WO2019196050A1 - 一种基于碳化硅单晶的 x 射线探测器及其制备方法 - Google Patents

一种基于碳化硅单晶的 x 射线探测器及其制备方法 Download PDF

Info

Publication number
WO2019196050A1
WO2019196050A1 PCT/CN2018/082778 CN2018082778W WO2019196050A1 WO 2019196050 A1 WO2019196050 A1 WO 2019196050A1 CN 2018082778 W CN2018082778 W CN 2018082778W WO 2019196050 A1 WO2019196050 A1 WO 2019196050A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
type silicon
layer
single crystal
concentration
Prior art date
Application number
PCT/CN2018/082778
Other languages
English (en)
French (fr)
Inventor
梁红伟
夏晓川
张贺秋
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to PCT/CN2018/082778 priority Critical patent/WO2019196050A1/zh
Priority to US16/469,600 priority patent/US10768316B2/en
Publication of WO2019196050A1 publication Critical patent/WO2019196050A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022416Electrodes for devices characterised by at least one potential jump barrier or surface barrier comprising ring electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0312Inorganic materials including, apart from doping materials or other impurities, only AIVBIV compounds, e.g. SiC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/1812Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table including only AIVBIV alloys, e.g. SiGe

Definitions

  • the invention belongs to the technical field of semiconductor device preparation, and relates to an X-ray detector based on a silicon carbide single crystal and a preparation method thereof.
  • silicon carbide has high outstanding band gap, high breakdown field strength, high electron saturation drift speed, corrosion resistance and radiation resistance, etc., at high frequency, high power, It has important applications in electronic devices such as radiation.
  • silicon carbide has a band gap of 3.2 eV, a breakdown electric field of 3.0 ⁇ 10 6 V/cm, an ionization energy of 7.78 eV, a resistivity of 10 12 ⁇ cm, a melting point of 2700 ° C, and an electron saturation speed. 2.0 ⁇ 10 7 cm / s, is an ideal material for the development of semiconductor radiation detectors.
  • silicon carbide materials are mainly used to prepare power electronic devices and optoelectronic devices.
  • the dark current should be as small as possible and the carrier transmission loss should be as small as possible
  • the method of homoepitaxial growth of silicon carbide is mainly used to complete the fabrication of the device structure.
  • the thickness of the detection sensitive region of the silicon carbide X-ray detector prepared by the epitaxial growth method generally does not exceed 150 micrometers. For X-rays with strong penetrability, this thickness cannot be made. The energy with higher energy X-rays is fully deposited, which directly affects the detector's detection sensitivity, detection efficiency and energy resolution for higher energy X-rays, or directly leads to the inability to detect high-energy X-rays.
  • the development of X-ray detector using silicon carbide single crystal has the following advantages: 1.
  • the thickness of single crystal can be cut according to needs to meet the requirements of high-energy X-ray detection; Higher quality favors efficient collection of carriers.
  • the innovation of the present invention proposes the development of an X-ray detector using a silicon carbide single crystal.
  • the object of the present invention is to provide an X-ray detector based on a silicon carbide single crystal and a preparation method thereof for the technical problems faced in the preparation of the silicon carbide X-ray detector.
  • An X-ray detector based on a silicon carbide single crystal comprising a high-resistance silicon carbide single crystal 1, a high electron concentration n-type silicon carbide layer 2, a low electron concentration n-type silicon carbide layer 3, a high hole concentration p-type silicon carbide layer 4, a low hole concentration p-type silicon carbide layer 5, a silicon dioxide protective layer 6, a p-type silicon carbide ohmic contact electrode 7, an n-type silicon carbide ohmic contact electrode 8 and a gold lead electrode 9;
  • the high-resistance silicon carbide single crystal 1 is a main structure
  • the high electron concentration n-type silicon carbide layer 2 is embedded on the upper surface of the high-resistance silicon carbide single crystal 1, and the upper surfaces of the two are flush;
  • the low electron concentration n-type silicon carbide layer 3 is arranged around the high electron concentration n-type silicon carbide layer 2;
  • the silicon dioxide protective layer 6 is disposed around the n-type silicon carbide ohmic contact electrode 8 and is entirely covered on the upper surface of the high-resistance silicon carbide single crystal 1;
  • the two gold lead electrodes 9 are located on the upper surface of the interface between the silicon oxide protective layer 6 and the n-type silicon carbide ohmic contact electrode 8;
  • the high hole concentration p-type silicon carbide layer 4 is embedded in the lower surface of the high-resistance silicon carbide single crystal 1, and the upper surfaces of the two are flush;
  • the low hole concentration p-type silicon carbide layer 5 is disposed around the high hole concentration p-type silicon carbide layer 4;
  • the p-type silicon carbide ohmic contact electrode 7 is an inverted T-type, and the top is in contact with the high hole concentration p-type silicon carbide layer 4;
  • the gap between the low hole concentration p-type silicon carbide layer 5 and the p-type silicon carbide ohmic contact electrode 7 is filled with the silicon dioxide protective layer 6, and the lower surface of the high-resistance silicon carbide single crystal 1 is entirely covered.
  • a method for preparing an X-ray detector based on a silicon carbide single crystal the steps are as follows:
  • Step 1 On the upper surface and the lower surface of the high-resistance silicon carbide single crystal 1, multiple patterned photolithographic mask deposition is used to prepare a patterned AlN ion implantation barrier layer, which is an AlN ion implantation barrier layer a10 and an AlN ion implantation barrier layer, respectively.
  • AlN ion implantation barrier layer a10 thickness is 10nm ⁇ 10 ⁇ m, diameter accounts for 50% ⁇ 90% of the side length of the sample
  • AlN ion implantation barrier layer b11 thickness is 10nm ⁇ 15 ⁇ m, torus width The thickness of the entire sample is 5% to 30%
  • the thickness of the AlN ion implantation barrier layer c12 is 10 nm to 20 ⁇ m, and the coverage area is all areas except the AlN ion implantation barrier layer a10 and the AlN ion implantation barrier layer b11;
  • Step 2 forming an n-type silicon carbide layer having a laterally distributed electron concentration on the upper surface of the high-resistance silicon carbide single crystal 1 by ion implantation and thermal annealing, and forming a hole concentration laterally on the lower surface of the high-resistance silicon carbide single crystal 1 a distributed p-type silicon carbide layer; the n-type silicon carbide layer and the p-type silicon carbide layer have a thickness of 10 nm to 10 ⁇ m; the n-type silicon carbide layer includes a high electron concentration n-type silicon carbide layer 2 and a low electron concentration n-type silicon carbide layer 3.
  • the low electron concentration n-type silicon carbide layer 3 is arranged around the electron concentration n-type silicon carbide layer 2, and the electron concentration of the high electron concentration n-type silicon carbide layer 2 is 5.0 ⁇ 10 16 cm -3 to 5.0 ⁇ 10 19 cm -3 .
  • the electron concentration of the low electron concentration n-type silicon carbide layer 3 ranges from 5.0 ⁇ 10 15 cm -3 to 5.0 ⁇ 10 18 cm -3 ;
  • the p-type silicon carbide layer includes a high hole concentration p-type silicon carbide layer 4 and a low hole concentration
  • the p-type silicon carbide layer 5, the low hole concentration p-type silicon carbide layer 5 is disposed around the high hole concentration p-type silicon carbide layer 4, and the hole concentration of the high hole concentration p-type silicon carbide layer is 5.0 ⁇ 10 16 cm -3 to 5.0 ⁇ 10 19 cm -3 , the hole concentration of the low hole concentration p-type silicon carbide layer 5 is 5.0 ⁇ 10 15 cm -3 to 5.0 ⁇ 10 18 cm -3 ;
  • Step 3 protecting the AlN layer on the upper surface of the silicon carbide single crystal 1, wet etching off the AlN layer on the lower surface of the silicon carbide single crystal 1, depositing a silicon dioxide protective layer 6 on the lower surface of the silicon carbide single crystal 1; Membrane technology and HF wet etching technology to open a hole in the silicon dioxide protective layer 6; using a photolithography masking technology, deposition technology and thermal annealing technology to prepare a patterned p-type silicon carbide ohmic contact electrode 7;
  • the thickness of the silicon dioxide protective layer 6 is 10 nm to 10 ⁇ m; the area of the opening is the same as the area of the high hole concentration p-type silicon carbide layer 4; the thickness of the p-type silicon carbide ohmic contact electrode 7 is 10 nm to 15 ⁇ m, and the width is between the openings. And between the lower surface edges of the silicon carbide single crystal 1;
  • Step 4 wet etching off the AlN layer on the upper surface of the silicon carbide single crystal 1, depositing a silicon dioxide protective layer 6 on the surface of the silicon carbide single crystal 1; using a photolithography mask technique and an HF wet etching technique in the silicon dioxide A hole is formed in the protective layer 6; a patterned n-type silicon carbide ohmic contact electrode 8 is prepared by using a photolithography masking technique and a coating technology; a patterned gold lead is prepared by using a photolithography masking technique, a deposition technique, and a thermal annealing technique Electrode 9;
  • the thickness of the silicon dioxide protective layer 6 is 10 nm to 10 ⁇ m; the opening area is consistent with the area of the high electron concentration n-type silicon carbide layer 2; the thickness of the n-type silicon carbide ohmic contact electrode 8 is 10 nm to 15 ⁇ m, the area and the opening The area is uniform; the thickness of the gold lead electrode 9 is 10 nm to 10 ⁇ m, and the coverage area is between the upper surface edge of the high-resistance silicon carbide single crystal 1 and the 10% aperture.
  • the wet etching corrosive liquid is one or a mixture of sodium hydroxide and potassium hydroxide;
  • the deposition method is a sol-gel method, a thermal evaporation method, an electron beam evaporation method, a magnetron sputtering method, a laser pulse deposition method, an atomic layer epitaxy or a molecular beam epitaxy method.
  • the invention has the advantages that the novel X-ray detector structure based on silicon carbide single crystal is designed, and an effective and simple process manufacturing technology is proposed, which solves the preparation of the silicon carbide-based high energy X-ray detector.
  • the problem is to develop a new silicon carbide radiation detector.
  • FIG. 1 is a schematic view showing the structure of an X-ray detector based on a silicon carbide single crystal.
  • FIG. 2 is a top plan view of a device structure having an n-type silicon carbide contact electrode.
  • FIG 3 is a schematic cross-sectional view of a silicon carbide single crystal having an AlN ion implantation barrier layer.
  • FIG. 4 is a plan view showing a silicon carbide single crystal having an AlN ion implantation barrier layer.
  • Fig. 5 is a schematic view showing the structure of a silicon carbide single crystal having an AlN barrier layer after ion implantation and thermal annealing.
  • Figure 6 is a schematic cross-sectional view of a device structure having a p-type silicon carbide contact electrode.
  • Figure 7 is a plan view showing the structure of a device having a p-type silicon carbide contact electrode.
  • 1 high-resistance silicon carbide single crystal 2 high electron concentration n-type silicon carbide layer; 3 low electron concentration n-type silicon carbide layer; 4 high hole concentration p-type silicon carbide layer; 5 low hole concentration p-type silicon carbide layer ; 6 silicon dioxide protective layer; 7p type silicon carbide ohmic contact electrode; 8n type silicon carbide ohmic contact electrode; 9 gold lead electrode; 10 AlN ion implantation barrier layer a; 11 AlN ion implantation barrier layer b; 12 AlN ion implantation blocking Layer c.
  • This embodiment provides an X-ray detector based on a silicon carbide single crystal, comprising the following process steps:
  • Step 1 Select a high-resistance silicon carbide single crystal having a thickness of 200 ⁇ m and a surface of 5 mm square.
  • Step 2 On the upper and lower surfaces of the high-resistance silicon carbide single crystal 1, a patterned AlN ion implantation barrier layer is prepared by using multiple photolithographic mask deposition, and the AlN ion implantation barrier layer a 10 has a thickness range of 50 nm and a diameter of 3 mm (accounting for 3 mm).
  • the ratio of the AlN ion implantation barrier layer b 11 is 100 nm, the ring width is 0.5 mm (10%), and the thickness of the AlN ion implantation barrier layer c 12 is 500 nm.
  • Step 3 using an ion implantation and thermal annealing method to form an n-type silicon carbide layer having a laterally distributed electron concentration on the upper surface, and a p-type silicon carbide layer having a lateral concentration of hole concentration on the lower surface; a high electron concentration n-type silicon carbide layer 2
  • the high hole concentration p-type silicon carbide layer 4 has a thickness of 400 nm, the electron concentration of the high electron concentration n-type silicon carbide layer 2 is 1.0 ⁇ 10 18 cm ⁇ 3 , and the hole concentration range of the high hole concentration p-type silicon carbide layer 4 It is 5.0 ⁇ 10 17 cm -3 ;
  • the thickness of the low electron concentration n-type silicon carbide layer 3 and the low hole concentration p-type silicon carbide layer 5 is 350 nm, and the electron concentration of the low electron concentration n-type silicon carbide layer 3 is 5.0 ⁇ 10 17 Cm -3 , low hole concentration p-type silicon carbide layer 5 has a hole concentration range of
  • Step 4 The AlN layer on the upper surface is protected by a wax, the AlN layer on the lower surface is etched away by using a potassium hydroxide solution, and the silicon dioxide protective layer 6 is deposited; and then the oxidization mask technique and the HF wet etching technique are used for the second oxidation.
  • a silicon protective layer 6 is opened; then a patterned p-type silicon carbide ohmic contact electrode is prepared by using a photolithography masking technique, a deposition technique, and a thermal annealing technique; the thickness of the silicon dioxide protective layer 6 is 100 nm; the opening diameter is 3 mm.
  • the p-type silicon carbide ohmic contact electrode 7 has a thickness of 200 nm and a diameter of 4 mm;
  • Step 5 etching the AlN layer on the upper surface with a potassium hydroxide solution to deposit a silicon dioxide protective layer 6; then opening a hole in the silicon dioxide protective layer 6 by using a photolithography mask technique and an HF wet etching technique; A photolithographic masking technique and a deposition technique are used to prepare a patterned n-type silicon carbide ohmic contact electrode 8; the thickness of the silicon dioxide protective layer 6 is 100 nm; the opening diameter is 3 mm; and the thickness of the n-type silicon carbide ohmic contact electrode 8 is 100 nm.
  • the diameter is 3 mm; then a ring-shaped gold lead electrode 9 is prepared by a photolithography masking technique, a coating technique and a thermal annealing technique, and the outer ring has a diameter of 4 mm, an inner ring diameter of 2.6 mm, and a thickness of 500 nm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Human Computer Interaction (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明属于半导体器件制备技术领域,涉及一种基于碳化硅单晶的X射线探测器及其制备方法。该探测器主要包括:高阻碳化硅单晶、高电子浓度n型碳化硅层、低电子浓度n型碳化硅层、高空穴浓度p型碳化硅层、低空穴浓度p型碳化硅层、二氧化硅保护层、p型碳化硅欧姆接触电极、n型碳化硅欧姆接触电极、和金引线电极。本发明提出一种有效而简便的工艺制造技术,解决了碳化硅基高能X射线探测器的制备难题,实现新型碳化硅辐射探测器的研制。

Description

一种基于碳化硅单晶的X射线探测器及其制备方法 技术领域
本发明属于半导体器件制备技术领域,涉及一种基于碳化硅单晶的X射线探测器及其制备方法。
背景技术
以碳化硅为代表的第三代宽禁带半导体材料因其禁带宽度大、击穿场强高、电子饱和漂移速度高、耐腐蚀和抗辐照等突出优点,在高频、高功率、抗辐射等电子器件方面具有重要应用。特别是,碳化硅的禁带宽度达3.2 eV、击穿电场可达3.0×10 6 V/cm、电离能为7.78 eV、电阻率可达10 12Ω·cm、熔点为2700℃、电子饱和速度2.0×10 7cm/s,是研制半导体辐射探测器的理想材料。人们已经掌握了几种制备碳化硅单晶的方法,通过离子注入技术可以实现n型和p型导电特性,通过在生长过程中掺入钒元素可以制备出半绝缘的碳化硅。从已报道的研究结果来看,碳化硅材料主要用来制备电力电子器件和光电器件。在性能要求更高的X射线探测器研制方面(暗电流要尽可能小、载流子传输损耗尽可能小),目前主要采用同质外延生长碳化硅的方法来完成器件结构的制备。受现有技术条件的限制,采用外延生长方法制备的碳化硅X射线探测器的探测灵敏区厚度一般不会超过150微米,对于具有很强穿透性的X射线来说,这一厚度无法使得具有较高能量X射线的能量得以充分沉积,从而直接影响探测器对于能量较高的X射线的探测灵敏度、探测效率和能量分辨率,或者直接导致无法对高能X射线进行探测。然而相比于外延生长碳化硅器件结构,采用碳化硅单晶进行X射线探测器的研制具有的优势为:1、单晶厚度可依据需要进行切割以满足高能X射线探测需求;2、单晶质量较高有利于载流子的有效收集。为此,本发明创新的提出采用碳化硅单晶进行X射线探测器的研制。
技术问题
本发明的目的在于,针对上述制备碳化硅X射线探测器过程中所面临的诸多技术难题,提出一种基于碳化硅单晶的X射线探测器及其制备方法。
技术解决方案
本发明的技术方案:
一种基于碳化硅单晶的X射线探测器,包括高阻碳化硅单晶1、高电子浓度n型碳化硅层2、低电子浓度n型碳化硅层3、高空穴浓度p型碳化硅层4、低空穴浓度p型碳化硅层5、二氧化硅保护层6、p型碳化硅欧姆接触电极7、n型碳化硅欧姆接触电极8和金引线电极9;
所述的高阻碳化硅单晶1为主体结构;
所述的高电子浓度n型碳化硅层2嵌入至高阻碳化硅单晶1的上表面,二者的上表面平齐;
所述的低电子浓度n型碳化硅层3围绕高电子浓度n型碳化硅层2布置;
所述的二氧化硅保护层6围绕n型碳化硅欧姆接触电极8布置周围,整体覆盖在高阻碳化硅单晶1的上表面;
所述的两个金引线电极9位于氧化硅保护层6和n型碳化硅欧姆接触电极8交界处的上表面;
所述的高空穴浓度p型碳化硅层4嵌入至高阻碳化硅单晶1的下表面,二者的上表面平齐;
所述的低空穴浓度p型碳化硅层5围绕高空穴浓度p型碳化硅层4布置;
所述的p型碳化硅欧姆接触电极7为倒置的T型,顶部与高空穴浓度p型碳化硅层4接触;
所述的低空穴浓度p型碳化硅层5和p型碳化硅欧姆接触电极7之间的空隙填充有二氧化硅保护层6,将高阻碳化硅单晶1的下表面全部覆盖。
一种基于碳化硅单晶的X射线探测器的制备方法,步骤如下:
步骤1:在高阻碳化硅单晶1的上表面和下表面,采用多次光刻掩膜沉积,制备图形化AlN离子注入阻挡层,分别为AlN离子注入阻挡层a10、AlN离子注入阻挡层b11 和AlN离子注入阻挡层c12;AlN离子注入阻挡层a10厚度为10nm~10μm,直径占整个样品边长的50%~90%;AlN离子注入阻挡层b11厚度为10nm~15μm,环面宽度占整个样品边长的5%~30%;AlN离子注入阻挡层c12厚度为10nm~20μm,覆盖区域为除AlN离子注入阻挡层a10和AlN离子注入阻挡层b11的所有区域;
步骤2:采用离子注入和热退火的方法在高阻碳化硅单晶1的上表面形成电子浓度横向分布的n型碳化硅层,在高阻碳化硅单晶1的下表面形成空穴浓度横向分布的p型碳化硅层;n型碳化硅层和p型碳化硅层的厚度为10nm~10μm;n型碳化硅层包括高电子浓度n型碳化硅层2和低电子浓度n型碳化硅层3,低电子浓度n型碳化硅层3围绕电子浓度n型碳化硅层2布置,高电子浓度n型碳化硅层2的电子浓度为5.0×10 16 cm -3~5.0×10 19 cm -3,低电子浓度n型碳化硅层3的电子浓度范围为5.0×10 15 cm -3~5.0×10 18 cm -3;p型碳化硅层包括高空穴浓度p型碳化硅层4和低空穴浓度p型碳化硅层5,低空穴浓度p型碳化硅层5围绕高空穴浓度p型碳化硅层4布置,高空穴浓度p型碳化硅层的空穴浓度为5.0×10 16 cm -3~5.0×10 19 cm -3,低空穴浓度p型碳化硅层5的空穴浓度为5.0×10 15 cm -3~5.0×10 18 cm -3
步骤3:保护碳化硅单晶1上表面的AlN层,湿法腐蚀掉碳化硅单晶1下表面的AlN层,在碳化硅单晶1下表面沉积二氧化硅保护层6;利用光刻掩膜技术和HF湿法腐蚀技术在二氧化硅保护层6上开孔;利用光刻掩膜技术、沉积技术和热退火技术,制备图形化的p型碳化硅欧姆接触电极7;
其中,二氧化硅保护层6的厚度为10nm~10μm;开孔面积与高空穴浓度p型碳化硅层4面积一致;p型碳化硅欧姆接触电极7厚度为10nm~15μm,宽度介于开孔和碳化硅单晶1下表面边沿之间;
步骤4:湿法腐蚀掉碳化硅单晶1上表面的AlN层,在碳化硅单晶1上表面沉积二氧化硅保护层6;利用光刻掩膜技术和HF湿法腐蚀技术在二氧化硅保护层6上开孔;利用光刻掩膜技术和镀膜技术,制备图形化的n型碳化硅欧姆接触电极8;利用光刻掩膜技术、沉积技术和热退火技术,制备图形化的金引线电极9;
其中,二氧化硅保护层6的厚度为10nm~10μm;开孔面积与高电子浓度n型碳化硅层2面积一致;n型碳化硅欧姆接触电极8的厚度为10nm~15μm,面积与开孔面积一致;金引线电极9的厚度为10nm~10μm,覆盖面积介于从高阻碳化硅单晶1上表面边沿延伸至10%孔径之间。
所述的湿法腐蚀的腐蚀液为氢氧化钠、氢氧化钾中的一种或两种混合;
所述的沉积方法是溶胶凝胶法、热蒸发法、电子束蒸发法、磁控溅射法、激光脉冲沉积、原子层外延或分子束外延法。
有益效果
本发明的有益效果:本发明设计了一种基于碳化硅单晶的新型X射线探测器结构,并提出了一种有效而简便的工艺制造技术,解决了碳化硅基高能X射线探测器的制备难题,实现新型碳化硅辐射探测器的研制。
附图说明
图1是基于碳化硅单晶的X射线探测器的结构示意图。
图2是具有n型碳化硅接触电极的器件结构的俯视图。
图3是具有AlN离子注入阻挡层的碳化硅单晶的截面示意图。
图4是具有AlN离子注入阻挡层的碳化硅单晶的平面图示意图。
图5是离子注入和热退火后具有AlN阻挡层碳化硅单晶结构示意图。
图6是具有p型碳化硅接触电极的器件结构截面示意图。
图7是具有p型碳化硅接触电极的器件结构平面示意图。
图中:1高阻碳化硅单晶;2高电子浓度n型碳化硅层;3低电子浓度n型碳化硅层;4高空穴浓度p型碳化硅层;5低空穴浓度p型碳化硅层;6二氧化硅保护层;7p型碳化硅欧姆接触电极;8n型碳化硅欧姆接触电极;9金引线电极;10 AlN离子注入阻挡层a;11 AlN离子注入阻挡层b;12 AlN离子注入阻挡层c。
本发明的实施方式
以下结合技术方案和附图,进一步说明本发明的具体实施方式。
实施例1
本实施例提供了一种基于碳化硅单晶的X射线探测器,包括以下工艺步骤:
步骤1:选择厚度为200μm、表面5mm见方的高阻碳化硅单晶。
步骤2:在高阻碳化硅单晶1的上下表面,采用多次光刻掩膜沉积,制备图形化AlN离子注入阻挡层,AlN离子注入阻挡层a 10区域厚度范围50nm,直径为3mm(占比60%);AlN离子注入阻挡层b 11区域厚度为100nm,环宽为0.5mm(占比10%);AlN离子注入阻挡层c 12区域厚度为500nm。
步骤3:采用离子注入和热退火的方法在上表面形成电子浓度横向分布的n型碳化硅层,在下表面形成空穴浓度横向分布的p型碳化硅层;高电子浓度n型碳化硅层2和高空穴浓度p型碳化硅层4的厚度为400nm,高电子浓度n型碳化硅层2的电子浓度为1.0×10 18 cm -3,高空穴浓度p型碳化硅层4的空穴浓度范围为5.0×10 17 cm -3;低电子浓度n型碳化硅层3和低空穴浓度p型碳化硅层5的厚度为350nm,低电子浓度n型碳化硅层3的电子浓度为5.0×10 17 cm -3,低空穴浓度p型碳化硅层5的空穴浓度范围为1.0×10 17 cm -3
步骤4:利用蜡保护好上表面的AlN层,利用氢氧化钾溶液腐蚀掉下表面的AlN层,沉积二氧化硅保护层6;而后利用光刻掩膜技术和HF湿法腐蚀技术在二氧化硅保护层6上开孔;而后利用光刻掩膜技术、沉积技术和热退火技术,制备图形化的p型碳化硅欧姆接触电极;二氧化硅保护层6的厚度为100nm;开孔直径3mm;p型碳化硅欧姆接触电极7的厚度为200nm,直径为4mm;
步骤5:利用氢氧化钾溶液腐蚀掉上表面的AlN层,沉积二氧化硅保护层6;而后利用光刻掩膜技术和HF湿法腐蚀技术在二氧化硅保护层6上开孔;而后利用光刻掩膜技术、沉积技术,制备图形化的n型碳化硅欧姆接触电极8;二氧化硅保护层6的厚度为100nm;开孔直径3mm;n型碳化硅欧姆接触电极8的厚度为100nm,直径为3mm;而后利用光刻掩膜技术、镀膜技术和热退火技术制备环状的金引线电极9,外环直径为4mm,内环直径为2.6mm,厚度为500nm。

Claims (4)

  1. 一种基于碳化硅单晶的X射线探测器,其特征在于,所述的基于碳化硅单晶的X射线探测器包括高阻碳化硅单晶1、高电子浓度n型碳化硅层2、低电子浓度n型碳化硅层3、高空穴浓度p型碳化硅层4、低空穴浓度p型碳化硅层5、二氧化硅保护层6、p型碳化硅欧姆接触电极7、n型碳化硅欧姆接触电极8和金引线电极9;
    所述的高阻碳化硅单晶1为主体结构;所述的高电子浓度n型碳化硅层2嵌入至高阻碳化硅单晶1的上表面,二者的上表面平齐;所述的低电子浓度n型碳化硅层3围绕高电子浓度n型碳化硅层2布置;所述的二氧化硅保护层6围绕n型碳化硅欧姆接触电极8布置周围,整体覆盖在高阻碳化硅单晶1的上表面;所述的两个金引线电极9位于氧化硅保护层6和n型碳化硅欧姆接触电极8交界处的上表面;
    所述的高空穴浓度p型碳化硅层4嵌入至高阻碳化硅单晶1的下表面,二者的上表面平齐;所述的低空穴浓度p型碳化硅层5围绕高空穴浓度p型碳化硅层4布置;所述的p型碳化硅欧姆接触电极7为倒置的T型,顶部与高空穴浓度p型碳化硅层4接触;所述的低空穴浓度p型碳化硅层5和p型碳化硅欧姆接触电极7之间的空隙填充有二氧化硅保护层6,将高阻碳化硅单晶1的下表面全部覆盖。
  2. 一种基于碳化硅单晶的X射线探测器的制备方法,其特征在于,步骤如下:
    步骤1:在高阻碳化硅单晶1的上表面和下表面,采用多次光刻掩膜沉积,制备图形化AlN离子注入阻挡层,分别为AlN离子注入阻挡层a10、AlN离子注入阻挡层b11 和AlN离子注入阻挡层c12;AlN离子注入阻挡层a10厚度为10nm~10μm,直径占整个样品边长的50%~90%;AlN离子注入阻挡层b11厚度为10nm~15μm,环面宽度占整个样品边长的5%~30%;AlN离子注入阻挡层c12厚度为10nm~20μm,覆盖区域为除AlN离子注入阻挡层a10和AlN离子注入阻挡层b11的所有区域;
    步骤2:采用离子注入和热退火的方法在高阻碳化硅单晶1的上表面形成电子浓度横向分布的n型碳化硅层,在高阻碳化硅单晶1的下表面形成空穴浓度横向分布的p型碳化硅层;n型碳化硅层和p型碳化硅层的厚度为10nm~10μm;n型碳化硅层包括高电子浓度n型碳化硅层2和低电子浓度n型碳化硅层3,低电子浓度n型碳化硅层3围绕电子浓度n型碳化硅层2布置,高电子浓度n型碳化硅层2的电子浓度为5.0×10 16 cm -3~5.0×10 19 cm -3,低电子浓度n型碳化硅层3的电子浓度范围为5.0×10 15 cm -3~5.0×10 18 cm -3;p型碳化硅层包括高空穴浓度p型碳化硅层4和低空穴浓度p型碳化硅层5,低空穴浓度p型碳化硅层5围绕高空穴浓度p型碳化硅层4布置,高空穴浓度p型碳化硅层的空穴浓度为5.0×10 16 cm -3~5.0×10 19 cm -3,低空穴浓度p型碳化硅层5的空穴浓度为5.0×10 15 cm -3~5.0×10 18 cm -3
    步骤3:保护碳化硅单晶1上表面的AlN层,湿法腐蚀掉碳化硅单晶1下表面的AlN层,在碳化硅单晶1下表面沉积二氧化硅保护层6;利用光刻掩膜技术和HF湿法腐蚀技术在二氧化硅保护层6上开孔;利用光刻掩膜技术、沉积技术和热退火技术,制备图形化的p型碳化硅欧姆接触电极7;
    其中,二氧化硅保护层6的厚度为10nm~10μm;开孔面积与高空穴浓度p型碳化硅层4面积一致;p型碳化硅欧姆接触电极7厚度为10nm~15μm,宽度介于开孔和碳化硅单晶1下表面边沿之间;
    步骤4:湿法腐蚀掉碳化硅单晶1上表面的AlN层,在碳化硅单晶1上表面沉积二氧化硅保护层6;利用光刻掩膜技术和HF湿法腐蚀技术在二氧化硅保护层6上开孔;利用光刻掩膜技术和镀膜技术,制备图形化的n型碳化硅欧姆接触电极8;利用光刻掩膜技术、沉积技术和热退火技术,制备图形化的金引线电极9;
    其中,二氧化硅保护层6的厚度为10nm~10μm;开孔面积与高电子浓度n型碳化硅层2面积一致;n型碳化硅欧姆接触电极8的厚度为10nm~15μm,面积与开孔面积一致;金引线电极9的厚度为10nm~10μm,覆盖面积介于从高阻碳化硅单晶1上表面边沿延伸至10%孔径之间。
  3. 根据权利要求2所述的制备方法,其特征在于,所述的湿法腐蚀的腐蚀液为氢氧化钠、氢氧化钾中的一种或两种混合。
  4. 根据权利要求2或2所述的制备方法,其特征在于,所述的沉积方法是溶胶凝胶法、热蒸发法、电子束蒸发法、磁控溅射法、激光脉冲沉积、原子层外延或分子束外延法。
PCT/CN2018/082778 2018-04-12 2018-04-12 一种基于碳化硅单晶的 x 射线探测器及其制备方法 WO2019196050A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/082778 WO2019196050A1 (zh) 2018-04-12 2018-04-12 一种基于碳化硅单晶的 x 射线探测器及其制备方法
US16/469,600 US10768316B2 (en) 2018-04-12 2018-04-12 Silicon carbide single crystal x-ray detector and preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/082778 WO2019196050A1 (zh) 2018-04-12 2018-04-12 一种基于碳化硅单晶的 x 射线探测器及其制备方法

Publications (1)

Publication Number Publication Date
WO2019196050A1 true WO2019196050A1 (zh) 2019-10-17

Family

ID=68162821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082778 WO2019196050A1 (zh) 2018-04-12 2018-04-12 一种基于碳化硅单晶的 x 射线探测器及其制备方法

Country Status (2)

Country Link
US (1) US10768316B2 (zh)
WO (1) WO2019196050A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112071923A (zh) * 2020-09-17 2020-12-11 京东方科技集团股份有限公司 摄像系统、光探测器及光电二极管

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220093814A1 (en) * 2019-02-04 2022-03-24 Horiba, Ltd. Radiation detection element, radiation detector and radiation detection device
CN109950357A (zh) * 2019-03-26 2019-06-28 京东方科技集团股份有限公司 一种pin器件及其制作方法、感光组件、显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141257A (ja) * 2008-12-15 2010-06-24 Shimadzu Corp 放射線検出器の製造方法
CN104465676A (zh) * 2014-12-09 2015-03-25 厦门大学 4H-SiC PIN紫外光电二极管一维阵列芯片及其制备方法
CN107068800A (zh) * 2017-02-16 2017-08-18 大连理工大学 一种基于氧化镓单晶的辐射探测器及其制备方法
JP2018043907A (ja) * 2016-09-14 2018-03-22 トヨタ自動車株式会社 SiC単結晶の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220889A (ja) * 2006-02-16 2007-08-30 Central Res Inst Of Electric Power Ind ショットキー接合型半導体素子およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141257A (ja) * 2008-12-15 2010-06-24 Shimadzu Corp 放射線検出器の製造方法
CN104465676A (zh) * 2014-12-09 2015-03-25 厦门大学 4H-SiC PIN紫外光电二极管一维阵列芯片及其制备方法
JP2018043907A (ja) * 2016-09-14 2018-03-22 トヨタ自動車株式会社 SiC単結晶の製造方法
CN107068800A (zh) * 2017-02-16 2017-08-18 大连理工大学 一种基于氧化镓单晶的辐射探测器及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112071923A (zh) * 2020-09-17 2020-12-11 京东方科技集团股份有限公司 摄像系统、光探测器及光电二极管

Also Published As

Publication number Publication date
US20200233103A1 (en) 2020-07-23
US10768316B2 (en) 2020-09-08

Similar Documents

Publication Publication Date Title
JP7037142B2 (ja) ダイオード
WO2019196050A1 (zh) 一种基于碳化硅单晶的 x 射线探测器及其制备方法
JPS6146078B2 (zh)
CN110660882B (zh) 一种栅控PIN结构GaN紫外探测器及其制备方法
JP2019016680A (ja) ショットキーバリアダイオード
CN110571301A (zh) 氧化镓基日盲探测器及其制备方法
CN111490112B (zh) 一种新型碳化硅肖特基结极深紫外探测器及其制备方法
CN112993017B (zh) 碳化硅器件外延结构及其制备方法
CN108493292B (zh) 一种基于碳化硅单晶的x射线探测器及其制备方法
CN210167365U (zh) 一种同质外延GaN肖特基势垒型紫外雪崩探测器
CN116799092A (zh) 一种基于氧化镓基的日盲紫外探测器及其制备方法
KR100613844B1 (ko) 실리콘 카바이드 쇼트키 다이오드 제조방법
CN208422941U (zh) 一种基于p型透明栅极GaN基紫外探测器
CN107093643B (zh) 一种氮化镓位置灵敏辐射探测器及其制备方法
WO2008026536A1 (fr) Photodétecteur et procédé de fabrication d'un photodétecteur
JPH088210A (ja) 炭化けい素半導体素子の製造方法
CN109301023A (zh) 光电二极管及其制备方法、平板探测器
CN114597273B (zh) 一种双面碳化硅pin结构微条辐射探测器及其制备方法
JP7505402B2 (ja) 炭化珪素半導体ウェハおよび炭化珪素半導体装置の製造方法
JP4526243B2 (ja) シリコンカーバイド半導体装置の製造方法
CN208596682U (zh) 一种背入式雪崩光电探测器芯片
CN116154030B (zh) 极紫外至紫外波段的碳化硅雪崩光电探测器及其制备方法
CN208596693U (zh) 一种Be离子扩散保护环雪崩光电探测器芯片
WO2022141171A1 (zh) 气体传感器的制备方法及气体传感器
JP7400128B2 (ja) Mpsダイオードデバイス及びその作製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18914588

Country of ref document: EP

Kind code of ref document: A1