WO2019189779A1 - 樹脂製保持器及び転がり軸受 - Google Patents

樹脂製保持器及び転がり軸受 Download PDF

Info

Publication number
WO2019189779A1
WO2019189779A1 PCT/JP2019/014043 JP2019014043W WO2019189779A1 WO 2019189779 A1 WO2019189779 A1 WO 2019189779A1 JP 2019014043 W JP2019014043 W JP 2019014043W WO 2019189779 A1 WO2019189779 A1 WO 2019189779A1
Authority
WO
WIPO (PCT)
Prior art keywords
cage
resin
weld
rolling bearing
cross
Prior art date
Application number
PCT/JP2019/014043
Other languages
English (en)
French (fr)
Inventor
優美 石▲崎▼
直樹 中杤
弘樹 石橋
章央 松本
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019062446A external-priority patent/JP7236902B2/ja
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to DE112019001705.5T priority Critical patent/DE112019001705T5/de
Priority to CN201980023163.2A priority patent/CN111919042B/zh
Publication of WO2019189779A1 publication Critical patent/WO2019189779A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/41Ball cages comb-shaped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/44Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/49Cages for rollers or needles comb-shaped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/56Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C9/00Bearings for crankshafts or connecting-rods; Attachment of connecting-rods
    • F16C9/02Crankshaft bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations

Definitions

  • the present invention relates to a resin cage for a rolling bearing, a manufacturing method thereof, and a rolling bearing provided with the resin cage.
  • a cage incorporated in a rolling bearing is a component that holds a ball during rotation.
  • a metal cage such as an iron plate is generally manufactured by press molding, and has high material strength and tensile strength.
  • resin cages are inferior in strength to metal cages, but can be mass-produced by injection molding that is advantageous in terms of cost, and have excellent flexibility, wear resistance, corrosion resistance, etc. Problems caused by powder are less likely to occur, and further weight reduction can be achieved. For this reason, resin cages can greatly contribute to the improvement of bearing performance, and are widely used in many technical fields such as automobiles, electricity, and industrial machines.
  • a polyphenylene sulfide resin is composed of a composition in which an elastomer component and 20 to 50% by weight of a glass fiber reinforcing material are blended, and the Izod impact strength is adjusted to 130 J / m (notched) or more.
  • a synthetic resin cage having a tensile elongation at break adjusted to 2% or more is known (Patent Document 1).
  • weld occurs when the melted resin molding material is split into two and flows in the cavity, and the resin surfaces are slightly solidified and joined at the locations where this flow is recombined and joined. .
  • Such a weld can be observed from the appearance of the injection-molded product, and is also a low strength part.
  • Patent Document 2 As a crown-shaped cage made of synthetic resin manufactured by injection molding, by placing a gate for injection molding in the concave portion of the cage surface facing the pocket, the column part where the weld is thick and difficult to act on the load (Patent Document 2).
  • the cage is formed so that a weld is formed at the center between the columns connecting the annular portions that are not loaded as much as possible. It is known to arrange a gate in an annular part on the extension of the pillar part (Patent Document 3).
  • a resin reservoir is provided in the mold to induce the molten resin, and the resin and the added reinforcing fiber are not welded.
  • Patent Document 4 There is known a method for suppressing a decrease in strength of a weld portion by mixing at a predetermined portion of a cavity to be formed and randomly dispersing without orientation.
  • the crown-type cage with an even number of pockets is less susceptible to restrictions on the gate position by setting the gate position in the center between the pockets, and the weld cross-sectional area is increased by forming a weld in the center between the pockets. Can be big.
  • Patent Document 4 in order to induce a molten resin by providing a resin reservoir in a mold, the structure of the mold becomes complicated, and a process of cutting off the resin reservoir after molding is necessary. This will increase the number of manufacturing steps.
  • a rolling bearing When a rolling bearing is used as a rolling bearing for supporting a crankshaft in an engine device, it must withstand severe lubrication conditions, high temperature conditions, severe vibrations and loads that tilt the rotating shaft. Therefore, there is a need for a resin cage made of an injection-molded body having a high strength that meets the requirements of the above and having a stable quality. However, the strength of the injection-molded resin cage is not sufficiently enhanced only by the characteristics of the resin used.
  • the metal cage needs to fix two corrugated iron plate parts holding the balls with scissors, and in order to increase the strength of the retainer, the corrugated component thickness is increased. Or a special heat treatment. However, it is not easy to increase the strength of the metal cage easily in any way.
  • such a metal cage has a strength evaluated by a breaking load larger than that of the resin cage, but its elongation at break is smaller than that of the resin cage.
  • the object of the present invention is to solve the above-mentioned problems, and the resin cage of the rolling bearing is difficult to break at the weld portion generated by melt molding such as injection molding, and is durable to withstand vibration and a large bending moment load.
  • Rolling bearings with built-in resin cages can withstand vibrations and large bending moment loads, and are made of resin with such excellent mechanical properties and durability. It is to manufacture the cage efficiently.
  • the inventor of the present application has a resin cage that is inferior to a metal cage in terms of strength, but if a certain elongation is taken into account in addition to the strength, it is more than a metal cage. We thought that it would be difficult to break and could become a durable plastic cage.
  • a plurality of pockets for rotatably accommodating rolling elements of the rolling bearing are arranged at equal intervals in the circumferential direction of an annular cage made of a resin molded body, and extend from the wall surface of the pocket to the inside.
  • This is a rolling bearing resin cage in which the weld line that appears on the surface of the cage adjacent to the wall surface of the weld portion is a weld line that is inclined at an angle of 17 ° or more with respect to the axis of the cage.
  • the weld line appearing on a predetermined surface of the cage is inclined at an angle of 17 ° or more with respect to the axis of the annular cage.
  • the cross sectional area of the weld portion increases, and the cross section of the weld portion (hereinafter referred to as the weld surface) due to the axial load applied to the cage due to the inclination angle.
  • the load component perpendicular to that can be reduced. Therefore, the stress generated in the weld portion can be reduced and the strength of the weld portion can be increased.
  • the weld portion is formed across the wall surface of the pocket and the surface of the cage facing the wall surface, and the weld portion represented by the following mathematical formula (1): Because it is a resin crown type cage that is a weld part of a predetermined cross-sectional area that satisfies the ratio of the cross-sectional area of the ball or roller and the weld part cross-sectional area and the ratio of the breaking load to the breaking elongation shown in Equation (2) is there.
  • W is the weld cross-sectional area (mm 2 )
  • Da indicates the diameter (mm) of the ball accommodated in the pocket
  • ( ⁇ (Da / 2) 2 ) is the cross-sectional area in the diameter direction of the ball ( mm 2 ).
  • the resin-made crown-type cage of the present invention configured as described above has a welded portion having a predetermined cross-sectional area that satisfies the mathematical formulas (1) and (2), a concave circular curved bottom surface of the pocket, and the cage body.
  • the weld cross-sectional area is larger than the size of the ball (i.e., approximately the same as the pocket size). The bonding strength of the joint surfaces between the resin flows at the time is increased. Therefore, even when the rolling bearing is used in a state of receiving a moment load, the resin cage is not easily broken by tension.
  • the position of the gate is adjusted so that a weld line appearing on a predetermined surface of the cage is inclined at an angle of 17 ° or more with respect to the axis of the annular cage, or a weld having a relatively large cross-sectional area is formed.
  • the formation position of the weld formed across the bottom surface of the concave circular curved surface and the end surface of the cage body is also adjusted. That is, the inclination angle and the cross-sectional area of the weld are also adjusted depending on whether the weld is formed in a portion where the distance from the end surface of the cage body is wide or in a narrowed position.
  • the resin crown-type cage is made of polyetheretherketone (hereinafter abbreviated as PEEK) resin, it has sufficient heat resistance and mechanical strength, so such resin is adopted. It is preferable to do.
  • PEEK polyetheretherketone
  • the resin crown-type cage is made of resin reinforced with fibers, sufficient heat resistance and mechanical strength are provided.
  • the resin-reinforced product reinforced with fibers is preferable to contain carbon fiber in an amount of 20 to 40% by mass because the heat resistance and mechanical strength are sufficiently improved.
  • a resin cage made of an injection-molded body can be provided by adjusting the position and inclination angle of the weld part and the size of the cross-sectional area of the weld part by adjusting the position of the gate part.
  • the position of the gate portion is as close as possible to the end edge in the axial direction of the crown-shaped cage body.
  • the edge on the outer peripheral surface side or the inner peripheral surface side disposed in the vicinity of one or more gate portions is composed of two surfaces intersecting the outer peripheral surface or the inner peripheral surface and the end surface of the cage facing the pocket wall surface. Provide at the edge without chamfering. Thereby, the freedom degree of selection of the position of a gate part can be raised, and the largest gate part can be brought close to the bottom part of a pocket. If the above-mentioned gate part is a trace where a tunnel gate is arranged, it is preferable because it becomes a gate part without a gate flash.
  • a rolling bearing equipped with any of the above resin cages By configuring a rolling bearing equipped with any of the above resin cages, a rolling bearing equipped with a resin cage that has a high weld breaking strength and excellent durability even when subjected to vibration or a large bending moment load. Become. Such a rolling bearing can be applied, for example, for supporting a crankshaft in an engine device.
  • a plurality of pockets for rotatably accommodating rolling elements of a rolling bearing are arranged at equal intervals in the circumferential direction of the annular cage body.
  • the weld part satisfies the ratio of the cross-sectional area of the weld part and the ball represented by the following formula (3) and the ratio of the breaking load of the cage to the weld part cross-sectional area and the fracture elongation represented by formula (4).
  • the gate is arranged close to the edge on the outer circumferential surface side or inner circumferential surface side of the crown-shaped cage body.
  • W is the weld cross-sectional area (mm 2 )
  • Da indicates the diameter (mm) of the ball accommodated in the pocket
  • ( ⁇ (Da / 2) 2 ) is the cross-sectional area in the diameter direction of the ball ( mm 2 ).
  • the gate portion By arranging the gate portion close to the outer peripheral surface side or the inner peripheral surface side edge of the crown-shaped cage body as described above, the predetermined cross-sectional area satisfying the mathematical formulas (3) and (4) is satisfied.
  • the weld part is formed across the bottom surface of the concave concave curved surface of the pocket and the end face of the cage body, and the weld has high breaking strength, and has excellent durability even when subjected to vibration or a large bending moment load. Can be manufactured efficiently.
  • the present invention forms a weld line that is inclined at an angle of 17 ° or more with respect to the axis of the annular cage on the predetermined surface of the annular cage made of a resin molded body, and satisfies the above-mentioned prescribed mathematical formula.
  • mold retainer which shows the position of the gate part and weld of Example 1, 2 of 1st Embodiment, and Comparative Example 1 Sectional drawing of the principal part of the ball bearing in which the cage of the first embodiment was incorporated.
  • retainer of 3rd Embodiment The top view of the resin-made crown type cage of a 1st embodiment Explanatory drawing which shows the diameter Da of the ball in the VI-VI line cross section of FIG. Explanatory drawing which shows elongation E of the breaking direction by the tensile breaking load in FIG.
  • the crown type retainer 1 of the first embodiment is used for a rolling bearing 2 that can support a crankshaft X 1 in an engine device, and can freely rotate a ball 3.
  • a plurality of pockets 4 are opened at one end surface of the annular resin molded body and arranged at equal intervals in the circumferential direction, and a wall surface 4a and a crown facing the wall surface
  • One or more welds A ′, B ′ or C ′ are formed across the end surface 1 a which is the surface of the mold cage 1, and the welds A ′, B ′ or C ′ extending inward from the wall surface 4 a of the pocket 4.
  • the weld line appearing on the surface (inner peripheral surface and outer peripheral surface) of the cage adjacent to the wall surface 4a is inclined at an angle ⁇ 1 , ⁇ 2 or ⁇ 3 of 17 ° or more with respect to the axis X of the cage. .
  • the illustrated weld portions A ′, B ′, and C ′ are formed corresponding to the gate portions A, B, and C, respectively. It shows.
  • the gate portions A, B, and C are traces of the gate where the molten resin flows during injection molding, and can be observed on the surface of the processed injection molded body.
  • the gate portions A, B, and C are respectively disposed at predetermined positions near the pocket 4 on the inner peripheral surface of the cage body, and the seven gate portions A and C are shown. Seven welds A ′ and B ′ are also formed at positions corresponding to.
  • the gate part B shows what was arrange
  • the weld line appears on the inner peripheral surface 1b and the outer peripheral surface 1c of the cage body adjacent to the wall surface 4a (bottom surface) of the weld portion extending inward from the wall surface 4a (bottom surface) of the pocket 4.
  • the weld line is inclined at an angle of 17 ° or more with respect to the axis X of the cage on the inner peripheral surface 1b or the outer peripheral surface 1c.
  • the resin-made cage 7 of the second embodiment has rolling elements (not shown) in the circumferential direction of an annular cage 7 made of a resin-molded square plate-like material.
  • This is a ball bearing cage 7 in which circular hole-like pockets 8 that are rotatably held are formed at equal intervals.
  • weld lines appearing on the inner peripheral surface and the outer peripheral surface of the surface of the cage 7 of the weld portion D ′ extending inward from the wall surface of the pocket 8 are formed at two locations around the pocket 8. Each weld line is inclined at an angle ⁇ 4 of 17 ° or more with respect to the axis X of the cage.
  • the resin cage 9 of the third embodiment has substantially rectangular hole-like pockets 10 that rotatably hold rollers (not shown) of rolling elements at equal intervals in the circumferential direction. It is the cage 9 of the formed roller bearing.
  • the weld lines appearing on the inner peripheral surface and the outer peripheral surface of the retainer surface of the weld portion E ′ extending inward from the wall surface of the pocket 10 are located at two locations around the pocket 10 facing in the axial direction.
  • Each weld line is inclined at an angle ⁇ 5 of 17 ° or more with respect to the axis X of the roller bearing.
  • the roller bearing cage by forming the end face 10a of the substantially long rectangular hole-shaped pocket 10 into a cylindrical surface or a spherical shape with a radius R, the area in contact with the flow of the resin material at the time of molding is larger than that of a flat surface. Therefore, the curved surface becomes larger, and the resin flow receives a flow resistance corresponding to it.
  • the tip shape of the resin flow is also inclined, and the tips of the resin flow collide with each other.
  • the inclination angle of the weld formed is increased.
  • the weld line angle ⁇ 5 formed in the roller bearing cage of the third embodiment is similar to that of the ball bearing cages of the first and second embodiments. It is easy to form in a state inclined at 17 ° or more with respect to X.
  • welds in the first to third embodiments are all held in relation to the cross-sectional area ratio of the weld and ball expressed by the following formula (1) and the weld cross-sectional area and the elongation at break expressed by formula (2).
  • the welds in the first to third embodiments are all held in relation to the cross-sectional area ratio of the weld and ball expressed by the following formula (1) and the weld cross-sectional area and the elongation at break expressed by formula (2).
  • W is the weld cross-sectional area (mm 2 )
  • Da indicates the diameter (mm) of the ball accommodated in the pocket
  • ( ⁇ (Da / 2) 2 ) is the cross-sectional area in the diameter direction of the ball ( mm 2 ).
  • FIG. 6 In FIG. 6, FIG. 16B or FIG. 7, symbols Da, W and E in the above formula are shown.
  • the cross-sectional area of the weld portion referred to in the present invention approximates the actual area of the three-dimensional fracture surface observed in the tensile fracture test, and at least one weld line appears on the surface of the cage 1 that is an injection-molded body. It is a cross-sectional area calculated from a plane passing through two or more.
  • Equation (1) The left side of Equation (1) is the weld cross-sectional area W (mm 2 ) and the cross-sectional area ratio of the ball.
  • formula (2) is expressed as [(breaking load (N) / weld section cross-sectional area (mm 2 )) / the value obtained by raising the elongation in the breaking direction (mm) of the crown type cage by the tensile breaking load to the third power] / A value of 100 indicates greater than 3 and less than 19.
  • the value of the tensile breaking load (or breaking load) is measured by a tensile test described later.
  • the circumferential positions of the welds A ′, B ′, and C ′ formed on the crown-shaped cage main body are arranged at approximately the same distance from the positions of the gates A, B, and C.
  • the positional relationship is the same even when one or a plurality of gate portions are provided, and the same number of weld portions are formed corresponding to the number of gate portions.
  • the axial positions (the height in the vertical direction in FIG. 1) of the gate portions A, B, and C of the crown type cage body are located on the concave circular curved wall surface 4a of the pocket 4 and the end surface 1a of the cage 1 body. This is related to making the formation position of one or more welds A ′, B ′, C ′ formed straddling or moving away from the center of the wall surface 4 a of the pocket 4 (the deepest part of the concave circular curved surface).
  • the weld portions A ′, B ′, and C ′ approach the central portion of the concave circular curved wall surface 4a of the pocket 4, and the gate portions A, If the heights of B and C are lowered to approach the center portion of the wall surface 4 a of the pocket 4, the weld portions A ′, B ′ and C ′ are similarly moved away from the center portion of the wall surface 4 a of the pocket 4.
  • the inner peripheral surface side edge 1d disposed in the vicinity thereof is connected to the inner peripheral surface 1b and the pocket 4. It is preferable to provide at the edge 1d which does not chamfer which consists of two surfaces which cross
  • the height of the gate portion can be set at a position (gate F 2 ) as low as possible as compared to a position (gate F 1 ) where the chamfered edge 1d ′ (FIG. 8A) is located.
  • the weld portion can be moved away from the central portion of the wall surface 4a of the pocket 4. This is clear from the positional relationship between the gate portions A and C and the weld portions A ′ and C ′ in the first embodiment.
  • the gate position on the inner peripheral surface 1b side or the outer peripheral surface 1c side (FIG. 1) of the pillar portion between the adjacent pockets 4 the molten resin derived from the shape of the pocket 4 of the ball bearing A gradient can be generated in the flow velocity in the axial direction so that the weld line has a constant angle with respect to the bottom surface of the cage 1, that is, with respect to the axis X of the annular cage of the rolling bearing.
  • the weld line can be shifted from the bottom of the pocket having the smallest wall thickness, and the cross-sectional area of the weld portion can be increased.
  • the cross-sectional area of the weld portion can be increased in the cross-section of the cage 1, and the load component perpendicular to the weld surface due to the axial load applied to the cage can be reduced by the inclination angle.
  • the number of pockets in the above-described embodiment is not limited to the seven shown in FIG. 1, and can be appropriately changed according to the application of the rolling bearing.
  • a weld line can be provided across the wall surface of all pockets and the surface of the cage facing the wall surface.
  • a good cage with high dimensional accuracy such as circularity can be obtained, and the rotational accuracy of a rolling bearing incorporating this can be improved.
  • the chamfering of the edge of the cages 1, 7, 9 described above is provided on both sides (inner and outer peripheral surfaces) of the end surface. This is to reduce the number of molds to reduce the manufacturing cost, and to prevent the occurrence of burrs (that is, the phenomenon that the resin enters the gaps between the molds).
  • the side where the gate is located is not chamfered in order to adjust the gate position and secure the cross-sectional area.
  • the resin cage of the present invention dares to steal meat.
  • the low fluidity of a resin material such as PEEK
  • the cross-sectional area of the weld line can be expanded.
  • the cage using the PEEK of the reference example described later with meat stealing can not withstand the rotation test and is damaged.
  • the resin molding material of the resin cage used in the present invention may be any resin as long as it has sufficient heat resistance and mechanical strength as the cage material.
  • the general names of such resins are listed below, and the abbreviations are shown in parentheses.
  • polyamide 6 (PA6) resin polyamide 6-6 (PA66) resin
  • PA610 polyamide 6-10
  • PA9T polyamide 9-T
  • polymetaxylene adipamide polymetaxylene adipamide
  • Polyamide (PA) resin polytetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) resin and other injection moldable fluororesins, polyethylene (PE) resin, polycarbonate (PC) resin, polyacetal (POM) resin, Examples include polyphenylene sulfide (PPS) resin, polyether ether ketone (PEEK) resin, polyamide imide (PAI) resin, polyether imide (PEI) resin, and the like.
  • PPS polyphenylene sulfide
  • PEEK polyether ether ketone
  • PAI polyamide imide
  • PEI polyether imide
  • PEI polyether imide
  • the resin forming the resin crown-shaped cage may contain a fibrous reinforcing material, for example, well-known materials such as glass fiber, carbon fiber, metal fiber, polyamide fiber, polyimide fiber, mineral fiber, etc. Fibrous reinforcement may be included. Among such fibrous reinforcing materials, it is preferable to mix glass fiber or carbon fiber in order to maintain the mechanical strength of the bearing material well and to avoid a decrease in fluidity of the resin material, especially By adding about 20 to 40% by mass of carbon fiber in 100 parts by mass of the resin molded body, a sufficient improvement in mechanical strength is recognized.
  • a fibrous reinforcing material for example, well-known materials such as glass fiber, carbon fiber, metal fiber, polyamide fiber, polyimide fiber, mineral fiber, etc. Fibrous reinforcement may be included.
  • fibrous reinforcing materials it is preferable to mix glass fiber or carbon fiber in order to maintain the mechanical strength of the bearing material well and to avoid a decrease in fluidity of the resin material, especially By adding about 20 to 40% by mass of carbon fiber in
  • Example 1-3 Comparative Example 1
  • An annular cage 1 having the same form as the embodiment shown in FIGS. 1 and 2 was manufactured by injection molding, and polyether ether ketone (PEEK) resin was used as a resin molding material.
  • PEEK polyether ether ketone
  • FIG. 1 and FIG. 9 Embodiment 1
  • FIG. 13 Comparative Example 1
  • the gate portion is 7 on the inner peripheral surface side.
  • the gate portion was similarly installed at a position slightly close to that of Comparative Example 1 in Example 3.
  • FIG. 1 and FIG. 11 Example 2
  • the gate portion was installed at one place on the outer peripheral surface side.
  • Example 1 the weld portion in Example 1 and Comparative Example 1 is the inner part. It was formed at predetermined seven locations on the peripheral surface side, and in Example 3, weld portions were also formed at seven locations. Further, as shown by reference numeral B ′ in FIGS. 1 and 11 (Example 2), in Example 2, the weld portion was formed at one place on the outer peripheral surface side.
  • Example 1 For the above Example 1-3, Comparative Example 1-2, and Reference Example, the inner peripheral surface and the outer peripheral surface of the cage main body adjacent to the wall surface (bottom surface) of the weld portion extending inward from the wall surface (bottom surface) of the pocket.
  • the angle of inclination of the weld line that appears with respect to the axis of the cage (Example 1 is indicated by ⁇ 1 in FIG. 10, Example 2 is indicated by ⁇ 2 in FIG. 12, and Comparative Example 1 is indicated by ⁇ 3 in FIG. 14).
  • a deep groove ball bearing 6202 (inner diameter: 15 mm, outer diameter: 35 mm, width: 11 mm) was manufactured by incorporating the cages of Example 1-3, Comparative Example 1-2, and Reference Example, respectively. A test was conducted.
  • the ball diameter of the deep groove ball bearing (excluding the reference example) was 6.35 mm, and the ball cross-sectional area was 31.67 mm 2 .
  • the measurement results of the inclination angle of the weld line and the results of the tensile test are summarized in Table 1 below.
  • the values of the mathematical formula (1) and the number (2) described above are calculated from the measured values and written together in Table 1 as well as “not broken in the rotation test” or “broken in the same test” described later. Two stages were evaluated.
  • the circumferential radius of the semi-circular jigs 5 and 5 ′ was set to 97% of the cage inner radius.
  • at least one weakest portion was disposed at a position perpendicular to the tensile direction.
  • the water absorption rate of the resin cage is 0 to 3%, and the cage shape of the example is the smallest of the ring part at the inner diameter of 22.2 mm, the outer diameter of 27.8 mm, and the pitch circle diameter of the ball (ball PCD).
  • the thickness was 1.5 mm, and the maximum thickness of the ring portion in the ball PCD was 6.53 mm.
  • the length L of the weld line is expressed by the following formula (A).
  • L ⁇ t + r (1-cos ⁇ ) ⁇ / cos ⁇ (A)
  • the approximate value of the cross-sectional area of the weld portion can be calculated by integrating the weld length L measured as described above in the radial direction of the cage.
  • the length in the radial direction here is a predetermined value calculated by the outer diameter-inner diameter of the annular cage, and is not related to the weld angle.
  • the cross-sectional area of the weld portion can be simply calculated by a calculation method exemplified below, and the calculated values are shown in Table 1.
  • the cross-sectional area W of the weld portion is calculated by the following calculation formula.
  • g and e in a calculation formula have shown the length by which the edge of one side of the holder bottom part was notched in the axial direction and radial direction by chamfering.
  • L 2.221 mm
  • e 0.620
  • f 2.267
  • g 0.595.
  • the rotation test apparatus is provided with a motor 12 fixed to a substrate 11 and a transmission 14 for transmitting the rotational force via a conduction belt 13, and a test rolling bearing 2 is mounted on the output shaft 15. A moment load as a bending force of the shaft is applied by a weight 16 attached to the tip of the cantilever.
  • the weld line angle is 26 as compared with the breaking load (269.94 N) of Comparative Example 1 in which the inclination angle of the weld line with respect to the cage axis is less than 17 ° (16.0 °).
  • the breaking load (398.19 N) of Example 2 at .77 ° and the breaking load (average value) of Example 1 and Example 3 where the weld line angle is 29.96 ° are both at an inclination angle of 17 ° or more.
  • the increase trend in is linear at a steep angle, and the cage of Example 1-3 did not break in the rotation test. From these facts, it was recognized that the load component perpendicular to the weld surface due to the load in the axial direction can be sufficiently reduced among the load components applied to the cage when the inclination angle is 17 ° or more.
  • Example 1-3 a resin cage excellent in durability even when subjected to a large bending moment load was obtained, and a rolling bearing excellent in durability incorporating the same was obtained.
  • the resin cage of a rolling bearing such as the resin crown cage of the present invention and the rolling bearing provided with the same can be used for various types of bearings such as various construction machinery devices and industrial machinery devices. It can support a relatively high-speed rotating shaft, such as a rolling bearing for supporting a crankshaft in an engine apparatus used, and can be applied to applications that are required to withstand vibrations and moment loads. Similar to these applications, it can withstand severe vibrations and loads that tilt the rotating shaft, withstand the shortage of lubricating oil supply, and can also be used as a rolling bearing that can prevent the generation of wear powder that can cause quality problems. Widely applicable.
  • the resin crown type cage formed of engineering plastics such as PEEK is suitable for rolling bearings that rotate at high temperature and high speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

保持器(1)の内・外周面に現れるウエルドラインが、軸線Xに対して傾斜角度17°以上であり、またはウエルド部A´、B´またはC´が、以下の数式(1)および数式(2)で示される関係を満たす所定断面積の樹脂製冠型保持器(1)とする。 (1) W/(π(Da/2))≧0.15 (式中、Wはウエルド部断面積(mm)であり、Daはポケットに収容する玉の直径(mm)を示し、(π(Da/2))は玉の直径方向の断面積(mm)である。) (2) 3<(L/E)/100<19 (式中、Eは引張破断荷重による冠型保持器の破断方向の伸び(mm)を示し、Lは破断荷重(N)/ウエルド部断面積(mm)である。)

Description

樹脂製保持器及び転がり軸受
 この発明は、転がり軸受の樹脂製保持器及びその製造方法並びに前記樹脂製保持器を備えた転がり軸受に関する。
 一般に、転がり軸受に組み込まれる保持器は、玉を回転時に保持する部品である。鉄板等金属製保持器は、一般的にプレス成形により造られ、材料強度や引張強度が高い。
 一方、樹脂製保持器は、金属製保持器と比べてこれらの強度は劣るが、コストにおいて有利な射出成形等によって量産が可能である上、柔軟性、耐摩耗性、耐食性等に優れ、摩耗粉による不具合が発生し難く、更に軽量化も図ることができる。このため樹脂製保持器は、軸受性能の向上に大きく貢献できるものであり、自動車、電気、産業機械等の多くの技術分野において幅広く使用されている。
 例えば、ポリフェニレンスルフィド系樹脂に、エラストマー成分と、20~50重量%のガラス繊維強化材とが配合された組成物をもって構成され、アイゾット衝撃強さが130J/m(ノッチ付)以上に調整され、また引張破断伸びが2%以上に調整された合成樹脂製保持器が知られている(特許文献1)。
 このような合成樹脂製保持器が射出成形によって製造される場合には、溶融した樹脂成形材料のゲートの対向する位置に、ウエルドまたはウエルドラインと呼ばれる部位が形成される。
 因みに、ウエルドは、溶融した樹脂成形材料が二手に分かれてキャビティ内を流動するときに、この流れが再度合わさって接合する箇所では、樹脂の表面が若干固化して接合するために起こると考えられる。このようなウエルドは、射出成形品の外観からも観察できるものであり、強度の低い部分でもある。
 射出成形によって製造される合成樹脂製の冠型の保持器として、ポケットに対向する保持器表面の凹部に射出成形用のゲートを配置することにより、ウエルドが厚肉で荷重の作用し難い柱部に形成されることが知られている(特許文献2)。
 また、円すいころ軸受用の保持器について、ウエルド部分の強度を高める手段として、できるだけ負荷が掛らない円環部を連結する柱間の中央にウエルドが形成されるようにするために、保持器の柱部の延長上の円環部にゲートを配置することが知られている(特許文献3)。
 また、ウエルド部分で溶融した樹脂や添加された補強繊維が均一に混合されない点を改良するために、モールドに樹脂溜まりを設けて溶融樹脂を誘導し、樹脂や添加された補強繊維が、ウエルドの形成されるキャビティの所定部分で混和され、また配向せずにランダムに分散するようにして、ウエルド部分の強度低下を抑制する方法が知られている(特許文献4)。
特開2005-114098号公報 特開2016-180430号公報 特開2006-070926号公報 特開2014-231911号公報
 しかし、上記した特許文献2に記載される保持器では、柱部にウエルドを発生させ、かつ良好な成形性を得るためには、複数のゲートから射出成形してポケットの中央部付近にゲートを設置する必要があるが、小形の玉軸受用の冠型保持器のようにポケットの中央部の肉厚が薄い保持器では、ゲートを所定位置にまたは複数設置できない場合がある。
 また、小型の保持器では、溶融樹脂の供給不足による強度低下が起こらないように、充分な量の溶融樹脂を供給するための所要な大きさのゲートを設置することが難しい。
 ところで、上記した特許文献3に記載される合成樹脂製保持器の製造方法では、円すいころ軸受用保持器の大径及び小径円環部の両円環部を連結する柱間の中央部分にウエルドを形成している。この場合、破損し易いコーナー部分の強度を確保することはできるが、柱間の中央部分の引張に耐える強度は、比較的小さなウエルドの断面積の大きさに応じて小さい。
 また、ポケット数が偶数の冠型保持器は、ポケット間の中央にゲート位置を設定することによって、ゲート位置の制約を受け難く、ポケット間の中央にウエルドを形成することでウエルドの断面積を大きくできる。
 しかし、ポケット数が奇数個の冠型保持器においては、ポケット間の中央にゲート位置を設定すると、ウエルドはポケットの凹型円曲面上の底面部分に形成されることになり、その断面積が小さくなってしまうので、ゲート位置の最適な調整が容易ではない。
 また、特許文献4に記載されるように、モールドに樹脂溜まりを設けて溶融樹脂を誘導するためには、金型の構造が複雑になり、成形後に樹脂溜まりを切除する工程も必要になるから、製作工程数を増加させることになる。
 転がり軸受が、エンジン装置内クランク軸支持用の転がり軸受として用いられる場合には、厳しい潤滑条件、高温条件、さらには激しい振動や回転軸を傾ける荷重に耐える必要があり、このような要求に充分に応える高い強度を有し、しかも品質の安定した射出成形体からなる樹脂製保持器が必要である。
 しかし、射出成形された樹脂製保持器の強度は、採用する樹脂の特性だけで充分に高められるものではない。
 また、金属製保持器は、玉を保持する2枚の波型の鉄板部品を鋲で固定する必要があり、保持器の強度を上げるためには、前記波型の部品の板厚を厚くするか、または特殊な熱処理等を施して対応する。しかしながら、いずれの対応でも簡単に金属製保持器の強度を上げることは容易ではない。
 このような金属製保持器は、樹脂素材の特性から判断すると、破断荷重で評価する強度は樹脂製保持器より大きいが、破断時の伸びは樹脂製保持器よりも小さい。
 そこで、この発明の課題は、上記した問題点を解決し、転がり軸受の樹脂製保持器が、射出成形等の溶融成形によって生じたウエルド部で破断し難く、振動や大きな曲げモーメント荷重に耐える耐久性を有することであり、また樹脂製保持器を組み込んだ転がり軸受が、振動や大きな曲げモーメント荷重によく耐えることであり、さらにはこのような優れた機械的特性および耐久性を備えた樹脂製保持器を効率よく製造することである。
 上記の課題を解決するために、本願の発明者は、樹脂製保持器は強度の点では金属製保持器に劣るが、強度に加えて一定の伸びを加味すれば、金属製保持器よりも壊れ難いものになり、また耐久性を備えた樹脂製保持器になる可能性があると考えた。
 そこで、この発明においては、転がり軸受の転動体を回転自在に収容する複数のポケットが、樹脂成形体からなる環状の保持器の周方向に等間隔で配置され、前記ポケットの壁面から内部に延びるウエルド部の前記壁面に隣接する保持器の表面に現れるウエルドラインが、保持器の軸線に対して17°以上の角度で傾斜するウエルドラインである転がり軸受の樹脂製保持器としたのである。
 上記したように構成されるこの発明の転がり軸受の樹脂製保持器は、保持器の所定の表面に現れるウエルドラインが、環状の保持器の軸線に対して17°以上の角度で傾斜していることにより、保持器の断面でウエルド部の占める面積(以下、ウエルド部の断面積と称する)が大きくなり、また傾斜角によって保持器に掛る軸方向の負荷によるウエルド部の断面(以下、ウエルド面という。)に垂直な荷重成分を小さくすることができる。そのため、ウエルド部に生じる応力を小さくし、ウエルド部の強度を高めることができる。
 後述する実施例および比較例からも明らかであるが、ウエルドラインの保持器軸線に対する傾斜角度が17°未満では、保持器の強度試験における破断荷重や破断伸びの結果が、格段に低下して優れた機械的特性および耐久性が得られない。
 また、上記した発明の構成に代えて、前記ウエルド部が、前記ポケットの壁面とこの壁面に対向する保持器の表面とに跨って形成され、かつ以下の数式(1)で示されるウエルド部と玉またはころの断面積比および数式(2)で示されるウエルド部断面積及び破断伸びに対する保持器の破断荷重の比率を満足する所定断面積のウエルド部である樹脂製冠型保持器としたのである。
  (1)      W/(π(Da/2))≧0.15
(式中、Wはウエルド部断面積(mm)であり、Daはポケットに収容する玉の直径(mm)を示し、(π(Da/2))は玉の直径方向の断面積(mm)である。)
  (2)      3<(L/E)/100<19
(式中、Eは引張破断荷重による冠型保持器(図15A中の冠型保持器の3時および9時の位置にある部位)の破断方向の伸び(mm)を示し、Lは破断荷重(N)/ウエルド部断面積(mm)である。)
 上記したように構成されるこの発明の樹脂製冠型保持器は、数式(1)および数式(2)を満足する所定断面積のウエルド部をポケットの凹型円曲面状の底面と前記保持器本体の端面とに跨って形成することにより、保持器を形成する樹脂の特性に加えて、ウエルドの断面積が玉の大きさ(すなわち、ポケットの大きさと略同じ)に比べて大きくなり、射出成形時の樹脂流同士の接合面の結合力が高められる。
 そのため、転がり軸受がモーメント荷重を受けた状態で使用された時でも樹脂製保持器が引張破断され難いものになる。
 保持器の所定の表面に現れるウエルドラインが、環状の保持器の軸線に対して17°以上の角度で傾斜し、または断面積の比較的大きなウエルドが形成されるようにゲートの位置が調整されるとき、凹型円曲面状の底面と保持器本体の端面とに跨って形成されるウエルドの形成位置も調整される。すなわち、保持器本体の端面との間隔が広い部分にウエルドが形成されるか、または狭まっている位置に形成されるかによって、ウエルドの傾斜角度や断面積も調整される。
 また、樹脂製冠型保持器が、ポリエーテルエーテルケトン(以下、PEEKと略称する。)樹脂製のものであれば、より充分な耐熱性および機械的強度が備わるので、そのような樹脂を採用することが好ましい。
 このように樹脂の種類を選択するだけではなく、樹脂製冠型保持器が、繊維補強された樹脂製であれば、より充分な耐熱性および機械的強度が備わる。前記繊維補強された樹脂成形体としては、カーボン繊維を20~40質量%含有することにより耐熱性および機械的強度が充分に向上するので好ましい。
 射出成形体からなる樹脂製保持器が、ゲート部の位置を調整することにより、ウエルド部の形成される位置と傾斜角度、これらに伴うウエルド部断面積の大きさを調整して設けることができる。
 また、ウエルド部の断面積を前記所定位置に調整するためには、ゲート部の位置をできるだけ冠型保持器本体の軸方向の端縁に近づけることが好ましく、そのために前記樹脂製保持器が、1以上のゲート部の近傍に配置される外周面側または内周面側の端縁を、前記外周面または内周面とポケットの壁面に対向する保持器の端面との交差する2面からなる面取りのない端縁に設ける。これにより、ゲート部の位置の選択の自由度を上げ、できるだけ大きなゲート部をポケットの底部に近づけることができる。上記のゲート部は、トンネルゲートの配置された痕であれば、ゲートばりのないゲート部になるので好ましい。
 上記いずれかの樹脂製保持器を備えた転がり軸受を構成すれば、ウエルドの破断強度が高く、振動や大きな曲げモーメント荷重を受けても耐久性に優れた樹脂製保持器を備えた転がり軸受になる。このような転がり軸受は、例えば、エンジン装置内クランク軸支持用として適用できる。
 また、上記した樹脂製冠型保持器を効率よく安定した品質で製造するためには、転がり軸受の転動体を回転自在に収容する複数のポケットを環状の保持器本体の周方向に等間隔に備えた樹脂製保持器を射出成形により製造する方法であって、1以上のウエルド部が、前記ポケットの壁面とこの壁面に対向する保持器の表面とに跨って形成され、前記ポケットの壁面から内部に延びるウエルド部の前記壁面に隣接する保持器の表面に現れるウエルドラインが、環状の保持器の軸線に対して17°以上の角度で傾斜するウエルドラインであるように樹脂製冠型保持器を製造する。
 さらに、前記ウエルド部が、以下の数式(3)で示されるウエルド部と玉の断面積比および数式(4)で示されるウエルド部断面積及び破断伸びに対する保持器の破断荷重の比率を満足するように、ゲートを、前記冠型保持器本体の外周面側または内周面側の端縁に近づけて配置する樹脂製冠型保持器の製造方法とすることが好ましい。
  (3)      W/(π(Da/2))≧0.15
(式中、Wはウエルド部断面積(mm)であり、Daはポケットに収容する玉の直径(mm)を示し、(π(Da/2))は玉の直径方向の断面積(mm)である。)
  (4)      3<(L/E)/100<19
(式中、Eは引張破断荷重による冠型保持器の破断方向の伸び(mm)を示し、Lは破断荷重(N)/ウエルド部断面積(mm)である。)
 上記のようにゲート部を、前記冠型保持器本体の外周面側または内周面側の端縁に近づけて配置することにより、数式(3)および数式(4)を満足する所定断面積のウエルド部がポケットの凹型円曲面状の底面と前記保持器本体の端面とに跨って形成され、ウエルドの破断強度が高く、振動や大きな曲げモーメント荷重を受けても耐久性に優れた樹脂製保持器を効率よく製造できる。
 この発明は、樹脂成形体からなる環状の保持器の所定表面上で環状の保持器の軸線に対して17°以上の角度で傾斜するウエルドラインを形成し、また上記した所定の数式を満足する断面積のウエルド部を形成することにより、ウエルド部の破断強度が高く、振動や大きな曲げモーメント荷重を受けても耐久性に優れた樹脂製保持器になる。
 さらにそのような樹脂製保持器を組み込んだ耐久性に優れた転がり軸受が得られ、また射出成形時のゲートの配置を調整することにより、上記の優れた特性を有する樹脂製保持器を安定した品質で効率よく製造できる利点がある。
第1実施形態の実施例1、2及び比較例1のゲート部とウエルドの位置を示す樹脂製冠型保持器の斜視図 第1実施形態の保持器が組み込まれた玉軸受の要部断面図 第2実施形態の保持器の斜視図 第3実施形態の保持器の斜視図 第1実施形態の樹脂製冠型保持器の平面図 図5のVI-VI線断面における玉の直径Daを示す説明図 図6における引張破断荷重による破断方向の伸びEを示す説明図 ゲート位置の説明図であり、位置の異なるゲートを示す ゲート位置の説明図であり、大きさの異なるゲートを示す 実施例1の樹脂製冠型保持器の平面図 図9のX-X線断面の拡大図 実施例2の樹脂製冠型保持器の平面図 図11のXII-XII線断面の拡大図 比較例1の樹脂製冠型保持器の平面図 図13のXIV-XIV線断面の拡大図 保持器の引張試験の説明図であり、試験装置の正面図 図15Aのb-b線断面図 保持器のポケットの形状と、数式(A)及び数式(B)に用いた変数との関係を示す説明図 図16Aのb-b線断面図 ウエルドライン角度と破断強度の関係を示す図表 保持器の回転試験の説明図 保持器のポケット底部の軸方向の断面を示す図面代用写真
 この発明の第1~第3実施形態を以下に添付図面に基づいて説明する。
 図1、2、5に示すように、第1実施形態の冠型保持器1は、エンジン装置内のクランク軸Xを支持可能な転がり軸受2に用いられるものであり、玉3を回転自在に収容する(玉3と略同径の)複数のポケット4が、環状の樹脂成形体の一端面に開口して周方向に等間隔で配置されており、壁面4aとこの壁面に対向する冠型保持器1の表面である端面1aとに跨って1以上のウエルド部A´、B´またはC´が形成され、ポケット4の壁面4aから内部に延びるウエルド部A´、B´またはC´の壁面4aに隣接する保持器の表面(内周面及び外周面)に現れるウエルドラインが、保持器の軸線Xに対して17°以上の角度θ、θまたはθで傾斜している。
 図示したウエルド部A´、B´またはC´は、それぞれゲート部A、BまたはCに対応して形成されるものであり、これらの位置関係を比較して説明するために、まとめて模式的に示している。因みに、ゲート部A,B,Cは、射出成形時に溶融した樹脂が流入するゲートの配置された痕跡であり、加工後の射出成形体の表面にも観察できる。
 ゲート部A,B,Cのうち、ゲート部A、Cは、保持器本体の内周面のポケット4の近くの所定位置にそれぞれ配置されたものを示し、7か所のゲート部A、Cに対応する位置にウエルド部A´、B´も7か所形成される。
 また、ゲート部Bは、保持器本体の外周面に1か所配置されたものを示し、対応するウエルド部B´も所定位置に1か所だけ形成される。
 ウエルドラインは、ポケット4の壁面4a(底面)から内部に延びるウエルド部の前記壁面4a(底面)に隣接する保持器本体の内周面1bおよび外周面1cに現れる。
 上記ウエルドラインの傾斜については、内周面1b上または外周面1c上で保持器の軸線Xに対して17°以上の角度で傾斜している。
 なお、実際の樹脂成形品の表面に、ウエルドライン全体が現れていない場合でも、前記環状の保持器の内周面1bまたは外周面1cに現れるウエルドラインの軸線X両端を結ぶ線分の傾斜角度を確認することにより、上記の所期した作用効果を得られるかどうかを判断できる。
 図3に示すように、第2実施形態の樹脂製の保持器7は、樹脂成形体の角板状素材からなる環状の保持器7の周方向に、転動体の玉(図示せず)を回転自在に保持する円穴状のポケット8を等間隔に形成した玉軸受の保持器7である。
 第2実施形態においては、ポケット8の壁面から内部に延びるウエルド部D´の保持器7の表面の内周面及び外周面に現れるウエルドラインが、ポケット8の周囲2か所に形成されており、それぞれのウエルドラインが、保持器の軸線Xに対して17°以上の角度θで傾斜している。
 図4に示すように、第3実施形態の樹脂製の保持器9は、転動体のころ(図示せず)を回転自在に保持する略長四角穴状のポケット10を周方向に等間隔に形成したころ軸受の保持器9である。
 第3実施形態においても、ポケット10の壁面から内部に延びるウエルド部E´の保持器の表面の内周面及び外周面に現れるウエルドラインが、軸線方向に対向するポケット10の周囲2か所に形成されており、それぞれのウエルドラインが、ころ軸受の軸線Xに対して17°以上の角度θで傾斜している。
 ころ軸受用保持器においても、略長四角穴状のポケット10の端面10aを半径Rの円柱面や球面の形状に形成することにより、成形時の樹脂材料の流れに接触する面積は平面に比べて曲面の方が大きくなり、樹脂流は、それに応じた流動抵抗を受ける。
 そして、キャビティ内の平面と曲面の間を通過する樹脂材料の流れの速度は、平面側と曲面側で異なるから、樹脂流の先端形状も斜面状になり、樹脂流の先端同士が衝突して形成されるウエルドの傾斜角度が大きくなる。
 このようにして、第3実施形態のころ軸受用保持器に形成されるウエルドラインの角度θは、第1実施形態および第2実施形態の玉軸受用保持器と同様に、ころ軸受の軸線Xに対して17°以上に傾斜した状態に形成されやすい。
 また、第1~第3実施形態におけるウエルド部は、いずれも以下の数式(1)で示されるウエルド部と玉の断面積比および数式(2)で示されるウエルド部断面積及び破断伸びに対する保持器の破断荷重の比率を満足する所定断面積であることにより、ポケット4の凹型円曲面状の壁面4aと保持器本体の端面1aとに跨って所定断面積であるように所定位置に配置されている。
  (1)      W/(π(Da/2))≧0.15
(式中、Wはウエルド部断面積(mm)であり、Daはポケットに収容する玉の直径(mm)を示し、(π(Da/2))は玉の直径方向の断面積(mm)である。)
  (2)      3<(L/E)/100<19
(式中、Eは引張破断荷重による冠型保持器の破断方向の伸び(mm)を示し、Lは破断荷重(N)/ウエルド部断面積(mm)である。)
 なお、図6、図16Bまたは図7中に、上記した式中の記号Da,W,Eを図示した。
 この発明でいうウエルド部断面積は、引張破断試験で観察される立体形状の破断面の実際の面積に近似するものであり、射出成形体である保持器1の表面に現れるウエルドラインを少なくとも一つ以上通る平面から算出される断面積である。
 前記した数式(1)の左辺は、ウエルド部断面積W(mm)と玉の断面積比である。
 同様に、数式(2)は、[(破断荷重(N)/ウエルド部断面積(mm))/引張破断荷重による冠型保持器の破断方向の伸び(mm)の3乗した値]/100の値が、3を超え19未満にすることを示している。引張破断荷重(または破断荷重)の値は、後述する引張試験によって測定される。
 これらの値が設定値の範囲内であるように、ポケット4の凹型円曲面状の壁面4aと保持器1の端面1aとに跨って形成されるウエルド部A´、B´、C´の位置が特定され、そのような位置に特定されるようにゲート部A、B、Cの位置を調整する。
 冠型保持器本体に形成されるウエルド部A´、B´、C´の周方向の位置は、ゲート部A、B、Cの位置からほぼ等距離に配置される。その位置関係は、ゲート部を1つまたは複数設けた場合でも同じであり、ゲート部の数に対応してウエルド部も同じ数だけ形成される。
 冠型保持器本体のゲート部A、B、Cの軸方向の位置(図1中縦方向の高さ)は、ポケット4の凹型円曲面状の壁面4aと保持器1本体の端面1aとに跨って形成される1以上のウエルド部A´、B´、C´の形成位置をポケット4の壁面4aの中央部(凹型円曲面の最深部)に近づけたり、遠ざけたりすることに関係する。
 すなわち、ゲート部A、B、Cの軸方向の高さが高ければ、ウエルド部A´、B´、C´はポケット4の凹型円曲面状の壁面4aの中央部に近づき、ゲート部A、B、Cの前記高さを低くしてポケット4の壁面4aの中央部に近づければ、同様にウエルド部A´、B´、C´もポケット4の壁面4aの中央部から遠ざかる。
 図8A、図8Bに示すように、例えばゲート部F(FまたはF)を設ける場合において、その近傍に配置される内周面側の端縁1dを、内周面1bとポケット4の壁面4aに対向する保持器の端面1aとの交差する2面からなる面取りのない端縁1dに設けることが好ましい。また、外周面側の端縁についても、前記外周面とポケット4の壁面4aに対向する保持器の端面1aとの交差する2面からなる面取りのない端縁に設けることが好ましい。
 このようにするとゲート部の高さは、面取りされた端縁1d´(図8A)のある位置(ゲートF)に比べて可及的に低い位置(ゲートF)に設置することができ、それだけウエルド部もポケット4の壁面4aの中央部から遠ざけることができる。このことは、第1実施形態のゲート部A、Cの位置と、ウエルド部A´、C´の位置関係からも明らかである。
 また、図8Bに示すように、面取りされた端縁1d´に代えて、面取りのない端縁1dを設けることは、ゲート部自体の面積を大きくすることに役立つ。すなわち、ゲートGをゲートGのように大きくすることができるので、溶解した樹脂材料の流入量を増やすことで樹脂材料の冷却速度を遅くするか、または冷却速度の均一化を図り、ウエルドの強度を高めることができる。さらに、小形の保持器においても充分なゲートの流入径を確保し、比較的自由なゲート位置を設定することもできる。
 そして、ゲート位置を隣り合うポケット4間の柱部分の内周面1b側または外周面1c側(図1)に選択的に配置することで、玉軸受のポケット4の形状に由来する溶融樹脂の軸方向の流動速度に勾配を発生させ、保持器1の底面に対し、すなわち転がり軸受の環状の保持器の軸線Xに対してウエルドラインに一定の角度を持たせることができる。
 また、柱部分の中央からずらした位置にゲートを配置することにより、ウエルドラインを肉厚の最も小さくなるポケットの底部からずらし、ウエルド部の断面積を大きくすることができる。
 このようにして保持器1の断面でウエルド部の断面積を大きくし、また傾斜角によって保持器に掛る軸方向の負荷によるウエルド面に垂直な荷重成分を小さくすることができる。
 なお、上記した実施形態におけるポケットの数は、図1に示した7個に限られるものではなく、転がり軸受の用途に応じて適宜に変更可能である。
 実施形態では、ウエルド部の強度が向上しているため、全てのポケットの壁面とこの壁面に対向する保持器の表面とに跨ってウエルドラインを設けることが可能であり、ゲート数を増やして真円度等の寸法精度の高い良好な保持器を得て、これを組み込んだ転がり軸受の回転精度を向上させることができる。
 また、上記した保持器1、7、9の端縁の面取りは、端面の両側(内周面及び外周面)に設けることが好ましい。これは、金型数を削減して製造コストを減らし、またバリ(すなわち、金型の隙間等に樹脂が入り込む現象)の発生を防ぐためである。実施形態では、ゲート位置の調整、断面積の確保のために敢えてゲートがある側の面取りをしていない。
 また、通常、材料コスト削減、ヒケ防止、樹脂の冷却速度のバラつき及びこれによるウエルド強度の低下防止のために、肉盗みを設ける場合が多いが、この発明の樹脂製保持器では肉盗みを敢えて設けないことによって、PEEK等の樹脂材料の低い流動性に対応させ、かつウエルドラインの断面積の拡張を可能にしている。なお、肉盗みのある後述の参考例のPEEKを用いた保持器は、回転試験に耐えきれずに破損することが確認されている。
 また、この発明で用いる樹脂製保持器の樹脂成形材料は、保持器材料として十分な耐熱性や機械的強度を有するものであれば、任意の樹脂を使用できる。以下に、そのような樹脂の一般名を挙げ、カッコ内に略称を併記する。例えば、ポリアミド6(PA6)樹脂、ポリアミド6-6(PA66)樹脂、ポリアミド6-10(PA610)樹脂、ポリアミド9-T(PA9T)樹脂、ポリメタキシレンアジパミド(ポリアミドMXD-6)樹脂などのポリアミド(PA)樹脂、ポリテトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)樹脂などの射出成形可能なフッ素樹脂、ポリエチレン(PE)樹脂、ポリカーボネート(PC)樹脂、ポリアセタール(POM)樹脂、ポリフェニレンスルフィド(PPS)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリアミドイミド(PAI)樹脂、ポリエーテルイミド(PEI)樹脂などが挙げられる。これらの各合成樹脂は単独で使用してもよく、2種類以上混合したポリマーアロイであってもよい。特に、PEEK樹脂は、保持器に、より充分な耐熱性および機械的強度が備わる成形材料であることから好ましい。
 また、樹脂製冠型保持器を形成する樹脂には、繊維状補強材が含まれていてもよく、例えば、ガラス繊維、炭素繊維、金属繊維、ポリアミド繊維、ポリイミド繊維、鉱物繊維等の周知の繊維状強化材を含んでもよい。このような繊維状強化材の中で、軸受材料の機械的強度をよく維持するために、また、樹脂材料の流動性低下を回避するため、ガラス繊維またはカーボン繊維を配合することが好ましく、特にカーボン繊維を樹脂成形体100質量部中に20~40質量%程度を配合することにより、充分な機械的強度の向上が認められる。
 [実施例1-3、比較例1]
 図1、2に示す実施形態と同じ形態の円環状の保持器1を射出成形によって製造し、樹脂成形材料として、ポリエーテルエーテルケトン(PEEK)樹脂を用いた。
 図1と図9(実施例1)の符号Aまたは図1と図13(比較例1)の符号Cに示すように、実施例1と比較例1では、ゲート部は内周面側の7か所に設置し、実施例3も僅かに比較例1に近づけた位置で同様にゲート部を設置した。
 また、図1と図11(実施例2)の符号Bに示すように、実施例2では、ゲート部は外周面側の1か所に設置した。
 これにより、図1と図9(実施例1)の符号A´または図1と図13(比較例1)の符号C´に示すように、実施例1、比較例1では、ウエルド部は内周面側の所定の7か所に形成され、実施例3も7か所にウエルド部が形成された。
 また、図1と図11(実施例2)の符号B´に示すように、実施例2では、ウエルド部は外周面側の1か所に形成された。
 [比較例2]
 ポリアミド6-6(PA66)樹脂を成形材料として、実施形態と同じサイズの冠型保持器を射出成形によって製造した。その際に、ゲート部の位置は隣り合う一対のポケットの中間部としたが、ウエルド部はポケットの底面の中央部に形成されていた。
 [参考例]
 市販のポリエーテルエーテルケトン(PEEK)樹脂製で実施形態と同じ形態の冠型保持器を用いた。
 以上の実施例1-3と比較例1-2と参考例について、ポケットの壁面(底面)から内部に延びるウエルド部の前記壁面(底面)に隣接する保持器本体の内周面および外周面に現れるウエルドラインの保持器の軸線に対する傾斜角度(実施例1は図10にθ、実施例2は図12にθ、比較例1は図14にθで示した。)を計測した。
 実施例1-3と比較例1-2と参考例の保持器をそれぞれ組み込んで、深溝玉軸受6202(内径15mm、外径35mm、幅11mm)を製造し、また保持器については、以下の引張試験を行なった。
 なお、深溝玉軸受(参考例を除く)の玉径は6.35mmであり、玉断面積は、31.67mmであった。前記したウエルドラインの傾斜角度の計測結果と、引張試験の結果は、以下の表1中にまとめて示した。
 また前記した数式(1)および数(2)の値を測定値から算出し、表1中に併記すると共に、後述する「回転試験で破断しなかった」、または「同試験で破断した」の二段階に評価した。
 [引張試験]
 図15A、図15Bに示すように、半円割治具5、5´を有する引張治具6、6´を上下一対に配置して、実施例、比較例または参考例の保持器1を嵌め入れ、その際にウエルド部が水平(図15A中、冠型保持器の円環の3時および9時の位置)に配置されるよう、すなわち、ウエルド部が半円割治具5、5´の合わせ面と一致するようにセットして引張速度10(mm/分)で上下に引張力を与え、破断荷重(N)および破断方向の伸び(mm)を測定した。
 なお、半円割冶具5、5´の円周部半径を保持器内径半径の97%として実施した。また、引張方向に対して直角位置に少なくとも一つの最弱部を配置した。樹脂製保持器の吸水率は0~3%以内であり、実施例の保持器形状は、内径22.2mm、外径27.8mm、玉のピッチ円直径(玉PCD)でのリング部の最小厚み1.5mm、玉PCDでのリング部の最大厚み6.53mmであった。
 図16Aに示すように、玉軸受の任意の位置におけるポケットの断面形状から、ウエルドラインの長さLは、以下の数式(A)で示される。
 この数式(A)は、r:ポケット径(半径)、t:底部肉厚、L:ウエルド長さ、及びθ:ウエルド角度の間に、r+t=(L+r)cosθの関係があることから、これを変形して左辺をLとしたものである。
     L={t+r(1-cosθ)}/cosθ    (A)
 上記のようにして測定されるウエルド長さLを、保持器の径方向に積分することによってウエルド部の断面積の近似値が算出できる。ここでいう径方向の長さは、環状の保持器の外径-内径で算出される所定値であり、ウエルドの角度に関係しない。
 また、ウエルド部の断面積は、以下に例示する計算方法により簡略に算出することもでき、この計算値を表1中に記載した。
 例えば、図16A及び図16B(図19も参照)中に示される記号を用いて説明すると、ウエルド部の断面積Wは、以下の計算式で算出される。なお、計算式中のg,eは、保持器底部の片方の端縁が、面取りによって軸方向及び径方向に切り欠かれた長さを示している。実施例1では実測によって、L=2.221mmであり、e=0.620、f=2.267、g=0.595であった。
 W=L×(f+e)-(e×g)/2     (B)
 上記数式(B)に実施例1の数値を代入すると、
 W=2.221×(2.267+0.620)-(0.620×0.595)/2
  =6.412-0.1845
  =6.2275(小数点以下第3位を四捨五入すると6.23)
Figure JPOXMLDOC01-appb-T000001
 [回転試験]
 図18に示す回転試験装置に、組み込んだ転がり軸受2について耐久性を調べた。
 回転試験装置は、基板11に固定されたモータ12及びその回転力を伝導ベルト13を介して伝達される変速装置14を設け、その出力軸15に試験用の転がり軸受2を装着したものであり、片持ち梁の先端に取り付けた重り16によって、軸の曲げ力となるモーメント荷重を負荷している。
 この装置を用いて実施例、比較例または参考例の保持器を組み込んだ深溝玉軸受6202を装着し、5.88N・mのモーメント荷重を付加した状態で、回転速度6000rpmで20分間の回転試験を無潤滑条件で行なったところ、実施例1-3のみが破損せずに耐えるという結果が得られ、この結果を表1中に併記した。
 表1に示される結果からも明らかなように、ウエルドラインの保持器軸線に対する傾斜角度(ウエルドライン角度)が17°以上である実施例1(29.96°)及び実施例3(29.96°)および実施例2(26.77°)は、数式(1)および数式(2)の値が前記した所定の範囲内であり、これら実施例1~3は、破断荷重について優れた結果を示し、射出成形によって形成されるウエルド部が、適切な傾斜角度及び好ましくは適切な断面積に形成されていることにより破断し難い状態であることを確認できた。
 また、図17にも示すように、ウエルドラインの保持器軸線に対する傾斜角度が17°未満(16.0°)の比較例1の破断荷重(269.94N)に比べて、ウエルドライン角度が26.77°の実施例2の破断荷重(398.19N)、及びウエルドライン角度がいずれも29.96°の実施例1及び実施例3の破断荷重(平均値)は、傾斜角度が17°以上における増大傾向が急角度で直線的であり、しかも実施例1-3の保持器は、回転試験で破損しなかった。これらのことから、前記傾斜角度が17°以上であれば、保持器に掛る荷重成分のうち、軸方向の負荷によるウエルド面に垂直な荷重成分を充分に小さくできると認められた。
 このようにして実施例1-3は、大きな曲げモーメント荷重を受けても耐久性に優れた樹脂製保持器が得られ、さらにそれを組み込んだ耐久性に優れた転がり軸受が得られた。
 この発明の樹脂製冠型保持器などの転がり軸受の樹脂製保持器及びこれを備える転がり軸受は、各種の建設機械装置、産業用機械装置などの軸受全般に利用可能であり、特にチェーンソーなどに用いられるエンジン装置内のクランク軸支持用の転がり軸受などのように、比較的高速の回転軸を支持可能であり、振動やモーメント荷重に耐えることが求められる用途に適用できるものである。このような用途と同様に、激しい振動や回転軸を傾ける荷重に耐え、潤滑油の供給不足にも耐え、品質上の問題となるような摩耗粉の発生も防止可能な転がり軸受の用途としても広く適用できる。
 また、PEEK等のエンジニアリングプラスチックで成形された樹脂製冠型保持器は、高温で高速回転する転がり軸受の用途にも適したものである。
1 冠型保持器
1a 端面
1b 内周面
1c 外周面
1d 端縁
2 転がり軸受
3 玉
4、8、10 ポケット
4a 壁面
5、5´ 半円割治具 
6、6´ 引張治具
7、9 保持器
11 基板
12 モータ
13 伝導ベルト
14 変速装置
15 出力軸
16 重り
A,B,C ゲート部
A´,B´,C´ ウエルド部
P 中心点
X 軸線

Claims (11)

  1.  転がり軸受の転動体を回転自在に収容する複数のポケットが、樹脂成形体からなる環状の保持器の周方向に等間隔で配置され、前記ポケットの壁面から内部に延びるウエルド部の前記壁面に隣接する保持器の表面に現れるウエルドラインが、保持器の軸線に対して17°以上の角度で傾斜したウエルドラインである転がり軸受の樹脂製保持器。
  2.  前記環状の保持器が、冠型保持器である請求項1に記載の転がり軸受の樹脂製保持器。
  3.  転がり軸受の転動体を回転自在に収容する複数のポケットが、樹脂成形体からなる冠型保持器の周方向に等間隔で配置され、前記ポケットの壁面から内部に延びるウエルド部が、前記ポケットの壁面とこの壁面に対向する保持器の表面とに跨って形成され、かつ以下の数式(1)で示されるウエルド部と玉またはころの断面積比および数式(2)で示されるウエルド部断面積及び破断伸びに対する保持器の破断荷重の比率を満足する所定断面積である転がり軸受の樹脂製保持器。
      (1)      W/(π(Da/2))≧0.15
    (式中、Wはウエルド部断面積(mm)であり、Daはポケットに収容する玉の直径(mm)を示し、(π(Da/2))は玉の直径方向の断面積(mm)である。)
      (2)      3<(L/E)/100<19
    (式中、Eは引張破断荷重による冠型保持器の破断方向の伸び(mm)を示し、Lは破断荷重(N)/ウエルド部断面積(mm)である。)
  4.  前記樹脂成形体が、射出成形体からなる樹脂成形体である請求項1~3のいずれかに記載の転がり軸受の樹脂製保持器。
  5.  前記樹脂成形体が、繊維補強された樹脂成形体である請求項4に記載の転がり軸受の樹脂製保持器。
  6.  前記繊維補強された樹脂成形体が、カーボン繊維を20~40質量%含有する繊維補強された樹脂組成物からなる樹脂成形体である請求項5に記載の転がり軸受の樹脂製保持器。
  7.  前記樹脂成形体が、ポリエーテルエーテルケトン樹脂製である請求項4~6のいずれかに記載の転がり軸受の樹脂製保持器。
  8.  前記樹脂製保持器が、1以上のゲート部の近傍に配置される外周面側または内周面側の端縁を、前記外周面または内周面とポケットの壁面に対向する保持器の端面との交差する2面からなる面取りのない端縁に設けた冠型保持器本体である請求項1~7のいずれかに記載の転がり軸受の樹脂製保持器。
  9.  前記ゲート部が、トンネルゲートの配置された痕跡である請求項8に記載の転がり軸受の樹脂製保持器。
  10.  請求項1~9のいずれかに記載の転がり軸受の樹脂製保持器を備えた転がり軸受。
  11.  請求項1~9のいずれかに記載の転がり軸受の樹脂製保持器を備えたエンジン装置内クランク軸支持用の転がり軸受。
PCT/JP2019/014043 2018-03-30 2019-03-29 樹脂製保持器及び転がり軸受 WO2019189779A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112019001705.5T DE112019001705T5 (de) 2018-03-30 2019-03-29 Käfig aus harz, und wälzlager
CN201980023163.2A CN111919042B (zh) 2018-03-30 2019-03-29 树脂制保持器以及滚动轴承

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018067643 2018-03-30
JP2018-067643 2018-03-30
JP2018171720 2018-09-13
JP2018-171720 2018-09-13
JP2019062446A JP7236902B2 (ja) 2018-03-30 2019-03-28 樹脂製保持器及び転がり軸受
JP2019-062446 2019-03-28

Publications (1)

Publication Number Publication Date
WO2019189779A1 true WO2019189779A1 (ja) 2019-10-03

Family

ID=68061923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014043 WO2019189779A1 (ja) 2018-03-30 2019-03-29 樹脂製保持器及び転がり軸受

Country Status (1)

Country Link
WO (1) WO2019189779A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115244308A (zh) * 2020-03-19 2022-10-25 Ntn株式会社 树脂制保持架、带有保持架的针状滚子及树脂制保持架的强度管理方法
WO2023195299A1 (ja) * 2022-04-08 2023-10-12 日本精工株式会社 玉軸受用樹脂製保持器、玉軸受、及び玉軸受用樹脂製保持器の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07504963A (ja) * 1992-09-24 1995-06-01 ザ・トリントン・カンパニー ころ軸受用保持器
JP2007078029A (ja) * 2005-09-12 2007-03-29 Ntn Corp 樹脂製波形保持器およびこの保持器を用いた玉軸受、ならびに樹脂製波形保持器の製造方法
JP2013223950A (ja) * 2012-04-20 2013-10-31 Nakanishi Metal Works Co Ltd 玉軸受用合成樹脂製保持器の製造方法
JP2015197210A (ja) * 2014-04-03 2015-11-09 日本精工株式会社 軸受用保持器、及びその製造方法
JP2016044773A (ja) * 2014-08-25 2016-04-04 中西金属工業株式会社 玉軸受用合成樹脂製保持器の製造方法
WO2017164398A1 (ja) * 2016-03-24 2017-09-28 Ntn株式会社 軸受用樹脂製保持器およびその製造方法、並びに転がり軸受

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07504963A (ja) * 1992-09-24 1995-06-01 ザ・トリントン・カンパニー ころ軸受用保持器
JP2007078029A (ja) * 2005-09-12 2007-03-29 Ntn Corp 樹脂製波形保持器およびこの保持器を用いた玉軸受、ならびに樹脂製波形保持器の製造方法
JP2013223950A (ja) * 2012-04-20 2013-10-31 Nakanishi Metal Works Co Ltd 玉軸受用合成樹脂製保持器の製造方法
JP2015197210A (ja) * 2014-04-03 2015-11-09 日本精工株式会社 軸受用保持器、及びその製造方法
JP2016044773A (ja) * 2014-08-25 2016-04-04 中西金属工業株式会社 玉軸受用合成樹脂製保持器の製造方法
WO2017164398A1 (ja) * 2016-03-24 2017-09-28 Ntn株式会社 軸受用樹脂製保持器およびその製造方法、並びに転がり軸受

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115244308A (zh) * 2020-03-19 2022-10-25 Ntn株式会社 树脂制保持架、带有保持架的针状滚子及树脂制保持架的强度管理方法
WO2023195299A1 (ja) * 2022-04-08 2023-10-12 日本精工株式会社 玉軸受用樹脂製保持器、玉軸受、及び玉軸受用樹脂製保持器の製造方法

Similar Documents

Publication Publication Date Title
JP5531966B2 (ja) 玉軸受及びハイブリッド車用変速機
JP7236902B2 (ja) 樹脂製保持器及び転がり軸受
US8292512B2 (en) Ball bearing and supporting construction
WO2019189779A1 (ja) 樹脂製保持器及び転がり軸受
WO2011129178A1 (ja) 円すいころ軸受用保持器、保持器製造方法、および円すいころ軸受
WO2017164398A1 (ja) 軸受用樹脂製保持器およびその製造方法、並びに転がり軸受
CN111133210B (zh) 圆锥滚子轴承用保持架和圆锥滚子轴承
US5697709A (en) Dynamic pressure type bearing device
JP5692720B2 (ja) 球面滑り軸受装置
CN104011432A (zh) 用于发动机或链条传动装置的滑动元件
JP5466427B2 (ja) 球面滑り軸受
WO2015045746A1 (ja) 円すいころ軸受
JP2003113921A (ja) ボールねじ装置
JP2013036608A (ja) 冠形保持器及び転がり軸受
WO2019065767A1 (ja) 軸受保持器、軸受保持器用金型、および軸受保持器の製造方法
JP6626255B2 (ja) 転がり軸受用保持器およびその製造方法、並びに転がり軸受
JP2014185739A (ja) アンギュラ玉軸受
JP2008095770A (ja) 樹脂製保持器
CN118043567A (zh) 滚动轴承用保持器和滚动轴承
JP5902328B2 (ja) 球面滑り軸受装置
JP5006232B2 (ja) 等速ジョイント
WO2014185308A1 (ja) ウォータポンププーリユニット
CN115126779A (zh) 树脂保持器
JP2023046362A (ja) 転がり軸受用保持器および転がり軸受
JP2005264989A (ja) マグネシウム製プーリーとその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777564

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19777564

Country of ref document: EP

Kind code of ref document: A1