WO2019193641A1 - 無線通信装置 - Google Patents

無線通信装置 Download PDF

Info

Publication number
WO2019193641A1
WO2019193641A1 PCT/JP2018/014170 JP2018014170W WO2019193641A1 WO 2019193641 A1 WO2019193641 A1 WO 2019193641A1 JP 2018014170 W JP2018014170 W JP 2018014170W WO 2019193641 A1 WO2019193641 A1 WO 2019193641A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
unit
frequency
inverse system
digital
Prior art date
Application number
PCT/JP2018/014170
Other languages
English (en)
French (fr)
Inventor
石岡 和明
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/014170 priority Critical patent/WO2019193641A1/ja
Publication of WO2019193641A1 publication Critical patent/WO2019193641A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits

Definitions

  • the present invention relates to a wireless communication apparatus including a quadrature modulator.
  • a baseband IQ (In-phase Quadrature) signal is defined, and the baseband IQ signal is up-converted by quadrature modulation.
  • quadrature modulation schemes such as 64QAM (Quadrature Amplitude Modulation).
  • Patent Document 1 a transmission signal in operation is input to a quadrature modulator of an analog circuit, a signal output from the quadrature modulator of the analog circuit is input to a digital quadrature detector, and a signal output from the digital quadrature detector A method of correcting the above with a digital circuit is disclosed.
  • the method described in Patent Document 1 uses the inverse system of the identified system to identify the characteristics of the quadrature modulator when the digital circuit corrects an error that occurs when the quadrature modulator of the analog circuit is used.
  • the IQ baseband signal is corrected.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a wireless communication apparatus that suppresses distortion due to the characteristics of a quadrature modulator.
  • a wireless communication device includes a calibration signal generation unit that generates a first signal in which a power spectrum on a frequency axis has a comb shape, A quadrature modulation unit that modulates one signal, an inverse system identification unit that identifies an inverse system of the quadrature modulation unit using the first signal, and correction of distortion generated in the quadrature modulation unit using the identified inverse system
  • a first signal is orthogonal to a signal obtained by inverting the frequency of the first signal.
  • the wireless communication apparatus has an effect that distortion due to the characteristics of the quadrature modulator can be suppressed.
  • wireless communication apparatus concerning embodiment The figure which shows the functional block of the calibration signal generation part concerning embodiment
  • the figure which shows the functional block of the orthogonal modulation part concerning embodiment The figure which shows the functional block of the digital quadrature demodulation part concerning embodiment
  • FIG. 1 is a diagram illustrating a wireless communication apparatus according to an embodiment.
  • the wireless communication apparatus 100 includes a calibration signal generation unit 1, a signal selection unit 2, a DA conversion unit 3a, a DA conversion unit 3b, an orthogonal modulation unit 4, an oscillation unit 5, a filter unit 6, and a digital orthogonal A demodulation unit 7, an inverse system identification unit 8, and an inverse system unit 9 are provided.
  • the wireless communication device 100 operates at the time of calibration, that is, when detecting the characteristic of the quadrature modulation unit 4 and correcting an error caused by the characteristic, and at the time of normal transmission, that is, when transmitting the transmission baseband signals I and Q. Is different.
  • the calibration signal generation unit 1 transmits calibration signals I and Q to the signal selection unit 2.
  • the calibration signals I and Q are also called first signals.
  • the signal selection unit 2 transmits the calibration signals I and Q to the DA conversion unit 3a and the DA conversion unit 3b, respectively.
  • the DA conversion unit 3a and the DA conversion unit 3b convert a digital calibration signal into an analog calibration signal.
  • the reason for having two DA converters is to express a spectrum which is positive and negative asymmetric between the I signal and the Q signal as a complex number.
  • the quadrature modulation unit 4 mixes the calibration signal I with the RF carrier sine wave oscillated by the oscillation unit 5.
  • the quadrature modulation unit 4 mixes the calibration signal Q and the RF carrier sine wave including the 90-degree phase offset oscillated by the oscillation unit 5.
  • the calibration signals I and Q are up-converted by the mixing of the quadrature modulation unit 4.
  • a signal generated by the oscillator 5 is also called a local signal.
  • the filter unit 6 performs frequency filtering on the up-converted calibration signals I and Q, removes unnecessary high frequency components higher than the threshold included in the calibration signals I and Q, and outputs an IF signal or an RF signal. Output.
  • the filter unit 6 is a BPF (Band Pass Filter). In the present embodiment, the threshold value is not particularly limited.
  • the digital quadrature demodulator 7 converts the IF signal or RF signal into digital baseband signals I and Q.
  • the inverse system identification unit 8 identifies the inverse system using the digital baseband signals I and Q.
  • the inverse system unit 9 corrects the distortion generated in the orthogonal modulation unit 4 by multiplying the baseband signals I and Q by the matrix indicating the inverse system calculated by the inverse system identification unit 8.
  • the inverse system unit 9 is also called a correction unit.
  • the inverse system unit 9 receives the transmission baseband signals I and Q.
  • the inverse system unit 9 adds an inverse characteristic that is an inverse characteristic of the characteristic of the orthogonal modulation unit 4 to the transmission baseband signals I and Q.
  • the signal selection unit 2 transmits the transmission baseband signals I and Q output from the inverse system unit 9 to the DA conversion units 3a and 3b, respectively.
  • the quadrature modulation unit 4 mixes and up-converts the outputs of the DA conversion units 3a and 3b and the output of the oscillation unit 5.
  • the filter unit 6 performs frequency filtering and outputs an IF signal or an RF signal.
  • the wireless communication apparatus 100 can perform transmission in which the distortion of the orthogonal modulation unit 4 is corrected during normal transmission.
  • FIG. 2 is a diagram illustrating functional blocks of the calibration signal generation unit 1 according to the embodiment.
  • the calibration signal generator 1 includes a base signal memory 11, a counter 12, a numerical controller 13, and a complex multiplier 14.
  • FIG. 3 is a diagram illustrating the power spectrum of the base signal stored in the base signal memory 11 according to the embodiment.
  • the base signal memory 11 stores a time domain signal of the frequency domain power spectrum shown in FIG. 3 as a base signal.
  • a signal for each subcarrier is represented by a complex number C m (m is an integer).
  • the base signal has power in all subcarriers.
  • the base signal memory 11 repeatedly outputs the base signal shown in FIG. 3 a times by sweeping the memory address from the counter 12. By repeatedly outputting the base signal a times, a spectrum of a intervals in terms of the number of subcarriers is obtained.
  • the numerical control unit 13 is also called an NCO (Numerical Controlled Oscillator).
  • the complex multiplier 14 offsets (shifts) the frequency, performs convolution in the frequency domain, and obtains the power spectrum of the calibration signal.
  • the base signal is preferably a signal having a small envelope variation such as a ZC (Zadoff Chu) series, but is not particularly limited as long as the frequency characteristic is a signal whose amplitude is not 0 for each subcarrier.
  • j represents an imaginary unit
  • F represents a signal sample rate F [Hz].
  • K is an integer of 1 or more and less than a / 2.
  • k is calculated by the following equation (3).
  • FIG. 4 is a diagram illustrating an example of a power spectrum output from the calibration signal generation unit 1 according to the embodiment.
  • the output of the calibration signal generation unit 1, sub-carrier interval is impulse-like spectrum of f s [Hz] interval.
  • the frequency f i [Hz] of each subcarrier is calculated as shown in Equation (2).
  • f i f s ⁇ i (2)
  • the sub-carrier interval between C 1 and C 5 is a 4f s.
  • i is an integer of ⁇ n to n, and the total number of subcarriers is 2n + 1.
  • subcarriers that satisfy Equation (3) have power.
  • a subcarrier that does not satisfy Equation (3) has no power and a value of zero.
  • i mod a k (3)
  • a is a constant.
  • a is an integer of 3 or more.
  • a signal for each subcarrier is represented by a complex number C m (m is an integer).
  • C m is an integer.
  • i a ⁇ m + k (4)
  • the calibration signal defined by Equation (2), Equation (3), and Equation (4) becomes a comb-shaped power spectrum on the frequency axis.
  • the calibration signal when the positive / negative frequency is inverted to offset the subcarrier frequency, the calibration signal always overlaps the 0 portion of the signal before the inversion. That is, the calibration signal has a power spectrum with a regular interval of a satisfying Expression (3) such that the power spectrum in which the positive and negative frequencies are inverted overlaps the portion where the power spectrum of the signal before the inversion is zero. For this reason, the radio communication apparatus 100 can easily separate the error generated due to the characteristic of the orthogonal modulation unit 4 and the calibration signal.
  • the calibration signal has a power spectrum with an equal interval of a satisfying the equation (3) so that the power spectrum obtained by reversing the positive and negative frequencies overlaps the portion where the power spectrum of the signal before the reversal is zero.
  • the generation method is not particularly limited.
  • FIG. 5 is a diagram illustrating functional blocks of the orthogonal modulation unit 4 according to the embodiment.
  • the quadrature modulation unit 4 includes a multiplier 41, a phase shifter 42, a multiplier 43, and an adder 44.
  • the multiplier 41 multiplies the local signal output from the oscillation unit 5 and the baseband signal I.
  • the phase shifter 42 includes a 90 ° phase offset in the local signal.
  • the multiplier 43 multiplies the local signal output from the phase shifter 42 and the baseband signal Q.
  • the adder 44 adds the signal output from the multiplier 41 and the signal output from the multiplier 43.
  • a series of operations performed by the multiplier 41, the phase shifter 42, the multiplier 43, and the adder 44 is called quadrature modulation.
  • the signal handled by the quadrature modulation unit 4 is an analog signal.
  • FIG. 6 is a diagram illustrating functional blocks of the digital quadrature demodulation unit 7 according to the embodiment.
  • the digital orthogonal demodulation unit 7 includes an AD conversion unit 71, a numerical control unit 72, a multiplier 73, a multiplier 74, a low-pass filter unit 75a, and a low-pass filter unit 75b.
  • the AD converter 71 converts the IF signal or the RF signal into a digital signal. When converting, the AD converter 71 needs to convert at a sufficiently high sample rate so that waveform distortion due to aliasing does not occur.
  • the numerical controller 72 generates a complex signal having a carrier frequency fc and outputs the complex signal to the multiplier 73.
  • the numerical controller 72 outputs a complex signal including a 90 ° phase offset to the multiplier 74.
  • the multiplier 73 multiplies the digital signal and the complex signal and outputs the result to the low-pass filter unit 75a.
  • the multiplier 74 multiplies the digital signal by the complex signal including the 90 ° phase offset and outputs the result to the low-pass filter unit 75b.
  • Low-pass filter sections 75a and 75b remove unnecessary frequency components and output baseband signals I and Q, respectively. Since the digital quadrature demodulator 7 performs all frequency conversion by digital processing, no quadrature error occurs.
  • Calibration signal generation unit 1, signal selection unit 2, DA conversion unit 3a, DA conversion unit 3b, quadrature modulation unit 4, oscillation unit 5, filter unit 6, digital quadrature demodulation unit 7, inverse system identification unit according to the embodiment 8 and the inverse system unit 9 are realized by a processing circuit which is an electronic circuit for performing each processing.
  • the processing circuit may be dedicated hardware or a control circuit including a memory and a CPU (Central Processing Unit) that executes a program stored in the memory.
  • the memory corresponds to, for example, a nonvolatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), or a flash memory, a magnetic disk, or an optical disk.
  • the control circuit is, for example, a control circuit 200 having a configuration shown in FIG.
  • the control circuit 200 includes a processor 200a that is a CPU and a memory 200b.
  • a processor 200a that is a CPU
  • a memory 200b When realized by the control circuit 200 shown in FIG. 7, it is realized by the processor 200a reading and executing a program corresponding to each process stored in the memory 200b.
  • the memory 200b is also used as a temporary memory in each process performed by the processor 200a.
  • FIG. 8 is a diagram illustrating a method for modeling an error generated in the orthogonal modulation unit 4 according to the embodiment.
  • Inputs, filters, and outputs are all represented in complex numbers.
  • the distortion generated in the quadrature modulation unit 4 can be modeled by the fact that the quadrature error and the error generated due to imbalance between the amplitude levels of the I axis and the Q axis have frequency characteristics. In this case, these errors appear as spectral inversion components on the frequency axis. These errors can be expressed using complex conjugates on the time axis.
  • radio communication apparatus 100 can model an error generated in quadrature modulation unit 4 by performing system identification using x (t) and y (t).
  • t shown in x (t) and y (t) represents time.
  • Equation (5) is obtained.
  • Y (f) H 1 (f) X (f) + H 2 (f) X ( ⁇ f) * (5)
  • f is the frequency
  • * represents a complex conjugate.
  • the complex conjugate of y (t) is converted to the frequency axis to obtain Equation (6).
  • Y ( ⁇ f) * H2 ( ⁇ f) * X (f) + H1 ( ⁇ f) * X ( ⁇ f) * ... (6)
  • Equation (7) is obtained.
  • X (f) is calculated by equation (8) using an inverse matrix.
  • E (f) H 1 (f) H 1 ( ⁇ f) * ⁇ H 2 (f) H 2 ( ⁇ f) * (9)
  • the inverse system on the frequency axis can be calculated by Expression (10). Since the output of the calibration signal generator 1 and the frequency determination component are easily separated, H 1 and H 2 can be obtained with high accuracy.
  • FIG. 9 is a functional block diagram of the inverse system identification unit 8 according to the embodiment.
  • the inverse system identification unit 8 includes a Fourier transform unit 81, a main signal identification unit 82, a frequency identification unit 83, and an inverse system calculation unit 84.
  • the Fourier transform unit 81 transforms the output of the digital quadrature demodulation unit 7 into a frequency axis by FFT (Fast Fourier Transform).
  • the main signal identification unit 82 extracts a subcarrier signal.
  • the frequency identification unit 83 extracts a subcarrier signal whose frequency is inverted.
  • the main signal identifying unit 82 and the frequency identifying unit 83 perform system identification for each subcarrier by dividing the base signal corresponding to each extracted signal by a complex number.
  • a plurality of measurements may be performed, and the measurement results may be averaged and averaged as a system identification result.
  • interpolation processing in the frequency direction may be performed during system identification.
  • the inverse system calculation unit 84 uses the H 1 (f) and H 2 (f) calculated by the main signal identification unit 82 and the frequency identification unit 83, respectively, to calculate the inverse system on the frequency axis represented by Expression (10). Calculate and output frequency characteristics.
  • FIG. 10 is a diagram illustrating functional blocks of the inverse system unit 9 according to the embodiment.
  • FIG. 11 is a simplified representation of the inverse system unit 9 according to the embodiment.
  • the inverse system unit 9 includes transversal filter units 91-1 to 91-p, an adder 92, and an adder 93.
  • the inverse system unit 9 includes a p-stage transversal filter.
  • the transversal filter can be represented by the four real filters shown in FIG.
  • the tap coefficients of filter_a in FIG. 11 are a 0 to a p ⁇ 1 shown in FIG.
  • the tap coefficients of filter_b are b 0 to b p ⁇ 1 shown in FIG.
  • the tap coefficients of filter_c are c 0 to c p ⁇ 1 shown in FIG.
  • the tap coefficients of filter_d are d 0 to d p ⁇ 1 shown in FIG. Those representing these four filters in the frequency axis A (f), B (f ), C (f), and when the D (f) These, H 1, and H of the inverse system identification unit 8 has determined 2 is used to calculate from Equations (11) to (14).
  • a (f) (H 1I (f) ⁇ H 2I (f))) / E (f) (11)
  • B (f) (H 1Q (f) ⁇ H 2Q (f)) / E (f) (12)
  • C (f) ( ⁇ H 1Q (f) ⁇ H 2Q (f)) / E (f) (13)
  • D (f) (H 1I (f) + H 2I (f)) / E (f) (14)
  • Expressions (11) to (14) are all represented by real numbers.
  • tap coefficients a 0 to a p ⁇ 1 , b 0 to b p ⁇ 1 , and c 0 to c p ⁇ 1 shown in FIG. And d 0 to d p ⁇ 1 can be obtained.
  • Fourier transform may be performed.
  • F + represents a general inverse matrix of F, and calculated a, b, c, and d are solutions of the least square method. Note that Equation (15) to Equation (18) may be further expanded to use a weighted least square method.
  • the calibration signal generator 1 generates a calibration signal.
  • the quadrature modulation unit 4 modulates using the calibration signal.
  • the DA conversion unit 3a and the DA conversion unit 3b convert a digital calibration signal into an analog calibration signal.
  • the filter unit 6 performs frequency filtering on the up-converted calibration signals I and Q, removes unnecessary high frequency components included in the calibration signals I and Q, and outputs an IF signal or an RF signal.
  • the digital quadrature demodulation unit 7 demodulates the IF signal or the RF signal by digital processing, and the inverse system identification unit 8 uses the demodulated signal to identify the inverse system, thereby generating the characteristics of the quadrature modulation unit 4. Calculate the error.
  • the inverse system unit 9 multiplies the transmission baseband signal by the inverse characteristic of the orthogonal modulation unit 4 using the calculated inverse system. By applying an inverse characteristic to the transmission baseband signal by the inverse system unit 9 and correcting an error caused by the characteristic of the quadrature modulation unit 4, distortion due to the characteristic of the quadrature modulator 4 can be suppressed.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
  • 1 calibration signal generation unit 1 calibration signal generation unit, 2 signal selection unit, 3a, 3b DA conversion unit, 4 orthogonal modulation unit, 5 oscillation unit, 6 filter unit, 7 digital quadrature demodulation unit, 8 inverse system identification unit, 9 inverse system unit, 11 Base signal memory, 12 counter, 13, 72 numerical control unit, 14 complex multiplier, 41, 43, 73, 74 multiplier, 42 phase shifter, 44, 92, 93 adder, 71 AD conversion unit, 75a, 75b low pass Filter unit, 81 Fourier transform unit, 82 Main signal identification unit, 83 Frequency identification unit, 84 Inverse system calculation unit, 91-1 to 91-p transversal filter unit, 100 Wireless communication device, 200 Control circuit, 200a processor, 200b memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Transmitters (AREA)

Abstract

本発明にかかる無線通信装置(100)は、周波数軸上における電力スペクトルが櫛型形状となる第1の信号を発生させるキャリブレーション信号発生部(1)と、第1の信号を変調する直交変調部(4)と、第1の信号を用いて直交変調部の逆システムを同定する逆システム同定部(8)と、同定された逆システムを用いて直交変調部で発生するゆがみを補正する逆システム部(9)とを備え、第1の信号は第1の信号の周波数を反転させた信号と直交することを特徴とする。

Description

無線通信装置
 本発明は、直交変調器を備える無線通信装置に関する。
 3GPP(3rd Generation Partnership Project)において標準化されたLTE(Long Term Evolution)の仕様では、ベースバンドIQ(In-phase Quadrature)信号が定義され、ベースバンドIQ信号は直交変調によりアップコンバートされる。直交変調方式には64QAM(Quadrature Amplitude Modulation)等の直交変調方式がある。直交変調方式による変調を実現するためにアナログ回路の直交変調器を用いた場合、IQ振幅インバランス、IQ遅延時間差、またはIQ直交度などのアナログ回路特有の誤差に起因する波形のゆがみが発生する。
 近年、アナログ回路の誤差を解消するために直交変調をデジタル回路で行いIF(Intermediate Frequency)信号、またはRF(Radio Frequency)信号を直接DA(Digital Analog)変換器から出力、またはAD(Analog Digital)変換器に入力する方式がある。しかし、DA変換器には、信号帯域幅よりはるかに高いサンプルレートが必要であり、DA変換器を使用すると、コストおよび消費電力が大幅に増大する。このため、従来のアナログ回路の直交変調器を用いて誤差をデジタル回路で補正する方式を用いる場合がある。
 特許文献1は、運用中の送信信号をアナログ回路の直交変調器に入力し、アナログ回路の直交変調器から出力される信号をデジタル直交検波器に入力し、デジタル直交検波器から出力される信号をデジタル回路で補正する方式を開示する。特許文献1に記載の方法は、アナログ回路の直交変調器を用いた場合に発生する誤差をデジタル回路で補正する際に直交変調器の特性をシステム同定し、同定したシステムの逆システムを用いてIQベースバンド信号を補正する。
特開2006-115463号公報
 しかしながら、特許文献1に記載の技術によれば、直交変調器の特性を正確にシステム同定する必要があるが、直交変調器で発生するわずかなゆがみを正確に検出することは難しく、ゆがみを正確に検出できないため復調を行うことができないという問題があった。
 本発明は、上記に鑑みてなされたものであって、直交変調器の特性によるゆがみを抑制する無線通信装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる無線通信装置は、周波数軸上における電力スペクトルが櫛型形状となる第1の信号を発生させるキャリブレーション信号発生部と、第1の信号を変調する直交変調部と、第1の信号を用いて直交変調部の逆システムを同定する逆システム同定部と、同定された逆システムを用いて直交変調部で発生するゆがみを補正する補正部と、を備え、第1の信号は第1の信号の周波数を反転させた信号と直交することを特徴とする。
 本発明にかかる無線通信装置は、直交変調器の特性によるゆがみを抑制することができるという効果を奏する。
実施の形態にかかる無線通信装置を示す図 実施の形態にかかるキャリブレーション信号発生部の機能ブロックを示す図 実施の形態にかかるベース信号メモリが格納するベース信号の電力スペクトルを示す図 実施の形態にかかるキャリブレーション信号発生部が出力する電力スペクトルの一例を示す図 実施の形態にかかる直交変調部の機能ブロックを示す図 実施の形態にかかるデジタル直交復調部の機能ブロックを示す図 実施の形態にかかる制御回路の構成例を示す図 実施の形態にかかる直交変調部で発生する誤差をモデリングする方法を示す図 実施の形態にかかる逆システム同定部の機能ブロックを示す図 実施の形態にかかる逆システム部の機能ブロックを示す図 実施の形態にかかる逆システム部を簡略化して表現した図
 以下に、本発明の実施の形態にかかる無線通信装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態.
 図1は、実施の形態にかかる無線通信装置を示す図である。無線通信装置100は、キャリブレーション信号発生部1と、信号選択部2と、DA変換部3aと、DA変換部3bと、直交変調部4と、発振部5と、フィルタ部6と、デジタル直交復調部7と、逆システム同定部8と、逆システム部9とを備える。無線通信装置100はキャリブレーション時、つまり直交変調部4の特性を検出し、特性によって発生する誤差を補正する時と、通常の送信時つまり送信ベースバンド信号I,Qを送信する時とで動作が異なる。
 キャリブレーション時の無線通信装置100の動作について説明する。キャリブレーション信号発生部1は、キャリブレーション信号I,Qを信号選択部2に送信する。キャリブレーション信号I,Qは第1の信号とも呼ばれる。信号選択部2は、キャリブレーション信号I,QをそれぞれDA変換部3aおよびDA変換部3bに送信する。DA変換部3aおよびDA変換部3bは、デジタルのキャリブレーション信号をアナログのキャリブレーション信号に変換する。DA変換部が2つあるのはI信号とQ信号とで正負非対称なスペクトルを複素数で表現するためである。直交変調部4は、キャリブレーション信号Iと、発振部5で発振させたRF搬送正弦波とをミキシングする。また、直交変調部4は、キャリブレーション信号Qと、発振部5で発振させた90度の位相オフセットを含むRF搬送正弦波とをミキシングする。直交変調部4のミキシングによりキャリブレーション信号I,Qは、アップコンバートされる。発振部5が発生する信号はローカル信号とも呼ばれる。フィルタ部6は、アップコンバートされたキャリブレーション信号I,Qに周波数のフィルタリングを行い、キャリブレーション信号I,Qに含まれる、閾値より高い不要な高い周波数成分を除去し、IF信号またはRF信号を出力する。フィルタ部6はBPF(Band Pass Filter)である。本実施の形態において閾値は特に限定されない。デジタル直交復調部7は、IF信号またはRF信号をデジタルベースバンド信号I,Qに変換する。逆システム同定部8は、デジタルベースバンド信号I,Qを用いて逆システムを同定する。逆システム部9は、逆システム同定部8により計算された逆システムを示す行列をベースバンド信号I,Qに乗算することで、直交変調部4で発生するゆがみを補正する。逆システム部9は補正部とも呼ばれる。
 通常の送信時の無線通信装置100の動作について説明する。逆システム部9は、送信ベースバンド信号I,Qを受信する。逆システム部9は、送信ベースバンド信号I,Qに直交変調部4がもつ特性の逆の特性である逆特性を加える。信号選択部2は逆システム部9から出力される送信ベースバンド信号I,QをそれぞれDA変換部3a,3bに送信する。直交変調部4は、DA変換部3a,3bの出力と発振部5の出力とをミキシングしアップコンバートする。フィルタ部6は、周波数のフィルタリングを行い、IF信号またはRF信号を出力する。無線通信装置100は、通常の送信時に直交変調部4のゆがみを補正した送信を行うことができる。
 図2は、実施の形態にかかるキャリブレーション信号発生部1の機能ブロックを示す図である。キャリブレーション信号発生部1は、ベース信号メモリ11と、カウンタ12と、数値制御部13と、複素乗算器14とを備える。
 図3は、実施の形態にかかるベース信号メモリ11が格納するベース信号の電力スペクトルを示す図である。ベース信号メモリ11は、図3に示す周波数領域の電力スペクトルの時間領域の信号をベース信号として格納する。サブキャリア毎の信号は複素数C(mは整数)で表される。図3に示すようにベース信号は全てのサブキャリアで電力を有する。
 また、ベース信号メモリ11は、カウンタ12からメモリアドレスを掃引することで図3に記載のベース信号をa回繰り返し出力する。ベース信号をa回繰り返し出力することで、サブキャリア数でa個の間隔のスペクトルとなる。数値制御部13は、fHzの周波数を発生させる。fは後述する式(2)におけるi=kである場合の周波数である。数値制御部13は、NCO(Numerical Controlled Oscillator)とも呼ばれる。複素乗算器14は、周波数をオフセット(シフト)させ、周波数領域で畳み込みを行い、キャリブレーション信号の電力スペクトルを得る。ベース信号は、ZC(Zadoff Chu)系列の様な包絡線変動の少ない信号が好ましいが、周波数特性がサブキャリア毎に振幅が0でない信号であれば特に限定されない。NCOの出力は式(1)で示される。
  NCOの出力=exp(2π×f×j/F)・・・(1)
 式(1)において、jは虚数単位を表し、Fは信号のサンプルレートF[Hz]を示す。また、kは1以上a/2未満の整数である。kは後述する式(3)によって算出される。
 図4は、実施の形態にかかるキャリブレーション信号発生部1が出力する電力スペクトルの一例を示す図である。キャリブレーション信号発生部1の出力は、サブキャリア間隔がf[Hz]間隔のインパルス状のスペクトルである。各サブキャリアの周波数f[Hz]は式(2)のように算出される。
  f=f×i・・・(2)
 例えば、図4において、CとCとの間のサブキャリア間隔は4fである。式(2)において、iは-n以上、n以下の整数とし、サブキャリアの総数は2n+1とする。図4ではn=28である場合の電力スペクトルを示す。本実施の形態では、fをサブキャリアと呼ぶ。なお、ベース信号メモリ11に格納される波形の時間長をTとすると、1/(Ta)=fsが成り立つ。
 本実施の形態では、式(3)を満たすサブキャリアは電力を有する。式(3)を満たさないサブキャリアは電力を有さず、値は0となる。
  i mod a=k・・・(3)
 式(3)においてaは定数である。aは3以上の整数である。図4はa=4、k=1である場合の電力スペクトルを示す。
 サブキャリア毎の信号を複素数C(mは整数)で表す。mとサブキャリア番号iとの関係は式(4)に示される。
  i=a×m+k・・・(4)
 式(2)、式(3)、および式(4)によって定義されたキャリブレーション信号は、周波数軸上で櫛形の電力スペクトルとなる。また、サブキャリア周波数をオフセットするため周波数の正負を反転した場合、キャリブレーション信号は、必ず反転前の信号の0の部分と重なる。つまり、キャリブレーション信号は、周波数の正負を反転させた電力スペクトルが、反転前の信号の電力スペクトルが0の部分と重なるように、式(3)を満たすaの等間隔の電力スペクトルを有する。このため、無線通信装置100は、直交変調部4の特性によって発生する誤差と、キャリブレーション信号との分離を容易にすることができる。また、キャリブレーション信号は、周波数の正負を反転させた電力スペクトルが、反転前の信号の電力スペクトルが0の部分と重なるように、式(3)を満たすaの等間隔の電力スペクトルを有すれば、生成方法は特に限定されない。
 図5は、実施の形態にかかる直交変調部4の機能ブロックを示す図である。直交変調部4は、乗算器41と、位相器42と、乗算器43と、加算器44とを備える。
 乗算器41は、発振部5が出力するローカル信号とベースバンド信号Iとを乗算する。位相器42は、ローカル信号に90°の位相オフセットを含ませる。乗算器43は、位相器42が出力するローカル信号とベースバンド信号Qとを乗算する。加算器44は、乗算器41が出力する信号と、乗算器43が出力する信号とを加算する。乗算器41、位相器42、乗算器43、および加算器44が行う一連の動作は直交変調と呼ばれる。なお、直交変調部4の取り扱う信号はアナログ信号である。
 図6は、実施の形態にかかるデジタル直交復調部7の機能ブロックを示す図である。デジタル直交復調部7は、AD変換部71と、数値制御部72と、乗算器73と、乗算器74と、ローパスフィルタ部75aと、ローパスフィルタ部75bとを備える。
 AD変換部71は、IF信号またはRF信号をデジタル信号に変換する。AD変換部71は変換する時、エリアシングによる波形ゆがみが発生しないように十分に高いサンプルレートで変換する必要がある。数値制御部72は、キャリア周波数fcの複素信号を発生させ、乗算器73に出力する。また、数値制御部72は、90°の位相オフセットを含ませた複素信号を乗算器74に出力する。乗算器73は、デジタル信号と複素信号とを乗算しローパスフィルタ部75aに出力する。乗算器74はデジタル信号と90°の位相オフセットを含ませた複素信号とを乗算しローパスフィルタ部75bに出力する。ローパスフィルタ部75a,75bは、それぞれ不要な周波数成分を除去し、ベースバンド信号I,Qを出力する。デジタル直交復調部7は、周波数変換をすべてデジタル処理で行うため直交誤差が発生しない。
 実施の形態にかかるキャリブレーション信号発生部1、信号選択部2、DA変換部3a、DA変換部3b、直交変調部4、発振部5、フィルタ部6、デジタル直交復調部7、逆システム同定部8、および逆システム部9は各処理を行う電子回路である処理回路により実現される。
 本処理回路は、専用のハードウェアであっても、メモリ及びメモリに格納されるプログラムを実行するCPU(Central Processing Unit、中央演算装置)を備える制御回路であってもよい。ここでメモリとは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリなどの、不揮発性または揮発性の半導体メモリ、磁気ディスク、光ディスクなどが該当する。本処理回路がCPUを備える制御回路である場合、この制御回路は例えば、図7に示す構成の制御回路200となる。
 図7に示すように、制御回路200は、CPUであるプロセッサ200aと、メモリ200bとを備える。図7に示す制御回路200により実現される場合、プロセッサ200aがメモリ200bに記憶された、各処理に対応するプログラムを読みだして実行することにより実現される。また、メモリ200bは、プロセッサ200aが実施する各処理における一時メモリとしても使用される。
 図8は、実施の形態にかかる直交変調部4で発生する誤差をモデリングする方法を示す図である。入力、フィルタ、および出力はすべて複素数で表現される。直交変調部4で発生するゆがみは、直交誤差と、I軸およびQ軸の振幅レベルのアンバランスによって発生する誤差とが周波数特性を持つことでモデリングすることができる。この場合、これらの誤差は、周波数軸上のスペクトル反転成分として現れる。また、これらの誤差は、時間軸上では複素共役を用いて表現することができる。
 図8において、x(t)は、キャリブレーション信号発生部1の出力である。y(t)は、デジタル直交復調部7の出力である。本実施の形態では、無線通信装置100は、x(t)およびy(t)を用いてシステム同定することで、直交変調部4で発生する誤差をモデリングすることができる。ここでx(t)およびy(t)に示されるtは、時間を表す。x(t)、y(t)、filter1、filter2を、それぞれ周波数軸に変換した値をそれぞれX(f)、Y(f)、H1(f)、H2(f)とすると式(5)が成立する。
  Y(f)=H(f)X(f)+H(f)X(-f)・・・(5)
 式(5)において、fは周波数を、は複素共役を表す。y(t)の複素共役についても同様に周波数軸に変換すると式(6)となる。
  Y(-f)=H2(-f)X(f)+H1(-f)X(-f)
                           ・・・(6)
 Y(f)およびY(-f)を行列で表すと式(7)となる。
Figure JPOXMLDOC01-appb-M000001
 X(f)は逆行列により式(8)によって算出される。
Figure JPOXMLDOC01-appb-M000002
 E(f)は式(9)で表される。
  E(f)=H(f)H(-f)-H(f)H(-f)・・・(9)
 X(f)のみを抽出すると式(10)となる。
Figure JPOXMLDOC01-appb-M000003
 つまり周波数軸上の図8のシステムを求めることでこの周波数軸上の逆システムを式(10)で算出することができる。キャリブレーション信号発生部1の出力とこの周波数判定成分とは分離が容易であるため、HおよびHを高精度に求めることができる。
 図9は、実施の形態にかかる逆システム同定部8の機能ブロックを示す図である。逆システム同定部8は、フーリエ変換部81と、主信号同定部82と、周波数同定部83と、逆システム計算部84とを備える。
 フーリエ変換部81は、デジタル直交復調部7の出力をFFT(Fast Fourier Transform)により周波数軸に変換する。主信号同定部82は、サブキャリアの信号を抽出する。周波数同定部83は、周波数反転したサブキャリアの信号を抽出する。主信号同定部82および周波数同定部83は、それぞれ抽出した信号に対応するベース信号を複素数で除算することでサブキャリア毎のシステム同定を行う。ここで測定精度を改善するために複数回の測定を実行し、測定結果を平均化し平均化した結果をシステム同定の結果としてもよい。また、周波数分解能を上げるためにシステム同定時に周波数方向の補間処理を行っても良い。逆システム計算部84は、主信号同定部82および周波数同定部83がそれぞれ算出したH(f),H(f)を用いて、式(10)で示される周波数軸上の逆システムの周波数特性を計算し出力する。
 図10は、実施の形態にかかる逆システム部9の機能ブロックを示す図である。図11は、実施の形態にかかる逆システム部9を簡略化して表現した図である。逆システム部9は、トランスバーサルフィルタ部91-1~91-pと、加算器92と、加算器93とを備える。逆システム部9は、p段のトランスバーサルフィルタで構成される。トランスバーサルフィルタは、図11に示す4つの実数フィルタで表すことができる。図11のfilter_aのタップ係数は図10で示されるa~ap-1である。filter_bのタップ係数は図10で示されるb~bp-1である。filter_cのタップ係数は図10で示されるc~cp-1である。filter_dのタップ係数は図10で示されるd~dp-1である。これら4つのフィルタを周波数軸で表したものをA(f)、B(f)、C(f)、およびD(f)とするとこれらは、逆システム同定部8が求めたH、およびHを用いて式(11)~式(14)で算出される。
  A(f)=(H1I(f)-H2I(f)))/E(f)・・・(11)
  B(f)=(H1Q(f)-H2Q(f))/E(f)・・・(12)
  C(f)=(-H1Q(f)-H2Q(f))/E(f)・・・(13)
  D(f)=(H1I(f)+H2I(f))/E(f)・・・(14)
 式(11)~式(14)は、すべて実数で表される。算出されたA(f)~D(f)を時間軸に変換することで、図9に示すタップ係数a~ap-1、b~bp-1、c~cp-1、およびd~dp-1を求めることができる。時間軸に変換するにはフーリエ変換を行えばよく、a~ap-1をベクトルa、b~bp-1をベクトルb、c~cp-1をベクトルc、d~dp-1をベクトルd、A(f)をベクトルA、B(f)をベクトルB、C(f)をベクトルC、およびD(f)をベクトルDで表すと、DFT行列Fを用いて以下の式で計算される。
  a=F+A・・・(15)
  b=F+B・・・(16)
  c=F+C・・・(17)
  d=F+D・・・(18)
  F=F(FF-1
 FはFの一般逆行列を表し、算出されたa、b、cおよびdは、最小2乗法の解となる。なお、式(15)~式(18)をさらに拡張し重み付最小2乗法を用いてもよい。
 以上説明したように、本実施の形態では、無線通信装置100は、キャリブレーション信号発生部1がキャリブレーション信号を発生させる。キャリブレーション信号を用いて直交変調部4が変調する。DA変換部3aおよびDA変換部3bは、デジタルのキャリブレーション信号をアナログのキャリブレーション信号に変換する。フィルタ部6は、アップコンバートされたキャリブレーション信号I,Qに周波数のフィルタリングを行い、キャリブレーション信号I,Qに含まれる不要な高い周波数成分を除去し、IF信号またはRF信号を出力する。デジタル直交復調部7は、IF信号またはRF信号をデジタル処理で復調し、逆システム同定部8は復調された信号を用いて、逆システムを同定することにより、直交変調部4の特性により発生する誤差を算出する。逆システム部9は、算出された逆システムを用いて、送信ベースバンド信号に直交変調部4の逆特性を掛ける。逆システム部9で送信ベースバンド信号に逆特性を掛けることにより、直交変調部4の特性により発生する誤差を補正することで、直交変調器4の特性によるゆがみを抑制することができる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 キャリブレーション信号発生部、2 信号選択部、3a,3b DA変換部、4 直交変調部、5 発振部、6 フィルタ部、7 デジタル直交復調部、8 逆システム同定部、9 逆システム部、11 ベース信号メモリ、12 カウンタ、13,72 数値制御部、14 複素乗算器、41,43,73,74 乗算器、42 位相器、44,92,93 加算器、71 AD変換部、75a,75b ローパスフィルタ部、81 フーリエ変換部、82 主信号同定部、83 周波数同定部、84 逆システム計算部、91-1~91-p トランスバーサルフィルタ部、100 無線通信装置、200 制御回路、200a プロセッサ、200b メモリ。

Claims (4)

  1.  周波数軸上における電力スペクトルが櫛型形状となる第1の信号を発生させるキャリブレーション信号発生部と、
     前記第1の信号を変調する直交変調部と、
     前記第1の信号を用いて前記直交変調部の逆システムを同定する逆システム同定部と、
     同定された前記逆システムを用いて前記直交変調部で発生するゆがみを補正する補正部と、
     を備え、
     前記第1の信号は前記第1の信号の周波数を反転させた信号と直交することを特徴とする無線通信装置。
  2.  前記キャリブレーション信号発生部は、
     電力スペクトルの周波数をオフセットすることで前記電力スペクトルを等間隔で生成する前記第1の信号を発生させることを特徴とする請求項1に記載の無線通信装置。
  3.  変調した前記第1の信号をデジタル処理で復調するデジタル直交復調部を備え、
     前記逆システム同定部が用いる前記第1の信号は、前記デジタル直交復調部が復調した第1の信号であることを特徴とする請求項1または2に記載の無線通信装置。
  4.  前記キャリブレーション信号発生部が発生させる前記第1の信号はデジタル信号であり、前記直交変調部で変調された前記第1の信号をアナログ信号に変換するDA変換部と、
     前記アナログ信号に含まれる閾値より高い周波数成分を除去するフィルタ部と、
     を備え、
     前記デジタル直交復調部が用いる前記第1の信号は前記フィルタ部が前記周波数成分を除去した前記第1の信号であることを特徴とする請求項3に記載の無線通信装置。
PCT/JP2018/014170 2018-04-02 2018-04-02 無線通信装置 WO2019193641A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/014170 WO2019193641A1 (ja) 2018-04-02 2018-04-02 無線通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/014170 WO2019193641A1 (ja) 2018-04-02 2018-04-02 無線通信装置

Publications (1)

Publication Number Publication Date
WO2019193641A1 true WO2019193641A1 (ja) 2019-10-10

Family

ID=68100184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014170 WO2019193641A1 (ja) 2018-04-02 2018-04-02 無線通信装置

Country Status (1)

Country Link
WO (1) WO2019193641A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022201764A1 (ja) * 2021-03-22 2022-09-29 日本電気株式会社 信号処理装置、無線通信装置、信号処理方法及びプログラムを格納する非一時的なコンピュータ可読媒体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283288A (ja) * 2007-05-08 2008-11-20 Toshiba Corp 無線送信装置及び方法
JP2009117897A (ja) * 2007-11-01 2009-05-28 Toshiba Corp 無線送信装置および無線送信方法
JP2011512770A (ja) * 2008-02-19 2011-04-21 サムスン エレクトロニクス カンパニー リミテッド 直交周波数分割多重の受信機におけるi/q不均衡パラメーターを推定する装置及びその方法
JP2012044236A (ja) * 2010-08-12 2012-03-01 Nippon Telegr & Teleph Corp <Ntt> 送信機および送信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283288A (ja) * 2007-05-08 2008-11-20 Toshiba Corp 無線送信装置及び方法
JP2009117897A (ja) * 2007-11-01 2009-05-28 Toshiba Corp 無線送信装置および無線送信方法
JP2011512770A (ja) * 2008-02-19 2011-04-21 サムスン エレクトロニクス カンパニー リミテッド 直交周波数分割多重の受信機におけるi/q不均衡パラメーターを推定する装置及びその方法
JP2012044236A (ja) * 2010-08-12 2012-03-01 Nippon Telegr & Teleph Corp <Ntt> 送信機および送信方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022201764A1 (ja) * 2021-03-22 2022-09-29 日本電気株式会社 信号処理装置、無線通信装置、信号処理方法及びプログラムを格納する非一時的なコンピュータ可読媒体

Similar Documents

Publication Publication Date Title
JP6935425B2 (ja) ノイズ抑圧装置、ノイズ抑圧方法、及びこれらを用いた受信装置、受信方法
US20090325518A1 (en) Methods and Apparatus for Suppressing Strong-Signal Interference in Low-IF Receivers
JP2010283589A (ja) 通信装置
US20140029700A1 (en) Multi-tap iq imbalance estimation and correction circuit and method
US11258521B2 (en) Front-end circuit
WO2001082546A1 (en) Blind carrier offset detection for quadrature modulated digital communication systems
US20050041754A1 (en) Method and appatatus for I/Q mismatch calibration of transmitter
JPH11168516A (ja) Dcオフセットキャンセラーおよびこれを備えた受信機と通信システムとdcオフセットキャンセル方法
WO2019193641A1 (ja) 無線通信装置
WO2018057320A1 (en) Wideband residual sideband calibration
JP2746781B2 (ja) 移相器
JP2006319897A (ja) 復調回路及び復調方法
KR100538986B1 (ko) 진폭-위상보정회로,수신장치및송신장치
WO2020158386A1 (ja) 波長分散量推定装置
JP2004363757A (ja) 直交変復調装置
JP5113677B2 (ja) 位相差対応値測定装置、ゲインインバランス測定装置、方法、プログラムおよび記録媒体
JP5684771B2 (ja) 変調信号解析装置および変調信号解析方法
CN115882970A (zh) 一种接收iq不平衡校正方法及系统
JP2885052B2 (ja) 自動周波数制御装置
JP6902259B2 (ja) 測定装置及び測定方法
JPH11234354A (ja) Dpsk変調器の変調精度の測定方法
JP5013613B2 (ja) 直交変調・復調装置、直交変調器および直交復調器
JP3642471B2 (ja) 伝送信号の生成方法、及び伝送信号の生成装置
JP4284770B2 (ja) 直交周波数分割多重復調方法及び直交周波数分割多重復調装置
JP2017038122A (ja) 受信機および誤差補正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18913559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP