WO2019189522A1 - ポリオレフィン微多孔膜の製造方法及びポリオレフィン微多孔膜 - Google Patents

ポリオレフィン微多孔膜の製造方法及びポリオレフィン微多孔膜 Download PDF

Info

Publication number
WO2019189522A1
WO2019189522A1 PCT/JP2019/013479 JP2019013479W WO2019189522A1 WO 2019189522 A1 WO2019189522 A1 WO 2019189522A1 JP 2019013479 W JP2019013479 W JP 2019013479W WO 2019189522 A1 WO2019189522 A1 WO 2019189522A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyolefin
microporous membrane
plasticizer
extruder
film
Prior art date
Application number
PCT/JP2019/013479
Other languages
English (en)
French (fr)
Inventor
松本 健一
崇裕 大友
真由美 吉田
佐藤 剛
義和 遠藤
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2020509287A priority Critical patent/JPWO2019189522A1/ja
Publication of WO2019189522A1 publication Critical patent/WO2019189522A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a polyolefin microporous membrane and a polyolefin microporous membrane.
  • Microporous membranes have various pore diameters, pore shapes, and number of pores, and can be expressed by their unique structure. Therefore, microporous membranes have various characteristics such as filtration membranes, dialysis membrane filters, battery separators, electrolytic capacitor separators, etc. Used in the field of Among these, microporous membranes made of polyolefin as a resin material are widely used as secondary battery separators because they are excellent in chemical resistance, insulation, mechanical strength, etc., and have shutdown characteristics.
  • Patent Document 1 discloses that a polyolefin film in which an inorganic filler is dispersed is made porous by stretching, and the moisture permeability (A) and thickness (B) ( ⁇ m) is 2000 ⁇ A ⁇ 1929.7 ⁇ exp0.0273B, the film thickness is in the range of 20 to 45 ⁇ m, and the peak top pore size in the pore size distribution measurement of the film is 0.03 to 0
  • a polyolefin-based porous film characterized by being in the range of 20 ⁇ m is disclosed.
  • Patent Document 2 discloses a poly (vinylidene fluoride) polymer matrix and a first layer containing a nucleating agent dispersed almost uniformly throughout the polymer matrix (the nucleating agent is Bicyclo [2.2.1] heptane-2,3-dicarboxylic acid disodium salt, wherein the first layer has a substantially uniform distribution of pores therein and the pores are approximately 2.
  • a microporous membrane comprising a mean pore size greater than 0 ⁇ m) and a method for producing the same.
  • Patent Document 3 discloses a system for producing an extrudate containing a mixed polymer and a diluent.
  • the second extrusion means is located downstream of the first extrusion means and is in fluid communication with the first extrusion means.
  • Extruding means pumping means located downstream of the second extruding means and in fluid communication with the second extruding means, separation means for removing at least a portion of any unmixed polymer from the effluent of the second extruding means
  • the separation means positioned downstream of the second extrusion means and in fluid communication with the second extrusion means, the mixing means positioned downstream of the separation means and in fluid communication with the separation means, and positioned downstream of the mixing means
  • the system including at least one die in fluid communication with the mixing means.
  • the total light transmittance deviation is within 5%
  • the porosity is 35 to 95%
  • the air permeability in terms of a film thickness of 25 ⁇ m at 25 ° C. is 10 to 300 seconds / 100 cc.
  • a polyolefin microporous membrane characterized by the above is disclosed. It is described that this improves the mechanical strength of the polyolefin microporous membrane.
  • Patent Document 5 discloses an aromatic polyamide porous film having a film thickness of 10 to 30 ⁇ m and a light transmittance of 20 to 80% at a wavelength of 750 nm. It is described that this improves the transparency without impairing the air permeability of the aromatic polyamide porous membrane.
  • Patent Document 6 discloses that the high molecular weight polyethylene biaxially oriented film preferably has a light transmittance of 10% or less.
  • Patent Document 7 describes that, for example, the melt flow can change among the properties of the PVDF resin used.
  • Japanese Unexamined Patent Publication No. 2001-294695 Japanese National Table 2011-501773 International Publication No. 2009/51281 Japanese Laid-Open Patent Publication No. 2003-253026 Japanese Unexamined Patent Publication No. 2014-9165 Japanese Unexamined Patent Publication No. 2000-262923 Japanese National Table 2011-501773
  • an object of the present invention is to provide a method for producing a polyolefin microporous membrane which is excellent in surface appearance and suitable as a separator for a secondary battery, and a polyolefin microporous membrane excellent in withstand voltage.
  • the present inventors have evaluated the film appearance and withstand voltage characteristics by quantitatively evaluating a minute difference that is difficult to determine visually using the light transmittance of the film appearance. It was discovered that the withstand voltage characteristics are improved by making the structure inside the film uniform and improving the appearance of the film.
  • a polyolefin resin and a plasticizer are kneaded with an extruder to prepare a polyolefin solution, and then the polyolefin solution is discharged from the die into a sheet, and then stretched and the plasticizer is removed.
  • melt flow index also referred to as melt index or melt flow rate
  • the inventors have found that the appearance of the surface of the microporous membrane is improved, and have reached the present invention.
  • the method for producing a polyolefin microporous membrane is as follows.
  • Manufacture of a polyolefin microporous membrane comprising the steps of preparing a polyolefin solution by kneading a polyolefin resin and a plasticizer with an extruder, then discharging the polyolefin solution into a sheet form from a die, and then removing the plasticizer A method,
  • the polyolefin solution kneaded by the extruder is a lapse of time of melt index (g / min) measured by JIS K 7210-1 (2014) method A (test temperature: 230 ° C. load: 2.16 kg). gradient of the approximate straight line when approximated by a straight line plot of the change due is 0.005 ⁇ 1.0 g / min 2.
  • the method for producing a polyolefin microporous membrane according to an embodiment of the present invention preferably further comprises any one of the following [1] to [5] or a combination of two or more of these requirements.
  • Preparation of the polyolefin solution in the extruder is performed by adding a polyolefin resin to the extruder and starting kneading of the polyolefin resin, and then adding the plasticizer in two or more stages.
  • Kneading of the resin composition in the extruder is performed by adding a polyolefin resin to the extruder and starting kneading of the polyolefin resin, and then adding the plasticizer in two or more stages.
  • the temperature of the plasticizer charged into the extruder at the final stage is 30 to 100 ° C.
  • the amount of the plasticizer charged into the extruder in the final stage is 5% by mass or more based on the total amount of the plasticizer charged into the extruder.
  • the correlation coefficient R 2 in the approximate straight line is 0.9 to 1.0.
  • the polyolefin microporous membrane according to the embodiment of the present invention is obtained by the above-described method for producing a polyolefin microporous membrane.
  • the polyolefin microporous membrane according to another embodiment of the present invention has a light transmittance at a wavelength of 800 nm of the following formula (1): Maximum transmittance (%)-Minimum transmittance (%) ⁇ 5% (1) It satisfies.
  • the polyolefin microporous membrane according to the embodiment of the present invention preferably further comprises any one of the following [6] to [8] or a combination of two or more of these requirements.
  • the light transmittance at a wavelength of 800 nm is 30% or less.
  • the film thickness is 16 ⁇ m or less.
  • the dielectric breakdown voltage when the film thickness is 20 ⁇ m is 1.5 kv or more.
  • the battery separator according to the embodiment of the present invention is a battery separator using the polyolefin microporous film.
  • a non-aqueous electrolyte secondary battery according to an embodiment of the present invention is a non-aqueous electrolyte secondary battery using the battery separator.
  • a polyolefin microporous membrane having a good surface appearance and suitable as a separator for a secondary battery can be obtained. Furthermore, according to the polyolefin microporous membrane of the present invention, the difference between the maximum transmittance and the minimum transmittance of the light transmittance at a wavelength of 800 nm is 5% or less and the light transmittance is 30% or less. An excellent nonaqueous electrolyte secondary battery can be obtained.
  • FIG. 1 is a schematic diagram showing changes in the melt index of a polyolefin solution and polyethylene alone with respect to time.
  • FIG. 2 is a schematic diagram of a mount used for measuring transmittance.
  • FIG. 3 a is a view showing a photograph of the surface of the microporous membrane obtained in Example 1.
  • FIG. 3 b is a view showing a photograph of the surface of the microporous membrane obtained in Comparative Example 1.
  • the polyolefin microporous membrane refers to a microporous membrane containing polyolefin as a main component, and preferably refers to a microporous membrane containing 90% by mass or more of polyolefin with respect to the total amount of the microporous membrane.
  • the microporous membrane has a structure in which a large number of micropores are connected to the inside of the membrane and these micropores are connected. At least one of gas and liquid can pass from one surface to the other. Say the film that is.
  • a polyolefin resin and a plasticizer are kneaded by an extruder to prepare a polyolefin solution, and then the polyolefin solution is discharged from a die into a sheet, and then stretched and A step of removing the plasticizer.
  • the polyolefin solution kneaded by the extruder is melt mass flow rate (MFR (melt index (MI)) measured by JIS K 7210-1 (2014) method A (test temperature: 230 ° C. load: 2.16 kg).
  • MI is one of the methods for expressing the viscosity (fluidity) of thermoplastic resins such as polyolefins when they are melted.
  • a sample is melted in a cylinder (heated cylinder), and a certain load is applied through the orifice. This is an index of fluidity expressed by converting the discharge amount of the sample (between marked lines) into a weight per 10 minutes (unit: g / 10 minutes). If the cylinder temperature and load conditions are the same, the higher the MI value, the higher the fluidity.
  • MI is measured according to JIS K 7210-1 (2014) method A by setting the test temperature and load to 230 ° C. and 2.16 kgf (21.18 N), respectively (unit: : G / 10 min).
  • MI is a value that is uniquely determined by parameters such as the molecular weight of the resin to be measured, the length of the carbon chain and the degree of branching, or the melting point. If all of the above parameters are determined for an arbitrary resin, MI is also determined. become. In general, it can be said that any resin having a specific MI will not change in MI unless it undergoes a change in the above parameters, regardless of subsequent processing or changes over time.
  • the present inventors have found that in some polyolefin solutions used for the production of polyolefin microporous membranes, MI varies with time. The reason is that if a plasticizer is used during kneading of the polyolefin resin, the plasticizer oozes out from the polyolefin solution after kneading (mixture of kneaded polyolefin resin and plasticizer) over time. I guess it is because MI is changing. However, if the plasticizer oozes out of the polyolefin solution, the MI of the polyolefin solution should be apparently lower because the plasticizer has a higher MI than the polyolefin resin.
  • the MI of the polyolefin solution increased with time against such expectations.
  • the reason is considered that the plasticizer oozed out of the polyolefin solution played a role of a lubricant with the polyolefin solution inside the device for measuring MI (the aforementioned cylinder).
  • the MI does not change with time in a normal resin (polyethylene) alone (a resin alone containing no plasticizer), whereas the MI increases with time in the polyolefin solution as described above. Then, when the rise in MI with time is approximated by a straight line, the microporous polyolefin membrane having a good surface appearance can be produced by setting the slope (g / min 2 ) within the aforementioned range.
  • the present inventors have found out.
  • the slope of MI of the polyolefin solution is 0.005 g / min 2 or more
  • the appearance of the film produced using the polyolefin solution is improved, but the slope of MI is less than 0.005 g / min 2 .
  • a circular or elliptical pattern is formed on the surface of the film as shown in a comparative example described later.
  • the film appearance is improved because a certain amount or more of the plasticizer oozes out from the polyolefin solution, so that the sheet surface is coated with the plasticizer when the sheet is formed. This is because it can be uniformly adhered and cooled, and a uniform crystal structure can be obtained.
  • the slope of MI of the polyolefin solution is 1.0 g / min 2 or less, a film having a good film appearance can be stably discharged from the die, but exceeds 1.0 g / min 2 . Then, kogation adheres to the end of the base and a film appearance defect occurs, or the continuous operation time of the apparatus is reduced to remove kogation, and the productivity is lowered.
  • the correlation coefficient R 2 in the approximate straight line of the change with time of MI is preferably 0.9 or more, preferably 0.9 to 1.0, more preferably 0.95 to 1.00. It is. That is, not only does the MI of the polyolefin solution extruded from the extruder increase with time, but when the degree of increase is uniform over time, the microporous membrane produced using the polyolefin solution has an appearance. Is good and has excellent productivity. If the correlation coefficient R 2 is within the range described above, the change with time of MI has occurred uniform, the appearance of the films prepared with such a material is extremely good.
  • a microporous film can be produced by subjecting the polyolefin resin composition satisfying the above-described MI-related parameters to the following steps a) to d) after appropriately setting conditions:
  • a polyolefin resin is fed into the extruder.
  • the supplied polyolefin resin is heated.
  • a plasticizer is added to the heated polyolefin resin, mixed and kneaded to prepare a polyolefin solution.
  • c-1) a step of adding and kneading the plasticizer to the heated polyolefin resin (first kneading), c-2)
  • a step of adding a plasticizer to the polyolefin solution after the first kneading and kneading (second kneading) is preferably performed.
  • a polyolefin resin is fed into the extruder.
  • the polyolefin resin is supplied into the extruder from the raw material charging section of the extruder.
  • the polyolefin resin preferably contains at least one of polyethylene and polypropylene which are inexpensive and excellent in molding characteristics.
  • polyethylene can be contained in an amount of 50% by mass or more based on the total amount of the polyolefin microporous membrane.
  • the polyethylene is not particularly limited, and various polyethylenes can be used. For example, high density polyethylene, medium density polyethylene, branched low density polyethylene, linear low density polyethylene and the like are used.
  • the polyethylene may be a homopolymer of ethylene or a copolymer of ethylene and another ⁇ -olefin.
  • the ⁇ -olefin include propylene, butene-1, hexene-1, pentene-1, 4-methylpentene-1, octene, vinyl acetate, methyl methacrylate, styrene and the like.
  • the polyolefin resin can contain high density polyethylene (HDPE) (density: 0.920 g / m 3 or more and 0.970 g / m 3 or less). When high-density polyethylene is contained, the melt extrusion characteristics are excellent, and the uniform stretch processing characteristics are excellent.
  • HDPE high density polyethylene
  • the weight average molecular weight (Mw) of the high-density polyethylene used as a raw material is, for example, about 1 ⁇ 10 4 or more and less than 1 ⁇ 10 6 .
  • Mw is a value measured in terms of polystyrene by gel permeation chromatography (GPC).
  • the content of the high-density polyethylene is, for example, 50% by mass or more with respect to 100% by mass of the entire polyolefin resin.
  • the upper limit of the content of the high-density polyethylene is, for example, 100% by mass or less, and when it contains other components, it is, for example, 90% by mass or less.
  • the polyolefin resin can also include ultra high molecular weight polyethylene (UHMwPE).
  • UHMwPE ultra high molecular weight polyethylene
  • the ultra high molecular weight polyethylene used as a raw material has a weight average molecular weight (Mw) of 1 ⁇ 10 6 or more (1 million or more), preferably 1 ⁇ 10 6 or more and 8 ⁇ 10 6 or less.
  • Mw weight average molecular weight
  • the moldability is good.
  • Ultra high molecular weight polyethylene can be used individually by 1 type or in combination of 2 or more types, For example, you may use 2 or more types of ultra high molecular weight polyethylene from which Mw differs.
  • the ultra high molecular weight polyethylene can be contained in an amount of, for example, 0% by mass or more and 70% by mass or less, and preferably 10% by mass or more and 60% by mass or less with respect to 100% by mass of the whole polyolefin resin.
  • the content of ultrahigh molecular weight polyethylene is 10% by mass or more and 60% by mass or less, the Mw of the resulting polyolefin microporous membrane can be easily controlled within a specific range described later, and the productivity such as extrusion kneading property can be achieved. There is a tendency to excel.
  • ultrahigh molecular weight polyethylene when ultrahigh molecular weight polyethylene is contained, high mechanical strength can be obtained even when the polyolefin microporous membrane is thinned.
  • the ratio of ultra high molecular weight polyethylene to high density polyethylene is preferably to increase the strength of the film and to uniformly disperse the polyethylene solution. It is 5 to 60% by mass, more preferably 5 to 50% by mass, and particularly preferably 10 to 40% by mass.
  • the polypropylene may be, for example, a propylene homopolymer, a copolymer of propylene and another ⁇ -olefin and / or diolefin (propylene copolymer), or a mixture thereof. From the viewpoint of reducing the through-hole diameter, it is preferable to use a propylene homopolymer.
  • the polypropylene content is preferably 2.5% by mass or more based on 100% by mass of the entire polyolefin resin from the viewpoint of improving heat resistance. Moreover, it is preferable to set it as 15 mass% or less with respect to 100 mass% of the whole polyolefin resin from the point which suppresses that shutdown temperature becomes high.
  • polyolefin resin can contain polyolefin other than polyethylene and polypropylene, and other resin components as needed. As other resin components, for example, a heat resistant resin or the like can be used.
  • the polyolefin microporous membrane is an antioxidant, a heat stabilizer, an antistatic agent, an ultraviolet absorber, an antiblocking agent and a filler, a crystal nucleating agent, and a crystallization retarder as long as the effects of the present invention are not impaired.
  • Various additives such as these may be contained.
  • the polyolefin resin composition may contain a crystal nucleating agent in addition to the polyolefin resin and the plasticizer.
  • the crystal nucleating agent is not particularly limited, and a known compound-based or fine-particle-based crystal nucleating agent can be used.
  • the nucleating agent may be a master batch in which the nucleating agent is previously mixed and dispersed in the polyolefin resin. When a nucleating agent is contained, high mechanical strength and a low stress diffusion coefficient (K value) can be obtained without containing ultrahigh molecular weight polyethylene.
  • K value low stress diffusion coefficient
  • polyolefin resin composition does not contain a crystal nucleating agent, it is preferable that polyolefin resin contains the said ultra high molecular weight polyethylene and high density polyethylene.
  • the polyolefin microporous membrane may contain high-density polyethylene, ultrahigh molecular weight polyethylene, and a crystal nucleating agent. By including these, the puncture strength can be further improved and the
  • the supplied polyolefin resin is heated.
  • the supplied polyolefin is heated inside the extruder.
  • the specific heating temperature varies depending on the type of polyolefin used.
  • polyethylene it is preferably 140 to 250 ° C., particularly 150 to 200 ° C.
  • polypropylene it is 160 to 250 ° C., particularly 180 to It is preferable that it is 200 degreeC.
  • a plasticizer is added to the heated polyolefin resin and mixed and kneaded.
  • the plasticizer is not limited as long as it is a good solvent for the polyolefin resin.
  • nonane, decane, decalin, p-xylene, undecane, dodecane, liquid paraffin or other aliphatic or cyclic hydrocarbons, or boiling point Mineral oil fractions corresponding to these can be used.
  • the above-mentioned plasticizer preferably has a viscosity at 25 ° C. of 0.03 to 0.5 Pa ⁇ s, particularly 0.05 to 0.2 Pa ⁇ s.
  • a viscosity at 25 ° C. of the plasticizer is less than 0.03 Pa ⁇ s, non-uniform discharge occurs, and the kneading of the polyolefin solution is difficult.
  • the viscosity exceeds 0.5 Pa ⁇ s, the plastic sheet is removed from the gel sheet in a later step.
  • Plasticizer is not easy.
  • liquid paraffin, decalin, and paraxylene are preferable from the viewpoint of compatibility with the polyolefin resin.
  • the polyolefin solution in the extruder is preferably adjusted by adding a plasticizer in two or more stages after charging the polyolefin resin into the extruder and starting kneading of the polyolefin resin.
  • a plasticizer in two or more stages after charging the polyolefin resin into the extruder and starting kneading of the polyolefin resin.
  • the addition of the plasticizer to the polyolefin resin is preferably added in two or more stages, particularly in two stages. preferable.
  • the case of kneading in two stages will be described.
  • the kneading after adding the plasticizer in the first stage (step c-1) is also referred to as “first kneading”, and the kneading after adding the plasticizer in the second stage (step c-2) Also referred to as “2 kneading”.
  • the rotation speed of the screw in the first kneading and the second kneading is adjusted so that the MI of the polyolefin solution extruded from the extruder is within the above-described range.
  • the timing of adding the plasticizer in the second stage is after the first kneading is completed and the polyolefin resin and the plasticizer are uniformly melted and dispersed.
  • the temperature of the plasticizer added in the second stage is preferably 30 to 100 ° C., more preferably 30 to 90 ° C., and still more preferably, in order to improve the film appearance and to knead the polyolefin solution uniformly. Control in the range of 45-75 ° C. When adding in two or more stages, it is preferable that the temperature of the plasticizer added in the final stage is within the above temperature range. As the ratio of addition in the addition of the plasticizer in a plurality of stages, from the viewpoint of film appearance control, the addition amount of the plasticizer added to the extruder in the final stage is 5 with respect to the total amount of the plasticizer charged into the extruder.
  • the content is preferably at least mass%, more preferably 5 to 40 mass%, still more preferably 10 to 40 mass%, still more preferably 10 to 30 mass%.
  • the blending ratio of the polyolefin resin and the plasticizer (total amount) is 10 to 50% by mass, preferably 15 to 40% by mass with respect to 100% by mass of the total of the polyolefin resin and the plasticizer.
  • the polyolefin resin is less than 10% by mass (when the plasticizer exceeds 90% by mass), when forming into a sheet shape, swell and neck-in are large at the die outlet, making it difficult to form the sheet.
  • the polyolefin resin exceeds 50% by mass (when the plasticizer is less than 50% by mass), it is difficult to prepare a uniform solution.
  • the kneaded polyolefin solution is extruded from the extruder into a sheet through a die.
  • the mixed and kneaded polyolefin solution is extruded through a die from an extruder.
  • the polyolefin resin composition was taken out as a measurement sample, and when the MI was measured a plurality of times by the measurement method described in the examples described later, It gets higher.
  • the extrusion speed of the polyolefin solution discharged from the die is usually 1 to 10 m / min.
  • As the base a sheet base having a generally rectangular base shape is used. When the sheet die is used, the die gap is usually 0.1 to 5 mm, and it is heated to 140 to 250 ° C. during extrusion molding.
  • a gel-like sheet is formed by cooling the polyolefin solution extruded from the die into a sheet.
  • a method for forming the gel-like sheet for example, the methods disclosed in Japanese Patent No. 2132327 and Japanese Patent No. 3347835 can be used. Cooling is preferably performed at a rate of 50 ° C./min or more at least up to the gelation temperature. Cooling is preferably performed to 25 ° C. or lower. By cooling, the microphase of the polyolefin resin separated by the plasticizer can be fixed. When the cooling rate is within the above range, the crystallinity is maintained in an appropriate range, and a gel-like sheet suitable for stretching is obtained.
  • a method of contacting with a coolant such as cold air or cooling water, a method of contacting with a cast roll, or the like can be used, but it is preferable to cool by contacting a roll cooled with a coolant.
  • the gel sheet is stretched.
  • the stretching of the gel sheet is also called wet stretching. Wet stretching is performed at least in the uniaxial direction. Since the gel-like sheet contains a plasticizer, it can be uniformly stretched.
  • the gel-like sheet is preferably stretched at a predetermined ratio after heating by a tenter method, a roll method, an inflation method, or a combination thereof.
  • the stretching may be uniaxial stretching or biaxial stretching, but biaxial stretching is preferred. In the case of biaxial stretching, any of simultaneous biaxial stretching, sequential stretching and multistage stretching (for example, a combination of simultaneous biaxial stretching and sequential stretching) may be used.
  • the final area stretching ratio (surface ratio) in wet stretching is preferably 3 times or more, and more preferably 4 times or more and 30 times or less.
  • 9 times or more is preferable, 16 times or more is more preferable, and 25 times or more is more preferable.
  • the upper limit of the final area stretching ratio in wet stretching is preferably 100 times or less, and more preferably 64 times or less.
  • the final draw ratio in wet drawing is preferably 3 times or more in both the MD direction (machine direction) and the TD direction (width direction), and the MD direction and the TD direction may be the same or different. When the draw ratio is 3 times or more, improvement in puncture strength can be expected.
  • the draw ratio in this step means the draw ratio of the gel-like sheet immediately before being used for the next step on the basis of the gel-like sheet immediately before this step.
  • the TD direction is a direction orthogonal (crossing) to the MD direction when the microporous film is viewed in a plane.
  • the stretching temperature is preferably in the range of the crystal dispersion temperature (Tcd) to (Tcd) + 30 ° C. of the polyolefin resin, and is in the range of crystal dispersion temperature (Tcd) + 5 ° C. to crystal dispersion temperature (Tcd) + 28 ° C. It is more preferable that the temperature be in the range of (Tcd) + 10 ° C. to (Tcd) + 26 ° C.
  • the stretching temperature is within the above range, film breakage due to stretching of the polyolefin resin is suppressed, and stretching at a high magnification can be performed.
  • the crystal dispersion temperature (Tcd) refers to a value obtained by measuring temperature characteristics of dynamic viscoelasticity based on ASTM D4065.
  • the ultra high molecular weight polyethylene, the polyethylene other than the ultra high molecular weight polyethylene, and the polyethylene composition have a crystal dispersion temperature of about 90 to 100 ° C. Therefore, the stretching temperature when polyethylene is used as a raw material can be set to 90 ° C. or higher and 130 ° C. or lower, for example.
  • Fibrils form a three-dimensional irregularly connected network structure. Stretching improves the mechanical strength and enlarges the pores. However, when stretching is performed under appropriate conditions, the through-hole diameter can be controlled, and a high porosity can be achieved even with a thinner film thickness. For this reason, it is suitable for a safer and higher performance battery separator.
  • the plasticizer is removed from the stretched gel-like sheet to form a microporous membrane (film).
  • the plasticizer is removed by washing using a washing solvent. Since the polyolefin phase is phase-separated from the plasticizer, when the plasticizer is removed, it is composed of fibrils that form a fine three-dimensional network structure, and has a microporous structure with pores (voids) communicating irregularly in three dimensions. This film is obtained. Since a cleaning solvent and a method for removing a plasticizer (film forming solvent) using the same are known, the description thereof is omitted. For example, the methods disclosed in Japanese Patent No. 2132327 and Japanese Patent Application Laid-Open No. 2002-256099 can be used.
  • the microporous membrane from which the plasticizer has been removed is dried by a heat drying method or an air drying method.
  • the drying temperature is preferably equal to or lower than the crystal dispersion temperature (Tcd) of the polyolefin resin, and particularly preferably 5 ° C. or lower than (Tcd). Drying is preferably performed until the residual cleaning solvent is 5% by mass or less, more preferably 3% by mass or less, with the microporous membrane (film) being 100% by mass (dry weight).
  • the remaining cleaning solvent is within the above range, the porosity of the polyolefin microporous membrane is maintained when the subsequent microporous membrane (film) stretching step and heat treatment step are performed, and deterioration of permeability is suppressed. .
  • the dried film may be stretched in the surface magnification (area stretching ratio).
  • the stretching of the film after drying is also referred to as dry stretching.
  • the film after drying is dry-stretched at least in a uniaxial direction.
  • the dry stretching of the film can be performed by the tenter method or the like as described above while heating.
  • the stretching may be uniaxial stretching or biaxial stretching. In the case of biaxial stretching, any of simultaneous biaxial stretching and sequential stretching may be used, but sequential stretching is preferred. In the case of sequential stretching, after stretching in the MD direction, it is preferable to continuously stretch in the TD direction.
  • the film after drying or the polyolefin microporous film after dry stretching may be subjected to heat treatment.
  • the crystal is stabilized by heat treatment, and the lamella is made uniform.
  • the heat treatment method at least one of heat setting treatment and heat relaxation treatment can be used.
  • the heat setting treatment is a heat treatment in which heating is performed while holding both ends of the film in the TD direction so that the dimension in the TD direction of the film does not change.
  • the heat setting treatment is preferably performed by a tenter method or a roll method.
  • the thermal relaxation treatment is a heat treatment that heat-shrinks the film in the MD direction or the TD direction during heating.
  • a thermal relaxation treatment method a method disclosed in Japanese Patent Application Laid-Open No. 2002-256099 can be given.
  • the heat treatment temperature is preferably within the range of (Tcd) to (Tm: melting point) of the polyolefin resin.
  • the polyolefin microporous film after the heat treatment can be further subjected to a crosslinking treatment and a hydrophilic treatment.
  • the crosslinking treatment is performed by irradiating the polyolefin microporous film with ionizing radiation such as ⁇ rays, ⁇ rays, ⁇ rays, and electron beams.
  • ionizing radiation such as ⁇ rays, ⁇ rays, ⁇ rays, and electron beams.
  • electron beam irradiation an electron dose of 0.1 to 100 Mrad is preferable, and an acceleration voltage of 100 to 300 kV is preferable.
  • the meltdown temperature of the microporous membrane is increased by the crosslinking treatment.
  • the hydrophilic treatment can be performed by monomer grafting, surfactant treatment, corona discharge, or the like. Monomer grafting is preferably performed after the crosslinking treatment.
  • the polyolefin microporous membrane may be a single layer, but one or more layers made of a polyolefin microporous membrane may be laminated.
  • the polyolefin microporous membrane has a layer composed of two or more polyolefin microporous membranes (hereinafter also referred to as a multilayer polyolefin microporous membrane)
  • the composition of the polyolefin resin constituting each layer may be the same or different.
  • Other porous layers and coating layers other than the polyolefin resin may be provided on the polyolefin microporous membrane of the present invention.
  • the microporous film has a light transmittance at a wavelength of 800 nm of maximum transmittance (%) ⁇ minimum transmittance (%) ⁇ 5%.
  • maximum transmittance (%) ⁇ minimum transmittance (%) ⁇ 4%, more preferably maximum transmittance (%) ⁇ minimum transmittance (%) ⁇ 3% is satisfied.
  • the lower limit of the maximum transmittance (%)-minimum transmittance (%) is 0.5%, preferably 1.0%. .
  • the light transmittance in wavelength 800nm is 30% or less, More preferably, it is 25% or less, More preferably, it is 15% or less.
  • the withstand voltage characteristic of the polyolefin microporous film is improved. For this reason, the withstand voltage characteristic of the secondary battery using this polyolefin microporous film as a separator improves, and stability improves.
  • “maximum transmittance (%) ⁇ minimum transmittance (%)” is expressed as “difference” in light transmittance, and this difference is described later in the MD direction of the microporous film.
  • a value calculated based on a measurement result measured at a plurality of locations according to the measurement method, and a value calculated based on a measurement result measured at a plurality of locations according to the measurement method described later in the TD direction of the microporous membrane In the case where it is within the above range in the MD direction and the TD direction (the difference in light transmittance is small across the plane of the microporous film), the withstand voltage characteristics of the microporous film Is very good.
  • the standard deviation ( ⁇ ) of light transmittance at a wavelength of 800 nm is 1.3 or less, preferably 1.1 or less, and more preferably 0.7 or less.
  • the lower limit of the standard deviation ( ⁇ ) of the light transmittance at a wavelength of 800 nm is preferably as low as possible, but is 0.1 or more, preferably 0.2 or more, and more preferably 0.3 or more.
  • the light transmittance at a wavelength of 800 nm of the polyolefin microporous film is due to the light scattering intensity of the microporous film. If the light scattering is large, the light transmittance is small, and if the light scattering is small, the light transmittance is large. The light scattering intensity decreases as the network structure formed by the fibrils in the microporous film is reduced, and the light transmittance increases. That is, the light transmittance is determined by the size of the microporous film.
  • the polyolefin microporous film Since the polyolefin microporous film has a light scattering Rayleigh scattering region at a wavelength of 800 nm, its light scattering intensity is proportional to the sixth power of the network structure size of the microporous film, and the network structure size is uniform over the entire surface of the microporous film.
  • the difference in the light transmittance described above becomes smaller.
  • the upper limit of the light transmittance in wavelength 800nm is 30% or less, Preferably it is 25% or less, More preferably, it is 15% or less.
  • the lower limit of the light transmittance at a wavelength of 800 nm is 0.5% or more, preferably 1% or more, more preferably 2% or more.
  • the upper limit of the film thickness of the polyolefin microporous membrane is not particularly limited, but is preferably, for example, 16 ⁇ m or less, more preferably 12 ⁇ m or less, and still more preferably 10 ⁇ m or less.
  • the minimum of a film thickness is not specifically limited, For example, it is 3 micrometers or more, Preferably it is 5 micrometers or more.
  • the battery capacity is improved when the polyolefin microporous film is used as a battery separator.
  • the polyolefin microporous film of the present embodiment has high puncture strength and the like, and has high self-discharge characteristics, withstand voltage characteristics, and rate characteristics even when it is thinned.
  • the light transmittance is reduced when a substance that blocks light or scatters light is interposed between the light emitting part and the light receiving part.
  • the light transmittance decreases as the film thickness of the microporous film increases, and the maximum transmission that is the maximum value that passes through the microporous film.
  • the difference between the maximum value and the minimum value of the light transmittance is likely to increase as the light beam is more easily transmitted (the thinner the microporous film is). Therefore, it can be said that it is extremely difficult to reduce the difference between the maximum value and the minimum value of the light transmittance while reducing the thickness of the microporous film.
  • the withstand voltage characteristic of the microporous polyolefin membrane when converted to a film thickness of 20 ⁇ m is preferably 1.5 kV or more, more preferably 2.0 kV or more, and most preferably 3.0 kV or more. Setting the withstand voltage property to 1.5 kV or more is preferable from the viewpoint of ensuring insulation when the polyolefin microporous membrane is used as a separator for a secondary battery.
  • the upper limit is preferably 5 kV or less.
  • the porosity of the microporous polyolefin membrane is not particularly limited, but is preferably 10% to 70%, more preferably 20% to 60%, and still more preferably 30% to 50%.
  • the porosity is in the above range, the amount of electrolyte retained can be increased and high ion permeability can be ensured.
  • the porosity is within the above range, the rate characteristics are improved.
  • a porosity is 30% or more from a viewpoint of improving ion permeability and a rate characteristic more.
  • the porosity can be adjusted to the above range by adjusting the blending ratio of the constituent components of the polyolefin resin, the draw ratio, the heat setting conditions, and the like in the production process.
  • the air permeability resistance (Gurley value) of the polyolefin microporous membrane is not particularly limited, and is, for example, 50 seconds / 100 cm 3 or more and 500 seconds / 100 cm 3 or less.
  • the air permeability resistance of the polyolefin microporous membrane is preferably 350 seconds / 100 cm 3 or less, more preferably 300 seconds / 100 cm 3 or less, and even more preferably 250 seconds / 100 cm. 3 or less.
  • the air resistance is in the above range, when used as a separator for a secondary battery, the ion permeability is excellent, the impedance of the secondary battery is lowered, and the battery output is improved.
  • the air permeation resistance can be adjusted to the above range by adjusting the stretching conditions and the like when producing the polyolefin microporous membrane.
  • MI Measurement method and evaluation method
  • MI evaluated the following items. ⁇ Average value of extruder discharge MI (g / 10 min) A polyolefin solution discharged after being melted and kneaded by an extruder is collected as a measurement sample, and MI measurement is performed on this measurement sample every minute immediately after being extruded from the extruder, and until 10 minutes after the start of measurement. The average value was obtained.
  • Extruder discharge MI slope (g / min 2 ) Polyolefin solution discharged after melting and kneading by an extruder is collected, MI is measured at multiple points over time, and these measurement results are plotted on a graph showing the correlation between time and viscosity, and an approximate straight line And found the slope. Calculation Method of Approximate Line The slope b and intercept a of the line were determined using the following equations so that the sum of deviation squares was minimized by the least square method.
  • Porosity It was measured by the following equation, which compares the mass w1 of the microporous membrane with the mass w2 of the polymer without pores equivalent to the microporous membrane (polymer having the same width, length, and composition).
  • Porosity (%) (w2-w1) / w2 ⁇ 100 [Air permeability resistance; Gurley value] Air permeability resistance P 1 (sec) measured with an air permeability meter (Asahi Seiko Co., Ltd., EGO-1T) in accordance with JIS P-8117 for a microporous film having a film thickness T 1 ( ⁇ m) / 100 cm 3 ).
  • Weight average molecular weight (Mw) The weight average molecular weight (Mw) of the polyolefin resin and the obtained polyolefin microporous membrane was determined by gel permeation chromatography (GPC) method under the following conditions.
  • Measurement device GPC-150C manufactured by Waters Corporation Column: Shodex UT806M manufactured by Showa Denko KK -Column temperature: 135 ° C
  • Solvent flow rate 1.0 ml / min
  • Sample concentration 0.1 wt% (dissolution condition: 135 ° C / 1h)
  • Injection volume 500 ⁇ l
  • Detector Differential refractometer (RI detector) manufactured by Waters Corporation -Calibration curve: Prepared from a calibration curve obtained using a monodisperse polystyrene standard sample, using a predetermined conversion constant.
  • the transmittance of the microporous membrane was measured by the following method.
  • a test sample of 50 mm ⁇ 50 mm was cut out from the microporous membrane at 20 points at intervals of 50 m in the MD direction (machine direction) and 20 points at regular intervals in the TD direction (width direction).
  • a mount shown in FIG. 2 was prepared as a mount for attaching the sample. As shown in FIG. 2, the mount is cut out at a central portion of 50 mm ⁇ 35 mm.
  • a test sample cut out from the microporous membrane was attached to this central portion so that a window through which infrared rays passed through the microporous membrane was formed.
  • test sample attached to this mount was set on a film holder of an ultraviolet-visible spectrophotometer (manufactured by Shimadzu Corporation, UV-2450), and the light transmittance at 800 nm was measured.
  • the “difference” in Table 1 (difference indicated by the formula (1)) is shown.
  • a test sample is cut out from the microporous membrane with a size of 95 mm ⁇ 95 mm, and withstand voltage characteristics are used in the following procedures (a) to (d) using a withstand voltage tester (TOS5051A manufactured by Kikusui Electronics Corporation) Was measured.
  • TOS5051A manufactured by Kikusui Electronics Corporation
  • A The cut sample is allowed to stand on an aluminum plate, a conductive rubber having a diameter of 13 mm is placed at a measurement position on the sample, and a 500 g weight is placed on the conductive rubber.
  • B Connect the negative electrode of the withstand voltage tester to the aluminum plate and the positive electrode to the weight.
  • Example 1 (Examples 1 to 6 and Comparative Example 1) Under the composition and conditions shown in Table 1, polyolefin resin and liquid paraffin, which is a plasticizer, are melt-kneaded in a twin screw extruder to prepare a polyolefin resin composition, which is supplied from the twin screw extruder to a T die. Extruded. In each of Examples 1 to 6, the amount of plasticizer charged in the second kneading, the first and second kneading temperatures, and the temperature of the plasticizer are adjusted so that the slope of MI falls within a predetermined range. . Next, the extruded product was cooled while being taken up by a cast roll to form a gel-like sheet.
  • the gel-like sheet was simultaneously biaxially stretched (wet stretched) by a tenter stretching machine at 110 ° C. in the MD direction and the TD direction 5 times.
  • the stretched gel-like sheet is fixed to an aluminum frame plate of 20 cm ⁇ 20 cm, immersed in a methylene chloride bath adjusted to 25 ° C., liquid paraffin is removed while swinging at 100 rpm for 3 minutes, air-dried at room temperature, and dried.
  • a membrane was obtained.
  • the dry film was dry-stretched in the MD direction and the TD direction at a dry stretching ratio described in Table 1 at 126 ° C. using a batch type stretching machine. Next, this film was subjected to thermal relaxation treatment by shrinking it at 126 ° C. by 8% by the tenter method.
  • FIG. 2 shows changes with time in the viscosity (MI) of the polyolefin solutions in Examples 1 to 6 and Comparative Example 1.
  • FIG. 3 a shows a photograph of the surface of the microporous membrane obtained in Example 1.
  • FIG. 3 b shows a photograph of the surface of the microporous membrane obtained in Comparative Example 1.
  • the evaluation result of the obtained polyolefin microporous membrane was combined with Table 1, and was described.
  • UHMwPE indicates ultra high molecular weight polyethylene having Mw of 2.0 ⁇ 10 6
  • HDPE indicates high density polyethylene having Mw of 6.0 ⁇ 10 5 .
  • the resin concentration (mass%) in the melt-kneaded product (resin composition) indicates the content (mass%) of the polyolefin resin relative to the total of the polyolefin resin and the plasticizer.
  • the PE residence time (minutes) is the time from the extrusion from the extruder until it reaches the die, and is calculated as “total volume of polymer line / discharge amount”.
  • the total stretching ratio indicates the area stretching ratio of the polyolefin microporous film after dry stretching (before heat setting treatment) on the basis of the gel-like sheet before wet stretching.
  • the method for producing a polyolefin microporous membrane of the present invention has improved yield, quality and yield in the production process, and the surface appearance of the obtained polyolefin microporous membrane is good and incorporated in a separator for a secondary battery.
  • the withstand voltage characteristics are excellent. Therefore, it can be suitably used for a secondary battery separator that requires a thin film.

Abstract

製造工程における歩留まり、品質及び収率が向上し、表面の外観に優れ、光線の透過率の観点から、二次電池のセパレータとして特に耐電圧に優れるポリオレフィン微多孔膜を製造の方法及びポリオレフィン微多孔膜を提供すること。ポリオレフィン樹脂及び可塑剤を押出機により混練してポリオレフィン溶液を調製し、次いでこのポリオレフィン溶液を口金からシート状に吐出した後、延伸及び前記可塑剤の除去を行う工程を含むポリオレフィン微多孔膜の製造方法であって、前記押出機により混練された前記ポリオレフィン溶液は、JIS K 7210-1(2014)のA法(試験温度:230℃ 荷重:2.16kg)により測定されるMI(g/分)の時間に対する変化のプロットを直線で近似したときにその傾きが0.005~1.0g/分となるポリオレフィン微多孔膜の製造方法。波長800nmにおける光線透過率を式(1)「最大透過率(%)-最小透過率(%)≦5%・・・(1)」を満たすポリオレフィン微多孔膜。

Description

ポリオレフィン微多孔膜の製造方法及びポリオレフィン微多孔膜
 本発明は、ポリオレフィン微多孔膜の製造方法及びポリオレフィン微多孔膜に関するものである。
 微多孔膜は、様々な孔径、孔形状、孔数を有し、その特異な構造により発現され得る特性から、ろ過膜、透析膜等のフィルター、電池用セパレータや電解コンデンサー用のセパレータ等の種々の分野に用いられる。これらの中でも、ポリオレフィンを樹脂材料とする微多孔膜は、耐薬品性、絶縁性、機械的強度等に優れ、シャットダウン特性を有するため、二次電池用セパレータとして広く用いられる。
 製造された微多孔膜が要求された性能を満たしているか否かの判断の指標の一つとして、微多孔膜表面の外観が挙げられる。
 微多孔膜の外観を改善する技術として、特許文献1には、無機充填材を分散したポリオレフィン組成物を延伸により多孔化したポリオレフィンフィルムにおいて、該フィルムの透湿度(A)と厚み(B)(μm)の関係が2000≦A≦1929.7×exp0.0273Bであって、該フィルム厚みが20~45μmの範囲であり、かつ、該フィルムの孔径分布測定におけるピークトップ孔径が0.03~0.20μmの範囲であることを特徴とするポリオレフィン系多孔質フィルムが開示されている。
 微多孔膜を製造する方法として、特許文献2には、ポリ(フッ化ビニリデン)ポリマーマトリックス、及び、ほぼ均一に前記ポリマーマトリックス全体に分散された核剤を含む第一層(前記核剤は、ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸二ナトリウム塩を含み、ここで、前記第一層は、その内部の孔がほぼ均一な分布を有し、前記孔が約2.0μm超の平均孔径を有する)を含む、微多孔性膜及びその製造方法が開示されている。
 特許文献3には、混ぜ合わされたポリマーと希釈剤を含む押出物を生産するシステムであって、第1押出手段、第1押出手段の下流に位置し、第1押出手段と流体連通する第2押出手段、第2押出手段の下流に位置し、第2押出手段と流体連通するポンプ輸送手段、第2押出手段の流出物から任意の混ぜ合わされていないポリマーの少なくとも一部を除くための分離手段であって、第2押出手段の下流に位置し、第2押出手段と流体連通する前記分離手段、分離手段の下流に位置し、分離手段と流体連通する混合手段、及び混合手段の下流に位置し、混合手段と流体連通する少なくとも1のダイスを含む、前記システムが開示されている。
 特許文献4には、全光透過率偏差が5%以内であり、空孔率が35~95%であり、かつ25℃における膜厚25μm換算の透気度が10~300秒/100ccであることを特徴とするポリオレフィン微多孔膜が開示されている。これによりポリオレフィン微多孔膜の機械的強度が向上することが記載されている。 
 特許文献5には、膜厚が10~30μmであり、波長750nmの光線透過率が20~80%である芳香族ポリアミド多孔質膜が開示されている。これにより芳香族ポリアミド多孔質膜の透気性を損なうことなく、透明性を向上することが記載されている。
 特許文献6には、高分子量ポリエチレン二軸配向フィルムは、光線透過率が10%以下であることが好ましいことが開示されている。
 特許文献7には、用いられるPVDF樹脂の性質のうち例えばメルトフローが変化し得ることについて記載されている。
日本国特開2001-294695号公報 日本国特表2011-501773号公報 国際公開第2009/51281号 日本国特開2003-253026号公報 日本国特開2014-9165号公報 日本国特開2000-262923号公報 日本国特表2011-501773号公報
 近年、二次電池のエネルギー密度の高密度化による電極の体積の増加に伴い、セパレータとして用いられる微多孔膜の薄膜化が要求されているところ、セパレータは、薄くなるに従い、電極間距離が短くなるため、セパレータにはより高い耐電圧特性が求められている。
 さらに、セパレータの全範囲において耐電圧特性にバラつきがあると、低い部分から絶縁破壊が起きるため、平均的に高い耐電圧特性を有していても、電池としての耐電圧特性としては劣ったものとなる。したがって、セパレータの全範囲においてバラつきが少なく均一に高い耐電圧特性が求められる。
 本発明は、前記事情を考慮し、表面の外観に優れ、二次電池のセパレータとして好適なポリオレフィン微多孔膜の製造方法及び耐電圧に優れたポリオレフィン微多孔膜を提供することを目的とする。
 前記の状況の下、本発明者は鋭意検討を重ねた結果、フィルム外観について光線透過率を用いて目視では判断が困難な微小な差を定量的に評価することでフィルム外観と耐電圧特性との関係を見出し、フィルム内部の構造を均一化させフィルムの外観を良化させることで、耐電圧特性が向上することを発見した。
 外観を良化させる方法として、ポリオレフィン樹脂及び可塑剤を押出機により混練してポリオレフィン溶液を調製し、次いでこのポリオレフィン溶液を口金からシート状に吐出した後、延伸及び前記可塑剤の除去を行ってポリオレフィン微多孔膜を製造するポリオレフィン微多孔膜の製造方法において、ポリオレフィン溶液のメルトフローインデックス(メルトインデックスあるいはメルトフローレートとも言う)を特定の範囲に調整することにより、このポリオレフィン溶液から得られたポリオレフィン微多孔膜の表面の外観が改善されることを見出し、本発明に到達した。
 すなわち本発明の実施形態にかかるポリオレフィン微多孔膜の製造方法は、
 ポリオレフィン樹脂及び可塑剤を押出機により混練してポリオレフィン溶液を調製し、次いでこのポリオレフィン溶液を口金からシート状に吐出した後、延伸及び前記可塑剤の除去を行う工程を含むポリオレフィン微多孔膜の製造方法であって、
 前記押出機により混練された前記ポリオレフィン溶液は、JIS K 7210-1(2014)のA法(試験温度:230℃ 荷重:2.16kg)により測定されるメルトインデックス(g/分)の時間の経過による変化のプロットを直線で近似したときの近似直線の傾きが0.005~1.0g/分となる。
 本発明の実施形態にかかるポリオレフィン微多孔膜の製造方法は、さらに、下記[1]ないし[5]のいずれか1つ又はそれら要件の2つ以上の組み合わせを具備することが好ましい。
[1]前記押出機におけるポリオレフィン溶液の調整は、当該押出機にポリオレフィン樹脂を投入してこのポリオレフィン樹脂の混練を開始した後、前記可塑剤を2段階以上で添加して行われる。
[2]前記押出機における樹脂組成物の混練は、当該押出機にポリオレフィン樹脂を投入してこのポリオレフィン樹脂の混練を開始した後、前記可塑剤を2段階以上で添加して行われる。
[3]最終段階で前記押出機に投入する可塑剤の温度が30~100℃である。
[4]最終段階で前記押出機に投入する可塑剤の量は、前記押出機に投入する可塑剤の全量に対して、5質量%以上である。
[5]前記近似直線における相関係数Rが、0.9~1.0である。
 本発明の実施形態にかかるポリオレフィン微多孔膜は、上記ポリオレフィン微多孔膜の製造方法により得られる。
 本発明の他の実施形態にかかるポリオレフィン微多孔膜は、波長800nmにおける光線透過率が下記式(1):
 最大透過率(%)-最小透過率(%)≦5%・・・(1)
を満たすものである。
 本発明の実施形態にかかるポリオレフィン微多孔膜は、さらに、下記[6]ないし[8]のいずれか1つ又はそれら要件の2つ以上の組み合わせを具備することが好ましい。
[6]波長800nmにおける光線透過率が30%以下である。
[7]膜厚が16μm以下である。
[8]膜厚を20μmとしたときの絶縁破壊電圧が1.5kv以上である。
 本発明の実施形態にかかる電池用セパレータは、前記ポリオレフィン微多孔膜を用いた電池用セパレータである。
 本発明の実施形態にかかる非水電解液二次電池は、前記電池用セパレータを用いた非水電解液二次電池である。
 本発明のポリオレフィン微多孔膜の製造方法によれば、表面の外観が良好であり、二次電池のセパレータとして好適なポリオレフィン微多孔膜を得ることができる。さらに、本発明のポリオレフィン微多孔膜によれば、波長800nmにおける光線透過率の最大透過率と最小透過率との差分が5%以下且つ光線透過率が30%以下であるため、耐電圧特性に優れた非水電解液二次電池を得ることができる。
図1は、ポリオレフィン溶液及びポリエチレン単体のメルトインデックスの時間に対する変化を示す概略図である。 図2は、透過率の測定に使用する台紙の模式図である。 図3aは、実施例1にて得られた微多孔膜の表面の写真を示す図である。 図3bは、比較例1にて得られた微多孔膜の表面の写真を示す図である。
 以下、本発明について好ましい実施形態に基づき説明する。なお、本明細書において、ポリオレフィン微多孔膜とは、ポリオレフィンを主成分として含む微多孔膜をいい、好ましくは、ポリオレフィンを微多孔膜全量に対して90質量%以上含む微多孔膜をいう。また微多孔膜とは、膜内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体及び液体の少なくとも一方が通過可能となっている膜を言う。
 本発明の実施形態にかかるポリオレフィン微多孔膜の製造方法は、ポリオレフィン樹脂及び可塑剤を押出機により混練してポリオレフィン溶液を調製し、次いでこのポリオレフィン溶液を口金からシート状に吐出した後、延伸及び前記可塑剤の除去を行う工程を含む。
 前記押出機により混練された前記ポリオレフィン溶液は、JIS K 7210-1(2014)のA法(試験温度:230℃ 荷重:2.16kg)により測定されるメルトマスフローレイト(MFR(メルトインデックス(MI)ともいう)(g/分)の時間に対する変化のプロットを直線で近似したときにその傾きが0.005~1.0g/分となるようにすることが必要であり、好ましくは0.005~0.50g/分、更に好ましくは0.01~0.050g/分である。そうすることにより、表面の外観が良好なポリオレフィン微多孔膜を製造することができる。以下に、MIについて詳述する。
 MIは、ポリオレフィン等の熱可塑性樹脂の溶融時の粘度(流動性)を表す方法の一つであり、シリンダー(加熱筒)内で溶融させた試料に、一定の荷重を加えてオリフィスより押出す試料の吐出量(標線間)を10分間あたりの重量(単位:g/10分)に換算して表す流動性の指標である。同一のシリンダー温度および荷重条件であれば、MIの値が高い材料ほど流動性が高いことを示す。本発明の実施形態においてはMIは、JIS K 7210-1(2014)のA法に準じて、試験温度及び荷重をそれぞれ230℃、2.16kgf(21.18N)に設定して測定する(単位:g/10分)。
 MIは、測定対象の樹脂の分子量、炭素鎖の長さ及び分岐の度合い、あるいは融点などのパラメータにより一義的に決まる値であり、任意の樹脂について、前記パラメータが全て決まれば、MIも決まることになる。通常、固有のMIを有する任意の樹脂は、上記パラメータについて変化を受けなければ、その後の処理や経時的な変化に依らず、MIの変化は起こらないと言える。
 一方、ポリオレフィン微多孔膜の製造に用いるポリオレフィン溶液では、MIが時間の経過とともに変化していくものがあることを本発明者等は見いだしていた。その理由としては、ポリオレフィン樹脂の混練時に可塑剤を使用すると、混練後のポリオレフィン溶液(ポリオレフィン樹脂と可塑剤とを混練した混合物)から、時間の経過と共に可塑剤が外部に染み出していき、従ってMIが変わっていくためであると推測する。
 しかし、ポリオレフィン溶液から可塑剤が外部に染み出していくとすると、ポリオレフィン樹脂よりも可塑剤の方がMIが高いため、ポリオレフィン溶液のMIは見かけ上低くなっていくはずであるが、本発明者等が見出した知見によると、このような予想に反して、ポリオレフィン溶液のMIは経時的に高くなっていた。その理由としては、ポリオレフィン溶液から外部に染み出した可塑剤がMIを測定するための装置(既述のシリンダー)内部においてポリオレフィン溶液との間の潤滑剤の役割を果たしたためと考えられる。
 そして、本発明の実施形態においては、「経時的にポリオレフィン溶液のMIが高くなっていく」ことについて、その「経時的に」高くなる度合いについても着目した。具体的には、ポリオレフィン溶液のMIが経時的に特定の傾きを持って高くなる(ある一定割合で増加する)場合には、そのポリオレフィン溶液を用いて製造した微多孔膜は、良好な外観を持つことが分かった。このようなMIの経時的変化を図1に示す。図1では、通常の樹脂(ポリエチレン)単体(可塑剤を含まない樹脂単独)ではMIが経時的に変化せず、一方、ポリオレフィン溶液では既述のようにMIが経時的に上昇していく。そして、このMIの経時的な上昇を直線で近似したときにその傾き(g/分)を前述の範囲内とすることで、表面の外観が良好なポリオレフィン微多孔膜を製造することができることを、本発明者等は見いだした。
 即ち、ポリオレフィン溶液のMIの傾きが0.005g/分以上の場合には、そのポリオレフィン溶液を用いて製造したフィルムの外観が良好になるが、MIの傾きが0.005g/分未満の場合には、後述の比較例に示すように、フィルムの表面に円状あるいは楕円状の模様が形成されてしまう。MIの傾きが大きいとフィルム外観が良化するのは、ポリオレフィン溶液からある一定量以上の可塑剤が染み出すことにより、シート成形の際にシート表面を可塑剤で被覆し、シートがキャストロールで均一に密着し冷却することが可能になり、均一な結晶構造を得ることができるためである。また、ポリオレフィン溶液のMIの傾きが1.0g/分以下の場合には、フィルム外観が良好なフィルムを口金から安定して吐出することが可能となるが、1.0g/分を超えると、口金端部にコゲが付着してしまいフィルム外観欠点が発生したり、コゲ除去のために装置の連続稼動時間が低下したりすることなどにより、生産性が低下してしまう。
 また、MIの経時変化の近似直線における相関係数Rは、0.9以上であることが好ましく、0.9~1.0であることが好ましく、さらに好ましくは0.95~1.00である。即ち、押出機から押し出したポリオレフィン溶液のMIが経時的に高くなるだけでなく、更にその高くなる度合いが経時的に均一である場合には、そのポリオレフィン溶液を用いて製造した微多孔膜は外観が良好であり生産性に優れている。この相関係数Rが既述の範囲内の場合には、MIの経時変化が均一に起こっており、そのような原料を用いて製造したフィルムの外観が極めて良好になる。その理由としては、ポリマー溶液が均一に混練されていることにより、前述のような可塑剤のポリオレフィン溶液からの染み出しの度合いも均一なものとなり、混練ムラや口金端部のコゲにより発生する欠点のない外観良好なフィルムにも反映されるものと推測する。本発明において、前記のMIに関するパラメータを満たすポリオレフィン樹脂組成物を、適宜条件を設定の上、下記a)ないしd)工程を経ることにより微多孔フィルムを製造することができる:
 a)ポリオレフィン樹脂を押出機内に供給する。
 b)供給された前記ポリオレフィン樹脂を加熱する。
 c)加熱されたポリオレフィン樹脂に可塑剤を添加し混合・混練してポリオレフィン溶液を調製する。
 この混合・混練工程として、c-1)加熱された前記ポリオレフィン樹脂に前記可塑剤を添加し混練する工程(第1混練)と、
 c-2)第1混練後のポリオレフィン溶液に更に可塑剤を添加し混練する工程(第2混練)とを行うことが好ましい。
 d)混練後のポリオレフィン溶液を押出機から口金を介してシート状に押出す。
 e)シート状に押出された前記ポリオレフィン溶液を冷却してゲルシートを形成する。
 f)前記ゲルシートを延伸する。
 g)延伸後のゲルシートから可塑剤を除去して微多孔膜(フィルム)を形成する。
 h)前記フィルムを乾燥させる。
 i)次いで、乾燥後のフィルムを面倍率(面積延伸倍率)延伸する。
 以下、各工程順に説明する。
 a)ポリオレフィン樹脂を押出機内に供給する。
 本工程ではポリオレフィン樹脂を、押出機の原料投入部より押出機内に供給する。
 ポリオレフィン樹脂としては、安価で成形特性に優れるポリエチレン、ポリプロピレンの少なくとも一方を含有することが好ましい。例えば、ポリエチレンは、ポリオレフィン微多孔膜全量に対して、50質量%以上含むことができる。ポリエチレンとしては、特に限定されず、種々のポリエチレンを用いることができ、例えば、高密度ポリエチレン、中密度ポリエチレン、分岐状低密度ポリエチレン、直鎖状低密度ポリエチレン等が用いられる。なお、ポリエチレンは、エチレンの単独重合体であってもよく、エチレンと他のα-オレフィンとの共重合体であってもよい。α-オレフィンとしては、プロピレン、ブテン-1、ヘキセン-1、ペンテン-1、4-メチルペンテン-1、オクテン、酢酸ビニル、メタクリル酸メチル、スチレン等が挙げられる。
 ポリオレフィン樹脂は、高密度ポリエチレン(HDPE)(密度:0.920g/m以上0.970g/m以下)を含有することできる。高密度ポリエチレンを含有すると、溶融押出特性に優れ、均一な延伸加工特性に優れる。原料として用いられる高密度ポリエチレンの重量平均分子量(Mw)は、例えば1×10以上1×10未満程度である。なお、Mwは、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレン換算で測定される値である。高密度ポリエチレンの含有量は、例えば、ポリオレフィン樹脂全体100質量%に対して、50質量%以上である。高密度ポリエチレンの含有量は、その上限が、例えば100質量%以下であり、他の成分を含む場合は、例えば90質量%以下である。
 また、ポリオレフィン樹脂は、超高分子量ポリエチレン(UHMwPE)を含むことができる。原料として用いられる超高分子量ポリエチレンは、重量平均分子量(Mw)が1×10以上(100万以上)であり、好ましくは1×10以上8×10以下である。超高分子量ポリエチレンのMwが前記範囲である場合、成形性が良好となる。超高分子量ポリエチレンは1種を単独で、又は2種以上を併用して用いることができ、例えば、Mwの異なる二種以上の超高分子量ポリエチレン同士を混合して用いてもよい。
 超高分子量ポリエチレンは、例えば、ポリオレフィン樹脂全体100質量%に対して、例えば0質量%以上70質量%以下含むことができ、好ましくは10質量%以上60質量%以下である。超高分子量ポリエチレンの含有量が10質量%以上60質量%以下である場合、得られるポリオレフィン微多孔膜のMwを後述する特定の範囲に容易に制御しやすく、かつ押出し混練性等の生産性に優れる傾向がある。また、超高分子量ポリエチレンを含有した場合、ポリオレフィン微多孔膜を薄膜化した際にも高い機械的強度を得ることができる。
 ポリオレフィン樹脂として、高密度ポリエチレン及び超高分子量ポリエチレンの両方を含む場合、高密度ポリエチレンに対する超高分子量ポリエチレンの比率は、フィルムの強度を高めるため、及びポリエチレン溶液を均一に分散させるために、好ましくは5~60質量%、より好ましくは5~50質量%、特に好ましくは10~40質量%である。
 ポリプロピレンとしては、例えば、プロピレンの単独重合体、プロピレンと他のα-オレフィン及び/又はジオレフィンとの共重合体(プロピレン共重合体)、或いはこれらの混合物のいずれでも良いが、機械的強度及び貫通孔径の微小化等の観点から、プロピレンの単独重合体を用いることが好ましい。ポリプロピレンの含有量としては、ポリオレフィン樹脂全体100質量%に対し2.5質量%以上とすることが耐熱性向上の点から好ましい。また、ポリオレフィン樹脂全体100質量%に対し15質量%以下とすることがシャットダウン温度が高くなることを抑える点から好ましい。
 また、ポリオレフィン樹脂は、必要に応じて、ポリエチレン及びポリプロピレン以外のポリオレフィン及びその他の樹脂成分を含むことができる。その他の樹脂成分としては、例えば、耐熱性樹脂等を用いることができる。また、ポリオレフィン微多孔膜は、本発明の効果を損なわない範囲において、酸化防止剤、熱安定剤、帯電防止剤、紫外線吸収剤、ブロッキング防止剤や充填剤、結晶造核剤、結晶化遅延剤等の各種添加剤を含有させてもよい。
 また、ポリオレフィン樹脂組成物には、前記のポリオレフィン樹脂及び可塑剤に加えて、結晶造核剤を含有してもよい。結晶造核剤としては、特に限定されず、公知の化合物系、微粒子系結晶造核剤等が使用できる。核剤としては、核剤を予めポリオレフィン樹脂に混合、分散したマスターバッチであってもよい。核剤を含有する場合、超高分子量ポリエチレンを含有しなくても、高い機械的強度と低い応力拡散係数(K値)を得ることができる。
 なお、ポリオレフィン樹脂組成物は、結晶造核剤を含有しない場合、ポリオレフィン樹脂は、前記の超高分子量ポリエチレンと高密度ポリエチレンとを含有することが好ましい。また、ポリオレフィン微多孔膜は、高密度ポリエチレン、超高分子量ポリエチレン及び結晶造核剤を含んでもよい。これらを含むことにより、突刺強度をより向上させ、かつ、K値をより低下させることができる。
 b)供給された前記ポリオレフィン樹脂を加熱する。
 本工程では、供給されたポリオレフィンが押出機内部で加熱される。
 具体的な加熱温度は、使用するポリオレフィンの種類によって異なるが、例えば、ポリエチレンの場合は140~250℃、特に150~200℃であるのが好ましく、ポリプロピレンの場合は160~250℃、特に180~200℃であることが好ましい。
 c)加熱されたポリオレフィン樹脂に可塑剤を添加し混合・混練する。
 可塑剤としては、前記ポリオレフィン樹脂に対して良溶媒であれば制限されないが、例えばノナン、デカン、デカリン、p-キシレン、ウンデカン、ドデカン、流動パラフィン等の脂肪族又は環式の炭化水素、或いは沸点がこれらに対応する鉱油留分等を用いることができる。
 前述した可塑剤としては、25℃における粘度が0.03~0.5Pa・s、特に0.05~0.2Pa・sであるのが好ましい。可塑剤の25℃における粘度が0.03Pa・s未満では、不均一吐出を生じ、ポリオレフィン溶液の混練が困難であり、一方粘度が0.5Pa・sを超えると、後工程でゲルシートからの脱可塑剤が容易でなくなる。
 可塑剤の中では、ポリオレフィン樹脂との相溶性の点から、流動パラフィン、デカリン、パラキシレンが好ましい。
 押出機におけるポリオレフィン溶液の調整は、押出機にポリオレフィン樹脂を投入してこのポリオレフィン樹脂の混練を開始した後、可塑剤を2段階以上で添加して行われることが好ましい。
 ポリオレフィン樹脂に対する可塑剤の添加は、フィルム外観を良好にするため、及び押出機からポリオレフィン溶液を安定的に吐出するために、2段階以上で添加することが好ましく、特に2段階で添加することが好ましい。以下、2段階で混練する場合について説明する。
 なお、1段階目(c-1工程)での可塑剤添加後の混練を、「第1混練」ともいい、2段階目(c-2工程)での可塑剤添加後の混練を、「第2混練」ともいう。
 第1混練及び第2混練でのスクリューの回転数は、押出機から押し出されるポリオレフィン溶液のMIが既述の範囲内となるように調整される。
 可塑剤を2段階で添加する場合、2段階目での可塑剤の添加のタイミングは、第1混練が完了し、ポリオレフィン樹脂と可塑剤が均一に溶融分散してからとする。
 また2段階目で添加する可塑剤の温度は、フィルム外観を良好にするために、及びポリオレフィン溶液を均一に混練するため、好ましくは30~100℃、より好ましくは30~90℃、さらに好ましくは45~75℃の範囲で制御する。2段階以上で添加する場合には、最終段階で添加する可塑剤の温度が前記温度範囲内であることが好ましい。
 複数段での可塑剤の添加における添加の比率としては、フィルム外観制御の観点から、最終段階で押出機に添加する可塑剤の添加量を、押出機に投入する可塑剤の全量に対して5質量%以上とすることが好ましく、より好ましくは5~40質量%、さらに好ましくは10~40質量%、さらに好ましくは10~30質量%である。
 ポリオレフィン樹脂と可塑剤(総量)との配合割合は、ポリオレフィン樹脂と可塑剤との合計を100質量%として、ポリオレフィン樹脂が10~50質量%、好ましくは15~40質量%である。ポリオレフィン樹脂が10質量%未満では(可塑剤が90質量%を超えると)、シート状に成形する際に、口金出口で、スウェルやネックインが大きくシートの成形が困難となる。一方、ポリオレフィン樹脂が50質量%を超えると(可塑剤が50質量%未満では)、均一な溶液の調製が困難となる。
 d)混練後のポリオレフィン溶液を押出機から口金を介してシート状に押出す。
 混合・混練された前記ポリオレフィン溶液を、押出機から口金を介して押出す。押出機を出た直後(口金に至る前の)ポリオレフィン樹脂組成物を測定サンプルとして取り出して、この測定サンプルについて後述の実施例に記載の測定方法でMIを複数回測定した時、時系列的に高くなっていく。口金より吐出されるポリオレフィン溶液の押し出し速度は、通常1~10m/分である。
 口金としては、通常長方形の口金形状をしたシート口金が用いられる。シート口金を用いた場合の口金ギャップは通常0.1~5mmであり、押出し成形時には140~250℃に加熱される。
 e)口金よりシート状に押出されたポリオレフィン溶液を、冷却することにより、ゲル状シートを形成する。
 ゲル状シートの形成方法として、例えば日本国特許第2132327号公報及び日本国特許第3347835号公報に開示の方法を利用することができる。冷却は少なくともゲル化温度までは50℃/分以上の速度で行うのが好ましい。冷却は25℃以下まで行うのが好ましい。冷却により、可塑剤によって分離されたポリオレフィン樹脂のミクロ相を固定化することができる。冷却速度が前記範囲内であると結晶化度が適度な範囲に保たれ、延伸に適したゲル状シートとなる。冷却方法としては冷風、冷却水等の冷媒に接触させる方法、キャストロールに接触させる方法等を用いることができるが、冷媒で冷却したロールに接触させて冷却させることが好ましい。
 f)次いで、ゲル状シートを延伸する。ゲル状シートの延伸は、湿式延伸ともいう。湿式延伸は、少なくとも一軸方向に行う。ゲル状シートは可塑剤を含むので、均一に延伸できる。ゲル状シートは、加熱後、テンター法、ロール法、インフレーション法、又はこれらの組合せにより所定の倍率で延伸するのが好ましい。延伸は一軸延伸でも二軸延伸でもよいが、二軸延伸が好ましい。二軸延伸の場合、同時二軸延伸、逐次延伸及び多段延伸(例えば同時二軸延伸及び逐次延伸の組合せ)のいずれでもよい。
 湿式延伸における、最終的な面積延伸倍率(面倍率)は、例えば、一軸延伸の場合、3倍以上が好ましく、4倍以上30倍以下がより好ましい。また、二軸延伸の場合、9倍以上が好ましく、16倍以上がより好ましく、25倍以上がさらに好ましい。湿式延伸における最終的な面積延伸倍率の上限は100倍以下が好ましく、64倍以下がより好ましい。また、湿式延伸における最終的な延伸倍率はMD方向(機械方向)及びTD方向(幅方向)のいずれでも3倍以上が好ましく、MD方向とTD方向とで互いに同じでも異なってもよい。延伸倍率を3倍以上とすると、突刺強度の向上が期待できる。なお、本ステップにおける延伸倍率とは、本ステップ直前のゲル状シートを基準として、次ステップに供される直前のゲル状シートの延伸倍率のことをいう。また、TD方向は、微多孔膜を平面でみたときにMD方向に直交(交差)する方向である。
 延伸温度は、ポリオレフィン樹脂の結晶分散温度(Tcd)~(Tcd)+30℃の範囲内にすることが好ましく、結晶分散温度(Tcd)+5℃~結晶分散温度(Tcd)+28℃の範囲内にすることがより好ましく、(Tcd)+10℃~(Tcd)+26℃の範囲内にすることが特に好ましい。延伸温度が前記範囲内であると、ポリオレフィン樹脂延伸による破膜が抑制され、高倍率の延伸ができる。ここで結晶分散温度(Tcd)とは、ASTM D4065に基づいて動的粘弾性の温度特性測定により求められる値をいう。前記の超高分子量ポリエチレン、超高分子量ポリエチレン以外のポリエチレン及びポリエチレン組成物は、約90~100℃の結晶分散温度を有する。従って、ポチエチレンを原料として用いた場合の延伸温度は、例えば、90℃以上130℃以下とすることができる。
 上記MIの範囲とするポリオレフィン樹脂溶液を用いて以上のような延伸をすることによりポリエチレンラメラ間に開裂が起こり、ポリオレフィン相が微細化し、多数のフィブリルが形成される。フィブリルは三次元的に不規則に連結した網目構造を形成する。延伸により機械的強度が向上するとともに細孔が拡大するが、適切な条件で延伸を行うと、貫通孔径を制御し、さらに薄い膜厚でも高い空孔率を有する事が可能となる。このため、より安全で高性能な電池用セパレータに好適である。
 g)次いで、前記延伸後のゲル状シートから可塑剤を除去して微多孔膜(フィルム)とする。可塑剤の除去は、洗浄溶媒を用いた洗浄により行う。ポリオレフィン相は可塑剤と相分離しているので、可塑剤を除去すると、微細な三次元網目構造を形成するフィブリルからなり、三次元的に不規則に連通する孔(空隙)を有する微多孔質の膜が得られる。洗浄溶媒及びこれを用いた可塑剤(成膜用溶剤)の除去方法は公知であるので説明を省略する。例えば日本国特許第2132327号明細書や特開2002-256099号公報に開示の方法を利用することができる。
 h)次いで、可塑剤を除去した微多孔膜を、加熱乾燥法又は風乾法により乾燥する。乾燥温度はポリオレフィン樹脂の結晶分散温度(Tcd)以下であるのが好ましく、特に(Tcd)より5℃以上低いのが好ましい。乾燥は、微多孔膜(フィルム)を100質量%(乾燥重量)として、残存洗浄溶媒が5質量%以下になるまで行うのが好ましく、3質量%以下になるまで行うのがより好ましい。残存洗浄溶媒が前記範囲内であると、後段の微多孔膜(フィルム)の延伸工程及び熱処理工程を行ったときにポリオレフィン微多孔膜の空孔率が維持され、透過性の悪化が抑制される。
 i)次いで、乾燥後のフィルムを面倍率(面積延伸倍率)延伸してもよい。乾燥後のフィルムの延伸は、乾式延伸ともいう。乾燥後のフィルムを、少なくとも一軸方向に乾式延伸する。フィルムの乾式延伸は、加熱しながら前記と同様にテンター法等により行うことができる。延伸は一軸延伸でも二軸延伸でもよい。二軸延伸の場合、同時二軸延伸及び逐次延伸のいずれでもよいが、逐次延伸が好ましい。逐次延伸の場合、MD方向に延伸した後、連続して、TD方向に延伸することが好ましい。
 また、乾燥後のフィルム又は乾式延伸後のポリオレフィン微多孔膜は、熱処理が行われてもよい。熱処理によって結晶が安定化し、ラメラが均一化される。熱処理方法としては、熱固定処理及び熱緩和処理の少なくとも一方を用いることができる。熱固定処理とは、膜のTD方向の寸法が変わらないように膜のTD方向両端部を保持しながら加熱する熱処理である。熱固定処理は、テンター方式又はロール方式により行うのが好ましい。熱緩和処理とは、膜を加熱中にMD方向やTD方向に熱収縮させる熱処理である。例えば、熱緩和処理方法としては特開2002-256099号公報に開示の方法があげられる。熱処理温度はポリオレフィン樹脂の(Tcd)~(Tm:融点)の範囲内が好ましい。
 また、熱処理後のポリオレフィン微多孔膜に対して、さらに、架橋処理及び親水化処理を行うこともできる。例えば、ポリオレフィン微多孔膜に対して、α線、β線、γ線、電子線等の電離放射線の照射することに、架橋処理を行う。電子線の照射の場合、0.1~100Mradの電子線量が好ましく、100~300kVの加速電圧が好ましい。架橋処理により微多孔膜のメルトダウン温度が上昇する。また、親水化処理は、モノマーグラフト、界面活性剤処理、コロナ放電等により行うことができる。モノマーグラフトは架橋処理後に行うのが好ましい。
 ポリオレフィン微多孔膜は、単層であってもよいが、ポリオレフィン微多孔膜からなる層を1層以上積層してもよい。ポリオレフィン微多孔膜が二層以上のポリオレフィン微多孔膜からなる層を有する場合(以下、多層ポリオレフィン微多孔膜ともいう)、各層を構成するポリオレフィン樹脂の組成は、同一組成でもよく、異なる組成でもよい。
 本発明のポリオレフィン微多孔膜にポリオレフィン樹脂以外の他の多孔質層やコーティング層を設けてもよい。
 上記で説明したメルトインデックス(g/分)の時間の経過による変化のプロットを直線で近似したときにその傾きが0.005~1.0g/分であるポリオレフィン溶液を用いて製造されたポリオレフィン微多孔膜は、波長800nmにおける光線透過率は、最大透過率(%)-最小透過率(%)≦5%である。好ましくは、最大透過率(%)-最小透過率(%)≦4%、より好ましくは最大透過率(%)-最小透過率(%)≦3%以下の関係を満たす。また、微多孔膜による散乱や透過光の遮断は避けられないため、最大透過率(%)-最小透過率(%)の下限は、0.5%であり、好ましくは1.0%である。
 また波長800nmにおける光線透過率が30%以下であることが好ましく、更に好ましくは25%以下、より好ましくは15%以下である。波長800nmにおける光線透過率が、最大透過率(%)-最小透過率(%)≦5%、かつ、透過率≦30%の関係を満たすと、ポリオレフィン微多孔膜の耐電圧特性が向上する。このため、このポリオレフィン微多孔膜をセパレータとして用いた二次電池の耐電圧特性が向上し、安定性が向上する。ここで、本発明では、上記「最大透過率(%)-最小透過率(%)」を光線透過率の「差分」と表現しており、この差分は、微多孔膜のMD方向において後述の測定方法に則って複数個所測定した測定結果に基づいて算出される値と、微多孔膜のTD方向において同様に後述の測定方法に則って複数個所測定した測定結果に基づいて算出される値と、の少なくとも一方であり、MD方向及びTD方向に亘って上記範囲内となる(微多孔膜の面内に亘って光線透過率の差分が小さい)場合には、当該微多孔膜の耐電圧特性が極めて良好となる。なお、後述の表2では、上記「差分」として「R」と記載している。
 波長800nmにおける光線透過率の標準偏差(σ)は、1.3以下であり、好ましくは1.1以下であり、更に好ましくは0.7以下である。波長800nmにおける光線透過率の標準偏差(σ)の下限は、低いほど好ましいが、0.1以上、好ましくは0.2以上、更に好ましくは0.3以上である。
 ポリオレフィンは可視光領域に吸収を有していないため、ポリオレフィン微多孔膜の波長800nmにおける光線透過率は、微多孔膜の光散乱の強度に起因している。光散乱が大きければ光線透過率は小さくなり、光散乱が小さければ光線透過率は大きくなる。光散乱の強度は、微多孔膜中のフィブリルが構成する網目構造が微細化する事で散乱強度が小さくなり光線透過率は大きくなる。つまり、光線透過率は微多孔膜の構造に起因してその大小が決定している。ポリオレフィン微多孔膜の波長800nmにおける光散乱レイリー散乱領域のため、その光散乱強度は微多孔膜の網目構造サイズの6乗に比例し、その網目構造サイズが微多孔膜の全面に渡って均一になるほど上述の光線透過率の差分は小さくなる。なお、波長800nmにおける光線透過率の上限は30%以下であり、好ましくは25%以下であり、更に好ましくは15%以下である。波長800nmにおける光線透過率の下限は0.5%以上であり、好ましくは1%以上、更に好ましくは2%以上である。
(膜厚)
 ポリオレフィン微多孔膜の膜厚の上限は、特に限定されないが、例えば、16μm以下であることが好ましく、より好ましくは12μm以下、よりさらに好ましくは10μm以下である。膜厚の下限は、特に限定されないが、例えば、3μm以上であり、好ましくは5μm以上である。膜厚が前記範囲である場合、ポリオレフィン微多孔膜を電池用セパレータとして使用した際、電池容量が向上する。本実施形態のポリオレフィン微多孔膜は、高い突刺強度等を有し、薄膜化した際でも、高い自己放電特性、耐電圧特性及びレート特性を有する。
 ここで、光線透過率と膜厚との関係について説明する。光線透過率は、光線を遮る物質や光線を散乱させる物質が光線の発光部と受光部との間に介在すると小さくなる。発光部と受光部との間に微多孔膜が介在する場合には、この微多孔膜の膜厚が厚くなる程、光線透過率が小さくなり、微多孔膜を透過する最大値である最大透過率と最小値である最小透過率との差分が小さくなる。即ち、光線が透過しにくい程、透過した後の光線の光量の絶対値が小さくなるので、光線透過率の最大値は最小値と比べてそれ程大きくなりにくくなり、最大値と最小値との差分は小さくなる。逆に、光線が透過しやすい程(微多孔膜の膜厚が薄い程)、光線透過率の最大値と最小値との差分が大きくなりやすい。そのため、微多孔膜の膜厚を薄くしつつ、光線透過率の最大値と最小値との差分を小さくすることは極めて難しいと言える。
(耐電圧特性)
 膜厚20μmで換算したときのポリオレフィン微多孔膜の耐電圧特性は、好ましくは1.5kV以上、より好ましくは2.0kV以上、最も好ましくは3.0kV以上である。耐電圧特性を1.5kV以上とすることは、ポリオレフィン微多孔膜を二次電池用セパレータとして用いた場合に絶縁性を確保する観点から好適である。上限は、好ましくは5kV以下である。
(空孔率)
 ポリオレフィン微多孔膜の空孔率は、特に限定されないが、例えば、10%~70%が好ましく、より好ましくは20%~60%、さらに好ましくは30%~50%である。ポリオレフィン微多孔膜を二次電池用セパレータとして用いる場合、空孔率が前記範囲であることにより、電解液の保持量を高め、高いイオン透過性を確保することができる。また、空孔率が前記範囲であると、レート特性が向上する。また、イオン透過性及びレート特性をより高めるという観点から、空孔率が30%以上であることが好ましい。空孔率は、製造過程において、ポリオレフィン樹脂の構成成分の配合割合や延伸倍率、熱固定条件等を調節することにより、前記範囲とできる。
(透気抵抗度)
 ポリオレフィン微多孔膜の透気抵抗度(ガーレー値)は、特に限定されないが、例えば、50秒/100cm以上500秒/100cm以下である。ポリオレフィン微多孔膜の透気抵抗度は、二次電池用セパレータとして用いる場合、好ましくは350秒/100cm以下であり、より好ましくは300秒/100cm以下であり、さらに好ましくは250秒/100cm以下である。透気抵抗度が前記範囲である場合、二次電池用セパレータとして用いた際、イオン透過性に優れ、二次電池のインピーダンスが低下し電池出力が向上する。透気抵抗度は、ポリオレフィン微多孔膜を製造する際の延伸条件等を調節することにより、前記範囲とすることができる。
 以下、本発明を実施例によりさらに詳細に説明する。なお、本発明はこれらの例に限定されるものではない。
 ・測定方法と評価方法
 [メルトインデックス(MI)]
 JIS K 7210-1(2014)のA法に準じて、試験温度及び荷重をそれぞれ230℃、2.16kgf(21.18N)に設定して測定した(単位:g/10min)。
 MIは、以下の項目について評価した。
 ・押出機吐出 MIの平均値(g/10分)
 押出機により溶融・混錬した後に吐出されるポリオレフィン溶液を測定サンプルとして採取し、この測定サンプルについてMI測定を押出機から押し出された直後から1分おきに実施し、測定開始後10分までの平均値を求めた。
 ・押出機吐出 MIの傾き(g/分
 押出機により溶融・混錬した後に吐出されるポリオレフィン溶液を採取し、MIを時間の経過と共に複数点測定し、これらの測定結果を時間と粘度との相関関係を表すグラフにプロットすると共に近似直線を作成し、傾きを求めた。
近似直線の算出方法
 最小二乗法により偏差平方の和が最小となるよう、下記式を用いて直線の傾きbと切片aを決定した。
 y=bx+a
 b=S(xy)/S(xx)
 a=(y平均値)-b(x平均値)
 S(xy)=Σ(x-(x平均値))(y-(y平均値))
 S(xx)=Σ(x-(x平均値))
 S(yy)=Σ(y-(y平均値))
 (xi, yi):測定値
 b:傾き
 a:切片
 ・押出機吐出 MIのR
 押出機より吐出されるポリオレフィン溶液のMIを時間の経過と共に複数点測定して、これらの測定結果を時間と粘度との相関関係を表すグラフにプロットすると共に近似直線を作成し、この近似直線におけるプロットの相関係数Rを求めた。
相関係数の算出方法
 下記式を用いて相関係数Rを求めた。
 R=(S(xy)/√(S(xx)・S(yy)))
 S(xy)=Σ(x-(x平均値))(y-(y平均値))
 S(xx)=Σ(x-(x平均値))
 S(yy)=Σ(y-(y平均値))
 [外観]
 微多孔膜を95mm×95mmに切り出し、照明付き拡大鏡ルーペ(PEAK社製、ILLUMINATING LUPE)の上に皺なく広げ、透過光で微多孔膜を観察した。長径0.3cm以上の透明な斑点を数え、斑点の数が3個以内のものを◎(優)、3個を超え5以内のものを○(良)、5個を超え10個以内のものを△(可)、10個を超えたものを×(不可)と評価した。
 [空孔率]
 微多孔膜の質量w1とそれと等価な空孔のないポリマーの質量w2(幅、長さ、組成の同じポリマー)とを比較した、以下の式によって、測定した。
 空孔率(%)=(w2-w1)/w2×100
 [透気抵抗度;ガーレー値]
 膜厚T(μm)の微多孔膜に対して、JIS P-8117に準拠して、透気度計(旭精工株式会社製、EGO-1T)で測定した透気抵抗度P(sec/100cm)を測定した。また、式:P=(P×5)/Tにより、膜厚を5μmとしたときの透気抵抗度P(5μm換算)(sec/100cm/5μm)を算出した。
 [重量平均分子量(Mw)]
 ポリオレフィン樹脂及び得られたポリオレフィン微多孔膜の重量平均分子量(Mw)は以下の条件でゲルパーミエーションクロマトグラフィー(GPC)法により求めた。
 ・測定装置:Waters Corporation製GPC-150C
 ・カラム:昭和電工株式会社製Shodex UT806M
 ・カラム温度:135℃
 ・溶媒(移動相):o-ジクロルベンゼン
 ・溶媒流速:1.0 ml/分
 ・試料濃度:0.1 wt%(溶解条件:135℃/1h)
 ・インジェクション量:500μl
 ・検出器:Waters Corporation製ディファレンシャルリフラクトメーター(RI検出器)
 ・検量線:単分散ポリスチレン標準試料を用いて得られた検量線から、所定の換算定数を用いて作成した。
 [透過率]
 以下の方法により微多孔膜の透過率測定を行った。
 微多孔膜から50mm×50mmの試験サンプルを、MD方向(機械方向)について50m間隔で20点、TD方向(幅方向)について等間隔に20点切り出した。
 サンプルを貼り付ける台紙として、図2に示す台紙を準備した。この台紙は、図2に示すように、中央の50mm×35mmの部分がくり抜かれている。この中央部分に、微多孔膜から切り出した試験サンプルを貼り付け、微多孔膜を介して赤外線が通る窓となるようにした。この台紙に貼り付けた試験サンプルを、紫外可視分光光度計(株式会社島津製作所製、UV-2450)のフィルムホルダにセットし、800nmにおける光線透過率を測定した。表1中の「差分」(前記式(1)で示される差分)を示す。
 [耐電圧特性(絶縁破壊電圧)]
 微多孔膜から試験サンプルを95mm×95mmの大きさで切り出し、耐電圧試験器(菊水電子工業株式会社製、TOS5051A)を用いて、以下の(a)~(d)の手順にて耐電圧特性を測定した。
(a)切り出したサンプルをアルミ板の上に静置し、サンプル上の測定位置にΦ13mmの導電性ゴムを置き、更に導電性ゴムの上に500gの重りを置く。
(b)耐電圧試験器の負極をアルミ板、正極を重りに接続する。
(c)昇圧速度0.1kV/sで電圧を印加し、絶縁破壊が起きた時点での電圧(絶縁破壊電圧)を測定した。
(d)同様の測定を10回繰り返し、その平均値を20μmの値に換算して当該微多孔膜の耐電圧特性(耐電圧)とした。
 (実施例1~6及び比較例1)
 表1に示す組成及び条件にて、ポリオレフィン樹脂と可塑剤である流動パラフィンとを二軸押出機にて、溶融混練し、ポリオレフィン樹脂組成物を調製し、二軸押出機からTダイに供給し、押し出した。各実施例1~6では、この際にMIの傾きが所定の範囲内に収まるよう、第2混練での可塑剤の投入量、第1、2混練温度、可塑剤の温度を調整している。
 次いで、押出し成形体を、キャストロールで引き取りながら冷却し、ゲル状シートを形成した。ゲル状シートを、テンター延伸機により110℃でMD方向及びTD方向ともに5倍で同時二軸延伸(湿式延伸)した。延伸ゲル状シートを20cm×20cmのアルミニウム枠板に固定し、25℃に温調した塩化メチレン浴中に浸漬し、100rpmで3分間揺動しながら流動パラフィンを除去し、室温で風乾し、乾燥膜を得た。乾燥膜を、バッチ式延伸機を用いて、126℃で表1に記載の乾式延伸倍率にてMD方向、TD方向に乾式延伸した。次に、この膜をテンター法により、126℃で8%収縮させながら熱緩和処理を行った。
 図2に、実施例1~6及び比較例1におけるポリオレフィン溶液の粘度(MI)の時間に対する変化を示す。
 図3aに、実施例1にて得られた微多孔膜の表面の写真を記載した。図3bに、比較例1にて得られた微多孔膜の表面の写真を記載した。
 また、得られたポリオレフィン微多孔質膜の評価結果を表1に併せて記載した。なお、表1中、UHMwPEは、Mwが2.0×10の超高分子量ポリエチレンを示し、HDPEは、Mwが6.0×10の高密度ポリエチレンを示す。溶融混練物(樹脂組成物)中の樹脂濃度(質量%)とは、ポリオレフィン樹脂と可塑剤の合計に対するポリオレフィン樹脂の含有量(質量%)を示す。PE滞留時間(分)は、押出機より押出されてから口金に到達するまでの時間とし、「ポリマーラインの総体積/吐出量」にて算出する。総延伸倍率は、湿式延伸前のゲル状シートを基準として、乾式延伸後(熱固定処理前)のポリオレフィン微多孔膜の面積延伸倍率を示す。
Figure JPOXMLDOC01-appb-T000001
 (評価)
 実施例1~6の製造方法は、樹脂組成物のMIの傾きが所定の範囲を満たすため、図3aからも分かるように得られたポリオレフィン微多孔膜の表面外観は良好であり、波長800nmにおける光線透過率が「最大透過率(%)-最小透過率(%)≦5%」(前記式(1))「透過率 ≦ 30%」(前記式(2))の関係を満たし且つ耐電圧が向上していることが示された。
 一方、比較例1の製造方法は、樹脂組成物のMIの傾きが所定の範囲を満たしていないため、得られたポリオレフィン微多孔膜の表面の外観が不良であり、耐電圧も低下している。
 以上から、本実施形態の製造方法は、製造工程における歩留まり、品質及び収率が向上しており、外観が良好なポリオレフィン微多孔膜が得られることが明らかである。
 本発明のポリオレフィン微多孔膜の製造方法は、製造工程における歩留まり、品質及び収率が向上しており、得られたポリオレフィン微多孔膜の表面の外観が良好であり、二次電池用セパレータに組み入れた際、特に耐電圧特性に優れる。よって、薄膜化が要求される二次電池セパレータに好適に用いることができる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2018年3月27日出願の日本特許出願(特願2018-59644)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (12)

  1.  ポリオレフィン樹脂及び可塑剤を押出機により混練してポリオレフィン溶液を調製し、次いで該ポリオレフィン溶液を口金からシート状に吐出した後、延伸及び前記可塑剤の除去を行う工程を含むポリオレフィン微多孔膜の製造方法であって、
     前記押出機により混練された前記ポリオレフィン溶液は、JIS K 7210-1(2014)のA法(試験温度:230℃ 荷重:2.16kg)により測定されるメルトインデックス(g/分)の時間の経過による変化のプロットを直線で近似したときの近似直線の傾きが0.005~1.0[g/分]となるポリオレフィン微多孔膜の製造方法。
  2.  前記押出機における前記ポリオレフィン溶液の調整は、前記押出機に前記ポリオレフィン樹脂を投入して該ポリオレフィン樹脂の混練を開始した後、前記可塑剤を2段階以上で添加して行われる請求項1に記載のポリオレフィン微多孔膜の製造方法。
  3.  最終段階で前記押出機に投入する可塑剤の温度が30~100℃である請求項2に記載のポリオレフィン微多孔膜の製造方法。
  4.  最終段階で前記押出機に投入する可塑剤の量は、前記押出機に投入する前記可塑剤の全量に対して、5質量%以上である請求項2又は3に記載のポリオレフィン微多孔膜の製造方法。
  5.  前記近似直線における相関係数Rが0.9~1.0である請求項1~4のいずれか一項に記載のポリオレフィン微多孔膜の製造方法。
  6.  請求項1~5のいずれか一項に記載のポリオレフィン微多孔膜の製造方法により得られるポリオレフィン微多孔膜。
  7.  波長800nmにおける光線透過率が下記式(1)を満たすポリオレフィン微多孔膜。
      最大透過率(%)-最小透過率(%)≦5%・・・(1)
  8.  波長800nmにおける光線透過率が30%以下である請求項7記載のポリオレフィン微多孔膜。
  9.  膜厚が16μm以下である請求項7又は8に記載のポリオレフィン微多孔膜。
  10.  膜厚を20μmとしたときの絶縁破壊電圧が1.5kv以上である請求項7又は8に記載のポリオレフィン微多孔膜。
  11.  請求項6~10のいずれか一項に記載のポリオレフィン微多孔膜を用いた電池用セパレータ。
  12.  請求項11に記載の電池用セパレータを用いた非水電解液二次電池。
PCT/JP2019/013479 2018-03-27 2019-03-27 ポリオレフィン微多孔膜の製造方法及びポリオレフィン微多孔膜 WO2019189522A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020509287A JPWO2019189522A1 (ja) 2018-03-27 2019-03-27 ポリオレフィン微多孔膜の製造方法及びポリオレフィン微多孔膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018059644 2018-03-27
JP2018-059644 2018-03-27

Publications (1)

Publication Number Publication Date
WO2019189522A1 true WO2019189522A1 (ja) 2019-10-03

Family

ID=68062120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013479 WO2019189522A1 (ja) 2018-03-27 2019-03-27 ポリオレフィン微多孔膜の製造方法及びポリオレフィン微多孔膜

Country Status (2)

Country Link
JP (1) JPWO2019189522A1 (ja)
WO (1) WO2019189522A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021116375A (ja) * 2020-01-28 2021-08-10 東レ株式会社 ポリオレフィン微多孔膜の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137847A1 (ja) * 2011-04-05 2012-10-11 ダブル・スコープ株式会社 多孔性膜およびその製造方法
JP2016072247A (ja) * 2014-09-26 2016-05-09 旭化成イーマテリアルズ株式会社 蓄電デバイス用セパレータ
WO2016194962A1 (ja) * 2015-06-05 2016-12-08 東レバッテリーセパレータフィルム株式会社 微多孔膜製造方法、微多孔膜、電池用セパレータ及び二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137847A1 (ja) * 2011-04-05 2012-10-11 ダブル・スコープ株式会社 多孔性膜およびその製造方法
JP2016072247A (ja) * 2014-09-26 2016-05-09 旭化成イーマテリアルズ株式会社 蓄電デバイス用セパレータ
WO2016194962A1 (ja) * 2015-06-05 2016-12-08 東レバッテリーセパレータフィルム株式会社 微多孔膜製造方法、微多孔膜、電池用セパレータ及び二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021116375A (ja) * 2020-01-28 2021-08-10 東レ株式会社 ポリオレフィン微多孔膜の製造方法
JP7427975B2 (ja) 2020-01-28 2024-02-06 東レ株式会社 ポリオレフィン微多孔膜の製造方法

Also Published As

Publication number Publication date
JPWO2019189522A1 (ja) 2021-04-08

Similar Documents

Publication Publication Date Title
TWI406891B (zh) 聚烯烴多層微多孔膜之製法
TWI425045B (zh) 多層微多孔聚烯烴膜、其製法、及由它製得之電池隔離材
JP5202948B2 (ja) ポリオレフィン微多孔膜の製造方法
JP4902537B2 (ja) ポリエチレン多層微多孔膜並びにそれを用いた電池用セパレータ及び電池
JP4121846B2 (ja) ポリオレフィン微多孔膜及びその製造方法並びに用途
WO2014076994A1 (ja) 電池用セパレータ
US10079378B2 (en) Polyolefin microporous membrane and production method thereof
KR20140105750A (ko) 폴리올레핀 미다공막 및 그 제조 방법
KR102507588B1 (ko) 폴리올레핀 미세 다공막, 다층 폴리올레핀 미세 다공막, 적층 폴리올레핀 미세 다공막, 및 세퍼레이터
JP2004196871A (ja) ポリオレフィン微多孔膜及びその製造方法並びに用途
JP2002284918A (ja) ポリオレフィン微多孔膜及びその製造方法並びに用途
JP2004149637A (ja) 微多孔膜及びその製造方法並びに用途
CN110382605B (zh) 聚烯烃微多孔膜和使用了该聚烯烃微多孔膜的电池
WO2019189522A1 (ja) ポリオレフィン微多孔膜の製造方法及びポリオレフィン微多孔膜
JP6996383B2 (ja) ポリオレフィン微多孔膜の製造方法
JP2001200082A (ja) ポリエチレン微多孔膜及びその製造方法
JP7427975B2 (ja) ポリオレフィン微多孔膜の製造方法
JP2019157060A (ja) ポリオレフィン微多孔膜
WO2021033733A1 (ja) ポリオレフィン微多孔膜、積層体、及び電池
JP7234949B2 (ja) ポリオレフィン微多孔膜の製造方法
RU2422276C2 (ru) Способ изготовления многослойной, микропористой полиолефиновой мембраны
WO2024019069A1 (ja) ポリオレフィン微多孔膜、電池用セパレータおよび電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774258

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509287

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19774258

Country of ref document: EP

Kind code of ref document: A1