WO2019189526A1 - ステータおよびモータ - Google Patents

ステータおよびモータ Download PDF

Info

Publication number
WO2019189526A1
WO2019189526A1 PCT/JP2019/013486 JP2019013486W WO2019189526A1 WO 2019189526 A1 WO2019189526 A1 WO 2019189526A1 JP 2019013486 W JP2019013486 W JP 2019013486W WO 2019189526 A1 WO2019189526 A1 WO 2019189526A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
wire
coil wire
stator
teeth
Prior art date
Application number
PCT/JP2019/013486
Other languages
English (en)
French (fr)
Inventor
宏徳 連記
慧 中村
省悟 新村
遼平 大脇
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2019189526A1 publication Critical patent/WO2019189526A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines

Definitions

  • the present invention relates to a stator and a motor.
  • Patent Document 1 A technique for manufacturing an electric motor by inserting a winding coil wound in a predetermined shape into a salient pole of a stator in an assembly process of the electric motor is known (for example, see Patent Document 1 below).
  • the coil wire In a motor manufactured by inserting a pre-wound coil wire into a tooth, the coil wire is formed by winding a conductive wire, so that the portion corresponding to the start of winding is drawn out of the coil and protrudes. . Therefore, when the coil wire is inserted into the tooth, the lead-out portion drawn out from the coil wire comes into contact with the stator core, and the coil wire is not inserted up to the base of the tooth, and a dead space is generated in the slot. When a dead space is generated in the slot, there arises a problem that the space factor of the coil is lowered and the motor characteristics are lowered. In addition, since a gap is generated between the coil and the stator core, heat generated from the coil is not efficiently transmitted to the stator core, resulting in a problem that heat dissipation is reduced. *
  • an object of the present invention is to provide a stator and a motor that can improve the coil space factor and heat dissipation.
  • stator core having an annular core back extending in the circumferential direction around an axis extending in one direction, and a plurality of teeth extending radially from the core back.
  • the coil wire has a lead wire portion at least partially provided in the groove.
  • One aspect of the motor of the present invention includes the stator described above and a rotor.
  • a stator and a motor that can improve coil space factor and heat dissipation are provided.
  • FIG. 1 is a cross-sectional view of the motor of the embodiment, and is a view showing a cross-section of the motor along the axial direction.
  • FIG. 2 is a perspective view of the motor according to the embodiment.
  • FIG. 3 is a plan view of the stator.
  • FIG. 4 a is a plan view of the coil group.
  • FIG. 4 b is a front view of the coil group.
  • FIG. 5 is a plan view of the stator core.
  • FIG. 6 is a plan view of a jig used for attaching the coil wire.
  • FIG. 7 is an explanatory diagram of attachment of the coil wire to the stator core.
  • FIG. 8 is a plan view of a jig used for resin filling.
  • the Z axis is shown as appropriate.
  • the Z-axis direction in each figure is a direction parallel to the axial direction of the central axis J shown in FIG.
  • the positive side (+ Z side, one side) in the Z-axis direction is referred to as “upper side”
  • the negative side ( ⁇ Z side, the other side) in the Z-axis direction is referred to as “lower side”.
  • the upper side and the lower side are directions used for explanation only, and do not limit the actual positional relationship and direction.
  • a direction parallel to the central axis J (Z-axis direction) is simply referred to as an “axial direction”, and a radial direction around the central axis J is simply referred to as a “radial direction”.
  • the circumferential direction centering around, that is, the circumference of the central axis J is simply referred to as “circumferential direction”.
  • plane view means a state viewed from the axial direction.
  • FIG. 1 is a cross-sectional view of the motor of this embodiment.
  • FIG. 1 is a view showing a cross section of the motor along the axial direction.
  • the motor 100 of the present embodiment includes a motor case 2, a rotor 10 that rotates about a central axis J that extends in the vertical direction, and a stator 20 that faces the rotor 10 with a gap in the radial direction. And a pair of bearings 30, a circuit board 40, and a mold resin 50 made of resin. *
  • FIG. 2 is a perspective view of the motor of this embodiment.
  • the motor case 2 accommodates each member constituting the motor 100.
  • the motor case 2 includes a bottomed cylindrical housing 3 having a bottom on the lower side in the axial direction, and a lid 4 that covers the upper side in the axial direction of the housing 3.
  • the housing 3 includes a disk-shaped bottom plate portion 3a and a cylindrical peripheral wall portion 3b extending in the axial direction from the outer peripheral edge of the bottom plate portion 3a.
  • the bottom plate portion 3 a has a bearing holding portion 3 c that holds one of the pair of bearings 30.
  • the housing 3 has a notch 6 provided at the tip of the peripheral wall 3b and forming an opening in the radial direction. *
  • the lid 4 is formed along a disc-shaped disc portion 4a, a cylindrical bearing holding portion 4b provided on the lower ( ⁇ Z side) surface of the disc portion 4a, and an outer peripheral edge portion of the disc portion 4a. And a peripheral wall portion 4c protruding downward.
  • the lid 4 and the housing 3 are fitted together. Specifically, the radially outer peripheral surface of the peripheral wall portion 4 c of the lid 4 and the radially inner peripheral surface of the peripheral wall portion 3 b of the housing 3 are in contact with each other.
  • the lid 4 and the housing 3 are fixed by caulking each other.
  • the notch 6 forms an opening 7 in the motor case 2 that allows the inside of the case and the outside of the case to communicate with each other by fitting the lid 4 and the housing 3 together.
  • the rotor 10 includes a shaft 11, a rotor core 12, and a plurality of rotor magnets 13.
  • the shaft 11 extends in one direction around a central axis J that extends in the vertical direction (Z-axis direction). The upper end and the lower end of the shaft 11 are supported by the bearings 30 so as to be rotatable around the central axis J.
  • the rotor core 12 is fixed to the shaft 11.
  • the rotor core 12 surrounds the shaft 11 in the circumferential direction.
  • a plurality (six in this embodiment) of rotor magnets 13 are fixed to the radially outer surface of the rotor core 12.
  • the plurality of rotor magnets 13 have N poles and S poles alternately arranged in the circumferential direction.
  • the rotor core 12 and the rotor magnet 13 rotate together with the shaft 11. *
  • the circuit board 40 is electrically connected to the lead wire drawn from the coil of the stator 20.
  • the circuit board 40 is provided below the lid 4. That is, the circuit board 40 is provided inside the motor case 2.
  • the circuit board 40 controls the rotation of the rotor 10 by passing a current through the coil.
  • An integrated circuit and a capacitor (not shown) are mounted on the circuit board 40. In the present embodiment, a part of the circuit board 40 is pulled out of the motor case 2 through the opening 7. *
  • the motor 100 includes a rotation detection sensor 41 fixed to the lower surface of the circuit board 40.
  • the rotation detection sensor 41 is located between the mold resin 50 and the circuit board 40 in the axial direction.
  • the rotation detection sensor 41 is a magnetic sensor.
  • the rotation detection sensor 41 has a configuration in which, for example, a Hall element, an MR (Magneto Resistive) element, and a magnet are combined.
  • the rotation detection sensor 41 detects the position of the rotor 10 by detecting the magnetic field of the rotor magnet 13 in the rotor 10.
  • the mold resin 50 is provided in the housing 3 so as to cover the stator 20 as shown in FIG. More specifically, the mold resin 50 is provided at least between the coil wire 32 and the stator core 21. Thereby, the coil wire 32 and the stator core 21 are firmly fixed. Thereby, dropping of the coil wire 32 from the stator core 21 is prevented.
  • the mold resin 50 is provided between the stator 20 and the inner peripheral surface of the motor case 2. Thereby, the stator 20 is firmly fixed to the motor case 2. *
  • the mold resin 50 is provided on the lid 4 side with respect to the coil wire 32 and on the coil wire 32 side with respect to the notch 6 in the axial direction. Therefore, the mold resin 50 is disposed in the motor case 2 without being exposed to the outside from the opening 7.
  • the mold resin 50 is positioned below the rotation detection sensor 41 fixed to the lower surface of the circuit board 40. That is, the mold resin 50 and the rotation detection sensor 41 do not contact each other. Further, the mold resin 50 is located below the lid 4. Specifically, the mold resin 50 is located on the lower side of the bearing holding portion 4 b located on the lowermost side of the lid 4. With this configuration, since the mold resin 50 and the rotation detection sensor 41 do not contact each other, the housing 3 and the lid 4 can be attached favorably. For example, when attaching the lid 4 to which the rotation detection sensor 41 is attached to the housing 3, it is possible to prevent a problem that the lid 4 cannot be attached to the housing 3 because the mold resin 50 is sandwiched between the circuit board 40 and the opening 7. it can. *
  • the mold resin 50 is not provided in the opening 7.
  • the housing 3 and the lid 4 can be attached favorably.
  • the lid 4 to which the circuit board 40 is attached is attached to the housing 3, it is possible to prevent a problem that the lid 4 cannot be attached to the housing 3 because the mold resin 50 is sandwiched between the circuit board 40 and the opening 7. .
  • the circuit board 40 is not displaced due to the contact with the mold resin 50. Therefore, it is possible to prevent positional deviation between the rotation detection sensor 41 provided on the circuit board 40 and the rotor 10. Therefore, it is possible to prevent the rotation detection accuracy of the rotor 10 from being lowered due to the positional deviation of the circuit board 40.
  • the mold resin 50 since the mold resin 50 does not contact the lid 4, a gap is generated between the mold resin 50 and the lid 4. As a result, a structure in which vibration is not easily transmitted from the stator 20 to the lid 4 is obtained. Therefore, vibration and noise during driving of the motor 100 can be reduced. Further, in the motor 100 according to the present embodiment, since the amount of resin used for the mold resin 50 is smaller than the structure in which the mold resin 50 is disposed between the stator 20 and the lid 4, the amount of the resin is reduced. Reduced weight. *
  • the stator 20 surrounds the outer side of the rotor 10 in the radial direction.
  • FIG. 3 is a plan view of the stator. As shown in FIG. 3, the stator 20 is annularly arranged around the central axis J.
  • the motor 100 of this embodiment is an inner rotor type motor.
  • the stator 20 includes a stator core 21, a plurality of coil groups 31 attached to the stator core 21, a groove 25, and a protruding portion 28.
  • the stator 20 of the present embodiment includes three coil groups 31. *
  • the stator core 21 is a laminated steel plate in which a plurality of electromagnetic steel plates are laminated in the vertical direction.
  • the entire surface of the stator core 21 is painted with an insulating coating film having insulating properties. Thereby, the stator core 21 has insulation on the surface.
  • the stator core 21 has an annular core back 21a and a plurality of teeth 21b.
  • the teeth 21b extend radially inward from the inner peripheral surface 21a1 of the core back 21a.
  • the teeth 21b are arranged at equal intervals in the circumferential direction.
  • the teeth 21b face the rotor 10 in the radial direction.
  • FIG. 4a is a plan view of the coil group
  • FIG. 4b is a front view of the coil group.
  • 4A and 4B the coil group 31 removed from the stator core 21 is illustrated.
  • the coil group 31 is formed by winding a single conducting wire 34, and has a winding start portion 35 of the conducting wire 34 and a winding end portion 36 of the conducting wire 34.
  • the coil group 31 includes two or more coil wires 32 connected to each other by a jumper wire 33 between the winding start portion 35 and the winding end portion 36.
  • the coil group 31 of this embodiment has three coil wires 32. That is, the coil group 31 of the present embodiment connects the three coil wires 32 by the two crossover wires 33.
  • the crossover wire 33 extends linearly. More specifically, the connecting wire 33 extends linearly from the one axial direction side of one coil wire 32 toward the other axial direction side of the other coil wire 32 in the adjacent coil wires 32.
  • the one axial side of the coil wire 32 corresponds to the radially inner side of the coil wire 32 attached to the tooth 21b shown in FIG.
  • the axial direction other side of the coil wire 32 is equivalent to the radial direction outer side of the coil wire 32 attached to the teeth 21b shown in FIG.
  • the axis C1 of the coil wire 32 is an axis passing through the center of each coil wire 32 as shown in FIGS. 4a and 4b. That is, the coil wire 32 is configured by winding the conducting wire 34 around the axis C1. Each coil wire 32 is attached to the tooth 21b as described later. *
  • the stator core 21 of the present embodiment has nine teeth 21b.
  • a slot 23 for accommodating the coil wire 32 is provided between the teeth 21b.
  • the motor 100 of this embodiment is a motor configured with 6 poles and 9 slots. Note that the number of poles and the number of slots of the motor are not limited to the present embodiment, and are appropriately selected according to the required output and the winding method. *
  • the motor 100 of the present embodiment is a so-called three-phase motor in which currents of three different phases of U phase, V phase, and W phase flow.
  • the three coil groups 31 may be referred to as a first coil group 31U, a second coil group 31V, and a third coil group 31W, respectively.
  • the first coil group 31U is a coil group corresponding to the U phase
  • the second coil group 31V is a coil group corresponding to the V phase
  • the third coil group 31W is a coil group corresponding to the W phase. That is, the phases of currents flowing through the first coil group 31U, the second coil group 31V, and the third coil group 31W are different from each other.
  • the three coil wires in the first coil group 31U each function as a U-phase coil
  • the three coil wires in the second coil group 31V each function as a V-phase coil
  • the three coil wires in the third coil group 31W are W Each functions as a phase coil.
  • the first coil group 31U is formed by winding a single conducting wire 34U, and has three U-phase coil wires 32U connected by two connecting wires 33U.
  • the winding start portion 35U of the conducting wire 34U in the first coil group 31U is drawn upward.
  • the winding end portion 36U of the first coil group 31U is drawn radially outward from the side end face of the U-phase coil wire 32U when viewed in the axial direction.
  • the first coil group 31U is formed by winding the conducting wire 34U, the winding start portion 35U of the conducting wire 34U is drawn out to the other side in the axial direction of the U-phase coil wire 32U, whereby the other side in the axial direction of the U-phase coil wire 32U. Protrusively.
  • the second U-phase coil wire 32U (corresponding to the middle coil wire in FIGS. 4a and 4b) connected to the crossover wire 33U has a connected lead wire portion 32U1 corresponding to the coil winding start portion.
  • the connected lead wire portion 32U1 is connected to the crossover wire 33U.
  • the connected lead wire portion 32U1 protrudes to the other side in the axial direction of the U-phase coil wire 32U.
  • the third U-phase coil wire 32U (corresponding to the left coil wire in FIGS. 4a and 4b) connected to the crossover wire 33U corresponds to the coil winding start portion, and the axis of the U-phase coil wire 32U. It has the connection leader line part 32U1 which protrudes in the direction other side.
  • the second coil group 31V and the third coil group 31W have the same shape as the first coil group 31U except that currents of different phases flow. Therefore, the second coil group 31V has three V-phase coil wires 32V connected by two connecting wires 33V.
  • the winding start portion 35V of the conducting wire 34V in the second coil group 31V is drawn upward.
  • the winding end portion 36V of the second coil group 31V is drawn radially outward from the side end face of the V-phase coil wire 32V when viewed in the axial direction.
  • the winding start portion 35V of the conducting wire 34V protrudes to the other side in the axial direction of the V-phase coil wire 32V.
  • the two V-phase coil wires 32V connected to the crossover wire 33V correspond to coil winding start portions, and have a connected lead wire portion 32V1 protruding to the other side in the axial direction of the V-phase coil wire 32V. Note that the connecting lead wire portion 32V1 is connected to the crossover wire 33V.
  • the third coil group 31W has three W-phase coil wires 32W connected by two crossover wires 33W.
  • the winding start portion 35W of the conducting wire 34W in the third coil group 31W is drawn upward.
  • the winding end portion 36W of the third coil group 31W is drawn radially outward from the side end face of the W-phase coil wire 32W when viewed in the axial direction.
  • the winding start portion 35W of the conducting wire 34W protrudes to the other side in the axial direction of the W-phase coil wire 32W.
  • the two W-phase coil wires 32W connected to the crossover wire 33W correspond to the coil winding start portion, and have a connected lead wire portion 32W1 protruding to the other side in the axial direction of the W-phase coil wire 32W.
  • the connecting lead wire portion 32W1 is connected to the crossover wire 33W.
  • the winding start portions 35U, 35V, and 35W of the first coil group 31U, the second coil group 31V, and the third coil group 31W are connected to the circuit board 40 in regions not shown.
  • the winding end portions 36U, 36V, 36W of the first coil group 31U, the second coil group 31V, and the third coil group 31W are pulled out to positions overlapping the core back 21a when viewed in the axial direction, and are twisted together in a region not shown. Are combined to form a neutral point. *
  • Each coil wire (U-phase coil wire 32U, V-phase coil wire 32V, and W-phase coil wire 32W) of first coil group 31U, second coil group 31V, and third coil group 31W is adjacent in this order in the circumferential direction. It is attached to each of the teeth 21b.
  • a groove 25 that is recessed in the radial direction is provided on the inner peripheral surface 21a1 of the core back 21a where the coil wire 32 faces in the radial direction. That is, the inner peripheral surface 21 a 1 of the core back 21 a has the groove 25.
  • the groove 25 has an opening 25a that opens in the axial direction of the core back 21a. Therefore, the opening 25a by the groove 25 is provided on the upper end surface of the core back 21a in a state in plan view.
  • the stator core 21 of the present embodiment further includes a protruding portion 28 that protrudes radially inward from the core back 21a between adjacent teeth 21b.
  • the protruding portion 28 includes a pair of protruding portion outer surfaces 28a positioned in the circumferential direction of the outer surfaces and a tip portion connecting the radially inner ends of the pair of protruding portion outer surfaces 28a. 28b.
  • the distal end portion 28b has a flat surface that faces radially inward.
  • the protruding portion 28 functions as a heat dissipation path of the coil wire 32. *
  • the groove 25 are provided on both sides of the teeth 21b. That is, the groove
  • the shape of the stator core 21 is symmetrical with respect to the central axis T1 of the teeth 21b, the occurrence of magnetic unbalance in the stator 20 is reduced.
  • the number of teeth 21b is nine, 18 grooves 25 are provided on the inner peripheral surface 21a1 of the core back 21a.
  • the U-phase coil wire 32U attached to the tooth 21b is provided with at least a part of the winding start portion 35U and the connecting lead wire portion 32U1 in the groove 25. That is, the U-phase coil wire 32U of the present embodiment has a lead wire portion (a winding start portion 35U and a connected lead wire portion 32U1) at least partially provided in the groove 25. Specifically, the winding start portion 35U extends along the groove 25 to the upper side of the core back 21a, and is drawn out to the upper side of the stator 20 through the opening 25a.
  • the connecting lead wire portion 32U1 extends along the groove 25 to the upper side of the core back 21a, and is drawn upward of the stator 20 through the opening portion 25a to be connected to the crossover wire 33U. *
  • channel 25 is not provided is considered as a comparative example.
  • the U-phase coil wire 32U cannot be inserted to the base of the tooth 21b, and the U-phase coil wire 32U and the core back There will be a gap between 21a.
  • the tip of the tooth 21 b corresponds to a portion located on the innermost side in the radial direction of the tooth 21 b, more specifically, a portion facing the rotor 10.
  • the base portion of the tooth 21b corresponds to a portion located on the outermost side in the radial direction of the tooth 21b, and more specifically is a connecting portion between the inner peripheral surface 21a1 and the tooth 21b.
  • the stator 20 of this embodiment since at least a part of the winding start portion 35U and the connecting lead wire portion 32U1 is accommodated in the groove 25, the U-phase coil wire 32U is inserted closer to the base portion of the tooth 21b. State. As a result, the gap in the slot 23 is reduced and the space factor of the coil is prevented from being lowered, so that the performance of the motor 100 can be further improved.
  • the V-phase coil wire 32V attached to the tooth 21b at least a part of the winding start portion 35V and the connecting lead wire portion 32V1 is provided in the groove 25. That is, the V-phase coil wire 32 ⁇ / b> V of the present embodiment has a lead wire portion (a winding start portion 35 ⁇ / b> V and a connected lead wire portion 32 ⁇ / b> V ⁇ b> 1) at least partially provided in the groove 25.
  • the winding start portion 35U extends along the groove 25 to the upper side of the core back 21a, and is drawn out to the upper side of the stator 20 through the opening 25a.
  • the connecting lead wire portion 32V1 extends along the groove 25 to the upper portion of the core back 21a, and is drawn upward of the stator 20 through the opening portion 25a to be connected to the crossover wire 33V. Therefore, the V-phase coil wire 32V is inserted closer to the base of the teeth 21b.
  • the W-phase coil wire 32W of the present embodiment has a lead wire portion (winding start portion 35W and connecting lead wire portion 32W1) at least partially provided in the groove 25.
  • the winding start portion 35W extends along the groove 25 to the upper side of the core back 21a, and is drawn out to the upper side of the stator 20 through the opening 25a.
  • the connecting lead wire portion 32W1 extends along the groove 25 to the upper portion of the core back 21a, and is drawn upward of the stator 20 through the opening portion 25a to be connected to the crossover wire 33W. Therefore, the W-phase coil wire 32W is inserted to a position closer to the base of the tooth 21b.
  • a part of the mold resin 50 enters the groove 25. That is, since the groove 25 functions as a resin filling path when filling the mold resin 50, the mold resin 50 is disposed between the core back 21 a and the coil wire 32 without any gap. When filling the mold resin, since the mold resin 50 passes through the inside of the groove 25, the mold resin 50 can be filled efficiently.
  • FIG. 5 is a plan view of the stator core.
  • the teeth 21b of the present embodiment have a pair of teeth outer surfaces 21c positioned in the circumferential direction among the outer surfaces in a plan view, and radially inner ends of the pair of teeth outer surfaces 21c.
  • the tip portion 21d has a surface that faces radially inward.
  • the pair of teeth outer surfaces 21c are parallel to each other. That is, the distance between the pair of teeth outer surfaces 21c is constant.
  • a recess 21d1 that is recessed radially outward is provided at the tip 21d of the tooth 21b. *
  • the thickness of the teeth 21b of the present embodiment is substantially constant from the base 21A to the tip 21B. Therefore, the cross-sectional area of the tooth 21b by the surface orthogonal to the central axis T1 of the tooth 21b does not change from the base 21A to the tip 21B.
  • the teeth 21b having a shape whose thickness is substantially constant from the base 21A to the tip 21B are referred to as umbrellaless type teeth.
  • the coil wire 32 that is densely wound in advance by a winding device is inserted from the tip 21B side toward the base portion 21A side, so that the space factor is reduced.
  • the high coil wire 32 can be easily attached.
  • the coil wire 32 since the thickness of the teeth 21b is substantially constant, for example, the coil wire 32 may fall off the teeth 21b during the assembly of the stator 20 or the position of the coil wire 32 may be displaced.
  • the coil group 31 (first coil group 31U, first coil group) provided on the stator core 21 in a state where the connecting wire 33 is bent radially outward. 2 coil group 31V and 3rd coil group 31W).
  • the configuration of the first coil group 31U will be described as an example, but the same applies to the second coil group 31V and the third coil group 31W.
  • the connecting wire 33U in the first coil group 31U has a portion in which the curvature of the connecting wire 33U in a plane orthogonal to the axial direction is larger than the curvature R1 of the core back 21a.
  • the curvature R1 of the core back 21a is defined by the radially outer peripheral surface.
  • the connecting wire 33U has a wiring portion 37U that overlaps the core back 21a when the stator core 21 is viewed in the axial direction.
  • the crossover wire 33 is prevented from entering between the U-phase coil wire 32U and the core back 21a in the radial direction. Therefore, U-phase coil wire 32U is satisfactorily attached to teeth 21b, and a gap is hardly generated between U-phase coil wire 32U and core back 21a.
  • the crossover wire 33U hardly prevents the insertion of the V-phase coil wire 32V or the W-phase coil wire 32W attached to the teeth 21b after the U-phase coil wire 32U.
  • the crossover wire 33U is located on the radially outer side of the connecting lead wire portions 32V1 and 32W1 of the other coil group 31 (the second coil group 31V and the third coil group 31W). Therefore, it is difficult for the crossover wire 33U not to prevent the insertion of the V-phase coil wire 32V or the W-phase coil wire 32W attached to the teeth 21b after the U-phase coil wire 32U.
  • the crossover wire 33U has a connecting portion 38U that is connected to the coil wire 32 (U-phase coil wire 32U) on the radially inner side of the core back 21a. Since the connecting portion 38U is located on the radially inner side with respect to the wiring portion 37U, the connecting wire 33U is connected to the connecting portion 38U in a curved state. Therefore, when the stator core 21 is viewed in the axial direction, the curvature R2 of the connecting portion 38U is larger than the curvature R3 of the wiring portion 37U. Thus, by positioning the connecting portion 38U radially inward of the core back 21a, it is possible to easily provide a portion with a large curvature in the crossover wire 33U. Note that the curvature R3 of the wiring portion 37U overlapping the core back 21a is substantially the same as the curvature R1 of the core back 21a. *
  • the crossover wire 33U is elastically deformed.
  • the connecting wire 33 extends in a straight line. Therefore, an elastic force is generated in the connecting wire 33U that is elastically deformed so as to return to the straight shape.
  • a force for making the entire curvature uniform acts on the crossover wire 33U having the connecting portion 38U having a relatively large curvature so as to match the wiring portion 37U. Accordingly, since the connecting portion 38U extends radially outward, a force is applied to press the U-phase coil wire 32U connected to the connecting portion 38U against the inner peripheral surface 21a1 of the core back 21a.
  • the U-phase coil wire 32U can be pressed against the inner peripheral surface 21a1 of the core back 21a by the elastic force generated in the connecting wire 33U. Thereby, the U-phase coil wire 32U can be easily and stably attached to the umbrella-less teeth 21b without using a special mechanism or member. Therefore, during the assembly of the stator 20, it is possible to prevent the U-phase coil wire 32U from dropping from the teeth 21b and the U-phase coil wire 32U from being misaligned with respect to the teeth 21b. *
  • the V-phase coil wire 32V and the W-phase coil wire 32W can be easily and stably attached to the umbrella-less type tooth 21b without using a special mechanism or member. . Therefore, it is possible to prevent the V-phase coil wire 32 ⁇ / b> V and the W-phase coil wire 32 ⁇ / b> W from dropping off from the teeth 21 b and the occurrence of positional deviation. Further, a gap generated between the V-phase coil wire 32V and the W-phase coil wire 32W and the core back 21a is reduced. Thereby, the V-phase coil wire 32V and the W-phase coil wire 32W can be favorably pressed against the inner peripheral surface 21a1 of the core back 21a. *
  • the U-phase coil wire 32U, the V-phase coil wire 32V, and the W-phase coil wire 32W are collectively referred to simply as the coil wire 32. *
  • a recess 27 that is recessed radially inward is provided at a position corresponding to the tooth 21b on the outer peripheral surface 21a2 of the core back 21a. That is, the recessed part 27 is located in the radial direction outer side of the teeth 21b.
  • the recess 27 is used for positioning when the stator core 21 is attached to the housing 3 of the motor case 2, for example.
  • the number of the concave portions 27 may be at least one, but in the stator core 21 of the present embodiment, the nine concave portions 27 are evenly arranged in the circumferential direction, thereby generating magnetic unbalance in the stator 20. Can be reduced. *
  • the central axis T1 of the tooth 21b along the radial direction is perpendicular to the surface along the inner peripheral surface 21a1. That is, the inner peripheral surface 21a1 of the core back 21a has a shape that is recessed outward in the radial direction as the distance from the base portion of the teeth 21b increases. According to this structure, the capacity
  • the central axis T1 and the inner peripheral surface 21a1 being vertical means that the angle between the central axis T1 and the inner peripheral surface 21a1 is not limited to 90 degrees, and the slot capacity is larger than that of the cylindrical inner peripheral surface as described above. If it is an aspect that can be enlarged, it may be slightly deviated from the vertical. *
  • the width H1 of the portion of the core back 21a where the groove 25 is provided is preferably equal to or greater than the minimum width H2 of the core back 21a.
  • the width H1 is defined by the minimum width between the bottom surface 27a of the concave portion 27 and the groove 25.
  • the width H1 is defined by the width in the radial direction between the groove 25 and the outer peripheral surface 21a2.
  • the minimum width H2 is defined by the minimum value of the width in the radial direction of the core back 21a.
  • the minimum width H2 is the radial direction between the intersection of the protruding portion 28 on the inner peripheral surface 21a1 and the outer peripheral surface 21a2. Specified by the width of That is, the minimum width H2 is defined by the width of the portion of the core back where the protruding portion 28 is provided.
  • the width H1 is not less than the minimum width H2 of the core back 21a (H1 ⁇ H2).
  • the configuration in which the protrusion outer surface 28a of the protrusion 28 and the inner peripheral surface 21a1 of the core back 21a intersect perpendicularly can reduce the occurrence of magnetic saturation due to the narrow width of the core back 21a. Therefore, it is possible to suppress a decrease in the magnetic characteristics of the stator 20 due to the protrusions 28.
  • the width H1 is equal to the minimum width H2 of the core back 21a
  • the minimum width H2 of the core back 21a is made smaller than the width H1. (H1> H2).
  • the protrusion part outer surface 28a located in the circumferential direction among the outer surfaces of the protrusion part 28 is outside the protrusion part in the circumferential direction among the outer surfaces of the teeth 21b adjacent to the protrusion part outer surface 28a. It is parallel to the teeth outer surface 21c facing the side surface 28a, and the protruding portion outer surface 28a intersects the surface along the inner peripheral surface 21a1 of the core back 21a perpendicularly. That is, the tooth outer surface 21c of the tooth 21b intersects the surface along the inner peripheral surface 21a1 perpendicularly.
  • protrusion outer surface 28a and the teeth outer surface 21c are parallel includes a state where the protrusion outer surface 28a and the teeth outer surface 21c are substantially parallel to each other. That the protrusion outer surface 28a and the surface along the inner peripheral surface 21a1 intersect perpendicularly includes a state in which the protrusion outer surface 28a and the inner peripheral surface 21a1 intersect substantially perpendicularly.
  • the protrusion outer surface 28a and the teeth outer surface 21c being parallel are not limited to the case where the protrusion outer surface 28a and the teeth outer surface 21c are completely parallel, and the slot capacity is affected. Allow a state where each other is tilted so as not to reach.
  • the protrusion outer surface 28a and the inner peripheral surface 21a1 being vertical means that the angle formed by the protrusion outer surface 28a and the inner peripheral surface 21a1 is not limited to 90 degrees, as compared with the circular inner peripheral surface as described above. As long as the slot capacity can be increased, the slot capacity may be slightly deviated from the vertical. *
  • the protruding portion 28 has a tapered shape in which the radially inner width H4 is narrower than the radially outer width H3.
  • tip part 28b of the protrusion part 28 has a flat surface which faces a radial inside. Therefore, the tip 28b is not sharp and sharp. Thereby, since it becomes easy to apply
  • the virtual plane MM including the protruding portion outer surface 28a of the protruding portion 28 does not intersect with the teeth 21b adjacent to the protruding portion 28. That is, the length in the radial direction of the teeth 21b is set so that the tip 21d does not intersect the virtual plane MM.
  • the coil wire 32 is arrange
  • the coil wire 32 of the present embodiment has a shape that does not intersect with the virtual plane MM in a plan view.
  • the outer shape of the coil wire 32 may be formed along the virtual plane MM.
  • the outer diameter D1 of the coil wire 32 on the teeth base side is larger than the outer diameter D2 of the teeth tip side. More specifically, when viewed in a plan view, the coil wire 32 of the present embodiment includes the same-diameter portion 24a having a constant outer diameter, and the outer diameter is radially inward, as shown by a two-dot chain line in FIG. And an inclined portion 24b that becomes smaller as it goes to.
  • the outer diameter of the same diameter portion 24a is constant in the radial direction.
  • the constant outer diameter is not limited to an aspect in which the outer diameter does not change at all, but includes a state in which the outer diameter is substantially constant.
  • the same diameter portion 24a is located on the radially outer side with respect to the inclined portion 24b, and the surface 24b1 located in the circumferential direction among the outer surfaces of the inclined portion 24b is outside the teeth 21b on both sides in the circumferential direction of the coil wire 32. It is parallel to the surface 21e facing the inclined portion 24b in the circumferential direction of the teeth outer surface 21c. That the surface 24b1 and the surface 21e are parallel includes a substantially parallel state. That is, in the coil wire 32 of the present embodiment, the outer line of the same-diameter portion 24a extends from the inner peripheral surface 21a1 toward the radially inner side along the protruding portion outer surface 28a of the protruding portion 28, and the outer line of the inclined portion 24b. Extends along the virtual plane MM.
  • stator core 21 of the present embodiment since the tooth 21b and the virtual plane MM do not intersect, when the coil wire 32 is attached to the tooth 21b, contact with the other coil wire 32 attached to the adjacent tooth 21b is prevented. Can be prevented. Further, as described above, since the coil wire 32 having the teeth base side outer diameter D1 larger than the teeth tip side outer diameter D2 is provided, the coil wire 32 can be wound while preventing interference between adjacent coil wires 32. You can increase the number. *
  • the coil wire 32 can be easily and stably attached to the umbrella-less type tooth 21b without using a special mechanism or member. Therefore, during the assembly of the stator 20, it is possible to prevent the coil wire 32 from dropping from the tooth 21 b and the occurrence of the positional deviation of the coil wire 32 with respect to the tooth 21 b. Therefore, the highly reliable stator 20 is provided.
  • the teeth outer surface 21c of the teeth 21b and the inner peripheral surface 21a1 of the core back 21a intersect perpendicularly.
  • the central axis T1 of the tooth 21b and the inner peripheral surface 21a1 are perpendicular to each other. That is, the tooth outer surface 21c and the inner peripheral surface 21a1 of the tooth 21b are perpendicular to each other. Furthermore, the protrusion outer surface 28a of the protrusion 28 and the surface along the inner peripheral surface 21a1 of the core back 21a are perpendicular.
  • the stator 20 of this embodiment since the contact area of the coil wire 32 and the core back 21a increases, the heat generated in the coil wire 32 is efficiently transmitted to the core back 21a. Thereby, since the heat dissipation of the coil wire 32 improves, the increase in coil resistance by a temperature rise can be suppressed. Therefore, the performance of the motor 100 can be further improved.
  • the stator 20 of this embodiment is provided with the protrusion part 28 between the adjacent teeth 21b.
  • the heat generated in the coil wire 32 is transmitted to the core back 21a via the protruding portion 28 and released to the outside. That is, the protrusion 28 functions as a heat dissipation path for the coil wire 32. Since the protrusion part 28 is comprised with a member with high heat conductivity compared with air or resin, the heat dissipation of the coil wire 32 can be improved more.
  • channel 25 is provided in the both sides of the teeth 21b.
  • the coil wire which consists of various winding patterns different from the form shown in Drawing 4a and 4b. That is, for example, it is possible to deal with a case in which two lead wires projecting to the other side in the axial direction of the coil wire 32, or a case in which the lead wire lead direction is opposite to the coil wire 32 in the radial direction, etc. . Therefore, the same effect (an improvement in space factor and heat dissipation) can be obtained in a motor using coil wires of various winding patterns. *
  • FIG. 6 is a plan view of a jig used for attaching the coil wire 32
  • FIG. 7 is an explanatory view of attaching the coil wire 32 to the stator core 21.
  • a coil wire attachment jig 60 shown in FIG. 6 has a holding portion 61 that holds the coil wire 32 and a shaft 62 that passes through the center of the holding portion 61.
  • the shaft 62 defines the center of the coil wire attachment jig 60 and functions as a gripping part when moving the coil wire attachment jig 60.
  • the holding portion 61 has three rod-like coil wire holding portions 61b extending radially around the circular main body portion 61a. That is, the holding unit 61 can simultaneously hold the three coil wires 32 of the coil group 31.
  • the holding portion 61 is set so that the position of each coil wire holding portion 61b is set so that the coil wire holding portion 61b is disposed at a position facing the teeth 21b.
  • the convex part 61c is provided in the front-end
  • the coil wire holding portion 61b has a length such that the protruding portion 61c at the tip is exposed while the coil wire 32 is held.
  • FIG. 7 A manufacturing process of the stator 20 will be described.
  • a coil wire attachment jig 60 in which each coil wire 32 of the coil group 31 is attached to each coil wire holding portion 61b is attached in a stator core 21 held on a pedestal (not shown).
  • the coil wire attachment jig 60 is inserted into the stator core 21 so that the shaft 62 of the coil wire attachment jig 60 and the center axis J of the stator core 21 are aligned, and the convex portion 61c of the coil wire holding portion 61b. Is inserted into the recess 21d1 of the tooth 21b.
  • the coil wire attachment jig 60 is securely attached to the stator core 21.
  • the coil wires 32 are attached to the teeth 21b by sliding the coil wires 32 held by the coil wire holding portion 61b radially outward.
  • the coil wire 32 can be attached to the three teeth 21b in the same process.
  • the coil group 31 since the coil group 31 is held by the coil wire mounting jig 60 in a state where the crossover wire 33 is bent radially outward, the crossover wire 33 connected to the coil wire 32 attached to the tooth 21b is , Bent radially outward. Therefore, the coil group 31 can press the coil wire 32 against the inner peripheral surface 21a1 of the core back 21a by the elastic force generated in the connecting wire 33. Thereby, during the assembly of the stator 20, the coil wire 32 can be prevented from dropping off from the teeth 21 b and the positional deviation of the coil wire 32 with respect to the teeth 21 b can be suppressed.
  • the teeth 21b to which the coil wire 32 is not attached and the coil wire holding portion 61b are aligned with the stator core 21.
  • the coil wire attachment jig 60 is attached, and the coil wire 32 is attached to each tooth 21b.
  • the same operation is repeated until the coil wires 32 are attached to all the teeth 21b. Since the stator core 21 of the present embodiment has nine teeth 21b, the attachment of the coil wires 32 to all the teeth 21b is completed by repeating the attachment operation by the coil wire attachment jig 60 three times. As described above, the attachment of the coil wire 32 to each tooth 21b of the stator core 21 is completed. In this way, the manufacture of the stator 20 is completed.
  • FIG. 8 is a plan view of a jig used for resin filling. *
  • a resin filling jig 70 shown in FIG. 8 includes a pedestal 71, a mold member 72, and a screw member 73.
  • the pedestal 71 has a recess 71 a for holding the housing 3.
  • the recess 71 a includes a recess 71 b that protrudes below the bottom plate portion 3 a of the housing 3, and an opening 71 c that connects the recess 71 b and penetrates the pedestal 71.
  • the recess 71b accommodates the bearing holding portion 3c.
  • the mold member 72 has a first portion 72A, a second portion 72B, and a third portion 72C.
  • the first portion 72A, the second portion 72B, and the third portion 72C are made of a cylindrical member, and the outer diameter decreases in the order of the first portion 72A, the second portion 72B, and the third portion 72C. That is, the mold member 72 has an annular end surface 72a formed by projecting the end portion of the first portion 72A radially outward at the connection portion between the first portion 72A and the second portion 72B.
  • the outer diameter of the first portion 72 ⁇ / b> A is equal to or larger than the outer diameter of the rotor 10. *
  • the mold member 72 includes a ring-shaped recess 72b provided in a contact portion with the housing 3 in the first portion 72A, a ring-shaped seal member 74 disposed in the recess 72b, and a screw hole 72c.
  • the seal member 74 is, for example, an O-ring.
  • the mold member 72 is fixed to the pedestal portion 71 by a screw member 73 accommodated in the opening 71 c of the pedestal portion 71 while being in contact with the housing 3.
  • the housing 3 is sandwiched and held between the pedestal 71 and the mold member 72, so that the housing 3 is securely fixed to the resin filling jig 70.
  • the end surface 72 a is located below the cutout portion 6 (on the coil wire 32 side).
  • the resin material 50a is filled from above the peripheral wall portion 3b of the housing 3 installed on a horizontal plane. Specifically, the resin material 50 a is filled until the upper surface of the resin material 50 a reaches the height of the end surface 72 a of the mold member 72.
  • the mold resin 50 obtained by curing the resin material 50a has substantially the same height as the end surface 72a. Is provided. Therefore, the mold resin 50 does not leak out from the notch 6 located above the end surface 72a. Since the mold member 72 has the end surface 72a, the filling amount of the resin material 50a can be visually recognized, and the filling amount can be controlled.
  • the mold resin 50 can be molded into a predetermined shape by properly arranging the resin material 50a in the space formed by the housing 3 and the mold member 72. Thereby, the mold resin 50 has an opening for accommodating the rotor 10.
  • the mold member 72 and the base portion 71 are separated by removing the screw member 73. Thereafter, the housing 3 is removed from the pedestal 71, the rotor 10 is disposed in the opening of the mold resin 50, the rotation detection sensor 41 is disposed above the rotor 10, and then the lid 4 having the circuit board 40 is attached to the housing 3.
  • the motor 100 of the embodiment is manufactured.
  • stator 20 that can improve the coil space factor and heat dissipation is provided, a high-performance motor can be provided.
  • the tooth 21b whose thickness does not change between the base portion 21A and the tip 21B is taken as an example of the umbrella-less type tooth shape, but the shape of the tooth is not limited to this.
  • tip 21B of the teeth 21b to 21 A of bases may be sufficient.
  • the bulging portion has a shape in which the width in the direction orthogonal to the axis of the tooth 21b bulges to such an extent that the coil wire 32 can be inserted.
  • the case where the mold resin 50 is disposed has been described as an example. However, since the present invention can stably hold the coil wire 32 on the teeth 21b, the mold resin 50 can be omitted.
  • the inner rotor type motor 100 has been described. However, the present invention may be applied to an outer rotor type motor.

Abstract

本発明のステータの一つの態様は、一方向に伸びる軸線を中心として周方向に延びる環状のコアバック、およびコアバックから径方向に延びる複数のティースを有するステータコアと、複数のティースに設けられる複数のコイル線と、コアバックのうちコイル線が径方向に対向する面に設けられる径方向に窪む溝と、を備え、溝は、コアバックの軸方向に開口する開口部を有し、コイル線は、少なくとも一部が溝に設けられる引出線部を有する。

Description

ステータおよびモータ
本発明は、ステータおよびモータに関する。
電動機の組み立て工程において、所定形状に巻回した巻線コイルを、ステータの突極に挿入することで電動機を製造する技術が知られている(例えば、下記特許文献1参照)。
日本国公開公報:特開2000-125520号公報
予め巻回したコイル線をティースに挿入して製造されるモータにおいて、コイル線は導線を巻回して成形されるため、巻き始めに相当する部分がコイルの外側に引き出されて突出した状態となる。よって、コイル線をティースに挿入する際、コイル線から引き出された引出部分がステータコアに接触し、コイル線がティースの根元まで挿入されず、スロット内にデッドスペースが生じる。スロット内にデッドスペースが生じると、コイルの占積率が低下し、モータ特性が低下するという問題が生じる。また、コイルとステータコアとの間に隙間が生じることで、コイルから発生した熱がステータコアに効率良く伝わらず、放熱性が低下するという問題が生じる。 
本発明は、上記事情に鑑みて、コイル占積率および放熱性を向上できるステータおよびモータを提供することを目的の一つとする。
本発明のステータの一つの態様は、一方向に伸びる軸線を中心として周方向に延びる環状のコアバック、および前記コアバックから径方向に延びる複数のティースを有するステータコアと、前記複数のティースに設けられる複数のコイル線と、前記コアバックのうち前記コイル線が径方向に対向する面に設けられる径方向に窪む溝と、を備え、前記溝は、前記コアバックの軸方向に開口する開口部を有し、前記コイル線は、少なくとも一部が前記溝に設けられる引出線部を有する。 
本発明のモータの一つの態様は、上記のステータと、ロータと、を備える。
本発明の一つの態様によれば、コイル占積率および放熱性を向上できるステータおよびモータが提供される。
図1は、実施形態のモータの断面図である、また、軸方向に沿うモータの断面を示す図である。 図2は、実施形態のモータの斜視図である。 図3は、ステータの平面図である。 図4aは、コイル群の平面図である。 図4bは、コイル群の正面図である。 図5は、ステータコアの平面図である。 図6は、コイル線の取り付けに用いる治具の平面図である。 図7は、ステータコアに対するコイル線の取り付けの説明図である。 図8は、樹脂充填に用いる治具の平面図である。
以下、図面を参照しながら、本発明の実施形態について説明する。なお、本発明の範囲は、以下の実施の形態に限定されず、本発明の技術的思想の範囲内で任意に変更可能である。 
以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数等を異ならせる場合がある。また、各図には、適宜Z軸を示す。各図のZ軸方向は、図1に示す中心軸Jの軸方向と平行な方向とする。また、以下の説明においては、Z軸方向の正の側(+Z側,一方側)を「上側」と呼び、Z軸方向の負の側(-Z側,他方側)を「下側」と呼ぶ。なお、上側および下側とは、単に説明のために用いられる方向であって、実際の位置関係や方向を限定しない。また、特に断りのない限り、中心軸Jに平行な方向(Z軸方向)を単に「軸方向」と呼び、中心軸Jを中心とする径方向を単に「径方向」と呼び、中心軸Jを中心とする周方向、すなわち、中心軸Jの軸周りを単に「周方向」と呼ぶ。さらに、以下の説明において、「平面視」とは、軸方向から見た状態を意味する。 
図1は、本実施形態のモータの断面図である。図1は軸方向に沿うモータの断面を示す図である。図1に示すように、本実施形態のモータ100は、モータケース2と、上下方向に延びる中心軸Jを中心として回転するロータ10と、ロータ10と径方向に隙間をあけて対向するステータ20と、一対のベアリング30と、回路基板40と、樹脂からなるモールド樹脂50と、を有する。 
図2は本実施形態のモータの斜視図である。図1,2に示すように、モータケース2は、モータ100を構成する各部材を収容する。モータケース2は、軸方向下側に底を有する有底筒状のハウジング3と、ハウジング3の軸方向上側を覆う蓋4と、を有する。ハウジング3は、円板状の底板部3aと、底板部3aの外周縁から軸方向に延びる筒状の周壁部3bと、を有する。底板部3aは、一対のベアリング30の一方を保持するベアリング保持部3cを有する。ハウジング3は、周壁部3bの先端に設けられ、径方向に開口を形成する切欠部6を有する。 
蓋4は、円板状の円板部4aと、円板部4aの下側(-Z側)の面に設けられる筒状のベアリング保持部4bと、円板部4aの外周縁部に沿って設けられて下側に突出する周壁部4cと、を有する。 
蓋4及びハウジング3は互いに嵌め込まれる。具体的に、蓋4の周壁部4cにおける径方向外側の外周面と、ハウジング3の周壁部3bにおける径方向内側の内周面とが接触する。蓋4及びハウジング3は互いをカシメることで固定される。切欠部6は、蓋4及びハウジング3が嵌め合わされることで、ケース内側およびケース外側を連通させる開口7をモータケース2に形成する。 
ロータ10は、シャフト11と、ロータコア12と、複数のロータマグネット13と、を有する。シャフト11は、上下方向(Z軸方向)に延びる中心軸Jを中心として一方向に延びる。シャフト11の上端および下端は、それぞれベアリング30によって、中心軸Jの軸周りに回転可能に支持される。ロータコア12は、シャフト11に固定される。ロータコア12は、シャフト11を周方向に囲む。複数(本実施形態では6個)のロータマグネット13は、ロータコア12の径方向外側の面に固定される。複数のロータマグネット13は、N極とS極とが周方向に交互に並べられる。ロータコア12およびロータマグネット13は、シャフト11とともに回転する。 
回路基板40は、ステータ20のコイルから引き出された引出線と電気的に接続される。回路基板40は、蓋4の下側に設けられる。すなわち、回路基板40は、モータケース2の内側に設けられる。回路基板40は、コイルに電流を流してロータ10の回転を制御する。回路基板40には、集積回路およびコンデンサ(図示省略)が実装される。本実施形態において、回路基板40の一部は、開口7を介してモータケース2の外側に引き出される。 
本実施形態のモータ100は、回路基板40の下側の面に固定された回転検出センサ41を備える。回転検出センサ41は、軸方向において、モールド樹脂50と回路基板40との間に位置する。

 回転検出センサ41は磁気センサである。回転検出センサ41は、例えば、ホール素子やMR(Magneto Resistive)素子と、マグネットとを組み合わせた構成からなる。回転検出センサ41は、ロータ10のうちロータマグネット13の磁界を検出して、ロータ10の位置を検出する。 
本実施形態のモータ100において、モールド樹脂50は、図1に示したように、ステータ20を覆うようにハウジング3内に設けられる。より具体的に、モールド樹脂50は、少なくともコイル線32とステータコア21との間に設けられる。これにより、コイル線32とステータコア21とは強固に固定される。これにより、コイル線32のステータコア21からの脱落が防止される。また、モールド樹脂50は、ステータ20とモータケース2の内周面との間に設けられる。これにより、ステータ20はモータケース2に強固に固定される。 
また、モールド樹脂50は、軸方向において、コイル線32よりも蓋4側、かつ、切欠部6よりもコイル線32側に設けられる。そのため、モールド樹脂50は、開口7から外側に露出しない状態でモータケース2内に配置される。また、モールド樹脂50は、回路基板40の下側の面に固定された回転検出センサ41よりも下側に位置する。すなわち、モールド樹脂50と回転検出センサ41とは互いに接触しない。また、モールド樹脂50は、蓋4よりも下側に位置する。具体的に、モールド樹脂50は、蓋4のうち最も下方に位置するベアリング保持部4bよりも下側に位置する。この構成により、モールド樹脂50と回転検出センサ41とは互いに接触しないため、ハウジング3と蓋4との取り付けを良好に行うことができる。例えば、回転検出センサ41を取り付けた蓋4をハウジング3に取り付ける際、回路基板40と開口7との間にモールド樹脂50が挟まることでハウジング3に蓋4を取り付けられないといった不具合の発生を防止できる。 
本実施形態のモータ100によれば、モールド樹脂50が開口7に設けられない。これにより、開口7を介してモータケース2の外側に引き出された回路基板40とモールド樹脂50との接触が回避される。そのため、ハウジング3と蓋4との取り付けを良好に行うことができる。例えば、回路基板40を取り付けた蓋4をハウジング3に取り付ける際、回路基板40と開口7との間にモールド樹脂50が挟まることでハウジング3に蓋4を取り付けられないといった不具合の発生を防止できる。また、モールド樹脂50との接触によって回路基板40に位置ずれが生じない。そのため、回路基板40に設けられた回転検出センサ41とロータ10との位置ずれを防止できる。よって、回路基板40の位置ずれに起因するロータ10の回転検出精度の低下を防止できる。 
また、本実施形態のモータ100によれば、モールド樹脂50が蓋4に接触しないため、モールド樹脂50と蓋4との間に隙間が生じる。これにより、ステータ20から蓋4へ振動が伝わり難い構造となる。よって、モータ100の駆動時の振動および騒音を低減することができる。また、本実施形態のモータ100は、ステータ20と蓋4との間にモールド樹脂50を配置する構造に比べて、モールド樹脂50に用いる樹脂量が少なくなるので、樹脂量が少なくなった分だけ軽量化される。 
ステータ20は、ロータ10の径方向外側を囲む。図3は、ステータの平面図である。図3に示すように、ステータ20は、中心軸J周りに環状に配置される。本実施形態のモータ100は、インナーロータ式のモータである。ステータ20は、ステータコア21と、ステータコア21に取り付けられた複数のコイル群31と、溝25と、突出部28と、を備える。本実施形態のステータ20は、3つのコイル群31を備えている。 
本実施形態において、ステータコア21は、複数の電磁鋼板が上下方向に積層された積層鋼板である。本実施形態において、ステータコア21の表面は、絶縁性を有する絶縁塗膜によって全体が塗装される。これにより、ステータコア21は、その表面に絶縁性を有する。 
ステータコア21は、環状のコアバック21aと、複数のティース21bと、を有する。ティース21bは、コアバック21aの内周面21a1から径方向内側に向かって延びる。ティース21bは、周方向に等間隔に配置される。ティース21bは、ロータ10と径方向に対向する。 
続いて、コイル群31の構成について説明する。図4aはコイル群の平面図であり、図4bはコイル群の正面図である。なお、図4a及び図4bでは、ステータコア21から取り外したコイル群31を図示した。図4a及び図4bに示すように、コイル群31は、一本の導線34を巻回して構成され、導線34の巻始め部分35と、導線34の巻終わり部分36とを有する。 
コイル群31は、巻始め部分35と巻終わり部分36との間に、渡り線33によって互いに繋がれたコイル線32を2つ以上含む。本実施形態のコイル群31は、3つのコイル線32を有する。すなわち、本実施形態のコイル群31は、2本の渡り線33によって3つのコイル線32を繋いでいる。コイル群31をステータコア21から取り外した状態において、渡り線33は直線状に伸びる。より具体的に、渡り線33は、隣り合うコイル線32において、一方のコイル線32の軸線方向一方側から他方のコイル線32の軸線方向他方側に向かって直線状に伸びる。ここで、コイル線32の軸線方向一方側とは、図3に示すティース21bに取り付けられたコイル線32の径方向内側に相当する。また、コイル線32の軸線方向他方側とは、図3に示すティース21bに取り付けられたコイル線32の径方向外側に相当する。また、コイル線32の軸線C1とは、図4a及び図4bに示すように各コイル線32の中心を通る軸である。すなわち、コイル線32は、軸線C1の周りに導線34を巻回することで構成される。なお、各コイル線32は後述のようにティース21bに取り付けられる。 
本実施形態のステータコア21は、9個のティース21bを有する。ティース21b同士の間には、コイル線32を収容するスロット23が設けられる。ロータ10は、例えば、6個のロータマグネット13を有するため、本実施形態のモータ100は、6極9スロットで構成されるモータである。なお、モータの極数およびスロット数は、本実施形態に限定されるものではなく、要求出力および巻線方式などによって適宜選定される。 
ここで、本実施形態のモータ100は、U相、V相、W相の3つの異なる位相の電流が流れる、いわゆる3相モータである。以下の説明において、3つのコイル群31をそれぞれ第1コイル群31U、第2コイル群31V、及び第3コイル群31Wと称すこともある。 
第1コイル群31UはU相に対応するコイル群であり、第2コイル群31VはV相に対応するコイル群であり、第3コイル群31WはW相に対応するコイル群である。すなわち、第1コイル群31U、第2コイル群31V、及び第3コイル群31Wに流れる電流の位相はそれぞれ異なる。 
第1コイル群31Uにおける3つのコイル線はU相コイルとしてそれぞれ機能し、第2コイル群31Vにおける3つのコイル線はV相コイルとしてそれぞれ機能し、第3コイル群31Wにおける3つのコイル線はW相コイルとしてそれぞれ機能する。 
図3に示すように、第1コイル群31Uは一本の導線34Uを巻回して構成され、2本の渡り線33Uによって繋がれた3つのU相コイル線32Uを有する。第1コイル群31Uにおける導線34Uの巻始め部分35Uは上側に向かって引き出される。第1コイル群31Uの巻終わり部分36Uは、軸方向に視てU相コイル線32Uの側端面から径方向外側に引き出される。 
第1コイル群31Uは導線34Uを巻回して成形されるため、導線34Uの巻始め部分35UはU相コイル線32Uの軸線方向他方側に引き出されることでU相コイル線32Uの軸線方向他方側に突出する。また、渡り線33Uに繋がれた2つ目のU相コイル線32U(図4a,4b中の真ん中のコイル線に相当)は、コイル巻始め部分に相当する連結引出線部32U1を有する。連結引出線部32U1は渡り線33Uと接続される。 
連結引出線部32U1は、U相コイル線32Uの軸線方向他方側に突出する。同様に、渡り線33Uに繋がれた3つ目のU相コイル線32U(図4a,4b中の左側のコイル線に相当)は、コイル巻始め部分に相当し、U相コイル線32Uの軸線方向他方側に突出する連結引出線部32U1を有する。 
第2コイル群31V及び第3コイル群31Wは、異なる位相の電流が流れる以外、第1コイル群31Uと同一形状を有する。そのため、第2コイル群31Vは2本の渡り線33Vによって繋がれた3つのV相コイル線32Vを有する。第2コイル群31Vにおける導線34Vの巻始め部分35Vは上側に向かって引き出される。第2コイル群31Vの巻終わり部分36Vは軸方向に視てV相コイル線32Vの側端面から径方向外側に引き出される。 
また、第2コイル群31Vにおいて、導線34Vの巻始め部分35VはV相コイル線32Vの軸線方向他方側に突出する。渡り線33Vに繋がれた2つのV相コイル線32Vは、コイル巻始め部分に相当し、V相コイル線32Vの軸線方向他方側に突出する連結引出線部32V1を有する。なお、連結引出線部32V1は渡り線33Vと接続される。 
また、第3コイル群31Wは2本の渡り線33Wによって繋がれた3つのW相コイル線32Wを有する。第3コイル群31Wにおける導線34Wの巻始め部分35Wは上側に向かって引き出される。第3コイル群31Wの巻終わり部分36Wは軸方向に視てW相コイル線32Wの側端面から径方向外側に引き出される。 
また第3コイル群31Wにおいて、導線34Wの巻始め部分35WはW相コイル線32Wの軸線方向他方側に突出する。また、渡り線33Wに繋がれた2つのW相コイル線32Wは、コイル巻始め部分に相当し、W相コイル線32Wの軸線方向他方側に突出する連結引出線部32W1を有する。なお、連結引出線部32W1は渡り線33Wと接続される。 
第1コイル群31U、第2コイル群31V、及び第3コイル群31Wの巻始め部分35U,35V,35Wは不図示の領域において回路基板40に接続される。第1コイル群31U、第2コイル群31V、及び第3コイル群31Wの巻終わり部分36U,36V,36Wは軸方向に視てコアバック21aと重なる位置に引き出されて不図示の領域で互いに捩ってまとめられて中性点を構成する。 
第1コイル群31U、第2コイル群31V及び第3コイル群31Wの各コイル線(U相コイル線32U、V相コイル線32V及びW相コイル線32W)は、周方向において、この順に隣り合うティース21bにそれぞれ取り付けられる。 
本実施形態のステータコア21では、コアバック21aのうちコイル線32が径方向に対向する内周面21a1に、径方向に窪む溝25が設けられる。すなわち、コアバック21aの内周面21a1は溝25を有する。溝25は、コアバック21aの軸方向に開口する開口部25aを有する。したがって、平面視した状態において、コアバック21aの上側の端面には、溝25による開口部25aが設けられる。 
本実施形態のステータコア21は、隣り合うティース21bの間において、コアバック21aから径方向内側に突出する突出部28をさらに備える。平面視した状態において、突出部28は、外側の面のうち周方向に位置する一対の突出部外側面28aと、一対の突出部外側面28aの径方向内側の端部同士を接続する先端部28bと、を有する。なお、先端部28bは径方向内側を向く平坦面を有する。本実施形態のステータコア21では、コイル線32の熱の放熱経路として突出部28が機能する。 
また、本実施形態において、ステータコア21を平面視した場合、溝25
はティース21bの両側に設けられる。すなわち、平面視した状態において、1つのティース21bの周方向両隣に、溝25が位置する。これにより、ステータコア21の形状がティース21bの中心軸線T1について対称となるため、ステータ20における磁気アンバランスの発生を低減している。本実施形態では、ティース21bの数が9個であるため、コアバック21aの内周面21a1には溝25が18個設けられる。 
本実施形態において、ティース21bに装着されたU相コイル線32Uは、巻始め部分35U及び連結引出線部32U1の少なくとも一部が溝25に設けられている。すなわち、本実施形態のU相コイル線32Uは、少なくとも一部が溝25に設けられる引出線部(巻始め部分35U及び連結引出線部32U1)を有する。具体的に、巻始め部分35Uは溝25に沿ってコアバック21a上方へと延び、開口部25aを介してステータ20の上方へと引き出される。連結引出線部32U1は溝25に沿ってコアバック21a上方へと延び、開口部25aを介してステータ20の上方へと引き出されて渡り線33Uに接続する。 
ここで、比較例として溝25が設けられない場合について考える。この場合、巻始め部分35U及び連結引出線部32U1と内周面21a1とが接触するため、U相コイル線32Uをティース21bの基部まで挿入することができず、U相コイル線32Uとコアバック21aとの間に隙間が生じてしまう。このようにスロット23内に隙間が生じると、コイルの占積率が低下してしまう。

