WO2019194161A1 - ポリウレタンゲル材料、ポリウレタンゲル、疑似生体材料、および、ポリウレタンゲルの製造方法 - Google Patents
ポリウレタンゲル材料、ポリウレタンゲル、疑似生体材料、および、ポリウレタンゲルの製造方法 Download PDFInfo
- Publication number
- WO2019194161A1 WO2019194161A1 PCT/JP2019/014588 JP2019014588W WO2019194161A1 WO 2019194161 A1 WO2019194161 A1 WO 2019194161A1 JP 2019014588 W JP2019014588 W JP 2019014588W WO 2019194161 A1 WO2019194161 A1 WO 2019194161A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyurethane gel
- polyol
- mass
- less
- parts
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/77—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
- C08G18/78—Nitrogen
- C08G18/79—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
- C08G18/791—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
- C08G18/792—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/09—Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture
- C08G18/092—Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture oligomerisation to isocyanurate groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4825—Polyethers containing two hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4829—Polyethers containing at least three hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4854—Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/73—Polyisocyanates or polyisothiocyanates acyclic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/77—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
- C08G18/78—Nitrogen
- C08G18/7806—Nitrogen containing -N-C=0 groups
- C08G18/7818—Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups
- C08G18/7837—Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups containing allophanate groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/77—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
- C08G18/78—Nitrogen
- C08G18/79—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/0016—Plasticisers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/10—Esters; Ether-esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/10—Esters; Ether-esters
- C08K5/11—Esters; Ether-esters of acyclic polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/10—Esters; Ether-esters
- C08K5/12—Esters; Ether-esters of cyclic polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2220/00—Compositions for preparing gels other than hydrogels, aerogels and xerogels
Definitions
- the present invention relates to a polyurethane gel material, a polyurethane gel, a pseudo-biological material, and a method for producing a polyurethane gel.
- the gel layer includes a coating layer that covers the gel layer, and the gel layer includes an aliphatic polyisocyanate having an average functional group number exceeding 2.0 and a polyol having an average functional group number of 3.0 or less.
- a polyurethane gel obtained by reacting at least an aliphatic diisocyanate and / or an alicyclic diisocyanate with a bifunctional active hydrogen compound has been proposed. For example, see the following Patent Document 1.)
- a bleed property may be required to give a moist feeling to the surface.
- a plasticizer is simply added to generate bleed, there are problems such as a large change in the size of the polyurethane gel.
- the polyurethane gel is required to have both a moist feeling and excellent dimensional stability depending on the application.
- the polyurethane gel is required to have curability, mechanical properties (elongation, etc.), appropriate hardness, etc. depending on the application.
- the present invention relates to a polyurethane gel material that has a moist feeling and dimensional stability, and can obtain a polyurethane gel excellent in curability, mechanical properties and hardness, a polyurethane gel obtained from the polyurethane gel material, a pseudo-biological material, and And a method for producing the polyurethane gel.
- the present invention [1] contains an aliphatic polyisocyanate (A) having an average functional group number of 2.3 or more and 3.2 or less, a polyol (B) having an average functional group number of 2.0 or more and 2.3 or less, and an ester group.
- the aliphatic polyisocyanate (A) comprises an isocyanurate derivative of an aliphatic diisocyanate and / or an alcohol-modified isocyanurate derivative of an aliphatic diisocyanate.
- the polyol (B) contains polyoxypropylene polyol and / or polytetramethylene ether glycol, and the polyol (B) has an average hydroxyl value of 73 mgKOH / g or more and 200 mgKOH / g or less, and the plasticizer ( The proportion of C) is 10 with respect to 100 parts by mass of the polyol component (B). More parts by mass in 500 parts by mass or less, contains a polyurethane gel material.
- This invention [2] contains the polyurethane gel material as described in said [1] whose average number of functional groups of the said polyol (B) is 2.0.
- the present invention [3] includes the polyurethane gel material according to the above [1] or [2], wherein the aliphatic polyisocyanate (A) has an average functional group number of 2.3 or more and 3.0 or less.
- the present invention [4] includes the polyurethane gel material according to any one of the above [1] to [3], wherein the aliphatic diisocyanate contains pentamethylene diisocyanate and / or hexamethylene diisocyanate.
- the invention [5] provides the polyurethane gel material according to any one of the above [1] to [4], wherein the plasticizer (C) is a cyclohexanedicarboxylic acid ester and / or an adipic acid ester. Contains.
- the present invention [6] includes a polyurethane gel which is a reaction product of the polyurethane gel material according to any one of [1] to [5] above.
- the equivalent ratio of the isocyanate group in the aliphatic polyisocyanate (A) to the hydroxyl group in the polyol (B) (NCO / hydroxyl group) is 0.8 or more and 1.2 or less.
- the polyurethane gel described in [6] above is included.
- the invention [8] is the polyurethane gel according to the above [6] or [7], wherein the weight change rate obtained by the following formula before and after the durability test under the following conditions is 0.1% or more and 7% or less. Contains. Durability test: After leaving at 80 ° C. for 5 days, further leave at 23 ° C. and 55% relative humidity for 1 day. Weight change rate [(weight W before endurance test 1 ⁇ weight W2 after endurance test) / (weight W1 before endurance test)] ⁇ 100
- the present invention [9] includes a pseudo-biological material comprising the polyurethane gel according to any one of [6] to [8] above.
- the present invention includes a preparation step of preparing the polyurethane gel material according to any one of [1] to [5] above, and a reaction step of reacting and curing the polyurethane gel material to obtain a polyurethane gel.
- a reaction step of reacting and curing the polyurethane gel material to obtain a polyurethane gel.
- an equivalent ratio of an isocyanate group in the aliphatic polyisocyanate (A) to a hydroxyl group in the polyol (B) (NCO / hydroxyl group) is 0.8 or more and 1.2 or less.
- the manufacturing method is included.
- the polyurethane gel material of the present invention it is possible to obtain a polyurethane gel that has both moisture and dimensional stability and is excellent in curability, mechanical properties and hardness.
- the polyurethane gel of the present invention has a moist feeling and dimensional stability, and is excellent in curability, mechanical properties and hardness.
- a polyurethane gel having both moist feeling and dimensional stability and excellent in curability, mechanical properties and hardness can be obtained.
- the polyurethane gel material of the present invention is a material that gels by a urethanization reaction described later to form a polyurethane gel (described later). That is, the polyurethane gel material is a raw material composition of polyurethane gel (described later).
- the polyurethane gel material is a plastic containing an aliphatic polyisocyanate (A) having an average functional group number of 2.3 or more and 3.2 or less, a polyol (B) having an average functional group number of 2.0 or more and 2.3 or less, and an ester group.
- a plasticizer (C) containing an ester group only.
- the functional group of the aliphatic polyisocyanate (A) represents an isocyanate group.
- the functional group of polyol (B) shows a hydroxyl group.
- the aliphatic polyisocyanate (A) contains an isocyanurate derivative of an aliphatic diisocyanate and / or an alcohol-modified isocyanurate derivative, and preferably contains an alcohol-modified isocyanurate derivative.
- Such an aliphatic polyisocyanate (A) has both an aliphatic hydrocarbon group and an isocyanurate group, it imparts appropriate flexibility to the polyurethane gel by the aliphatic hydrocarbon group and is moderate by the isocyanurate group. It is possible to impart sufficient rigidity and polarity, impart affinity to the plasticizer (C), and further adjust the average number of functional groups within the range described below.
- aliphatic diisocyanate examples include trimethylene diisocyanate, 1,2-propylene diisocyanate, butylene diisocyanate (tetramethylene diisocyanate, 1,2-butylene diisocyanate, 2,3-butylene diisocyanate, 1,3-butylene diisocyanate), pentamethylene.
- examples thereof include diisocyanate (PDI), hexamethylene diisocyanate (HDI), 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate, and 2,6-diisocyanate methylcaproate.
- aliphatic diisocyanates can be used alone or in combination of two or more.
- the aliphatic diisocyanate is preferably pentamethylene diisocyanate (PDI) or hexamethylene diisocyanate (HDI) from the viewpoint of improving mechanical properties, and more preferably from the viewpoint of improving mechanical properties and hardness. And pentamethylene diisocyanate (PDI).
- PDI pentamethylene diisocyanate
- HDI hexamethylene diisocyanate
- PDI pentamethylene diisocyanate
- isocyanurate derivative of aliphatic diisocyanate can be obtained by the above-mentioned aliphatic diisocyanate being isocyanurated by a known method.
- an isocyanurate derivative of an aliphatic diisocyanate is obtained by, for example, converting an aliphatic diisocyanate into a known isocyanurate-forming catalyst (for example, N- (2-hydroxypropyl) -N, N, N-trimethylammonium-2 -Ethylhexanoate, etc.) in the presence of an isocyanurate reaction.
- a known isocyanurate-forming catalyst for example, N- (2-hydroxypropyl) -N, N, N-trimethylammonium-2 -Ethylhexanoate, etc.
- reaction conditions in the isocyanuration reaction are not particularly limited and are set as appropriate.
- An alcohol-modified isocyanurate derivative of an aliphatic diisocyanate can be obtained by modifying an isocyanurate derivative of an aliphatic diisocyanate with an alcohol.
- the alcohols are not particularly limited, and examples thereof include aliphatic alcohols and aromatic alcohols, and preferably include aliphatic alcohols. Specific examples thereof include methanol, ethanol, n-propanol, and isopropanol. , N-butanol, isobutanol (isobutyl alcohol), sec-butanol, tert-butanol, pentanol, hexanol, 2-ethylhexanol, octanol, decanol, and the like, for example, ethylene glycol, 1,2- Divalent aliphatic alcohols such as propanediol, 1,3-propanediol, 1,3-butylene glycol, 1,4-butylene glycol, 1,5-pentanediol, 1,6-hexanediol, such as glycerin, trimethyl Trihydric aliphatic alcohols such as Rupuropan, for example, tetravalent or
- alcohols can be used alone or in combination of two or more.
- monovalent aliphatic alcohols are preferable, monovalent aliphatic alcohols having 1 to 4 carbon atoms are more preferable, and isobutanol (also called isobutyl alcohol) is more preferable. .
- Examples of the method of modifying an isocyanurate derivative of an aliphatic diisocyanate with alcohols include, first, a method of reacting an aliphatic diisocyanate and an alcohol, and then an isocyanuration reaction in the presence of an isocyanuration catalyst, For example, first, a method of reacting only the aliphatic diisocyanate with isocyanurate and then reacting the obtained polyisocyanurate with an alcohol can be mentioned.
- the aliphatic diisocyanate and the alcohol are first reacted, and then the isocyanuration reaction is performed in the presence of an isocyanuration catalyst.
- the blending ratio of the aliphatic diisocyanate and the alcohol is appropriately set according to the purpose and application, but the alcohol is, for example, 0.1% with respect to 100 parts by mass of the aliphatic diisocyanate.
- Part by mass or more preferably 0.5 part by mass or more, more preferably 1.0 part by mass or more, and for example, 10 parts by mass or less, preferably 5 parts by mass or less, more preferably 2 parts by mass. Part or less, more preferably 1.5 parts by weight or less.
- reaction conditions between the aliphatic diisocyanate and the alcohol are appropriately set according to the purpose and application.
- the reaction between the aliphatic diisocyanate and the alcohol is a urethanization reaction and an allophanate reaction, and an allophanate derivative of the aliphatic diisocyanate may be generated as a by-product. That is, an isocyanurate derivative of an aliphatic diisocyanate modified with alcohols may have both an isocyanurate group and an allophanate group.
- the molar ratio of the allophanate group in the alcohol-modified isocyanurate derivative of the aliphatic diisocyanate is less than the molar ratio of the isocyanurate group, specifically, the allophanate group per mole of the isocyanurate group, For example, it is 0.05 mol or more, preferably 0.1 mol or more, more preferably 0.2 mol or more, for example, less than 1.0 mol, preferably 0.5 mol or less.
- the molar ratio between the allophanate group and the isocyanurate group can be determined according to the examples described later.
- additives such as storage stabilizers (o-toluenesulfonamide, p-toluenesulfonamide, etc.), reaction terminators (benzoyl chloride, etc.), antiblocking agents are used.
- Heat stabilizers, light stabilizers, ultraviolet absorbers, antioxidants, antifoaming agents, mold release agents, pigments, dyes, lubricants, fillers, hydrolysis inhibitors, and the like can be blended in appropriate proportions.
- unreacted aliphatic diisocyanate can be removed by a known method such as distillation or extraction such as thin film distillation (Smith distillation).
- the content ratio of the unreacted aliphatic diisocyanate is, for example, 1% by mass or less, preferably 0.5% by mass or less, with respect to the total amount of the reaction liquid obtained by the above reaction.
- the aliphatic polyisocyanate (A) may further contain other derivatives as long as it contains an isocyanurate derivative of an aliphatic diisocyanate and / or an alcohol-modified isocyanurate derivative.
- derivatives are derivatives of aliphatic diisocyanates, excluding isocyanurate derivatives of aliphatic diisocyanates and alcohol-modified isocyanurate derivatives, such as allophanate derivatives of aliphatic diisocyanates, uretdione derivatives of aliphatic diisocyanates, ureas of aliphatic diisocyanates.
- derivatives preferably include allophanate derivatives of aliphatic diisocyanates.
- An allophanate derivative of an aliphatic diisocyanate is obtained by urethanating the above-mentioned aliphatic diisocyanate with the above-described alcohol (preferably a monovalent aliphatic alcohol), and then a known allophanate catalyst (for example, bismuth octylate, It can be obtained by carrying out an allophanatization reaction in the presence of tris (2-ethylhexanoic acid) bismuth or the like).
- the reaction conditions in the urethanization reaction and the allophanatization reaction are not particularly limited, and are appropriately set.
- the content ratio of other derivatives is appropriately set according to the purpose and application within a range not impairing the excellent effects of the present invention.
- other derivatives are, for example, 0 parts by mass or more, for example, 50 parts by mass or less, preferably 40 parts by mass or less, more preferably 20 parts by mass. It is below mass parts.
- the aliphatic polyisocyanate (A) may contain an aliphatic polyisocyanate monomer, if necessary.
- aliphatic polyisocyanate monomer examples include the above-mentioned aliphatic diisocyanate (bifunctional aliphatic polyisocyanate monomer).
- aliphatic polyisocyanate monomers can be used alone or in combination of two or more.
- the content ratio of the aliphatic polyisocyanate monomer is appropriately set according to the purpose and application within the range not impairing the excellent effects of the present invention.
- the aliphatic polyisocyanate monomer is, for example, 0 part by mass or more, for example, 50 parts by mass or less, preferably 40 parts by mass or less, more preferably 20 parts by mass or less.
- the ratio of the isocyanurate derivative of the aliphatic diisocyanate and / or the alcohol-modified isocyanurate derivative, the other derivative, and the aliphatic polyisocyanate monomer is the ratio of the aliphatic polyisocyanate (A).
- the average number of functional groups is in the range of 2.3 to 3.2, the average functional group is appropriately adjusted within a range not impairing the excellent effects of the present invention.
- the isocyanurate derivative and / or alcohol-modified isocyanurate derivative of the aliphatic diisocyanate is, for example, 50 parts by mass or more, preferably 60 parts by mass with respect to 100 parts by mass of the total amount of the aliphatic polyisocyanate (A). More than 80 parts by weight, more preferably 100 parts by weight or less, and other derivatives and / or aliphatic polyisocyanate monomers, for example, 0 parts by weight or more, for example, 50 parts by weight or less, preferably Is 40 parts by mass or less, more preferably 20 parts by mass or less.
- the aliphatic polyisocyanate (A) is preferably composed of an isocyanurate derivative of an aliphatic diisocyanate and / or an alcohol-modified isocyanurate derivative, and more preferably an alcohol-modified isocyanurate of an aliphatic diisocyanate.
- a derivative, and more preferably an alcohol-modified isocyanurate derivative of pentamethylene diisocyanate (however, it is allowed to contain allophanate derivatives (allophanate derivatives not containing isocyanurate groups) and uretdione derivatives by-produced during the production of isocyanurate derivatives) To do.)
- the average number of functional groups of the aliphatic polyisocyanate (A) is 2.3 or more, preferably 2.5 or more, more preferably 2.6 or more, and still more preferably 2. 7 or more, 3.2 or less, preferably 3.1 or less, more preferably 3.0 or less, and still more preferably 2.9 or less.
- the average number of functional groups of the aliphatic polyisocyanate (A) is calculated according to the examples described later.
- the isocyanate group concentration of the aliphatic polyisocyanate (A) is, for example, 20.0% by mass or more, preferably 22.0% by mass or more, for example, 30.0% by mass or less, preferably 25. It is 0 mass% or less, More preferably, it is 24.6 mass% or less.
- Polyol (B) contains polyoxypropylene polyol and / or polytetramethylene ether glycol. If the polyol (B) contains these, a flexible polyurethane gel can be obtained.
- the polyoxypropylene polyol is an addition polymer of propylene oxide using, for example, a low molecular weight polyol or a known low molecular weight polyamine as an initiator.
- the low molecular weight polyol is, for example, a compound having two or more hydroxyl groups in the molecule and having a molecular weight of 50 to 400, and includes, for example, ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butylene glycol.
- Examples thereof include tetrahydric alcohols such as tetramethylolmethane (pentaerythritol) and diglycerin. These low molecular weight polyols can be used alone or in combination of two or more.
- the low molecular weight polyol is preferably a dihydric alcohol or a trihydric alcohol, and more preferably a dihydric alcohol.
- the polyoxypropylene polyol is obtained as a polyoxypropylene polyol having an average number of functional groups according to the number of functional groups of the initiator. For example, when an initiator having 2 functional groups is used, a polyoxypropylene glycol having an average functionality of 2 is obtained, and when an initiator having 3 functional groups is used, a polyoxypropylene triol having an average functionality of 3 is used. Is obtained.
- polyoxypropylene polyols can be used alone or in combination of two or more.
- polyoxypropylene polyol does not substantially contain polyoxyethylene units. “Substantially” means that it contains no polyoxyethylene units except for polyoxyethylene units which are inevitably mixed. More specifically, the content of polyoxyethylene units is less than 1% by mass with respect to the total amount of polyoxypropylene polyol.
- polytetramethylene ether glycol examples include a ring-opening polymer (crystalline polytetramethylene ether glycol) obtained by cationic polymerization of tetrahydrofuran, and an amorphous polymer obtained by copolymerizing the above dihydric alcohol with a polymer unit such as tetrahydrofuran.
- a ring-opening polymer obtained by cationic polymerization of tetrahydrofuran
- amorphous polymer obtained by copolymerizing the above dihydric alcohol with a polymer unit such as tetrahydrofuran.
- a copolymer of tetrahydrofuran and a branched glycol eg, neopentyl glycol
- tetrahydrofuran / branched glycol (molar ratio) 15/85 to 85/15).
- amorphous polytetramethylene ether glycol commercially available products can be used.
- commercially available products include “PTXG” series manufactured by Asahi Kasei Corporation and “PTG-L” manufactured by Hodogaya Chemical Co., Ltd. ”Series.
- polytetramethylene ether glycol derived from plants starting from tetrahydrofuran produced based on plant-based materials such as furfural can also be used.
- Polyol (B) is preferably polyoxypropylene glycol from the viewpoints of moisture, dimensional stability, mechanical properties and hardness.
- the polyol (B) can contain other polyols as long as it contains the polyoxypropylene glycol and / or the polytetramethylene ether glycol.
- polystyrene resin examples include the above-described low molecular weight polyols and known high molecular weight polyols (excluding polyoxypropylene polycol and polytetramethylene ether glycol).
- a high molecular weight polyol is a compound having a molecular weight (number average molecular weight in terms of polystyrene by GPC measurement) exceeding 400 and having two or more hydroxyl groups.
- These other polyols can be used alone or in combination of two or more.
- the content of other polyols is appropriately adjusted within a range that does not impair the excellent effects of the present invention.
- the polyol (B) preferably contains no other polyol and is composed of polyoxypropylene glycol and / or polytetramethylene ether glycol from the viewpoints of moistness, dimensional stability, mechanical properties, and hardness. Preferably, it consists of polyoxypropylene glycol.
- polyol (B) can be used alone or in combination of two or more so that the average number of functional groups and the average hydroxyl value (OH value) are in the ranges described below.
- the average functional group number of the polyol (B) is 2.0 or more from the viewpoint of curability, and is 2.3 or less, preferably 2.2 or less from the viewpoint of mechanical properties. Preferably, it is 2.1 or less.
- the average number of functional groups of the polyol (B) is particularly preferably 2.0 from the viewpoint of moisture feeling and dimensional stability.
- the average hydroxyl value (OH value) of the polyol (B) is 73 mgKOH / g or more, preferably 84 mgKOH / g or more, more preferably 90 mgKOH / g or more, and still more preferably, from the viewpoint of moisture feeling and dimensional stability. Is 100 mgKOH / g or more, 200 mgKOH / g or less, preferably 160 mgKOH / g or less, more preferably 150 mgKOH / g or less, and still more preferably 130 mgKOH / g or less.
- the average number of functional groups of the polyol (B) is calculated from the blended recipe, and the hydroxyl value of the polyol is measured according to the description of JIS K1557-1 (2007).
- the number average molecular weight (number average molecular weight calculated from the average number of functional groups and the hydroxyl value) of the polyol (B) is, for example, 560 or more, preferably from the viewpoints of curability, mechanical properties, moisture feeling, and dimensional stability. 600 or more, more preferably 800 or more, for example, 1770 or less, preferably 1500 or less, more preferably 1300 or less, and still more preferably 1200 or less.
- the resulting polyurethane gel can be imparted with appropriate hydrophobicity and can have appropriate affinity with the plasticizer (C).
- the content ratio of the aliphatic polyisocyanate (A) and the polyol (B) is such that the equivalent ratio of the isocyanate group in the aliphatic polyisocyanate (A) to the hydroxyl group in the polyol (B) (NCO / hydroxyl group). , 0.8 to 1.2.
- the plasticizer (C) contains an ester group.
- the curability can be improved as compared with the case of using a plasticizer (eg, chloroparaffin) that does not contain an ester group.
- plasticizer (C) contains an ester group
- affinity for the urethane group obtained by the reaction of the aliphatic polyisocyanate (A) and the polyol (B) can be obtained.
- plasticizer (C) containing an ester group for example, cyclohexanedicarboxylic acid esters, phthalic acid esters, isophthalic acid esters, tetrahydrophthalic acid esters, adipic acid esters, azelaic acid ester , Sebacic acid esters, fumaric acid esters, maleic acid esters, trimellitic acid esters, pyromellitic acid esters, citric acid esters, itaconic acid esters, oleic acid esters, ricinoleic acid esters, stearin Examples include acid esters, other fatty acid esters, and phosphate esters.
- ester group for example, cyclohexanedicarboxylic acid esters, phthalic acid esters, isophthalic acid esters, tetrahydrophthalic acid esters, adipic acid esters, azelaic acid ester , Sebacic acid esters, fumaric acid esters, maleic acid
- cyclohexanedicarboxylic acid esters include dimethylcyclohexane-1,2-dicarboxylate, diethylcyclohexane-1,2-dicarboxylate, dibutylcyclohexane-1,2-dicarboxylate, and di (2-ethylhexyl) cyclohexane.
- phthalic acid esters examples include dibutyl phthalate, isobutyl phthalate, diheptyl phthalate, di- (2-ethylhexyl) phthalate, di-n-octyl phthalate, dinonyl phthalate, diisononyl phthalate, diisodecyl phthalate, diundecyl phthalate, ditridecyl phthalate Examples include decyl phthalate, dicyclohexyl phthalate, and diphenyl phthalate.
- isophthalic acid esters examples include di- (2-ethylhexyl) isophthalate and diisooctylisophthalate.
- tetrahydrophthalic acid esters examples include di- (2-ethylhexyl) tetrahydrophthalate.
- adipic acid esters examples include di- (2-ethylhexyl) adipate, dibutoxyethyl adipate, diisononyl adipate, and the like.
- azelaic acid esters examples include di-n-hexyl azelate and di- (2-ethylhexyl) azelate.
- sebacic acid esters examples include di-n-butyl sebacate.
- fumaric acid esters examples include di-n-butyl fumarate and di- (2-ethylhexyl) fumarate.
- maleate esters examples include di-n-butyl maleate and di- (2-ethylhexyl) maleate.
- trimellitic acid esters examples include tri- (2-ethylhexyl) trimellitate, tri-n-octyl trimellitate, triisooctyl trimellitate, and the like.
- Examples of the pyromellitic acid esters include tetra- (2-ethylhexyl) pyromellitate, tetra-n-octyl pyromellitate and the like.
- citric acid esters examples include tri-n-butyl citrate and acetyl tributyl citrate.
- itaconic acid esters examples include dimethyl itaconate, diethyl itaconate, dibutyl itaconate, and di- (2-ethylhexyl) itaconate.
- oleic acid esters examples include glyceryl monooleate and diethylene glycol monooleate.
- ricinoleic acid esters examples include glyceryl monoricinoleate and diethylene glycol monoricinoleate.
- stearic acid esters examples include glycerin monostearate and diethylene glycol distearate.
- fatty acid esters examples include diethylene glycol dipelargonate and pentaerythritol fatty acid ester.
- phosphate esters examples include tributoxyethyl phosphate, triphenyl phosphate, tricresyl phosphate, diphenyl decyl phosphate, diphenyl octyl phosphate, and the like.
- plasticizers (C) containing an ester group can be used alone or in combination of two or more.
- the plasticizer (C) containing an ester group is preferably a cyclohexane dicarboxylic acid ester, a phthalic acid ester or an adipic acid ester, more preferably a cyclohexane dicarboxylic acid ester, Examples thereof include adipic acid esters and combinations thereof, and more preferable examples include cyclohexanedicarboxylic acid esters.
- the boiling point of the plasticizer (C) is, for example, 180 ° C. or higher, preferably 200 ° C. or higher, more preferably 220 ° C. or higher.
- the upper limit of the boiling point is about 400 ° C. from the viewpoint of industrial availability.
- the content ratio of the plasticizer (C) containing an ester group is preferably 100 parts by mass or more with respect to 100 parts by mass of the polyol component (B) from the viewpoints of moistness, dimensional stability and hardness.
- polyurethane gel material it is possible to obtain a polyurethane gel that has both moisture and dimensional stability and is excellent in curability, mechanical properties, and hardness.
- the above-mentioned polyurethane gel material is prepared (preparation step), and then an aliphatic polyisocyanate (A) and a polyol (B) are converted into a plasticizer (C ) In a predetermined mold, and preferably a urethanization reaction (solvent-free reaction, bulk polymerization) in the absence of a solvent (reaction step).
- a urethanization reaction solvent-free reaction, bulk polymerization
- a known method such as a one-shot method or a prepolymer method is employed, and a one-shot method is preferably employed.
- the aliphatic polyisocyanate (A) and the polyol (B) are equivalent ratios of isocyanate groups in the aliphatic polyisocyanate (A) to hydroxyl groups in the polyol (B) (NCO / hydroxyl group). Is 0.8 or more, preferably 0.9 or more and 1.2 or less, preferably 1.1 or less, more preferably 1.05 or less.
- the curing reaction is performed at room temperature to 120 ° C., preferably at room temperature to 100 ° C., for example, for 5 minutes to 72 hours, preferably for 2 to 10 hours.
- the curing temperature may be a constant temperature, or may be raised or cooled stepwise.
- a known urethanization catalyst such as amines or organometallic compounds can be added as necessary.
- amines include tertiary amines such as triethylamine, triethylenediamine, bis- (2-dimethylaminoethyl) ether, N-methylmorpholine, and quaternary ammonium salts such as tetraethylhydroxylammonium, such as imidazole, And imidazoles such as 2-ethyl-4-methylimidazole.
- tertiary amines such as triethylamine, triethylenediamine, bis- (2-dimethylaminoethyl) ether, N-methylmorpholine
- quaternary ammonium salts such as tetraethylhydroxylammonium, such as imidazole, And imidazoles such as 2-ethyl-4-methylimidazole.
- organometallic compound examples include tin acetate, tin octylate, tin oleate, tin laurate, dibutyltin diacetate, dimethyltin dilaurate, dibutyltin dilaurate, dibutyltin dimercaptide, dibutyltin maleate, dibutyltin dilaurate (dilauric acid).
- examples of the urethanization catalyst include potassium salts such as potassium carbonate, potassium acetate, and potassium octylate.
- urethanization catalysts can be used alone or in combination of two or more.
- the urethanization catalyst is preferably an organometallic compound, more preferably an organotin compound, and still more preferably dibutyltin dilaurate (dibutyltin dilaurate (IV)).
- the timing of addition of the urethanization catalyst is not particularly limited, and may be added in advance to, for example, either or both of the aliphatic polyisocyanate (A) and the polyol (B). These may be added at the same time as the blending, or may be added separately after blending them.
- addition ratio of the urethanization catalyst is not particularly limited, and is appropriately set according to the purpose and application.
- additives such as storage stabilizers (o-toluenesulfonamide, p-toluenesulfonamide, etc.), anti-blocking agents, heat-resistant stabilizers, light-resistant stabilizers, Ultraviolet absorbers, antioxidants, antifoaming agents, mold release agents, pigments, dyes, lubricants, fillers, hydrolysis inhibitors, and the like can be blended in appropriate proportions.
- the timing of addition of the additive is not particularly limited.
- the additive may be added in advance to either or both of the aliphatic polyisocyanate (A) and the polyol (B). You may add simultaneously with a mixing
- Such a polyurethane gel contains a polyurethane which is a reaction product of an aliphatic polyisocyanate (A) and a polyol (B), and a plasticizer (C). Due to the higher-order structure (three-dimensional network) of the polyurethane, It has high viscosity and loses fluidity when the plasticizer (C) is encapsulated in polyurethane, so that the entire system is solid.
- the shear modulus at 25 ° C. of the polyurethane gel is 1 ⁇ 10 3 to 1 ⁇ 10 7 Pa.
- the shear modulus is measured by a solid viscoelasticity measuring device.
- Such a polyurethane gel has a high-order structure of polyurethane (three-dimensional network) formed by a reaction between an aliphatic polyisocyanate (A) having a specific average functional group number and a polyol (B) having a specific average functional group number. ) Includes a plasticizer (C) having an ester group in a specific ratio. Thereby, the plasticizer (C) is moderately bleed without being completely trapped in the three-dimensional network and without being excessively bleed. As a result, the polyurethane gel can achieve both moisture feeling and dimensional stability.
- the above-mentioned polyurethane gel is obtained from the above-mentioned polyurethane gel material, it has a moist feeling and dimensional stability and is excellent in curability, mechanical properties and hardness.
- the size of the polyurethane gel is set according to the type of the mold used, and the thickness is, for example, 0.03 mm or more, preferably 0.05 mm or more, for example, 500 mm or less, preferably 400 mm or less.
- the bleedability (degree of bleed) of the polyurethane gel is evaluated by, for example, the weight change rate (weight reduction rate) before and after the durability test.
- the weight change rate (weight reduction rate) is obtained by the following formula before and after the durability test under the following conditions.
- Durability test After leaving at 80 ° C. for 5 days, further leave at 23 ° C. and 55% relative humidity for 1 day.
- Weight change rate [(weight W before endurance test 1 ⁇ weight W2 after endurance test) / (weight W1 before endurance test)] ⁇ 100
- the weight change rate (weight reduction rate) of the polyurethane gel is, for example, 0.1% or more, preferably 0.5% or more, more preferably 1% or more, still more preferably 1.5% or more, particularly preferably. Is 2% or more, for example, 7% or less, preferably 6% or less, more preferably 5% or less, and further preferably 4% or less.
- the dimensional stability of the polyurethane gel is, for example, 0% or more, preferably 0.1% or more, more preferably 0.2% or more, and further preferably 0.5% or more, for example, 8% or less. Preferably, it is 6% or less, more preferably 4% or less, further preferably 3% or less, further preferably 2% or less, and particularly preferably 1% or less.
- the polyurethane gel can be coated on a substrate such as leather, artificial or synthetic leather, non-woven fabric, felt, sheet or film.
- the polyurethane gel is an ultra-low hardness polyurethane elastomer, and its Asker C hardness (JIS K 7312 (1996)) is, for example, 0 or more, for example, 40 or less, preferably 30 or less. More preferably, it is 20 or less, More preferably, it is 15 or less, More preferably, it is 12 or less, Most preferably, it is 10 or less.
- Asker C hardness JIS K 7312 (1996)
- Asker C hardness is in the above range, particularly 40 or less, it can be particularly suitably used as a gel having a touch, elasticity and flexibility close to human skin.
- such a polyurethane gel can be further used by being encapsulated in a fabric such as cotton, silk, synthetic fiber, natural leather, synthetic leather, paper, non-woven fabric, resin film, flexible foam or the like.
- Such polyurethane gels are vibration-proof / vibration-isolating members, shock-absorbing members, shock-absorbing members, surface-protecting members, cushion materials, elbow pads, arm pads, switches, robot members, robot skins, mannequins, and mobility members. , Putts, clothing materials, aircraft materials, cosmetics, medical equipment, diapers and anti-flooring materials, nursing / clothing products, wearable materials, frame and other eyewear, eyewear ear / nose pads, earphones, headphones, grips, etc.
- Suitable for use as protective members such as sports members, toys, playground equipment, helmets, furniture, flexible sensors, sheets, flexible rods, nonwoven fabrics, composites with felts, shoe soles, anti-scratch shoes, actuators, pseudo-biological materials, etc.
- it can be suitably used as a pseudo-biomaterial.
- the polyurethane gel of the present invention has various organs and various organs constituting the human body, and has a tactile sensation, elasticity and flexibility close to the tissues constituting them, as a pseudo-biological material in the medical field, the healthcare field, etc. Preferably used.
- the pseudo-biomaterial composed of the polyurethane gel constitutes a skeletal system, cartilage and joints, muscular system, muscles, skeletal muscle, smooth muscle and myocardium, circulatory system, Heart and blood vessels, respiratory system, upper respiratory tract, lower respiratory tract and lungs, sensory organs, skin, ears and nasal fin, digestive system, oral cavity, pharynx, esophagus, stomach, small intestine, large intestine , Anal canal, anus, digestive gland, liver, gallbladder and pancreas, urinary system, kidney, renal pelvis, ureter, bladder and urethra, genital system, testis, prostate, seminal vesicle, penis, ovary, egg Duct, uterus and vagina, endocrine system, hypothalamus, pituitary gland, thyroid, parathyroid, adrenal gland, pancreas, testis and ovary, nervous system, brain, spinal cord, cerebrospinal nerve and autonomic nerve Formed as
- pseudo-biological models for practicing various medical operations For example, pseudo-biological models for practicing various examinations (ultrasound examination, CT scan, etc.), pseudo-biological models for telemedicine and medical care, wearable devices and terminal devices in the healthcare field
- it is suitably used as an exhibition sample, educational equipment, toys and the like.
- Conversion rate of isocyanate group 100 ⁇ (isocyanate group concentration in reaction mixture after completion of reaction / isocyanate group concentration in reaction solution before reaction ⁇ 100) ⁇ Isocyanate monomer concentration (unit: mass%)> Using pentamethylene diisocyanate or commercially available hexamethylene diisocyanate prepared in the same manner as in Example 1 in the specification of WO 2012/121291 as a standard substance, labeling with dibenzylamine, and the following HPLC measurement conditions The concentration of unreacted isocyanate monomer (pentamethylene diisocyanate monomer or hexamethylene diisocyanate monomer) was calculated from a calibration curve created from the area values of the chromatogram obtained below.
- Average number of isocyanate groups A / B ⁇ C / 42.02 (In the formula, A represents the isocyanate group concentration, B represents the solid content concentration, and C represents the number average molecular weight.)
- Calibration curve Standard polyethylene oxide in the range of 106-22450 (manufactured by Tosoh, trade name: TSK standard polyethylene oxide) ⁇ Average number of hydroxyl groups (average number of functional groups)> The hydroxyl value was defined as the number of mg of potassium hydroxide corresponding to the
- the obtained reaction mixture was passed through a thin-film distillation apparatus (temperature: 150 ° C., vacuum: 0.093 kPa) to remove unreacted pentamethylene diisocyanate monomer, and further to 100 parts by mass of the obtained filtrate. Then, 0.02 parts by mass of o-toluenesulfonamide and 0.003 parts by mass of benzoyl chloride were added to obtain an alcohol-modified isocyanurate derivative of PDI. This was designated as isocyanate (a-1).
- the average number of isocyanate groups of the isocyanate (a-1) was 2.8, the isocyanate monomer concentration was 0.4% by mass, the isocyanate group concentration was 23.4% by mass, and the viscosity at 25 ° C. was 950 mPa ⁇ s.
- the obtained reaction mixture was passed through a thin-film distillation apparatus (temperature: 150 ° C., vacuum: 0.093 kPa) to remove unreacted pentamethylene diisocyanate monomer, and further to 100 parts by mass of the obtained filtrate. Then, 0.02 parts by mass of o-toluenesulfonamide and 0.003 parts by mass of benzoyl chloride were added to obtain an alcohol-modified isocyanurate derivative of PDI. This was designated as isocyanate (a-2).
- the average number of isocyanate groups of the isocyanate (a-2) was 3.1, the isocyanate monomer concentration was 0.5% by mass, the isocyanate group concentration was 24.7% by mass, and the viscosity at 25 ° C. was 2000 mPa ⁇ s.
- the isocyanate group concentration was measured, and the reaction was continued until the concentration reached 49.0% by mass (that is, the conversion rate was 10% by mass).
- a predetermined conversion rate conversion rate: 10% by mass
- 0.12 parts by mass of o-toluenesulfonamide was added.
- the obtained reaction mixture was passed through a thin-film distillation apparatus (temperature: 150 ° C., vacuum: 0.093 kPa) to remove unreacted pentamethylene diisocyanate monomer, and further to 100 parts by mass of the obtained filtrate.
- the average number of isocyanate groups in the isocyanate (a-3) was 3.2, the isocyanate monomer concentration was 0.5% by mass, the isocyanate group concentration was 24.9% by mass, and the viscosity at 25 ° C. was 2800 mPa ⁇ s.
- the obtained reaction mixture was passed through a thin-film distillation apparatus (temperature: 150 ° C., vacuum: 0.093 kPa) to remove unreacted pentamethylene diisocyanate monomer, and further to 100 parts by mass of the obtained filtrate. Then, 0.02 parts by mass of o-toluenesulfonamide and 0.003 parts by mass of benzoyl chloride were added to obtain an alcohol-modified isocyanurate derivative of PDI. This was designated as isocyanate (a-4).
- the average number of isocyanate groups of the isocyanate (a-4) was 3.8, the isocyanate monomer concentration was 0.5% by mass, the isocyanate group concentration was 23.1% by mass, and the viscosity at 25 ° C. was 9000 mPa ⁇ s.
- reaction solution was passed through a thin-film distillation apparatus (vacuum degree 0.093 KPa, temperature 150 ° C.) to remove unreacted pentamethylene diisocyanate. Furthermore, 100 parts by mass of the obtained filtrate was subjected to o -Toluenesulfonamide was added in an amount of 0.02 parts by mass to obtain an allophanate derivative of PDI. This was designated as isocyanate (a-5).
- the average number of isocyanate groups in the isocyanate (a-5) is 2.0, the isocyanate group concentration is 20.4% by mass, the viscosity at 25 ° C. is 24 mPa ⁇ s, and the isocyanate monomer concentration is 0.2 mass. %Met.
- Preparation Example 6 (Isocyanate (a-6) (HDI Alcohol-Modified Isocyanurate Derivative)) An alcohol-modified isocyanurate derivative of HDI was obtained in the same manner as in Preparation Example 1, except that PDI was changed to hexamethylene diisocyanate (trade name: Takenate 700 (hereinafter referred to as HDI) manufactured by Mitsui Chemicals, Inc.). This was designated as isocyanate (a-6).
- the average number of isocyanate groups of the isocyanate (a-6) was 2.9, the isocyanate monomer concentration was 0.5% by mass, the isocyanate group concentration was 22.1% by mass, and the viscosity at 25 ° C. was 840 mPa ⁇ s.
- Preparation Example 7 (Isocyanate (a-7) (PDI Polyol Derivative (TMP Modified)) 200 parts by mass of PDI was charged into a four-necked flask equipped with a stirrer, thermometer, reflux tube, and nitrogen introduction tube, and the temperature was raised to 95 ° C. with stirring in a nitrogen atmosphere. Next, 21.1 parts by mass of trimethylolpropane (hereinafter referred to as TMP) was charged into the dropping funnel and heated by a ribbon heater.
- TMP trimethylolpropane
- the average number of isocyanate groups in the isocyanate (a-7) was 3.7, the isocyanate group concentration was 13.8% by mass, 3.7, and the viscosity at 25 ° C. was 450 mPa ⁇ s.
- PPG polyether polyol
- PPG polyether polyol
- Preparation Example 2-1 (Polyol (b-2-1)) A polyol (b-1) having a number average molecular weight of 1000 and a polyol (b-2) having a number average molecular weight of 2000 are mixed so as to be 1: 1 (b-1: b-2 (mass ratio)). Polyol (b-2-1) was obtained as a mixture.
- the number average molecular weight of the polyol (b-2-1) was about 1300 (1335), the average number of functional groups was 2, and the hydroxyl value was 84 mgKOH / g.
- PPG polyether polyol
- PPG polyether polyol
- Preparation Example 6 Polyol (b-6)
- Polytetramethylene ether glycol having a number average molecular weight of 1000 (PTMEG, manufactured by Hodogaya Chemical Co., Ltd., trade name: PTG-1000, hydroxyl value 112 mgKOH / g, average functional group number 2) was designated as polyol (b-6).
- Plasticizer (c) Preparation Example 11 (Plasticizer (c-1)) Diisononylcyclohexane-1,2-dicarboxylate (manufactured by BASF, trade name: Hexamol DINCH, boiling point 394 ° C.) was used as the plasticizer (c-1).
- Preparation Example 12 (Plasticizer (c-2)) Diisononyl adipate (trade name: DINA, boiling point 250 ° C., manufactured by Mitsubishi Chemical Corporation) was used as the plasticizer (c-2).
- the mixed solution was poured into the following mold pre-coated with Teflon (registered trademark) and temperature-controlled at 80 ° C. Poured and reacted at 80 ° C. for 2 hours to obtain a urethane gel.
- Teflon registered trademark
- Examples 2 to 14 and Comparative Examples 1 to 9 A polyurethane gel was obtained in the same manner as in Example 1 except that the formulation shown in Tables 1 to 3 was changed.
- the polyurethane gel material has fluidity and cannot retain its shape after demolding.
- the polyurethane gel material has fluidity and can retain its shape after demolding.
- ⁇ Moisture> The moist feeling of the polyurethane gel obtained with the block mold was evaluated visually and by finger.
- the evaluation criteria are as follows. X: The surface of the polyurethane gel is dry, and no liquid adheres to the finger when touched. ⁇ : The surface of the polyurethane gel is dry, and when touched, the liquid adheres to the finger. ⁇ : The surface of the polyurethane gel is moist, and when touched, the liquid adheres to the finger.
- the sample was sandwiched between filter papers (FILTER PAPER No. 5C manufactured by ADVANTEC) and treated in an oven at 80 ° C. for 5 days, then left in a room at 23 ° C. and 55% relative humidity for 1 day, and the surface was further filtered. After thoroughly wiping, the weight was measured again (W2).
- filter papers FILTER PAPER No. 5C manufactured by ADVANTEC
- the sample was sandwiched between filter papers (FILTER PAPER No. 5C manufactured by ADVANTEC) and treated in an oven at 80 ° C. for 5 days, then left in a room at 23 ° C. and 55% relative humidity for 1 day, and the surface was further filtered. After wiping well, the length (dimension) of the width was measured again (L2).
- filter papers FILTER PAPER No. 5C manufactured by ADVANTEC
- Dimensional change rate (%) [(Dimension L before endurance test 1 ⁇ Dimension L2 after endurance test) / (Dimension L1 before endurance test)] ⁇ 100 ⁇ Asker C hardness of polyurethane gel>
- the Asker C hardness of the polyurethane gel obtained with the block mold was measured by a type C hardness test of JIS K 7312 (1996).
- the polyurethane gel material, polyurethane gel, pseudo-biomaterial, and polyurethane gel production method of the present invention are suitably used in the field of pseudo-biomaterials such as the medical field and the healthcare field.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
Description
・耐久試験:80℃で5日静置した後、さらに、23℃相対湿度55%で1日静置する。
・重量変化率[(耐久試験前の重量W1-耐久試験後の重量W2)/(耐久試験前の重量W1)]×100
本発明[9]は、上記[6]~[8]のいずれか一項に記載のポリウレタンゲルからなる、疑似生体材料を含んでいる。
・耐久試験:80℃で5日静置した後、さらに、23℃相対湿度55%で1日静置する。
・重量変化率[(耐久試験前の重量W1-耐久試験後の重量W2)/(耐久試験前の重量W1)]×100
ポリウレタンゲルの重量変化率(重量減少率)は、例えば、0.1%以上、好ましくは、0.5%以上、より好ましくは、1%以上、さらに好ましくは、1.5%以上、とりわけ好ましくは、2%以上であり、例えば、7%以下、好ましくは、6%以下、より好ましくは、5%以下、さらに好ましくは、4%以下である。
・耐久試験:80℃で5日静置した後、さらに、23℃相対湿度55%で1日静置する。
・寸法変化率(%)=[(耐久試験前の寸法L1-耐久試験後の寸法L2)/(耐久試験前の寸法L1)]×100
ポリウレタンゲルの寸法安定性は、例えば、0%以上、好ましくは、0.1%以上より好ましくは、0.2%以上、さらに好ましくは、0.5%以上であり、例えば、8%以下、好ましくは、6%以下、より好ましくは、4%以下、さらに好ましくは、3%以下、さらに好ましくは、2%以下、とりわけ好ましくは、1%以下である。
<イソシアネート基濃度(単位:質量%)、イソシアネート基の転化率(単位:質量%)>
電位差滴定装置(京都電子工業社製、型番:AT-510)を用いて、JIS K-1603-1(2007年)に準拠したトルエン/ジブチルアミン・塩酸法によりイソシアネート基濃度(イソシアネート基含有率)を測定し、以下の式により、測定試料のイソシアネート基の転化率を算出した。
<イソシアネートモノマー濃度(単位:質量%)>
国際公開第2012/121291号パンフレットの明細書における実施例1と同様にして製造されたペンタメチレンジイソシアネートまたは市販のヘキサメチレンジイソシアネートを標準物質として用い、ジベンジルアミンによりラベル化させ、以下のHPLC測定条件下で得られたクロマトグラムの面積値から作成した検量線により、未反応のイソシアネートモノマー(ペンタメチレンジイソシアネートモノマーまたはヘキサメチレンジイソシアネートモノマー)の濃度を算出した。
ポンプ LC-20AT
デガッサ DGU-20A3
オートサンプラ SIL-20A
カラム恒温槽 COT-20A
検出器 SPD-20A
カラム;SHISEIDO SILICA SG-120
カラム温度;40℃
溶離液;n-ヘキサン/メタノール/1,2-ジクロロエタン=90/5/5(体積比)
流量;0.2mL/min
検出方法;UV 225nm
<粘度(単位:mPa・s)>
東機産業社製のE型粘度計TV-30(ローター角度:1°34’、ローター半径:24cm)を用いて、JIS K5600-2-3(2014年)のコーンプレート粘度計法に準拠して、25℃で測定試料の粘度を測定した。測定時のコーンプレートの回転数は、粘度が高くなるのに合わせて、100rpmから2.5rpmまでの間で順次変更した。
下記の装置および条件にて1H-NMRを測定し、脂肪族ポリイソシアネートにおける、イソシアヌレート基1モルに対するアロファネート基の含有割合(アロファネート基/イソシアヌレート基のモル比率)を以下の式により算出した。なお、化学シフトppmの基準として、D6-DMSO溶媒中のテトラメチルシラン(0ppm)を用いた。
装置; JNM-AL400(JEOL製)
条件; 測定周波数:400MHz、溶媒:D6-DMSO、溶質濃度:5質量%
イソシアヌレート基(イソシアヌレート基に直接結合するメチレン基(CH2基))のプロトンの帰属ピーク(6H):3.8ppm
アロファネート基(アロファネート基内のNH基)のプロトンの帰属ピーク(1H):8.3~8.7ppm
アロファネート基/イソシアヌレート基(モル比率)=アロファネート基のプロトンの帰属ピークの積分値/(イソシアヌレート基のプロトンの帰属ピークの積分値/6)
<平均イソシアネート基数(平均官能基数)>
脂肪族ポリイソシアネートの平均イソシアネート基数を、イソシアネート基濃度、固形分濃度(NV)、および、以下の装置および条件にて測定されるゲルパーミエーションクロマトグラフィーの数平均分子量から、下記式により算出した。
(式中、Aは、イソシアネート基濃度を示し、Bは、固形分濃度を示し、Cは、数平均分子量を示す。)
装置:HLC-8220GPC(東ソー製)
カラム:TSKgelG1000HXL、TSKgelG2000HXL、およびTSKgelG3000HXL(東ソー製)を直列連結
検出器: 示差屈折率計
測定条件
注入量:100μL
溶離液:テトラヒドロフラン
流量:0.8mL/min
温度:40℃
検量線:106~22450の範囲の標準ポリエチレンオキシド(東ソー製、商品名:TSK標準ポリエチレンオキシド)
<平均水酸基数(平均官能基数)>
水酸基価を、ポリオキシアルキレンポリオール1g中の水酸基に相当する水酸化カリウムのmg数と定義した。そして、JIS K1557(2007年)6.4項「水酸基価」に従って、ポリオールの水酸基価を測定した。
(1)脂肪族ポリイソシアネート(A)
調製例1(イソシアネート(a-1)(PDIのアルコール変性イソシアヌレート誘導体))
温度計、撹拌装置、還流管、および、窒素導入管を備えた4つ口フラスコに、国際公開第2012/121291号パンフレットの明細書における実施例1と同様にして製造されたペンタメチレンジイソシアネート(以下、PDIとする。)を500質量部、イソブチルアルコールを6.9質量部、2,6-ジ(tert-ブチル)-4-メチルフェノールを0.3質量部、トリス(トリデシル)ホスファイトを0.3質量部、それぞれ、装入し、80℃で2時間反応させた。
温度計、撹拌装置、還流管、および、窒素導入管を備えた4つ口フラスコに、PDIを500質量部、イソブチルアルコールを0.5質量部、2,6-ジ(tert-ブチル)-4-メチルフェノールを0.3質量部、トリス(トリデシル)ホスファイトを0.3質量部、それぞれ、装入し、80℃で2時間反応させた。
温度計、撹拌装置、還流管、および、窒素導入管を備えた4つ口フラスコに、PDIを500質量部、2,6-ジ(tert-ブチル)-4-メチルフェノールを0.3質量部、トリス(トリデシル)ホスファイトを0.3質量部、それぞれ、装入し、80℃に加温した。次いで、イソシアヌレート化触媒としてN-(2-ヒドロキシプロピル)-N,N,N-トリメチルアンモニウム-2-エチルヘキサノエートを0.05質量部配合した。
イソシアネート基濃度を測定し、その濃度が49.0質量%(すなわち、転化率10質量%)に至るまで反応を継続した。50分後に所定の転化率(転化率10質量%)に達したところで、o-トルエンスルホンアミドを0.12質量部添加した。得られた反応混合液を薄膜蒸留装置(温度:150℃、真空度:0.093kPa)に通液して未反応のペンタメチレンジイソシアネートモノマーを除去し、さらに、得られたろ物100質量部に対し、o-トルエンスルホンアミドを0.02質量部および塩化ベンゾイルを0.003質量部添加し、PDIのイソシアヌレート誘導体を得た。これを、イソシアネート(a-3)とした。
温度計、撹拌装置、還流管、および、窒素導入管を備えた4つ口フラスコに、PDIを500質量部、イソブチルアルコールを0.5質量部、2,6-ジ(tert-ブチル)-4-メチルフェノールを0.3質量部、トリス(トリデシル)ホスファイトを0.3質量部、それぞれ、装入し、80℃で2時間反応させた。
温度計、撹拌装置、窒素導入管および冷却管が装着された反応機において、窒素雰囲気下、PDIを1500質量部、イソブタノールを24質量部、2,6-ジ(t-ブチル)-4-メチルフェノールを0.3質量部、トリス(トリデシル)ホスファイトを0.3質量部装入し、85℃で3時間ウレタン化反応させた。
PDIをヘキサメチレンジイソシアネート(三井化学社製、商品名:タケネート700(以下、HDIとする。))に変更した以外は、調製例1と同じ方法で、HDIのアルコール変性イソシアヌレート誘導体を得た。これを、イソシアネート(a-6)とした。
撹拌機、温度計、還流管、および、窒素導入管を備えた4つ口フラスコに、PDIを200質量部装入し、窒素雰囲気下、撹拌しながら95℃まで昇温した。次いで滴下ロートにトリメチロールプロパン(以下、TMPとする。)を21.1質量部仕込み、リボンヒーターにより加熱した。
準備例1(ポリオール(b-1))
ポリオキシプロピレングリコール(プロピレングリコールにプロピレンオキサイドを付加重合したポリエーテルポリオール(PPG)、数平均分子量(Mn)=1000、平均官能基数2、水酸基価112mgKOH/g)を、ポリオール(b-1)とした。
ポリオキシプロピレングリコール(プロピレングリコールにプロピレンオキサイドを付加重合したポリエーテルポリオール(PPG)、数平均分子量(Mn)=2000、平均官能基数2、水酸基価56mgKOH/g)を、ポリオール(b-2)とした。
数平均分子量1000のポリオール(b-1)と、数平均分子量2000のポリオール(b-2)とを、1:1(b-1:b-2(質量比))となるように混合し、混合物として、ポリオール(b-2-1)を得た。ポリオール(b-2-1)の数平均分子量は約1300(1335)、平均官能基数2、水酸基価84mgKOH/gであった。
ポリオキシプロピレングリコール(プロピレングリコールにプロピレンオキサイドを付加重合したポリエーテルポリオール(PPG)、数平均分子量(Mn)=700、平均官能基数2、水酸基価160mgKOH/g)を、ポリオール(b-3)とした。
ポリオキシプロピレングリコール(プロピレングリコールにプロピレンオキサイドを付加重合したポリエーテルポリオール(PPG)、数平均分子量(Mn)=400、平均官能基数2、水酸基価281mgKOH/g)を、ポリオール(b-4)とした。
ポリオキシプロピレントリオール(グリセリンにプロピレンオキサイドを付加重合したポリエーテルポリオール(PPT)、数平均分子量(Mn)=1000、平均官能基数3、水酸基価168mgKOH/g)を、ポリオール(b-5)とした。
数平均分子量1000のポリテトラメチレンエーテルグリコール(PTMEG、保土谷化学社製、商品名:PTG―1000、水酸基価112mgKOH/g、平均官能基数2)を、ポリオール(b-6)とした。
準備例11(可塑剤(c-1))
ジイソノニルシクロヘキサン-1,2-ジカルボキシレート(BASF社製、商品名:Hexamol DINCH、沸点394℃)を、可塑剤(c-1)とした。
ジイソノニルアジペート(三菱ケミカル社製、商品名:DINA、沸点250℃)を、可塑剤(c-2)とした。
ジ-(2-エチルヘキシル)フタレート(三菱ケミカル社製、商品名:DOP、沸点386℃)を、可塑剤(c-3)とした。
クロロパラフィン(SIGMA-ALDRICH社製、商品名:Chloroparaffin)を、可塑剤(c-4)とした。
(4)触媒(d)
東京化成工業社製、試薬 ジブチルチンジラウレート
(5)消泡剤(e)
ビックケミー・ジャパン社製、商品名:BYK-088
3.ポリウレタンゲルの製造
実施例1
表1に示す質量割合で、イソシアネート(a-1)と、ポリオール(b-1)と、可塑剤(c-1)とを準備し、ポリウレタンゲル材料を得た(準備工程)。
・5cm×5cm×高さ15mmの角ブロック金型
・直径29mm×高さ13mmの円柱状金型
このポリウレタンゲルを23℃、相対湿度55%の室内で7日間静置した後、各種物性測定に供した。
表1~表3に示す処方に変更した以外は、実施例1と同じ方法で、ポリウレタンゲルを得た。
<ポリウレタンゲルの硬化性>
ブロック金型にポリウレタンゲル材料の混合液を流し込み、80℃にて2時間反応させた。その後のポリウレタンゲル材料の流動性を確認し、ポリウレタンゲルの硬化性を評価した。評価の基準を下記する。
2mmシート金型で作成したポリウレタンゲルを、3号形試験片形状に打抜いて測定試料を作製した。測定試料に対して、引張圧縮試験機(インテスコ社製、Model205N)を用いて、JIS K-6400(2012年)に従って引張試験し、破断時における伸びを算出した。
ブロック金型で得られたポリウレタンゲルの潤い感を、目視および触指により評価した。評価基準を下記する。
×:ポリウレタンゲルの表面は乾いており、触ると指に液体が付着しない。
△:ポリウレタンゲルの表面は乾いており、触ると指に液体が付着する。
○:ポリウレタンゲルの表面は潤っており、触ると指に液体が付着する。
円柱状金型で得られたポリウレタンゲルを、円柱状試験片に打ち抜いて測定試料を作製し、重量を測定した(W1)。
ブロック金型で得られたポリウレタンゲルの幅の高さ(寸法)を測定した(L1)。
<ポリウレタンゲルのアスカーC硬度>
ブロック金型で得られたポリウレタンゲルのアスカーC硬度を、JIS K 7312(1996年)のタイプC硬さ試験により測定した。
Claims (10)
- 平均官能基数2.3以上3.2以下の脂肪族ポリイソシアネート(A)と、
平均官能基数2.0以上2.3以下のポリオール(B)と、
エステル基を含有する可塑剤(C)と
を含有するポリウレタンゲル材料であって、
前記脂肪族ポリイソシアネート(A)は、脂肪族ジイソシアネートのイソシアヌレート誘導体、および/または、脂肪族ジイソシアネートのアルコール変性イソシアヌレート誘導体を含み、
前記ポリオール(B)は、ポリオキシプロピレンポリオール、および/または、ポリテトラメチレンエーテルグリコールを含み、
前記ポリオール(B)の平均水酸基価が73mgKOH/g以上200mgKOH/g以下であり、
前記可塑剤(C)の割合が、前記ポリオール成分(B)100質量部に対して、100質量部以上500質量部以下である
ことを特徴とする、ポリウレタンゲル材料。 - 前記ポリオール(B)の平均官能基数が、2.0である
ことを特徴とする、請求項1に記載のポリウレタンゲル材料。 - 前記脂肪族ポリイソシアネート(A)の平均官能基数が2.3以上3.0以下である
ことを特徴とする、請求項1に記載のポリウレタンゲル材料。 - 前記脂肪族ジイソシアネートが、ペンタメチレンジイソシアネートおよび/またはヘキサメチレンジイソシアネートを含む
ことを特徴とする、請求項1に記載のポリウレタンゲル材料。 - 前記可塑剤(C)が、シクロヘキサンジカルボン酸エステル類および/またはアジピン酸エステル類である
ことを特徴とする、請求項1に記載のポリウレタンゲル材料。 - 請求項1に記載のポリウレタンゲル材料の反応生成物である
ことを特徴とする、ポリウレタンゲル。 - 前記ポリウレタンゲル材料において、
ポリオール(B)中の水酸基に対する脂肪族ポリイソシアネート(A)中のイソシアネート基の当量比(NCO/水酸基)が、0.8以上1.2以下である
ことを特徴とする、請求項6に記載のポリウレタンゲル。 - 下記条件の耐久試験前後において、下記式で求められる重量変化率が、0.1%以上7%以下である
ことを特徴とする、請求項6に記載のポリウレタンゲル。
・耐久試験:80℃で5日静置した後、さらに、23℃相対湿度55%で1日静置する。
・重量変化率[(耐久試験前の重量W1-耐久試験後の重量W2)/(耐久試験前の重量W1)]×100 - 請求項6に記載のポリウレタンゲルからなることを特徴とする、疑似生体材料。
- 請求項1に記載のポリウレタンゲル材料を準備する準備工程と、
前記ポリウレタンゲル材料を反応および硬化させ、ポリウレタンゲルを得る反応工程とを備え、
前記反応工程において、
ポリオール(B)中の水酸基に対する脂肪族ポリイソシアネート(A)中のイソシアネート基の当量比(NCO/水酸基)が、0.8以上1.2以下である
ことを特徴とする、ポリウレタンゲルの製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/045,017 US20210139636A1 (en) | 2018-04-05 | 2019-04-02 | Polyurethane gel material, polyurethane gel, pseudo-biomaterial, and producing method of polyurethane gel |
JP2020512252A JP6941227B2 (ja) | 2018-04-05 | 2019-04-02 | ポリウレタンゲル材料、ポリウレタンゲル、疑似生体材料、および、ポリウレタンゲルの製造方法 |
SG11202009563QA SG11202009563QA (en) | 2018-04-05 | 2019-04-02 | Polyurethane gel material, polyurethane gel, pseudo-biomaterial, and producing method of polyurethane gel |
EP19781145.8A EP3778689A4 (en) | 2018-04-05 | 2019-04-02 | Polyurethane gel material, polyurethane gel, pseudo-biological material, and production method for polyurethane gel |
CN201980022222.4A CN111902451A (zh) | 2018-04-05 | 2019-04-02 | 聚氨酯凝胶材料、聚氨酯凝胶、仿生材料以及聚氨酯凝胶的制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-073416 | 2018-04-05 | ||
JP2018073416 | 2018-04-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019194161A1 true WO2019194161A1 (ja) | 2019-10-10 |
Family
ID=68100495
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/014588 WO2019194161A1 (ja) | 2018-04-05 | 2019-04-02 | ポリウレタンゲル材料、ポリウレタンゲル、疑似生体材料、および、ポリウレタンゲルの製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20210139636A1 (ja) |
EP (1) | EP3778689A4 (ja) |
JP (1) | JP6941227B2 (ja) |
CN (1) | CN111902451A (ja) |
SG (1) | SG11202009563QA (ja) |
WO (1) | WO2019194161A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022215729A1 (ja) * | 2021-04-09 | 2022-10-13 | 三井化学株式会社 | 緩衝材 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114456579B (zh) * | 2022-02-09 | 2022-12-13 | 中国科学院兰州化学物理研究所 | 一种高强度共晶凝胶及其制备方法和应用、应变传感器 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012121291A1 (ja) | 2011-03-09 | 2012-09-13 | 三井化学株式会社 | ペンタメチレンジイソシアネート、ペンタメチレンジイソシアネートの製造方法、ポリイソシアネート組成物、ポリウレタン樹脂およびポリウレア樹脂 |
JP2013067757A (ja) * | 2011-09-26 | 2013-04-18 | Dic Corp | ウレタン樹脂用可塑剤、それを用いたウレタン樹脂用組成物及びその硬化物 |
WO2016190131A1 (ja) * | 2015-05-26 | 2016-12-01 | バンドー化学株式会社 | ウレタン組成物、ポリウレタン弾性体、及び、伝動ベルト |
WO2017010422A1 (ja) | 2015-07-10 | 2017-01-19 | 三井化学株式会社 | ポリウレタンゲルおよびその製造方法 |
JP2018090662A (ja) * | 2016-11-30 | 2018-06-14 | 三井化学株式会社 | ポリウレタンゲルおよびその製造方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4666968A (en) * | 1985-03-19 | 1987-05-19 | Caschem, Inc. | Ester plasticizers for polyarethane compositions |
CA1285347C (en) * | 1985-03-19 | 1991-06-25 | Melvin Brauer | Grease compatible extended polyurethanes |
US4666969A (en) * | 1985-03-19 | 1987-05-19 | Caschem, Inc. | Ricinoleate plasticizers for polyurethane compositions |
US6508898B1 (en) * | 1999-09-02 | 2003-01-21 | Arnco | Heat stable self-sealing tire liner |
WO2003102077A1 (fr) * | 2002-05-31 | 2003-12-11 | Asahi Denka Co., Ltd. | Composition de sol acrylique |
EP2179749B1 (de) * | 2008-10-23 | 2012-08-08 | Paul Hartmann AG | Polyurethangelschäume |
CN102827344B (zh) * | 2012-09-05 | 2013-12-18 | 哈尔滨工程大学 | 一种聚氨酯弹性体凝胶及其制备方法 |
EP2716673B1 (de) * | 2012-10-04 | 2016-04-06 | Evonik Degussa GmbH | Formteile auf Basis von Reaktionsprodukten aus Polyolen und Isocyanaten |
JP6292846B2 (ja) * | 2013-11-29 | 2018-03-14 | キヤノン株式会社 | 音響波診断装置に用いられるファントム |
KR101991605B1 (ko) * | 2015-05-08 | 2019-06-20 | 미쓰이 가가쿠 가부시키가이샤 | 폴리아이소사이아네이트 조성물, 폴리유레테인 수지 및 도료 |
US11466185B2 (en) * | 2015-05-08 | 2022-10-11 | Bando Chemical Industries, Ltd. | Optical transparent adhesive sheet, method for producing optical transparent adhesive sheet, laminate and display device with touch panel |
JP2018013607A (ja) * | 2016-07-21 | 2018-01-25 | 京セラドキュメントソリューションズ株式会社 | 画像形成装置 |
-
2019
- 2019-04-02 US US17/045,017 patent/US20210139636A1/en not_active Abandoned
- 2019-04-02 JP JP2020512252A patent/JP6941227B2/ja active Active
- 2019-04-02 WO PCT/JP2019/014588 patent/WO2019194161A1/ja active Application Filing
- 2019-04-02 CN CN201980022222.4A patent/CN111902451A/zh active Pending
- 2019-04-02 EP EP19781145.8A patent/EP3778689A4/en not_active Withdrawn
- 2019-04-02 SG SG11202009563QA patent/SG11202009563QA/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012121291A1 (ja) | 2011-03-09 | 2012-09-13 | 三井化学株式会社 | ペンタメチレンジイソシアネート、ペンタメチレンジイソシアネートの製造方法、ポリイソシアネート組成物、ポリウレタン樹脂およびポリウレア樹脂 |
JP2013067757A (ja) * | 2011-09-26 | 2013-04-18 | Dic Corp | ウレタン樹脂用可塑剤、それを用いたウレタン樹脂用組成物及びその硬化物 |
WO2016190131A1 (ja) * | 2015-05-26 | 2016-12-01 | バンドー化学株式会社 | ウレタン組成物、ポリウレタン弾性体、及び、伝動ベルト |
WO2017010422A1 (ja) | 2015-07-10 | 2017-01-19 | 三井化学株式会社 | ポリウレタンゲルおよびその製造方法 |
JP2018090662A (ja) * | 2016-11-30 | 2018-06-14 | 三井化学株式会社 | ポリウレタンゲルおよびその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3778689A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022215729A1 (ja) * | 2021-04-09 | 2022-10-13 | 三井化学株式会社 | 緩衝材 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019194161A1 (ja) | 2021-03-25 |
EP3778689A1 (en) | 2021-02-17 |
CN111902451A (zh) | 2020-11-06 |
SG11202009563QA (en) | 2020-10-29 |
EP3778689A4 (en) | 2021-12-29 |
JP6941227B2 (ja) | 2021-09-29 |
US20210139636A1 (en) | 2021-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6533577B2 (ja) | ポリウレタンゲルおよびその製造方法 | |
CN110066379B (zh) | 一种生物稳定性高的含氟含硅聚氨酯材料及其制备方法 | |
CA1335317C (en) | Fluorinated polyetherurethanes and medical devices therefrom | |
JP6854814B2 (ja) | 医療器具を形成するための熱可塑性ポリウレタン材料 | |
US11312815B2 (en) | Polyurethane resin, producing method of polyurethane resin, and molded article | |
JP6941227B2 (ja) | ポリウレタンゲル材料、ポリウレタンゲル、疑似生体材料、および、ポリウレタンゲルの製造方法 | |
WO2019069802A1 (ja) | ポリウレタン樹脂、成形品、および、ポリウレタン樹脂の製造方法 | |
JP6938771B2 (ja) | ポリウレタンゲル材料、ポリウレタンゲル、疑似生体材料、および、ポリウレタンゲルの製造方法 | |
JP2018090662A (ja) | ポリウレタンゲルおよびその製造方法 | |
JPH04164914A (ja) | 靴底用二液性気泡質ポリウレタンエラストマー組成物 | |
JP4664471B2 (ja) | ポリウレタン系樹脂組成物 | |
JP7425609B2 (ja) | ポリウレタン又はポリウレタンウレア、抗血栓性コーティング剤、抗血栓性医療用具、及び製造方法 | |
WO2023100827A1 (ja) | 医療機器 | |
CN117659409A (zh) | 含生物基的聚醚改性聚硅氧烷及其制备方法、泡沫稳定剂和聚氨酯泡沫 | |
CN117777925A (zh) | 一种反应型聚氨酯软泡热熔胶 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19781145 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020512252 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2019781145 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2019781145 Country of ref document: EP Effective date: 20201105 |