发光层的厚度为50~100微米。
  10. 根据权利要求1至4中任一项所述的波长转换装置,其特征在于,所述第一发光层与所述第二发光层的交界处不具有明显的界面。
PCT/CN2018/118824 2018-04-10 2018-12-03 波长转换装置 WO2019196431A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810315299.8 2018-04-10
CN201810315299.8A CN110361912B (zh) 2018-04-10 2018-04-10 波长转换装置

Publications (1)

Publication Number Publication Date
WO2019196431A1 true WO2019196431A1 (zh) 2019-10-17

Family

ID=68163890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118824 WO2019196431A1 (zh) 2018-04-10 2018-12-03 波长转换装置

Country Status (2)

Country Link
CN (1) CN110361912B (zh)
WO (1) WO2019196431A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112731747A (zh) * 2020-12-29 2021-04-30 无锡视美乐激光显示科技有限公司 一种波长转换装置、光源系统及投影装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012185402A (ja) * 2011-03-07 2012-09-27 Seiko Epson Corp 発光素子とその製造方法、光源装置、およびプロジェクター
TW201246623A (en) * 2011-02-25 2012-11-16 Cree Inc Solid state light emitting devices including nonhomogeneous luminophoric particle size layers
CN105629646A (zh) * 2014-11-25 2016-06-01 精工爱普生株式会社 波长变换元件及其制造方法、光源装置、投影仪
CN106195925A (zh) * 2015-04-29 2016-12-07 深圳市光峰光电技术有限公司 一种波长转换装置、发光装置及投影装置
CN107305921A (zh) * 2016-04-20 2017-10-31 松下知识产权经营株式会社 波长转换部件、光源以及车辆用前照灯

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO117428B (zh) * 1961-05-08 1969-08-11 Rca Corp
JPH07155598A (ja) * 1993-12-10 1995-06-20 Toto Ltd 光触媒被膜及び光触媒被膜の形成方法
CN101171205A (zh) * 2005-05-11 2008-04-30 日本电气硝子株式会社 荧光体复合玻璃、荧光体复合玻璃生片和荧光体复合玻璃的制造方法
DE102007008443A1 (de) * 2007-02-19 2008-08-21 Xennia Technology Ltd., Letchworth Verfahren, Druckvorrichtung und Formulierungen zum Dekorieren von Glas- oder Keramikartikeln
US8058802B2 (en) * 2007-09-28 2011-11-15 General Electric Company Thermal management article and method
DE102010038396B4 (de) * 2010-07-26 2021-08-05 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronisches Bauelement und Leuchtvorrichung damit
DE102011078689A1 (de) * 2011-07-05 2013-01-10 Osram Ag Verfahren zur Herstellung eines Konversionselements und Konversionselement
US9142732B2 (en) * 2013-03-04 2015-09-22 Osram Sylvania Inc. LED lamp with quantum dots layer
US10439109B2 (en) * 2013-08-05 2019-10-08 Corning Incorporated Luminescent coatings and devices
EP2944620A1 (en) * 2013-12-26 2015-11-18 Shin-Etsu Quartz Products Co., Ltd. Silica glass member for wavelength conversion, and production method therefor
CN104953014B (zh) * 2014-03-28 2019-01-29 深圳光峰科技股份有限公司 一种多层结构玻璃荧光粉片及其制备方法及发光装置
CN105322433B (zh) * 2014-05-28 2020-02-04 深圳光峰科技股份有限公司 波长转换装置及其相关发光装置
CN106206904B (zh) * 2015-04-29 2019-05-03 深圳光峰科技股份有限公司 一种波长转换装置、荧光色轮及发光装置
JP2017028251A (ja) * 2015-07-23 2017-02-02 パナソニックIpマネジメント株式会社 波長変換部材、光源装置、照明装置車両、および波長変換部材の製造方法
CN105693108A (zh) * 2016-01-13 2016-06-22 南京大学 一种反射式荧光玻璃光转换组件的制备及应用
JP6920859B2 (ja) * 2016-04-04 2021-08-18 スタンレー電気株式会社 発光装置及びその製造方法
CN107631272B (zh) * 2016-07-13 2021-08-20 深圳光峰科技股份有限公司 一种波长转换装置及其制备方法
JP2018056512A (ja) * 2016-09-30 2018-04-05 デクセリアルズ株式会社 発光装置、及び発光装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201246623A (en) * 2011-02-25 2012-11-16 Cree Inc Solid state light emitting devices including nonhomogeneous luminophoric particle size layers
JP2012185402A (ja) * 2011-03-07 2012-09-27 Seiko Epson Corp 発光素子とその製造方法、光源装置、およびプロジェクター
CN105629646A (zh) * 2014-11-25 2016-06-01 精工爱普生株式会社 波长变换元件及其制造方法、光源装置、投影仪
CN106195925A (zh) * 2015-04-29 2016-12-07 深圳市光峰光电技术有限公司 一种波长转换装置、发光装置及投影装置
CN107305921A (zh) * 2016-04-20 2017-10-31 松下知识产权经营株式会社 波长转换部件、光源以及车辆用前照灯

Also Published As

Publication number Publication date
CN110361912A (zh) 2019-10-22
CN110361912B (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
US11688842B2 (en) Light emitting diodes with enhanced thermal sinking and associated methods of operation
Lin et al. Highly thermal-stable warm w-LED based on Ce: YAG PiG stacked with a red phosphor layer
Li et al. Study on the thermal and optical performance of quantum dot white light-emitting diodes using metal-based inverted packaging structure
WO2012132232A1 (ja) 半導体発光装置
JP2011096739A (ja) 発光装置
JP2006202962A (ja) 発光装置
TW200522396A (en) Light emitting devices with enhanced luminous efficiency
WO2018205694A1 (zh) 波长转换装置和激光荧光转换型光源
Yoon et al. Full Extraction of 2D Photonic Crystal Assisted $\hbox {Y} _ {3}\hbox {Al} _ {5}\hbox {O} _ {12} $: Ce Ceramic Plate Phosphor for Highly Efficient White LEDs
TW201914060A (zh) 應用量子點色彩轉換之發光裝置及其製造方法
TW201724573A (zh) 發光裝置以及其製造方法
TW201310724A (zh) 波長轉換結構及其製造方法,以及包含此波長轉換結構之發光裝置
KR20180095645A (ko) 파장 변환 부재 및 발광 장치
CN108365071A (zh) 一种具有扩展电极的芯片级封装结构
Wang et al. Phosphor glass-coated sapphire with moth-eye microstructures for ultraviolet-excited white light-emitting diodes
JP6997869B2 (ja) 波長変換素子および光源装置
WO2019196431A1 (zh) 波长转换装置
KR102103881B1 (ko) Uv led칩을 이용하는 백색 발광소자
JP6045779B2 (ja) 波長変換構造及びその製造方法並びに該波長変換構造を含む発光装置
WO2020015428A1 (zh) 半导体发光二极管装置和灯具
JP2017171706A (ja) 赤色蛍光体および発光モジュール
KR20130104201A (ko) 발광소자 패키지
CN107863440A (zh) 高发光率led
CN107863441B (zh) 高发光率led的制备方法及高发光率led
KR101860852B1 (ko) 고방열 금속-형광체 경사기능복합체 및 이를 이용한 고효율 에너지 순환 레이저 라이팅 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18914120

Country of ref document: EP

Kind code of ref document: A1