 ここで、ティース21bの先端とは、ティース21bの径方向の最も内側に位置する部分に相当し、より具体的にはロータ10に対向する部分である。また、ティース21bの基部とは、ティース21bの径方向において最も外側に位置する部位に相当し、より具体的には内周面21a1とティース21bとの接続部分である。 
これに対し、本実施形態のステータ20では、巻始め部分35U及び連結引出線部32U1の少なくとも一部が溝25に収容されるので、U相コイル線32Uをティース21bのより基部近くまで挿入した状態とすることができる。これにより、スロット23内の隙間が減ってコイルの占積率低下が防止されるので、モータ100の性能をより向上させることができる。 
同様に、ティース21bに装着されたV相コイル線32Vは、巻始め部分35V及び連結引出線部32V1の少なくとも一部が溝25に設けられている。すなわち、本実施形態のV相コイル線32Vは、少なくとも一部が溝25に設けられる引出線部(巻始め部分35V及び連結引出線部32V1)を有する。巻始め部分35Uは溝25に沿ってコアバック21a上方へと延び、開口部25aを介してステータ20の上方へと引き出される。連結引出線部32V1は溝25に沿ってコアバック21a上方へと延び、開口部25aを介してステータ20の上方へと引き出されて渡り線33Vに接続する。よって、V相コイル線32Vは、ティース21bのより基部近くまで挿入される。 
同様に、ティース21bに装着されたW相コイル線32Wは、巻始め部分35W及び連結引出線部32W1の少なくとも一部が溝25に設けられている。すなわち、本実施形態のW相コイル線32Wは、少なくとも一部が溝25に設けられる引出線部(巻始め部分35W及び連結引出線部32W1)を有する。巻始め部分35Wは溝25に沿ってコアバック21a上方へと延び、開口部25aを介してステータ20の上方へと引き出される。連結引出線部32W1は溝25に沿ってコアバック21a上方へと延び、開口部25aを介してステータ20の上方へと引き出されて渡り線33Wに接続する。よって、W相コイル線32Wは、ティース21bのより基部近くまで挿入される。 
なお、本実施形態では、モールド樹脂50の一部が溝25内に入り込む。すなわち、溝25はモールド樹脂50を充填する際の樹脂の充填経路として機能するので、コアバック21aとコイル線32との間に隙間なくモールド樹脂50が配置される。モールド樹脂を充填する際、モールド樹脂50が溝25の内部を通るため、効率よくモールド樹脂50を充填できる。 
図5はステータコアの平面図である。平面視した状態において、本実施形態のティース21bは、平面視した状態において、外側の面のうち周方向に位置する一対のティース外側面21cと、一対のティース外側面21cの径方向内側の端部同士を接続する先端部21dと、を有する。先端部21dは径方向内側を向く面を有する。一対のティース外側面21cは互いに平行である。すなわち、一対のティース外側面21cは互いの距離が一定となる。また、ティース21bの先端部21dには、径方向外側に窪む凹部21d1が設けられる。 
本実施形態のティース21bは、基部21Aから先端21Bにかけて太さが略一定であると換言することもできる。そのため、ティース21bの中心軸線T1に直交する面によるティース21bの断面積は、基部21Aから先端21Bにかけて変化しない。本明細書において、基部21Aから先端21Bにかけて太さが略一定となる形状を持つティース21bをアンブレラレス型のティースと称す。 
本実施形態のようなアンブレラレス型からなるティース21bによれば、予め巻線装置で密に巻回したコイル線32を先端21B側から基部21A側に向けて挿入することで、占積率の高いコイル線32を簡便に取り付け可能である。

 一方で、ティース21bの太さが略一定であるため、例えば、ステータ20の組み立て途中に、コイル線32がティース21bから脱落したり、コイル線32の位置ずれが生じるおそれもある。 
これに対し、本実施形態のステータ20では、図3に示したように、渡り線33が径方向外側に撓んだ状態でステータコア21に設けられたコイル群31(第1コイル群31U、第2コイル群31V及び第3コイル群31W)を備える。以下では、第1コイル群31Uの構成を例に挙げて説明するが、第2コイル群31V及び第3コイル群31Wについても同じである。 
第1コイル群31Uにおける渡り線33Uは、軸方向と直交する平面内における渡り線33Uの曲率が、コアバック21aの曲率R1よりも大きい部分を有する。ここで、コアバック21aの曲率R1は径方向外側の外周面により規定される。 
渡り線33Uは、ステータコア21を軸方向に視て、コアバック21aに重なる配線部37Uを有する。このようにコアバック21a上に渡り線33Uの配線部37Uが位置するため、径方向においてU相コイル線32Uとコアバック21aとの間への渡り線33の入り込みが防止される。よって、U相コイル線32Uがティース21bに良好に取り付けられ、U相コイル線32Uとコアバック21aとの間に隙間が生じ難い。さらに、渡り線33Uは、U相コイル線32Uよりも後に、ティース21bに取り付けられるV相コイル線32V或いはW相コイル線32Wの挿入を妨げ難い。

 また、渡り線33Uは、他のコイル群31(第2コイル群31V及び第3コイル群31W)の連結引出線部32V1,32W1の径方向外側に位置する。そのため、渡り線33Uは、U相コイル線32Uよりも後に、ティース21bに取り付けられるV相コイル線32V或いはW相コイル線32Wの挿入を妨げない難い。 
また、渡り線33Uは、コアバック21aよりも径方向内側においてコイル線32(U相コイル線32U)と接続する接続部38Uを有する。接続部38Uは配線部37Uよりも径方向内側に位置するため、渡り線33Uは湾曲した状態で接続部38Uに接続される。したがって、ステータコア21を軸方向に視て、接続部38Uの曲率R2は、配線部37Uの曲率R3より大きくなる。このように接続部38Uをコアバック21aよりも径方向内側に位置させることで、渡り線33Uに曲率が大きい部分を容易に設けることが可能となる。なお、コアバック21aに重なる配線部37Uの曲率R3は、コアバック21aの曲率R1と略同じとなる。 
本実施形態の第1コイル群31Uにおいて、渡り線33Uは弾性変形している。上述のように第1コイル群31Uをステータコア21から取り外した状態において、渡り線33は直線状に伸びるため、弾性変形する渡り線33Uには直線状に戻ろうとする弾性力が生じている。相対的に曲率の大きい接続部38Uを有する渡り線33Uには、配線部37Uに合わせるように全体の曲率を均一する力が作用する。よって、接続部38Uには径方向外側に拡がるので、接続部38Uに接続されたU相コイル線32Uをコアバック21aの内周面21a1に押し付ける力が加わる。 
以上のように本実施形態の第1コイル群31Uによれば、渡り線33Uに生じる弾性力によってコアバック21aの内周面21a1にU相コイル線32Uを押し付けることができる。これにより、特別な機構や部材を用いることなく、簡便にU相コイル線32Uをアンブレラレス型のティース21bに安定して取り付けることができる。よって、ステータ20の組み立て途中に、U相コイル線32Uのティース21bからの脱落や、U相コイル線32Uのティース21bに対する位置ずれの発生を抑制できる。 
また、巻始め部分35U及び連結引出線部32U1の少なくとも一部が溝25に収容されるので、U相コイル線32Uとコアバック21aとの間に生じる隙間が小さくなる。これにより、U相コイル線32Uをコアバック21aの内周面21a1に良好に押し付けることができる。 
なお、説明は省略するが、第2コイル群31V及び第3コイル群31Wについても同じ構造を有することから、同様の効果を得ることができる。すなわち、本実施形態のステータ20によれば、特別な機構や部材を用いることなく、簡便にV相コイル線32V及びW相コイル線32Wをアンブレラレス型のティース21bに安定して取り付けることができる。よって、V相コイル線32V及びW相コイル線32Wにおけるティース21bからの脱落や位置ずれの発生を抑制できる。また、V相コイル線32V及びW相コイル線32Wとコアバック21aとの間に生じる隙間が小さくなる。これにより、V相コイル線32V及びW相コイル線32Wをコアバック21aの内周面21a1に良好に押し付けることができる。 
なお、以下の説明では、U相コイル線32U、V相コイル線32V及びW相コイル線32Wを総称して単にコイル線32と呼ぶ。 
本実施形態のステータコア21において、コアバック21aの外周面21a2のうちティース21bに対応する位置に径方向内側に窪む凹部27が設けられる。すなわち、ティース21bの径方向外側に、凹部27が位置する。凹部27は、例えば、ステータコア21をモータケース2のハウジング3に取り付ける際の位置決めに用いられる。なお、凹部27の数は少なくとも一つあればよいが、本実施形態のステータコア21では、周方向に亘って9個の凹部27を均等に配置することで、ステータ20における磁気アンバランスの発生を低減できる。 
また、本実施形態において、径方向に沿うティース21bの中心軸線T1は内周面21a1に沿う面と垂直である。すなわち、コアバック21aの内周面21a1はティース21bの基部から離れるにしたがって径方向外側に窪んだ形状となる。この構成によれば、コアバック21aの内周面21a1を円筒状とする場合に比べてスロット23の容量を大きくできる。 
なお、中心軸線T1及び内周面21a1が垂直とは、中心軸線T1及び内周面21a1とのなす角度が90度に限定されず、上述のように円筒状の内周面に比べてスロット容量を拡大可能な態様であれば垂直から多少ずれてもよい。 
また、ステータコア21を平面視した状態において、コアバック21aのうち溝25が設けられた部分の幅H1はコアバック21aの最小幅H2以上とするのが望ましい。

 本実施形態では、コアバック21aの外周面21a2に凹部27を設けるため、幅H1は凹部27の底面27aと溝25との間の最小幅で規定される。なお、凹部27を設けない場合、幅H1は溝25と外周面21a2との径方向における幅で規定される。また、最小幅H2は、コアバック21aの径方向における幅の最小値で規定される。本実施形態では、コアバック21aの内周面21a1に突出部28を設けることから、最小幅H2は、内周面21a1における突出部28との交点と、外周面21a2と、の間の径方向の幅で規定される。すなわち、最小幅H2は、コアバックのうち突出部28が設けられた部分の幅で規定される。 
ステータコア21においては、上記幅H1をコアバック21aの最小幅H2以上(H1≧H2)とするのが望ましい。本実施形態のステータコア21では、上記幅H1とコアバック21aの最小幅H2は等しい(H1=H2)。

 これにより、溝25によりコアバック幅が狭くなることに起因した磁気飽和の発生を低減できる。よって、溝25を設けたことによるステータ20の磁気特性の低下を抑制できる。 
また、突出部28の突出部外側面28aとコアバック21aの内周面21a1とが垂直に交わる構成により、コアバック21aの幅が狭くなることに起因した磁気飽和の発生を低減できる。よって、突出部28によるステータ20の磁気特性の低下を抑制できる。 
なお、本実施形態では、幅H1とコアバック21aの最小幅H2とを等しくする場合(H1=H2の場合)を例に挙げたが、幅H1よりもコアバック21aの最小幅H2を小さくしてもよい(H1>H2)。この場合、上述した溝25を設けたことによるステータ20の磁気特性の低下を抑制する効果をより顕著に得ることができる。 
また、本実施形態において、突出部28の外側の面のうち周方向に位置する突出部外側面28aは、突出部外側面28aと隣り合うティース21bの外側の面のうち周方向において突出部外側面28aと対向するティース外側面21cと平行であり、突出部外側面28aはコアバック21aの内周面21a1に沿う面と垂直に交わる。すなわち、ティース21bのティース外側面21cは内周面21a1に沿う面と垂直に交わる。なお、突出部外側面28a及びティース外側面21cが平行とは、互いが略平行な状態も含む。突出部外側面28aと内周面21a1に沿う面とが垂直に交わるとは、突出部外側面28a及び内周面21a1が略垂直に交わる状態も含む。 
これは、コアバック21aの内周面21a1はティース21bの基部から離れるにしたがって径方向外側に突出した形状となることと等価である。この構成によれば、コアバック21aの内周面21a1を円筒面とする場合に比べてスロット23の容量を大きくできる。 
なお、突出部外側面28aとティース外側面21cとが平行であるとは、突出部外側面28a及びティース外側面21cが完全に平行である場合に限定されるものではなく、スロット容量に影響を及ぼさない程度に互いが傾く程度の状態を許容する。また、突出部外側面28a及び内周面21a1が垂直とは、突出部外側面28a及び内周面21a1とのなす角度が90度に限定されず、上述のように円形内周面に比べてスロット容量を拡大可能な態様であれば垂直から多少ずれてもよい。 
また、平面視した状態において、突出部28は径方向外側の幅H3よりも径方向内側の幅H4が狭くなるテーパ形状を有する。これにより、突出部28の先端側の体積が小さくなるので、突出部28を設けたことによるスロット容量の低減を抑制することで所定のスロット容量を確保できる。

 また、突出部28の先端部28bは径方向内側を向く平坦面を有する。よって、先端部28bは鋭く尖らない。これにより、先端部28bに対して絶縁塗膜を塗布しやすくなるので、ステータコア21全体に亘って絶縁性を付与できる。 
また、平面視した状態において、突出部28の突出部外側面28aを含む仮想平面MMと、突出部28と隣り合うティース21bとが交わらない。すなわち、ティース21bは、先端部21dが仮想平面MMと交わらないように、径方向の長さが設定される。 
ここで、コイル線32は、突出部28の突出部外側面28aとティース21bのティース外側面21cとの間に配置される。仮にコイル線32の外形と仮想平面MMとが交わる場合、既にコイル線を取り付けた第1ティースの隣の第2ティースにコイル線を取り付けるとき、コイル線が第1ティースに取り付けられたコイル線に接触してしまう。 
本実施形態のコイル線32は、平面視した状態において、上記仮想平面MMと交わらない形状を有する。上記仮想平面MMに交わらず、かつ、できるだけコイル線32の外形を大きくしてコイル線の巻き数を増やすにはコイル線32の外形を仮想平面MMに沿わせるように形成すればよい。 
コイル線32におけるティース基部側の外径D1は、ティース先端側の外径D2より大きい。より具体的に、平面視した状態において、本実施形態のコイル線32は、図5中の二点鎖線に示すように、外径が一定となる同径部24aと、外径が径方向内側に向かうにつれて小さくなる傾斜部24bとを有する。同径部24aは、径方向において外径が一定である。外径が一定とは、外径が全く変化しない態様に限らず、略一定となる状態を含む。

 同径部24aは、傾斜部24bに対して径方向外側に位置し、傾斜部24bの外側の面のうち周方向に位置する面24b1は、コイル線32の周方向両隣のティース21bの外側のティース外側面21cのうち傾斜部24bと周方向に対向する面21eと平行である。面24b1と面21eとが平行であるとは、略平行な状態を含む。

 すなわち、本実施形態のコイル線32において、同径部24aの外郭線は内周面21a1から径方向内側に向かって突出部28の突出部外側面28aに沿って延び、傾斜部24bの外郭線が仮想平面MMに沿って延びる。 
本実施形態のステータコア21によれば、ティース21bと仮想平面MMとが交わらないので、コイル線32をティース21bに取り付ける際、隣のティース21bに取り付けられている他のコイル線32との接触を防止できる。また、上述のように、ティース基部側の外径D1をティース先端側の外径D2より大きくしたコイル線32を備えるため、隣り合うコイル線32同士の干渉を防止しつつ、コイル線32の巻き数を増やすことができる。 
以上のように本実施形態のステータ20によれば、特別な機構や部材を用いることなく、簡便にコイル線32をアンブレラレス型のティース21bに安定して取り付けることができる。よって、ステータ20の組み立て途中に、コイル線32のティース21bからの脱落や、コイル線32のティース21bに対する位置ずれの発生を抑制できる。よって、信頼性の高いステータ20が提供される。 
また、本実施形態のステータ20では、ティース21bのティース外側面21cとコアバック21aの内周面21a1とが垂直に交わる。これにより、ティース21bにコイル線32を挿入する際、コアバック21aの内周面21a1とコイル線32とが良好に接触する。すなわち、コアバック21aの内周面21a1とコイル線32との間に隙間が生じにくい。よって、コイル線32の巻崩れの発生を防止できる。また、コイル線32とコアバック21aとの接触面積を増やすことができる。 
また、本実施形態のステータ20では、ティース21bの中心軸線T1と内周面21a1とが垂直である。すなわち、ティース21bのティース外側面21cと内周面21a1とが垂直である。さらに、突出部28の突出部外側面28aとコアバック21aの内周面21a1に沿う面とが垂直である。これにより、内周面21a1を円筒面とした場合に比べて、スロット23の容量が大きくなるので、スロット23に配置するコイル線32の巻き数を増やすことができる。よって、モータ100の性能をより向上させることができる。 
また、本実施形態のステータ20では、コイル線32とコアバック21aとの接触面積が増すため、コイル線32で発生した熱がコアバック21aに効率良く伝わる。これにより、コイル線32の放熱性が向上するので、温度上昇によるコイル抵抗の増加を抑制することができる。よって、モータ100の性能をより向上させることができる。 
また、本実施形態のステータ20は、隣り合うティース21bの間に突出部28を備える。この構成では、コイル線32で発生した熱は、突出部28を経由してコアバック21aへ伝わり、外部へ放出される。すなわち、コイル線32の熱の放熱経路として突出部28が機能する。突出部28は、空気や樹脂に比べ熱伝導度が高い部材で構成されるので、コイル線32の放熱性をより向上させることができる。 
また、本実施形態のステータコア21では、ティース21bの両側に溝25が設けられる。これにより、図4a,4bに示した形態とは異なる種々の巻線パターンからなるコイル線にも対応することができる。すなわち、例えば、コイル線32の軸線方向他方側に突出する引出線が2本出ているものや、引出線の引出方向がコイル線32と径方向において反対のもの等にも対応することができる。よって、種々の巻線パターンのコイル線を用いたモータにおいて同様の効果(占積率及び放熱性の向上)を得ることができる。 
なお、ティース21bへのコイル線32の取り付けには治具を用いる。図6は、コイル線32の取り付けに用いる治具の平面図であり、図7はステータコア21に対するコイル線32の取り付けの説明図である。 
図6に示すコイル線取付治具60は、コイル線32を保持する保持部61と、保持部61の中心を挿通する軸62とを有する。軸62はコイル線取付治具60の中心を規定するとともに、コイル線取付治具60を移動させる際の把持部として機能する。平面視した状態において、保持部61は、円形の本体部61aの周囲に放射状に延びる棒状のコイル線保持部61bを3個有する。すなわち、保持部61は、コイル群31の3つのコイル線32を同時に保持可能である。保持部61は、コイル線取付治具60をステータコア21に取り付けた場合に、コイル線保持部61bがティース21bと対向する位置に配置されるように、各コイル線保持部61bの位置が設定される。

 また、各コイル線保持部61bの先端には凸部61cが設けられる。コイル線保持部61bは、コイル線32を保持した状態で先端の凸部61cが露出する長さを有する。 
ステータ20の製造工程を説明する。まずはじめに、図7に示すように、各コイル線保持部61bにコイル群31の各コイル線32を取り付けたコイル線取付治具60を不図示の台座に保持したステータコア21内に取り付ける。このとき、コイル線取付治具60の軸62とステータコア21の中心軸Jとを位置合わせするようにコイル線取付治具60をステータコア21内に挿入するとともに、コイル線保持部61bの凸部61cをティース21bの凹部21d1に挿入する。これにより、ステータコア21に対してコイル線取付治具60が確実に取り付けられる。 
続いて、コイル線保持部61bに保持された各コイル線32を径方向外側にスライドさせることで、ティース21bにコイル線32を取り付ける。コイル線取付治具60を用いることで、3個のティース21bに対するコイル線32の取り付けを同一工程で行うことができる。 
本実施形態において、コイル群31は、径方向外側に渡り線33が撓んだ状態でコイル線取付治具60に保持されるため、ティース21bに取り付けられたコイル線32に繋がる渡り線33は、径方向外側に撓んでいる。よって、コイル群31は、渡り線33に生じる弾性力によってコアバック21aの内周面21a1にコイル線32を押し付けることができる。これにより、ステータ20の組み立て途中に、コイル線32のティース21bからの脱落や、コイル線32のティース21bに対する位置ずれの発生を抑制できる。 
続いて、ステータコア21から取り外したコイル線取付治具60にコイル線32を取り付けた後、コイル線32が取り付けられていないティース21bとコイル線保持部61bとを位置合わせするように、ステータコア21にコイル線取付治具60を取り付け、各ティース21bにコイル線32を取り付ける。以下同様にして、全てのティース21bにコイル線32を取り付けるまで同様の動作を繰り返す。本実施形態のステータコア21は、ティース21bを9個有するため、コイル線取付治具60による取り付け動作を3回繰り返すことで全てのティース21bへのコイル線32の取り付けが完了する。

 以上のようにして、ステータコア21の各ティース21bへのコイル線32の取り付けが完了する。このようにしてステータ20の製造が完了する。 
上述のようにして製造したステータ20をハウジング3内に収容した後、ステータ20とハウジング3とをモールド樹脂50で固定する。なお、ハウジング3内への樹脂の充填には治具を用いる。図8は、樹脂充填に用いる治具の平面図である。 
図8に示す樹脂充填用治具70は、台座部71と、型部材72と、ねじ部材73とを有する。台座部71は、ハウジング3を保持するための凹部71aを有する。凹部71aは、ハウジング3の底板部3aの下方に突出する窪み71bと、窪み71bを連通し台座部71を貫通させる開口部71cと、を有する。窪み71bは、ベアリング保持部3cを収容する。型部材72は、第1部分72Aと、第2部分72Bと、第3部分72Cとを有する。第1部分72A、第2部分72B及び第3部分72Cは円柱状の部材からなり、第1部分72A、第2部分72B及び第3部分72Cの順に外径が小さくなる。すなわち、型部材72は、第1部分72Aと第2部分72Bとの接続部分において、第1部分72Aの端部が径方向外側に突出することで形成された円環状の端面72aを有する。第1部分72Aの外径は、ロータ10の外径以上である。 
樹脂充填工程において、第1部分72Aのうち第2部分72Bと反対側に位置する面は、台座部71の凹部71aに収容したハウジング3と接触する。型部材72は、第1部分72Aにおけるハウジング3との接触部分に設けられるリング状の凹部72bと、該凹部72b内に配置されたリング状のシール部材74と、ねじ穴72cと、を有する。シール部材74は、例えば、Oリングである。 
型部材72は、ハウジング3に接触した状態で、台座部71の開口部71cに収容されたねじ部材73により、台座部71に固定される。これにより、ハウジング3は、台座部71と型部材72とに挟まれて保持されるので、樹脂充填用治具70に確実に固定される。型部材72は、台座部71に固定された状態において、端面72aが切欠部6よりも下方(コイル線32側)に位置する。 
このようにして型部材72をハウジング3内に設置した後、水平面に設置したハウジング3の周壁部3bの上方から樹脂材料50aを充填する。具体的に、樹脂材料50aの上面が型部材72の端面72aの高さに到達するまで樹脂材料50aの充填を行う。一度の樹脂材料の充填により、コイルとステータコアとの固定を行うだけでなく、ステータとハウジングとの固定を行うことができる。 
上述のように端面72aは切欠部6よりも下方に位置するため、樹脂材料50aを端面72aの高さまで充填すれば、該樹脂材料50aを硬化させたモールド樹脂50は端面72aと略同じ高さに設けられる。したがって、モールド樹脂50は、端面72aよりも上方に位置する切欠部6から漏れ出すことがない。型部材72は端面72aを有するため、樹脂材料50aの充填量が視認可能となり、充填量をコントロールすることができる。 
また、型部材72とハウジング3の底板部3aとの間は、シール部材74によって封止される。そのため、ハウジング3と型部材72との間に充填された樹脂材料50aが窪み71b内に漏れ出すことを防止できる。よって、ハウジング3と型部材72とで構成された空間に樹脂材料50aを良好に配置することで、モールド樹脂50を所定形状に成形することができる。これにより、モールド樹脂50は、ロータ10を収容する開口を有したものとなる。 
モールド樹脂50を形成した後、ねじ部材73を取り外すことで、型部材72と台座部71とを分離する。その後、台座部71からハウジング3を取り外し、モールド樹脂50の開口内にロータ10、ロータ10の上方に回転検出センサ41を配置した後、回路基板40を有する蓋4をハウジング3に取り付けることで本実施形態のモータ100が製造される。 
本実施形態のモータ100によれば、コイル占積率および放熱性を向上できるステータ20を備えるので、高性能なモータを提供できる。 
以上に、本発明の一実施形態を説明したが、実施形態における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。 
上記実施形態では、アンブレラレス型のティース形状として、太さが基部21A及び先端21Bの間で変化しないティース21bを例に挙げたが、ティースの形状はこれに限定されない。例えば、ティース21bの先端21Bから基部21Aまでの途中部分に膨出部を有した形状であってもよい。なお、膨出部は、ティース21bの軸線に直交する方向の幅がコイル線32を挿入可能な程度だけ膨出した形状を有する。 
また、上記実施形態では、モールド樹脂50を配置する場合を例に挙げたが、本発明はコイル線32をティース21bに安定して保持できるため、モールド樹脂50を省略することも可能である。また、上記実施形態では、インナーロータ式のモータ100について説明したが、アウターロータ式のモータに適用してもよい。
10…ロータ、20…ステータ、21…ステータコア、21a…コアバック、21A…基部、21b…ティース、21B…先端、32…コイル線、25…溝、25a…開口部、21a1…内周面、50…モールド樹脂、100…モータ、H1…幅(溝が設けられた部分の幅)、H2…最小幅、J…中心軸、T1…中心軸線。

Claims (7)


  1.  一方向に伸びる軸線を中心として周方向に延びる環状のコアバック、および前記コアバックから径方向に延びる複数のティースを有するステータコアと、

     前記複数のティースに設けられる複数のコイル線と、

     前記コアバックのうち前記コイル線が径方向に対向する面に設けられる径方向に窪む溝と、を備え、

     前記溝は、前記コアバックの軸方向に開口する開口部を有し、

     前記コイル線は、少なくとも一部が前記溝に設けられる引出線部を有する、

     ステータ。

  2.  前記ティースは、基部から先端にかけて太さが略一定である、

     請求項1に記載のステータ。

  3.  前記ステータコアを軸方向に視て、前記溝は、前記ティースの両側に設けられる、

     請求項1又は2に記載のステータ。

  4.  前記ティースは、前記コアバックの内周面から径方向内側に向かって延び、

     径方向に沿う前記ティースの中心軸線は、前記内周面と垂直である、

     請求項1乃至3のいずれか一項に記載のステータ。

  5.  前記コイル線と前記ステータコアとの間に設けられた樹脂をさらに備える、

     請求項1乃至4のいずれか一項に記載のステータ。

  6.  前記ステータコアを軸方向に視て、前記コアバックのうち前記溝が設けられた部分の幅は、前記コアバックの最小幅以上である、

     請求項1乃至4のいずれか一項に記載のステータ。

  7.  請求項1乃至6のいずれか一項に記載のステータと、

     ロータと、を備える、

     モータ。
PCT/JP2019/013486 2018-03-30 2019-03-28 ステータおよびモータ WO2019189526A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-067715 2018-03-30
JP2018067715 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019189526A1 true WO2019189526A1 (ja) 2019-10-03

Family

ID=68062162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013486 WO2019189526A1 (ja) 2018-03-30 2019-03-28 ステータおよびモータ

Country Status (1)

Country Link
WO (1) WO2019189526A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188524A1 (ja) * 2022-03-30 2023-10-05 株式会社村田製作所 磁性体コア、磁性体コア付き巻線、回転電気機械及びブラシレスモータ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000125520A (ja) * 1998-10-09 2000-04-28 Calsonic Corp 電動機の製造方法
JP2013208021A (ja) * 2012-03-29 2013-10-07 Mitsuba Corp ステータコア

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000125520A (ja) * 1998-10-09 2000-04-28 Calsonic Corp 電動機の製造方法
JP2013208021A (ja) * 2012-03-29 2013-10-07 Mitsuba Corp ステータコア

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188524A1 (ja) * 2022-03-30 2023-10-05 株式会社村田製作所 磁性体コア、磁性体コア付き巻線、回転電気機械及びブラシレスモータ
JP7435937B1 (ja) 2022-03-30 2024-02-21 株式会社村田製作所 磁性体コア、磁性体コア付き巻線、回転電気機械及びブラシレスモータ

Similar Documents

Publication Publication Date Title
JP6175708B2 (ja) モータ
JP5827840B2 (ja) Vr型レゾルバ
JP5892106B2 (ja) 回転電機及び回転子の製造方法
JP5872807B2 (ja) モータにおけるコイル巻線の結線構造およびモータ
JPWO2017138534A1 (ja) ステータ、モータ、およびコンプレッサ
JP2007049844A (ja) アウターロータ型モータ
JP6651266B2 (ja) 回転電機およびその製造方法
JP6521217B2 (ja) モータおよびモータの製造方法
JP6866402B2 (ja) 回転電機
KR100883599B1 (ko) 모터
JP2018157613A (ja) モータ
JP2017175897A (ja) モータ
KR100883597B1 (ko) 모터
WO2019189526A1 (ja) ステータおよびモータ
JP2008312369A (ja) モータおよびモータの製造方法
JP2012135188A (ja) モータ
WO2019189528A1 (ja) ステータおよびモータ
CN108702054B (zh) 轴向间隙型旋转电机
JP6568473B2 (ja) ステータ
WO2019189527A1 (ja) ステータおよびモータ
WO2019189529A1 (ja) モータ
JP6946209B2 (ja) レゾルバのステータ構造およびレゾルバ
WO2019189478A1 (ja) ステータおよびモータ
JP3896325B2 (ja) 防水型ブラシレスファンモータ及びその製造方法
KR20200079430A (ko) 전기자의 보빈 구조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776642

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19776642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP