WO2019189454A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2019189454A1
WO2019189454A1 PCT/JP2019/013346 JP2019013346W WO2019189454A1 WO 2019189454 A1 WO2019189454 A1 WO 2019189454A1 JP 2019013346 W JP2019013346 W JP 2019013346W WO 2019189454 A1 WO2019189454 A1 WO 2019189454A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooler
heat generating
pipe
resin
flow path
Prior art date
Application number
PCT/JP2019/013346
Other languages
French (fr)
Japanese (ja)
Inventor
田島 豊
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201980022084.XA priority Critical patent/CN111903046A/en
Publication of WO2019189454A1 publication Critical patent/WO2019189454A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power conversion device.
  • the hybrid system described in Japanese Patent No. 579676 has a vehicle capacitor (paragraph 0013).
  • the vehicle capacitor smoothes the DC voltage supplied to the inverter (paragraph 0013).
  • the vehicle capacitor has a film capacitor (paragraph 0015).
  • the film capacitor includes a dielectric part and a metallicon electrode part (paragraph 0017).
  • the dielectric part includes a dielectric film and a metal electrode (paragraph 0018).
  • the dielectric film is a resin film having a wound structure (paragraph 0018).
  • the metal electrode is formed by vapor deposition on one side of the dielectric film (paragraph 0018).
  • the metallicon electrode part is provided at each end of the dielectric part (paragraph 0019). *
  • the metallicon electrode portions are each connected to the bus bar (paragraph 0015).
  • the film capacitor is fixed in the case with an epoxy resin (paragraph 0015).
  • Japanese Patent No. 5792676 Japanese Patent No. 5792676
  • the main heat-generating part of the film capacitor described in Japanese Patent No. 579676 is a metallicon electrode part provided at each end of the dielectric part. Therefore, heat removal from the film capacitor is performed mainly through the bus bar electrodes connected to the metallicon electrode portions, respectively.
  • the film capacitor has a capacitance larger than an electrically required capacitance as the film capacitor. May have to be adopted.
  • adopting a film capacitor having a capacitance larger than that required electrically leads to an increase in size and cost of the hybrid system. For this reason, it is desired to effectively cool the film capacitor.
  • the problem to be solved by the present invention is to effectively cool the two heat generating parts of the components provided in the power conversion device.
  • One exemplary aspect of the present invention is directed to a power converter.
  • the power conversion apparatus includes a first electronic component, a first cooler, a first pipe, a second cooler, a second pipe, a female fitting section, and a male fitting section.
  • the first electronic component includes a first heat generating part and a second heat generating part.
  • the first surface of the first cooler is in direct or indirect contact with the first heat generating part.
  • the second surface of the second cooler is in direct or indirect contact with the second heat generating part.
  • the second surface of the second cooler faces the first surface across the first electronic component.
  • the first piping extends from the first surface of the first cooler.
  • the second piping extends from the second surface of the second cooler.
  • the female fitting portion is made of resin and extends from the first surface.
  • the male inset is made of resin and extends from the second surface.
  • the male fitting part is fitted into the female fitting part.
  • the male fitting surrounds the first electronic component with the female fitting.
  • the first cooler has a first cooler channel inside.
  • the second cooler has a second cooler surface inside.
  • the first pipe has a first pipe flow path.
  • the second pipe has a second pipe flow path.
  • the coolant flows through the first cooler channel, the second cooler channel, the first piping channel, and the second piping channel.
  • the first piping channel is connected to the first cooler channel.
  • the second piping channel is connected to the first piping channel and the second cooler channel.
  • the first heat generating part and the second heat generating part can be cooled with water, so that the first heat generating part and the second heat generating part can be effectively cooled. it can.
  • the first heat generating portion and the second heat generating portion are respectively connected to the first heat generating portion and the second heat generating portion in order to sandwich the first electronic component between the first cooler and the second cooler.
  • the cooler and the second cooler can be securely adhered to each other.
  • the first heat generating unit and the second heat generating unit can be securely attached to the first cooler and the second cooler, respectively, the first heat generating unit and the first cooler And the thermal resistance between the second heat generating part and the second cooler can be lowered.
  • the heat resistance between the first heat generating part and the first cooler and the heat resistance between the second heat generating part and the second cooler can be lowered, the first heat generation And the second heat generating part can be effectively cooled.
  • FIG. 1 is a diagram illustrating electrical connections in a power conversion device according to an exemplary embodiment of the present invention.
  • the power conversion device 100 illustrated in FIG. 1 is an inverter that converts direct current into three-phase alternating current. *
  • the power conversion apparatus 100 includes a smoothing capacitor 110 and a power module 112.
  • the power conversion device 100 may include electronic components other than the smoothing capacitor 110 and the power module 112.
  • the power converter 100 may convert direct current into multiphase alternating current other than three-phase alternating current. *
  • the smoothing capacitor 110 smoothes the direct current.
  • the power module 112 switches the smoothed direct current to generate a three-phase alternating current. *
  • FIG. 2 is a cross-sectional view schematically illustrating a power conversion device according to an exemplary embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically illustrating the first cooler, the first pipe, and the female fitting portion provided in the power conversion device according to the exemplary embodiment of the present invention.
  • FIG. 4 is a cross-sectional view schematically illustrating the second cooler, the second pipe, and the male fitting portion provided in the power conversion device according to the exemplary embodiment of the present invention.
  • the power conversion apparatus 100 includes a first electronic component 120, a first cooler 122, a first pipe 124, a second cooler 126, and a second pipe. 128, a female fitting 130 and a male fitting 132.
  • the first electronic component 120 is a heat generating component and includes a first heat generating unit 140 and a second heat generating unit 142.
  • the first electronic component 120 has a box shape. Further, the first heat generating part 140 and the second heat generating part 142 are disposed at one end and the other end of the first electronic component 120. *
  • the first cooler 122 has a first surface 150.
  • the first surface 150 is in direct or indirect contact with the first heat generating portion 140. Thereby, the first heat generating unit 140 is cooled by the first cooler 122. In the present embodiment, the first surface 150 indirectly contacts the first heat generating unit 140 via the first insulating film 160 provided in the power conversion device 100.
  • the first cooler 122 is made of metal.
  • the metal may be a pure metal or an alloy. Since the first cooler 122 is made of metal, the first surface 150 that is in contact with the first heat generating unit 140 is also made of metal. Further, since the first surface 150 is made of metal, heat is easily transmitted from the first heat generating unit 140 to the first cooler 122. In addition, since heat is easily transferred from the first heat generating unit 140 to the first cooler 122, the first heat generating unit 140 can be effectively cooled. *
  • the 1st cooler 122 has the 1st cooler channel 170 inside.
  • the coolant L flows through the first cooler flow path 170.
  • the first cooler 122 has a box shape. *
  • the first piping 124 extends from the first surface 150.
  • the first pipe 124 protrudes in the normal direction of the first surface 150.
  • the first pipe 124 has a first pipe flow path 180.
  • the coolant L flows through the first piping flow path 180.
  • the first piping channel 180 is connected to the first cooler channel 170. *
  • the first pipe 124 is made of resin. Since the first pipe 124 is made of resin, the first pipe 124 can be easily formed. Further, the first pipe 124 is low in cost. *
  • the second cooler 126 has a second surface 190.
  • the second surface 190 contacts the second heat generating part 142 directly or indirectly. Thereby, the second heat generating part 142 is cooled by the second cooler 126.
  • the second surface 190 indirectly contacts the second heat generating part 142 via the second insulating film 200 provided in the power conversion device 100.
  • the second surface 190 faces the first surface 150 with the first electronic component 120 interposed therebetween.
  • the second cooler 126 is made of metal.
  • the metal may be a pure metal or an alloy. Since the second cooler 126 is made of metal, the second surface 190 that directly or indirectly contacts the second heat generating portion 142 is also made of metal. Further, since the second surface 190 that is in direct or indirect contact with the second heat generating portion 142 is made of metal, heat is easily transferred from the second heat generating portion 142 to the second cooler 126. In addition, since the heat is easily transferred from the second heat generating unit 142 to the second cooler 126, the second heat generating unit 142 can be effectively cooled. *
  • the 2nd cooler 126 has the 2nd cooler channel 210 inside.
  • the coolant L flows through the second cooler flow path 210.
  • the second cooler 126 has a box shape.
  • Second piping 128 extends from second surface 190.
  • the second pipe 128 protrudes in the normal direction of the second surface 190.
  • the second pipe 128 has a second pipe flow path 220.
  • the coolant L flows through the second piping flow path 220.
  • the second piping channel 220 is connected to the first piping channel 180 and the second cooler channel 210.
  • the second piping 128 is connected to the first piping flow path 180 by the second piping 128 being inserted into the first piping flow path 180.
  • the second piping channel 220 may be connected to the first piping channel 180 by inserting the first piping 124 into the second piping channel 220.
  • the second pipe 128 is made of resin. When the second pipe 128 is made of resin, the second pipe 128 can be easily formed. The second pipe 128 is low cost. *
  • the first pipe 124 and the second pipe 128 are an inlet pipe and an outlet pipe, respectively. Therefore, the coolant L sequentially passes through the second cooler flow path 210, the second pipe flow path 220, the first pipe flow path 180, and the first cooler flow path 170.
  • the first pipe 124 and the second pipe 128 may be an outlet pipe and an inlet pipe, respectively.
  • a female inset 130 extends from the first surface 150.
  • the female fitting 130 protrudes in the normal direction of the first surface 150. *
  • the female fitting part 130 is made of resin. Since the female fitting part 130 is made of resin, the female fitting part 130 can be easily formed. Moreover, the female fitting part 130 is low-cost. *
  • a male inset 132 extends from the second surface 190.
  • the male inset 132 protrudes in the normal direction of the second surface 190.
  • the male fitting part 132 is fitted into the female fitting part 130.
  • the male fitting part 132 surrounds the first electronic component 120 together with the female fitting part 130.
  • the male fitting part 132 is made of resin. When the male fitting part 132 is made of resin, the male fitting part 132 can be easily formed. Moreover, the male fitting part 132 is low-cost. *
  • the first heat generating part 140 and the second heat generating part 142 are water-cooled, the first heat generating part 140 and the second heat generating part 142 can be effectively cooled.
  • the first heat generating unit 140 and the second heat generating unit 142 are respectively connected to the first cooler 122 and the second cooler 126 in order to sandwich the first electronic component 120.
  • the cooler 122 and the second cooler 126 can be securely adhered to each other.
  • the first heat generating unit 140 and the second heat generating unit 142 can be securely adhered to the first cooler 122 and the second cooler 126, respectively, the first heat generating unit 140 and the first heat generating unit The thermal resistance between the cooler 122 and the thermal resistance between the second heat generating part 142 and the second cooler 126 can be reduced.
  • the thermal resistance between the 1st heat generating part 140 and the 1st cooler 122 and the heat resistance between the 2nd heat generating part 142 and the 2nd cooler 126 can be made low, The 1st heat generating part 140 and the 2nd heat generating part 142 can be cooled effectively.
  • the overlapping length of the first pipe 124 and the second pipe 128 can be made substantially the same as the length of the first electronic component 120. For this reason, it is possible to easily prevent leakage of the coolant L from the joint between the first pipe 124 and the second pipe 128.
  • the power conversion device 100 further includes a filler 250.
  • the filling 250 is filled in a gap between the first electronic component 120 and the first cooler 122 and a gap between the first electronic component 120 and the second cooler 126.
  • the filler 250 is made of a cured resin, for example. With the filler 250, the first electronic component 120, the first cooler 122, and the second cooler 126 can be firmly bonded to each other. In addition, the influence of the environment and vibration on the first electronic component 120 can be suppressed. In addition, since the influence of the environment and vibration on the first electronic component 120 can be suppressed, the environment resistance performance and vibration resistance performance of the power converter 100 can be improved. However, the filling material 250 may be omitted. *
  • the case 230 that accommodates the first electronic component 120 has an opening. The opening is used as a filling port for the filling 250.
  • the first electronic component 120 is the smoothing capacitor 110.
  • FIG. 5 is a perspective view schematically illustrating a smoothing capacitor provided in the power conversion device according to the exemplary embodiment of the present invention. *
  • the smoothing capacitor 110 includes a plurality of film capacitors 260, a first bus bar 262, and a second bus bar 264.
  • Each of the plurality of film capacitors 260 includes a main body portion 270, a first metallicon electrode 272, and a second metallicon electrode 274, as shown in FIG. *
  • the main body portion 270 includes a dielectric film, a first metal vapor deposition film, and a second metal vapor deposition film.
  • the first metal vapor deposition film and the second metal vapor deposition film are disposed on one surface and the other surface of the dielectric film, respectively.
  • the dielectric film is wound in multiple rolls.
  • the first metallicon electrode 272 and the second metallicon electrode 274 are disposed at one end and the other end of the main body portion 270, respectively.
  • the first metallicon electrode 272 and the second metallicon electrode 274 are electrically connected to the first metal vapor deposition film and the second metal vapor deposition film, respectively. *
  • the first bus bar 262 is connected to a plurality of first metallicon electrodes 272 provided in the plurality of film capacitors 260, respectively. By connecting the first bus bar 262 to the plurality of first metallicon electrodes 272, the first bus bar 262 is electrically connected to the plurality of first metallicon electrodes 272.
  • the second bus bar 264 is connected to a plurality of second metallicon electrodes 274 provided in the plurality of film capacitors 260, respectively. As a result, the second bus bar 264 is electrically connected to the plurality of second metallicon electrodes 274.
  • the first bus bar 262 is electrically connected to the plurality of first metallicon electrodes 272, and the second bus bar 264 is electrically connected to the plurality of second metallicon electrodes 274, whereby a plurality of film capacitors 260 are provided. Are electrically connected in parallel.
  • the first electronic component 120 is the smoothing capacitor 110
  • the first heat generating part 140 is in the first bus bar 262.
  • the second heat generating part 142 is in the second bus bar 264.
  • the first bus bar 262 includes a plurality of first connection parts 280.
  • the plurality of first connection portions 280 are separated from each other.
  • the plurality of first connecting portions 280 are locally connected to the plurality of first metallicon electrodes 272 by soldering or welding. *
  • the second bus bar 264 includes a plurality of second connection parts not shown.
  • the plurality of second connection portions are separated from each other.
  • the plurality of second connection portions are locally connected to the plurality of second metallicon electrodes 274 by soldering or welding. *
  • Joule heat is generated due to electric resistance. Since Joule heat due to electric resistance is generated in the plurality of first connection portions 280, the plurality of first connection portions 280 become local heat generating portions. In addition, Joule heat due to electrical resistance is generated in the plurality of second connection portions. Since Joule heat due to electrical resistance is generated in the plurality of second connection portions, the plurality of second connection portions become local heat generating portions. Moreover, the 1st heat generating part 140 and the 2nd heat generating part 142 are comprised by the some 1st connection part 280 and the some 2nd connection part, respectively. *
  • the first insulating film 160 is disposed between the first cooler 122 and the first bus bar 262.
  • the second insulating film 200 is disposed between the second cooler 126 and the second bus bar 264.
  • the smoothing capacitor 110 can be effectively cooled, so that the electrostatic capacity is more than the electrostatic capacity that is electrically necessary to suppress heat generation. It is not necessary to employ a capacitor having the smoothing capacitor 110. Moreover, since it is not necessary to employ
  • the first electronic component 120 may be the power module 112.
  • the first heat generating unit 140 is the first surface of the power module 112.
  • the second heat generating part 142 is the second surface of the power module 112.
  • the second surface of the power module 112 is on the opposite side of the first surface of the power module 112. *
  • the cooling liquid L is a cooling liquid composed of water or an aqueous solution.
  • the coolant L may be a coolant other than the coolant composed of water or an aqueous solution.
  • resin or adhesive is added to the gap between the first pipe 124 and the second pipe 128 and the gap between the female fitting part 130 and the male fitting part 132 as necessary. It may be filled. By filling the gap between the first pipe 124 and the second pipe 128 with resin or adhesive, the coolant L from the gap between the first pipe 124 and the second pipe 128 is filled. Leakage can be prevented.
  • the resin 250 or the adhesive is filled in the gap between the female fitting portion 130 and the male fitting portion 132, so that leakage of the filling material 250 from the case 230 can be prevented. In particular, when the filler 250 is a cured resin, leakage of the uncured resin can be prevented.
  • FIG. 6 is a cross-sectional view schematically illustrating a power conversion device according to a first modification of the exemplary embodiment of the present invention.
  • the first pipe 124 and the second pipe 128 are made of metal.
  • the first pipe 124 and the second pipe 128 are inserted into the connecting pipe flow path 310 included in the connecting pipe 300 provided in the power converter 100, thereby The piping channel 220 is connected to the first piping channel 180.
  • the connecting pipe 300 is made of resin.
  • the coolant L flows through the connecting pipe flow path 310.
  • FIG. 7 is a cross-sectional view schematically illustrating a power conversion device according to a second modification of the exemplary embodiment of the present invention.
  • the first cooler 122 includes a first metal plate 400 and a first portion 402.
  • the first metal plate 400 directly or indirectly contacts the first heat generating part 140.
  • the first part 402 is made of resin.
  • the first pipe 402 and the female fitting part 130 are connected to the first part 402.
  • the first metal plate 400 is joined to the first part 402. *
  • the first pipe 124 made of resin and the first portion 402 connected to the female fitting part 130 are made of resin, so the first pipe 124, the female fitting part 130 and The first portion 402 can be manufactured integrally. Therefore, the cost of the power conversion device 100 can be reduced. Since the first pipe 124, the female fitting part 130, and the first part 402 hardly contribute to the transfer of heat from the first heat generating part 140, the first pipe 124, the female fitting part 130, and The fact that the first portion 402 is made of resin does not become an obstacle to effectively cooling the first heat generating portion 140. *
  • the second cooler 126 includes a second metal plate 420 and a second portion 422.
  • the second metal plate 420 directly or indirectly contacts the second heat generating part 142.
  • the second part 422 is made of resin.
  • a second pipe 128 and a male fitting part 132 are connected to the second part 422.
  • the second metal plate 420 is joined to the second portion 422.
  • the second pipe 128 made of resin and the second part 422 connected to the male fitting part 132 are made of resin, so that the second pipe 128, the male fitting part 132 and The second portion 422 can be manufactured integrally.
  • the power converter device 100 can be reduced in cost. Note that the second pipe 128, the male fitting part 132, and the second part 422 contribute little to the transfer of heat from the second heat generating part 142, so the second pipe 128, the male fitting part 132, and The fact that the second portion 422 is made of resin does not become an obstacle to effectively cooling the second heat generating portion 142.
  • FIG. 8 is a cross-sectional view schematically illustrating a power conversion device according to a third modification of the exemplary embodiment of the present invention.
  • FIG. 9 is a plan view schematically illustrating the first facing portion and the second facing portion provided in the power conversion device of the third modified example of the exemplary embodiment of the present invention.
  • FIG. 10 is a cross-sectional view schematically illustrating a first facing portion and a second facing portion provided in a power conversion device of a third modified example of the exemplary embodiment of the present invention.
  • FIG. 10 illustrates a cross-section at the cutting position indicated by the cutting line A-A ′ illustrated in FIG. 9. *
  • the first cooler 122 includes a first metal plate 400 and a first portion 402 as in the second modified example.
  • the first metal plate 400 directly or indirectly contacts the first heat generating part 140.
  • the first part 402 is made of resin.
  • the first pipe 402 and the female fitting part 130 are connected to the first part 402.
  • the first metal plate 400 is joined to the first part 402. *
  • the first cooler flow path 170 extends in the first direction D1.
  • the coolant L flows in the first direction D1 in the first cooler flow path 170.
  • the first cooler 122 includes a first facing portion 500.
  • the first facing portion 500 is made of resin.
  • the first facing portion 500 has a first facing surface 510.
  • the first facing surface 510 faces the first metal plate 400 with the first cooler channel 170 interposed therebetween.
  • the first facing portion 500 includes a first protrusion 520 on the first facing surface 510.
  • the first protrusion 520 has a first protrusion surface 530.
  • the first protrusion surface 530 approaches the first heat generating portion 140 as it proceeds in the first direction D1.
  • the first protrusion 520 includes a first fin 540 and a first mountain-shaped portion 542.
  • the first protrusion surface 530 includes a first fin surface 560 included in the first fin 540 and a first mountain-shaped portion surface 562 included in the first mountain-shaped portion 542.
  • One of the first fin 540 and the first mountain-shaped portion 542 may be omitted.
  • the first fin 540 has a curved plate shape.
  • the first fin surface 560 is a curved surface having a concave shape.
  • the first fin 540 may have a flat shape. *
  • the first fin surface 560 approaches the first heat generating section 140 as it proceeds in the first direction D1 in a direction parallel to the first facing surface 510 and perpendicular to the first direction D1.
  • the first fin 540 controls the flow of the coolant L in the direction parallel to the first facing surface 510.
  • the first mountain-shaped portion surface 562 approaches the first heat generating portion 140 as it proceeds in the first direction D1 in the direction perpendicular to the first facing surface 510.
  • the first mountain-shaped portion 542 controls the flow of the coolant L in the direction perpendicular to the first facing surface 510.
  • the cooling liquid L flows in the first direction D1 in the first cooler flow path 170, a part of the flow of the cooling liquid L hits the first fin surface 560 and is concentrated on the first heat generating part 140. Be made. Further, by concentrating a part of the flow of the coolant L on the first heat generating part 140, the first heat generating part 140 can be effectively cooled. As described above, since the first heat generating part 140 is a local heat generating part, it is possible to concentrate a part of the flow of the coolant L on the first heat generating part 140. Even when a part of the flow of the cooling liquid L is concentrated on the first heat generating portion 140, the flow of the remaining cooling liquid L is not restricted, so that an increase in pressure loss hardly causes a problem. *
  • the cooling liquid L flows in the first cooler flow path 170 in the first direction D1
  • a part of the flow of the cooling liquid L hits the first mountain-shaped portion surface 562 and the first heat generating portion. 140 is caused to collide.
  • the first heat generating part 140 can be effectively cooled.
  • the first metal plate 400 may be a flat plate having no fins. For this reason, the cost of the first metal plate 400 can be reduced. Further, it is possible to provide the first protrusion 520 on the first facing portion 500 made of resin at a low cost.
  • the position and shape of the first protrusion 520 are designed so that the flow of the coolant L on the first heat generating portion 140 is uniform.
  • the second cooler 126 includes a second metal plate 420 and a second portion 422 as in the second modified example.
  • the second metal plate 420 directly or indirectly contacts the second heat generating part 142.
  • the second part 422 is made of resin.
  • a second pipe 128 and a female fitting part 130 are connected to the second part 422.
  • the second metal plate 420 is joined to the second portion 422. *
  • the second cooler flow path 210 extends in the second direction D2.
  • the cooling liquid L flows in the second direction D2 in the second cooler flow path 210.
  • the second cooler 126 includes a second facing portion 570.
  • the second facing portion 570 is made of resin.
  • the second facing portion 570 has a second facing surface 580.
  • the second facing surface 580 faces the second metal plate 420 with the second cooler flow path 210 interposed therebetween.
  • the second facing portion 570 includes a second protrusion 590 on the second facing surface 580.
  • the second protrusion 590 has a second protrusion surface 600.
  • the second protrusion surface 600 approaches the second heat generating portion 142 as it proceeds in the second direction D2. *
  • the second protrusion 590 includes a second fin 601 and a second mountain-shaped portion 602.
  • the second protrusion surface 600 includes a second fin surface 610 included in the second fin 601 and a second peak-shaped portion surface 612 included in the second peak-shaped portion 602.
  • One of the second fin 601 and the second mountain-shaped portion 602 may be omitted.
  • the second fin 601 has a curved plate shape.
  • the second fin surface 610 is a curved surface having a concave shape.
  • the second fin 601 may have a flat shape. *
  • the second fin surface 610 approaches the second heat generating portion 142 as it proceeds in the second direction D2 in a direction parallel to the second facing surface 580 and perpendicular to the second direction D2.
  • the second fin 601 controls the flow of the coolant L in the direction parallel to the second facing surface 580.
  • the second mountain-shaped portion surface 612 approaches the second heat generating portion 142 as it proceeds in the second direction D2 in the direction perpendicular to the second facing surface 580.
  • the second mountain-shaped portion 602 controls the flow of the coolant L in the direction perpendicular to the second facing surface 580.
  • the cooling liquid L flows in the second direction D2 in the second cooler flow path 210, a part of the flow of the cooling liquid L hits the second mountain-shaped portion surface 612 and the second heat generating portion. 142.
  • the second heat generating part 142 can be effectively cooled by causing a part of the flow of the coolant L to collide with the second heat generating part 142.
  • the second metal plate 420 may be a flat plate having no fins. For this reason, the cost of the second metal plate 420 can be reduced. Further, it is possible to provide the second protrusion 590 on the facing portion 570 made of resin at a low cost.
  • the position and shape of the second protrusion 590 are designed so that the flow of the coolant L on the second heat generating portion 142 is uniform.
  • the structure adopted in the third modified example is that the calorific value of the smoothing capacitor 110 is less than the calorific value of the power module 112, and the first heat generating part 140 and the second heat generating part 142 are local heat generating parts. I use that. For this reason, the structure adopted in the third modification can also be adopted when the smoothing capacitor 110 is replaced with another electronic component having the same characteristics. *
  • FIG. 11 is sectional drawing which illustrates typically the power converter device of the 4th modification of exemplary embodiment of this invention.
  • a second electronic component 700 and a third cooler 702 that cools the second electronic component 700 are added to the power conversion device 100 of the third modified example.
  • the power conversion device 100 further includes a second electronic component 700 and a third cooler 702.
  • the second electronic component 700 has a third heat generating part 710. *
  • the second electronic component 700 is the power module 112.
  • the third heat generating unit 710 is the first surface of the power module 112. *
  • the first cooler 122 includes a first portion 402.
  • the first part 402 is made of resin.
  • the first cooler 122 also has an opposite surface 720.
  • the opposite surface 720 is on the opposite side of the first surface 150.
  • the third cooler 702 has a third surface 730.
  • the third surface 730 contacts the third heat generating part 710 directly or indirectly.
  • the third surface 730 is perpendicular to the first surface 150.
  • the third cooler 702 is connected to the opposite surface 720.
  • the third cooler 702 includes a third portion 740.
  • the third portion 740 is made of resin.
  • the third part 740 is connected to the first part 402. Since it is easy to connect the third part 740 made of resin to the first part 402 made of resin, in the fourth modified example, the third cooler 702 including the third part 740 is easily provided. Can be added. *
  • the first cooler flow path 170 included in the first cooler 122 including the first part 402 since the first part 402 and the third part 740 are made of resin, the first cooler flow path 170 included in the first cooler 122 including the first part 402, and The degree of freedom of the shape of the cooler flow path 760 including the third cooler flow path 750 included in the third cooler 702 including the third portion 740 is high.
  • a cooler having a box shape made of metal such as a cooler flow channel 760 having a turn and a cooler flow channel 760 having sections extending in a direction perpendicular to each other.
  • the cooler channel 760 having a simple shape can be easily formed.
  • the freedom degree of the shape of the cooler flow path 760 is high, the 3rd cooler provided with the 1st surface 150 which the 1st cooler 122 provided with the 1st site
  • the degree of freedom of the position of the third surface 730 included in 702 is high.
  • the first surface 150 and the third surface 730 are highly flexible, the first electronic component 120 and the third surface 730 that are in contact with the first surface 150 and the second surface 190, respectively. There is a high degree of freedom in the position and posture of the second electronic component 700 in contact with *
  • the smoothing capacitor 110 is placed on the bottom surface of the case provided in the power conversion device 100 by utilizing the high degree of freedom in the positions of the first surface 150 and the third surface 730.
  • the power module 112 is arrange
  • the power module 112 is arranged at a height at which the bus bar electrode connecting the smoothing capacitor 110 and the power module 112 becomes short.
  • the space above the power module 112 is used for arranging the drive circuit. Further, the space below the third cooler 702 is used for arranging large parts such as a current sensor, a current connector, and an AC output terminal block.
  • the second cooler 126 includes a second portion 422.
  • the second part 422 is made of resin.
  • Second cooler 126 has an opposite surface 770.
  • the opposite surface 770 is on the opposite side of the second surface 190.
  • a third cooler 702 may be connected to the opposite surface 770.
  • the third portion 740 is connected to the second portion 422. *

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Inverter Devices (AREA)

Abstract

In this power conversion device, a first electronic component is provided with a first heat generation unit and a second heat generation unit. A first surface of a first cooler is in contact with the first heat generation unit. A second surface of a second cooler is in contact with the second heat generation unit. The second surface faces the first surface with the first electronic component interposed therebetween. A first pipe and a female fitting portion extend from the first surface. A second pipe and a male fitting portion extend from the second surface. The female fitting portion and the male fitting portion are each made from resin. The male fitting portion is fitted in the female fitting portion. The male fitting portion, together with the female fitting portion, surrounds the first electronic component. The flow channel of the first pipe is connected to a flow channel in the first cooler. The flow channel of the second pipe is connected to the flow channel of the first pipe and a flow channel in the second cooler.

Description

電力変換装置Power converter
本発明は、電力変換装置に関する。 The present invention relates to a power conversion device.
特許第5792676号公報に記載されたハイブリッドシステムは、車両用コンデンサを有する(段落0013)。車両用コンデンサは、インバータに供給される直流電圧を平滑する(段落0013)。  The hybrid system described in Japanese Patent No. 579676 has a vehicle capacitor (paragraph 0013). The vehicle capacitor smoothes the DC voltage supplied to the inverter (paragraph 0013). *
車両用コンデンサは、フィルムコンデンサを有する(段落0015)。フィルムコンデンサは、誘電体部及びメタリコン電極部を備える(段落0017)。誘電体部は、誘電体フィルム及び金属電極を備える(段落0018)。誘電体フィルムは、巻回構造を有する樹脂フィルムである(段落0018)。金属電極は、誘電体フィルムの片側の面に蒸着によって形成される(段落0018)。メタリコン電極部は、誘電体部の端部にそれぞれ設けられる(段落0019)。  The vehicle capacitor has a film capacitor (paragraph 0015). The film capacitor includes a dielectric part and a metallicon electrode part (paragraph 0017). The dielectric part includes a dielectric film and a metal electrode (paragraph 0018). The dielectric film is a resin film having a wound structure (paragraph 0018). The metal electrode is formed by vapor deposition on one side of the dielectric film (paragraph 0018). The metallicon electrode part is provided at each end of the dielectric part (paragraph 0019). *
メタリコン電極部は、それぞれバスバに接続される(段落0015)。フィルムコンデンサは、エポキシ樹脂によりケース内に固定される(段落0015)。  
特許第5792676号公報
The metallicon electrode portions are each connected to the bus bar (paragraph 0015). The film capacitor is fixed in the case with an epoxy resin (paragraph 0015).
Japanese Patent No. 5792676
特許第5792676号公報に記載されたフィルムコンデンサの主な発熱部位は、誘電体部の端部にそれぞれ設けられるメタリコン電極部である。したがって、当該フィルムコンデンサからの抜熱は、主にメタリコン電極部にそれぞれ接続されるバスバ電極を介して行われる。しかし、小さな断面積しか有さずある程度の長さを有するバスバ電極の熱抵抗を低くすることは困難であるため、バスバ電極を介して当該フィルムコンデンサからの抜熱を十分に行うことは困難である。このため、特許第5792676号公報に記載された車両用コンデンサにおいては、当該フィルムコンデンサの発熱を減らすために、当該フィルムコンデンサとして、電気的に必要な静電容量より大きい静電容量を有するフィルムコンデンサを採用しなければならない場合がある。しかし、電気的に必要な静電容量より大きい静電容量を有するフィルムコンデンサを採用することは、ハイブリッドシステムの大型化及び高コスト化を招く。このため、当該フィルムコンデンサを効果的に冷却することが望まれている。  The main heat-generating part of the film capacitor described in Japanese Patent No. 579676 is a metallicon electrode part provided at each end of the dielectric part. Therefore, heat removal from the film capacitor is performed mainly through the bus bar electrodes connected to the metallicon electrode portions, respectively. However, since it is difficult to reduce the thermal resistance of a bus bar electrode having a small cross-sectional area and a certain length, it is difficult to sufficiently remove heat from the film capacitor through the bus bar electrode. is there. Therefore, in the vehicle capacitor described in Japanese Patent No. 579676, in order to reduce the heat generation of the film capacitor, the film capacitor has a capacitance larger than an electrically required capacitance as the film capacitor. May have to be adopted. However, adopting a film capacitor having a capacitance larger than that required electrically leads to an increase in size and cost of the hybrid system. For this reason, it is desired to effectively cool the film capacitor. *
ハイブリッドシステム以外の電力変換装置に備えられるフィルムコンデンサ又はフィルムコンデンサ以外の部品においても、2個の発熱部を効果的に冷却することは、重要な問題である。  Even in a film capacitor or a component other than a film capacitor provided in a power conversion device other than a hybrid system, it is an important problem to effectively cool two heat generating portions. *
上記問題に鑑み、本発明が解決しようとする課題は、電力変換装置に備えられる部品の2個の発熱部を効果的に冷却することである。 In view of the above problems, the problem to be solved by the present invention is to effectively cool the two heat generating parts of the components provided in the power conversion device.
本発明の例示的なひとつの態様は、電力変換装置に向けられる。  One exemplary aspect of the present invention is directed to a power converter. *
電力変換装置は、第1の電子部品、第1の冷却器、第1の配管、第2の冷却器、第2の配管、メス形はめ込み部及びオス形はめ込み部を備える。  The power conversion apparatus includes a first electronic component, a first cooler, a first pipe, a second cooler, a second pipe, a female fitting section, and a male fitting section. *
第1の電子部品は、第1の発熱部及び第2の発熱部を備える。  The first electronic component includes a first heat generating part and a second heat generating part. *
第1の冷却器の第1の表面は、第1の発熱部に直接的に又は間接的に接触する。  The first surface of the first cooler is in direct or indirect contact with the first heat generating part. *
第2の冷却器の第2の表面は、第2の発熱部に直接的に又は間接的に接触する。第2の冷却器の第2の表面は、第1の電子部品を挟んで第1の表面に対向する。  The second surface of the second cooler is in direct or indirect contact with the second heat generating part. The second surface of the second cooler faces the first surface across the first electronic component. *
第1の配管は、第1の冷却器の第1の表面から伸びる。第2の配管は、第2の冷却器の第2の表面から伸びる。  The first piping extends from the first surface of the first cooler. The second piping extends from the second surface of the second cooler. *
メス形はめ込み部は、樹脂からなり、第1の表面から伸びる。オス形はめ込み部は、樹脂からなり、第2の表面から伸びる。オス形はめ込み部は、メス形はめ込み部にはめ込まれる。オス形はめ込み部は、メス形はめ込み部とともの第1の電子部品を囲む。  The female fitting portion is made of resin and extends from the first surface. The male inset is made of resin and extends from the second surface. The male fitting part is fitted into the female fitting part. The male fitting surrounds the first electronic component with the female fitting. *
第1の冷却器は、第1の冷却器流路を内部に有する。第2の冷却器は、第2の冷却器表面を内部に有する。第1の配管は、第1の配管流路を有する。第2の配管は、第2の配管流路を有する。第1の冷却器流路、第2の冷却器流路、第1の配管流路及び第2の配管流路には、冷却液が流れる。第1の配管流路は、第1の冷却器流路とつながる。第2の配管流路は、第1の配管流路及び第2の冷却器流路とつながる。 The first cooler has a first cooler channel inside. The second cooler has a second cooler surface inside. The first pipe has a first pipe flow path. The second pipe has a second pipe flow path. The coolant flows through the first cooler channel, the second cooler channel, the first piping channel, and the second piping channel. The first piping channel is connected to the first cooler channel. The second piping channel is connected to the first piping channel and the second cooler channel.
本発明の例示的なひとつの態様においては、第1の発熱部及び第2の発熱部を水冷することができるため、第1の発熱部及び第2の発熱部を効果的に冷却することができる。  In an exemplary embodiment of the present invention, the first heat generating part and the second heat generating part can be cooled with water, so that the first heat generating part and the second heat generating part can be effectively cooled. it can. *
また、本発明の例示的なひとつの態様においては、第1の冷却器及び第2の冷却器で第1の電子部品を挟むため、第1の発熱部及び第2の発熱部をそれぞれ第1の冷却器及び第2の冷却器に確実に密着させることができる。また、第1の発熱部及び第2の発熱部をそれぞれ第1の冷却器及び第2の冷却器に確実に密着させることができるため、第1の発熱部と第1の冷却器との間の熱抵抗、及び第2の発熱部と第2の冷却器との間の熱抵抗を低くすることができる。また、第1の発熱部と第1の冷却器との間の熱抵抗、及び第2の発熱部と第2の冷却器との間の熱抵抗を低くすることができるため、第1の発熱部及び第2の発熱部を効果的に冷却することができる。 In an exemplary embodiment of the present invention, the first heat generating portion and the second heat generating portion are respectively connected to the first heat generating portion and the second heat generating portion in order to sandwich the first electronic component between the first cooler and the second cooler. The cooler and the second cooler can be securely adhered to each other. In addition, since the first heat generating unit and the second heat generating unit can be securely attached to the first cooler and the second cooler, respectively, the first heat generating unit and the first cooler And the thermal resistance between the second heat generating part and the second cooler can be lowered. In addition, since the heat resistance between the first heat generating part and the first cooler and the heat resistance between the second heat generating part and the second cooler can be lowered, the first heat generation And the second heat generating part can be effectively cooled.
本発明の例示的な実施形態の電力変換装置における電気的接続を図示する図である。It is a figure which illustrates the electrical connection in the power converter device of illustrative embodiment of this invention. 本発明の例示的な実施形態の電力変換装置を模式的に図示する断面図である。It is sectional drawing which illustrates typically the power converter device of illustrative embodiment of this invention. 本発明の例示的な実施形態の電力変換装置に備えられる第1の冷却器、第1の配管及びメス形はめ込み部を模式的に図示する断面図である。It is sectional drawing which illustrates typically the 1st cooler, 1st piping, and female fitting part with which the power converter device of exemplary embodiment of this invention is equipped. 本発明の例示的な実施形態の電力変換装置に備えられる第2の冷却器、第2の配管及びオス形はめ込み部を模式的に図示する断面図である。It is sectional drawing which illustrates typically the 2nd cooler with which the power converter device of exemplary embodiment of this invention is equipped, 2nd piping, and a male fitting part. 本発明の例示的な実施形態の電力変換装置に備えられる平滑コンデンサを模式的に図示する斜視図である。It is a perspective view which illustrates typically the smoothing capacitor with which the power converter of an exemplary embodiment of the present invention is provided. 本発明の例示的な実施形態の第1変形例の電力変換装置を模式的に図示する断面図である。It is sectional drawing which illustrates typically the power converter device of the 1st modification of illustrative embodiment of this invention. 本発明の例示的な実施形態の第2変形例の電力変換装置を模式的に図示する断面図である。It is sectional drawing which illustrates typically the power converter device of the 2nd modification of illustrative embodiment of this invention. 本発明の例示的な実施形態の第3変形例の電力変換装置を模式的に図示する断面図である。It is sectional drawing which illustrates typically the power converter device of the 3rd modification of illustrative embodiment of this invention. 本発明の例示的な実施形態の第3変形例の電力変換装置に備えられる第1の対向部及び第2の対向部を模式的に図示する平面図である。It is a top view which illustrates typically the 1st counter part and the 2nd counter part with which the power converter of the 3rd modification of exemplary embodiment of the present invention is equipped. 本発明の例示的な実施形態の第3変形例の電力変換装置に備えられる第1の対向部及び第2の対向部を模式的に図示する断面図である。It is sectional drawing which illustrates typically the 1st opposing part and 2nd opposing part with which the power converter device of the 3rd modification of exemplary embodiment of this invention is equipped. 本発明の例示的な実施形態の第4変形例の電力変換装置を模式的に図示する断面図である。It is sectional drawing which illustrates typically the power converter device of the 4th modification of illustrative embodiment of this invention.
1 電力変換装置における電気的接続

図1は、本発明の例示的な実施形態の電力変換装置における電気的接続を図示する図である。 
1 Electrical connections in power converters

FIG. 1 is a diagram illustrating electrical connections in a power conversion device according to an exemplary embodiment of the present invention.
本実施形態においては、図1に図示される電力変換装置100は、直流を三相交流に変換するインバータである。  In the present embodiment, the power conversion device 100 illustrated in FIG. 1 is an inverter that converts direct current into three-phase alternating current. *
電力変換装置100は、平滑コンデンサ110及びパワーモジュール112を備える。電力変換装置100が平滑コンデンサ110及びパワーモジュール112以外の電子部品を備えてもよい。電力変換装置100が直流を三相交流以外の多相交流に変換してもよい。  The power conversion apparatus 100 includes a smoothing capacitor 110 and a power module 112. The power conversion device 100 may include electronic components other than the smoothing capacitor 110 and the power module 112. The power converter 100 may convert direct current into multiphase alternating current other than three-phase alternating current. *
平滑コンデンサ110は、直流を平滑する。パワーモジュール112は、平滑された直流をスイッチングし、三相交流を生成する。  The smoothing capacitor 110 smoothes the direct current. The power module 112 switches the smoothed direct current to generate a three-phase alternating current. *
2 電力変換装置の構造

 図2は、本発明の例示的な実施形態の電力変換装置を模式的に図示する断面図である。図3は、本発明の例示的な実施形態の電力変換装置に備えられる第1の冷却器、第1の配管及びメス形はめ込み部を模式的に図示する断面図である。図4は、本発明の例示的な実施形態の電力変換装置に備えられる第2の冷却器、第2の配管及びオス形はめ込み部を模式的に図示する断面図である。 
2 Structure of power converter

FIG. 2 is a cross-sectional view schematically illustrating a power conversion device according to an exemplary embodiment of the present invention. FIG. 3 is a cross-sectional view schematically illustrating the first cooler, the first pipe, and the female fitting portion provided in the power conversion device according to the exemplary embodiment of the present invention. FIG. 4 is a cross-sectional view schematically illustrating the second cooler, the second pipe, and the male fitting portion provided in the power conversion device according to the exemplary embodiment of the present invention.
図2から図4までに図示されるように、電力変換装置100は、第1の電子部品120、第1の冷却器122、第1の配管124、第2の冷却器126、第2の配管128、メス形はめ込み部130及びオス形はめ込み部132を備える。  As illustrated in FIGS. 2 to 4, the power conversion apparatus 100 includes a first electronic component 120, a first cooler 122, a first pipe 124, a second cooler 126, and a second pipe. 128, a female fitting 130 and a male fitting 132. *
第1の電子部品120は、発熱部品であり、第1の発熱部140及び第2の発熱部142を備える。本実施形態においては、第1の電子部品120は、箱状の形状を有する。また、第1の発熱部140及び第2の発熱部142は、第1の電子部品120の一端及び他端に配置される。  The first electronic component 120 is a heat generating component and includes a first heat generating unit 140 and a second heat generating unit 142. In the present embodiment, the first electronic component 120 has a box shape. Further, the first heat generating part 140 and the second heat generating part 142 are disposed at one end and the other end of the first electronic component 120. *
第1の冷却器122は、第1の表面150を有する。第1の表面150は、第1の発熱部140に直接的に又は間接的に接触する。これにより、第1の発熱部140は、第1の冷却器122により冷却される。本実施形態においては、第1の表面150は、電力変換装置100に備えられる第1の絶縁膜160を介して第1の発熱部140に間接的に接触する。  The first cooler 122 has a first surface 150. The first surface 150 is in direct or indirect contact with the first heat generating portion 140. Thereby, the first heat generating unit 140 is cooled by the first cooler 122. In the present embodiment, the first surface 150 indirectly contacts the first heat generating unit 140 via the first insulating film 160 provided in the power conversion device 100. *
本実施形態においては、第1の冷却器122は、金属からなる。金属は、純金属及び合金のいずれであってもよい。第1の冷却器122が金属からなることにより、第1の発熱部140に接触する第1の表面150も金属からなる。また、第1の表面150が金属からなることにより、第1の発熱部140から第1の冷却器122に熱が伝わりやすくなる。また、第1の発熱部140から第1の冷却器122に熱が伝わりやすくなることにより、第1の発熱部140を効果的に冷却することができる。  In the present embodiment, the first cooler 122 is made of metal. The metal may be a pure metal or an alloy. Since the first cooler 122 is made of metal, the first surface 150 that is in contact with the first heat generating unit 140 is also made of metal. Further, since the first surface 150 is made of metal, heat is easily transmitted from the first heat generating unit 140 to the first cooler 122. In addition, since heat is easily transferred from the first heat generating unit 140 to the first cooler 122, the first heat generating unit 140 can be effectively cooled. *
第1の冷却器122は、第1の冷却器流路170を内部に有する。第1の冷却器流路170には、冷却液Lが流れる。  The 1st cooler 122 has the 1st cooler channel 170 inside. The coolant L flows through the first cooler flow path 170. *
本実施形態においては、第1の冷却器122は、箱状の形状を有する。  In the present embodiment, the first cooler 122 has a box shape. *
第1の配管124は、第1の表面150から伸びる。第1の配管124は、第1の表面150の法線方向に突き出る。第1の配管124は、第1の配管流路180を有する。第1の配管流路180には、冷却液Lが流れる。第1の配管流路180は、第1の冷却器流路170とつながる。  The first piping 124 extends from the first surface 150. The first pipe 124 protrudes in the normal direction of the first surface 150. The first pipe 124 has a first pipe flow path 180. The coolant L flows through the first piping flow path 180. The first piping channel 180 is connected to the first cooler channel 170. *
第1の配管124は、樹脂からなる。第1の配管124が樹脂からなることにより、第1の配管124は、容易に形成することができる。また、第1の配管124は、低コストである。  The first pipe 124 is made of resin. Since the first pipe 124 is made of resin, the first pipe 124 can be easily formed. Further, the first pipe 124 is low in cost. *
第2の冷却器126は、第2の表面190を有する。第2の表面190は、第2の発熱部142に直接的に又は間接的に接触する。これにより、第2の発熱部142は、第2の冷却器126により冷却される。本実施形態においては、第2の表面190は、電力変換装置100に備えられる第2の絶縁膜200を介して第2の発熱部142に間接的に接触する。第2の表面190は、第1の電子部品120を挟んで第1の表面150に対向する。  The second cooler 126 has a second surface 190. The second surface 190 contacts the second heat generating part 142 directly or indirectly. Thereby, the second heat generating part 142 is cooled by the second cooler 126. In the present embodiment, the second surface 190 indirectly contacts the second heat generating part 142 via the second insulating film 200 provided in the power conversion device 100. The second surface 190 faces the first surface 150 with the first electronic component 120 interposed therebetween. *
本実施形態においては、第2の冷却器126は、金属からなる。金属は、純金属及び合金のいずれであってもよい。第2の冷却器126が金属からなることにより、第2の発熱部142に直接的に又は間接的に接触する第2の表面190も金属からなる。また、第2の発熱部142に直接的に又は間接的に接触する第2の表面190が金属からなることにより、第2の発熱部142から第2の冷却器126に熱が伝わりやすくなる。また、第2の発熱部142から第2の冷却器126に熱が伝わりやすくなることにより、第2の発熱部142を効果的に冷却することができる。  In the present embodiment, the second cooler 126 is made of metal. The metal may be a pure metal or an alloy. Since the second cooler 126 is made of metal, the second surface 190 that directly or indirectly contacts the second heat generating portion 142 is also made of metal. Further, since the second surface 190 that is in direct or indirect contact with the second heat generating portion 142 is made of metal, heat is easily transferred from the second heat generating portion 142 to the second cooler 126. In addition, since the heat is easily transferred from the second heat generating unit 142 to the second cooler 126, the second heat generating unit 142 can be effectively cooled. *
第2の冷却器126は、第2の冷却器流路210を内部に有する。第2の冷却器流路210には、冷却液Lが流れる。  The 2nd cooler 126 has the 2nd cooler channel 210 inside. The coolant L flows through the second cooler flow path 210. *
本実施形態においては、第2の冷却器126は、箱状の形状を有する。 In the present embodiment, the second cooler 126 has a box shape.
第2の配管128は、第2の表面190から伸びる。第2の配管128は、第2の表面190の法線方向に突き出る。第2の配管128は、第2の配管流路220を有する。第2の配管流路220には、冷却液Lが流れる。第2の配管流路220は、第1の配管流路180及び第2の冷却器流路210とつながる。本実施形態においては、第2の配管128が第1の配管流路180に差し込まれることにより、第2の配管流路220が第1の配管流路180につなげられる。第1の配管124が第2の配管流路220に差し込まれることにより、第2の配管流路220が第1の配管流路180につなげられてもよい。
Second piping 128 extends from second surface 190. The second pipe 128 protrudes in the normal direction of the second surface 190. The second pipe 128 has a second pipe flow path 220. The coolant L flows through the second piping flow path 220. The second piping channel 220 is connected to the first piping channel 180 and the second cooler channel 210. In the present embodiment, the second piping 128 is connected to the first piping flow path 180 by the second piping 128 being inserted into the first piping flow path 180. The second piping channel 220 may be connected to the first piping channel 180 by inserting the first piping 124 into the second piping channel 220.
第2の配管128は、樹脂からなる。第2の配管128が樹脂からなることにより、第2の配管128は、容易に形成することができる。また、第2の配管128は、低コストである。  The second pipe 128 is made of resin. When the second pipe 128 is made of resin, the second pipe 128 can be easily formed. The second pipe 128 is low cost. *
本実施形態においては、第1の配管124及び第2の配管128がそれぞれ入口配管及び出口配管になる。したがって、冷却液Lは、第2の冷却器流路210、第2の配管流路220、第1の配管流路180及び第1の冷却器流路170を順次に通過する。第1の配管124及び第2の配管128がそれぞれ出口配管及び入口配管になってもよい。  In the present embodiment, the first pipe 124 and the second pipe 128 are an inlet pipe and an outlet pipe, respectively. Therefore, the coolant L sequentially passes through the second cooler flow path 210, the second pipe flow path 220, the first pipe flow path 180, and the first cooler flow path 170. The first pipe 124 and the second pipe 128 may be an outlet pipe and an inlet pipe, respectively. *
メス形はめ込み部130は、第1の表面150から伸びる。メス形はめ込み部130は、第1の表面150の法線方向に突き出る。  A female inset 130 extends from the first surface 150. The female fitting 130 protrudes in the normal direction of the first surface 150. *
メス形はめ込み部130は、樹脂からなる。メス形はめ込み部130が樹脂からなることにより、メス形はめ込み部130は、容易に形成することができる。また、メス形はめ込み部130は、低コストである。  The female fitting part 130 is made of resin. Since the female fitting part 130 is made of resin, the female fitting part 130 can be easily formed. Moreover, the female fitting part 130 is low-cost. *
オス形はめ込み部132は、第2の表面190からから伸びる。オス形はめ込み部132は、第2の表面190の法線方向に突き出る。オス形はめ込み部132は、メス形はめ込み部130にはめ込まれる。オス形はめ込み部132は、メス形はめ込み部130とともに第1の電子部品120を囲む。オス形はめ込み部132がメス形はめ込み部130にはめ込まれることにより、第1の冷却器122、第2の冷却器126、メス形はめ込み部130及びオス形はめ込み部132は、第1の電子部品120を収容するケース230を構成する。  A male inset 132 extends from the second surface 190. The male inset 132 protrudes in the normal direction of the second surface 190. The male fitting part 132 is fitted into the female fitting part 130. The male fitting part 132 surrounds the first electronic component 120 together with the female fitting part 130. By fitting the male fitting part 132 into the female fitting part 130, the first cooler 122, the second cooler 126, the female fitting part 130, and the male fitting part 132 are replaced with the first electronic component 120. Is formed. *
オス形はめ込み部132は、樹脂からなる。オス形はめ込み部132が樹脂からなることにより、オス形はめ込み部132は、容易に形成することができる。また、オス形はめ込み部132は、低コストである。  The male fitting part 132 is made of resin. When the male fitting part 132 is made of resin, the male fitting part 132 can be easily formed. Moreover, the male fitting part 132 is low-cost. *
本実施形態においては、第1の発熱部140及び第2の発熱部142が水冷されるため、第1の発熱部140及び第2の発熱部142を効果的に冷却することができる。  In the present embodiment, since the first heat generating part 140 and the second heat generating part 142 are water-cooled, the first heat generating part 140 and the second heat generating part 142 can be effectively cooled. *
また、本実施形態においては、第1の冷却器122及び第2の冷却器126で第1の電子部品120を挟むため、第1の発熱部140及び第2の発熱部142をそれぞれ第1の冷却器122及び第2の冷却器126に確実に密着させることができる。また、第1の発熱部140及び第2の発熱部142をそれぞれ第1の冷却器122及び第2の冷却器126に確実に密着させることができるため、第1の発熱部140と第1の冷却器122との間の熱抵抗、及び第2の発熱部142と第2の冷却器126との間の熱抵抗を低くすることができる。また、第1の発熱部140と第1の冷却器122との間の熱抵抗、及び第2の発熱部142と第2の冷却器126との間の熱抵抗を低くすることができるため、第1の発熱部140及び第2の発熱部142を効果的に冷却することができる。  Further, in the present embodiment, the first heat generating unit 140 and the second heat generating unit 142 are respectively connected to the first cooler 122 and the second cooler 126 in order to sandwich the first electronic component 120. The cooler 122 and the second cooler 126 can be securely adhered to each other. In addition, since the first heat generating unit 140 and the second heat generating unit 142 can be securely adhered to the first cooler 122 and the second cooler 126, respectively, the first heat generating unit 140 and the first heat generating unit The thermal resistance between the cooler 122 and the thermal resistance between the second heat generating part 142 and the second cooler 126 can be reduced. Moreover, since the thermal resistance between the 1st heat generating part 140 and the 1st cooler 122 and the heat resistance between the 2nd heat generating part 142 and the 2nd cooler 126 can be made low, The 1st heat generating part 140 and the 2nd heat generating part 142 can be cooled effectively. *
また、本実施形態においては、第1の配管124と第2の配管128との重ね長を、第1の電子部品120の長さと同程度にすることができる。このため、第1の配管124と第2の配管128とのつなぎ目からの冷却液Lの漏れを容易に防止することができる。  Further, in the present embodiment, the overlapping length of the first pipe 124 and the second pipe 128 can be made substantially the same as the length of the first electronic component 120. For this reason, it is possible to easily prevent leakage of the coolant L from the joint between the first pipe 124 and the second pipe 128. *
本実施形態においては、電力変換装置100は、充填物250をさらに備える。充填物250は、第1の電子部品120と第1の冷却器122との間の隙間、及び第1の電子部品120と第2の冷却器126との間の隙間に充填される。充填物250は、例えば樹脂硬化物からなる。充填物250により、第1の電子部品120、第1の冷却器122及び第2の冷却器126を互いに強固に接合することができる。また、環境及び振動が第1の電子部品120に与える影響を抑制することができる。また、環境及び振動が第1の電子部品120に与える影響を抑制することができることにより、電力変換装置100の耐環境性能及び耐振動性能を向上することができる。ただし、充填物250が省略されてもよい。  In the present embodiment, the power conversion device 100 further includes a filler 250. The filling 250 is filled in a gap between the first electronic component 120 and the first cooler 122 and a gap between the first electronic component 120 and the second cooler 126. The filler 250 is made of a cured resin, for example. With the filler 250, the first electronic component 120, the first cooler 122, and the second cooler 126 can be firmly bonded to each other. In addition, the influence of the environment and vibration on the first electronic component 120 can be suppressed. In addition, since the influence of the environment and vibration on the first electronic component 120 can be suppressed, the environment resistance performance and vibration resistance performance of the power converter 100 can be improved. However, the filling material 250 may be omitted. *
本実施形態においては、第1の電子部品120の三方がメス形はめ込み部130及びオス形はめ込み部132に囲まれる。しかし、第1の電子部品120の残余の一方は、メス形はめ込み部130及びオス形はめ込み部132に囲まれない。したがって、第1の電子部品120を収容するケース230は、開口を有する。開口は、充填物250の充填口として利用される。  In the present embodiment, three sides of the first electronic component 120 are surrounded by the female fitting part 130 and the male fitting part 132. However, the remaining one of the first electronic component 120 is not surrounded by the female fitting part 130 and the male fitting part 132. Accordingly, the case 230 that accommodates the first electronic component 120 has an opening. The opening is used as a filling port for the filling 250. *
本実施形態において、第1の電子部品120は平滑コンデンサ110である。 In the present embodiment, the first electronic component 120 is the smoothing capacitor 110.
図5は、本発明の例示的な実施形態の電力変換装置に備えられる平滑コンデンサを模式的に図示する斜視図である。  FIG. 5 is a perspective view schematically illustrating a smoothing capacitor provided in the power conversion device according to the exemplary embodiment of the present invention. *
平滑コンデンサ110は、図5に図示されるように、複数のフィルムコンデンサ260、第1のバスバ262及び第2のバスバ264を備える。複数のフィルムコンデンサ260の各々は、図2に図示されるように、本体部分270、第1のメタリコン電極272及び第2のメタリコン電極274を備える。  As shown in FIG. 5, the smoothing capacitor 110 includes a plurality of film capacitors 260, a first bus bar 262, and a second bus bar 264. Each of the plurality of film capacitors 260 includes a main body portion 270, a first metallicon electrode 272, and a second metallicon electrode 274, as shown in FIG. *
本体部分270は、誘電体膜、第1の金属蒸着膜及び第2の金属蒸着膜を備える。第1の金属蒸着膜及び第2の金属蒸着膜は、それぞれ誘電体膜の一方の面及び他方の面上に配置される。誘電体膜は、ロール状に多重巻きされている。第1のメタリコン電極272及び第2のメタリコン電極274は、それぞれ本体部分270の一端及び他端に配置される。第1のメタリコン電極272及び第2のメタリコン電極274は、それぞれ第1の金属蒸着膜及び第2の金属蒸着膜に電気的に接続される。  The main body portion 270 includes a dielectric film, a first metal vapor deposition film, and a second metal vapor deposition film. The first metal vapor deposition film and the second metal vapor deposition film are disposed on one surface and the other surface of the dielectric film, respectively. The dielectric film is wound in multiple rolls. The first metallicon electrode 272 and the second metallicon electrode 274 are disposed at one end and the other end of the main body portion 270, respectively. The first metallicon electrode 272 and the second metallicon electrode 274 are electrically connected to the first metal vapor deposition film and the second metal vapor deposition film, respectively. *
第1のバスバ262は、複数のフィルムコンデンサ260にそれぞれ備えられる複数の第1のメタリコン電極272に接続される。第1のバスバ262が複数の第1のメタリコン電極272に接続されることにより、第1のバスバ262は、複数の第1のメタリコン電極272に電気的に接続される。第2のバスバ264は、複数のフィルムコンデンサ260にそれぞれ備えられる複数の第2のメタリコン電極274に接続される。これにより、第2のバスバ264は、複数の第2のメタリコン電極274に電気的に接続される。第1のバスバ262が複数の第1のメタリコン電極272に電気的に接続され、第2のバスバ264が複数の第2のメタリコン電極274に電気的に接続されることにより、複数のフィルムコンデンサ260は、電気的に並列接続される。第1の電子部品120が平滑コンデンサ110である場合は、第1の発熱部140は、第1のバスバ262にある。また、第2の発熱部142は、第2のバスバ264にある。  The first bus bar 262 is connected to a plurality of first metallicon electrodes 272 provided in the plurality of film capacitors 260, respectively. By connecting the first bus bar 262 to the plurality of first metallicon electrodes 272, the first bus bar 262 is electrically connected to the plurality of first metallicon electrodes 272. The second bus bar 264 is connected to a plurality of second metallicon electrodes 274 provided in the plurality of film capacitors 260, respectively. As a result, the second bus bar 264 is electrically connected to the plurality of second metallicon electrodes 274. The first bus bar 262 is electrically connected to the plurality of first metallicon electrodes 272, and the second bus bar 264 is electrically connected to the plurality of second metallicon electrodes 274, whereby a plurality of film capacitors 260 are provided. Are electrically connected in parallel. When the first electronic component 120 is the smoothing capacitor 110, the first heat generating part 140 is in the first bus bar 262. Further, the second heat generating part 142 is in the second bus bar 264. *
第1のバスバ262は複数の第1の接続部280を備える。複数の第1の接続部280は互いに離れている。複数の第1の接続部280は、はんだ付け又は溶接により複数の第1のメタリコン電極272に局所接続される。  The first bus bar 262 includes a plurality of first connection parts 280. The plurality of first connection portions 280 are separated from each other. The plurality of first connecting portions 280 are locally connected to the plurality of first metallicon electrodes 272 by soldering or welding. *
第2のバスバ264は、図示されない複数の第2の接続部を備える。複数の第2の接続部は、互いに離れている。複数の第2の接続部は、はんだ付け又は溶接により複数の第2のメタリコン電極274に局所接続される。  The second bus bar 264 includes a plurality of second connection parts not shown. The plurality of second connection portions are separated from each other. The plurality of second connection portions are locally connected to the plurality of second metallicon electrodes 274 by soldering or welding. *
複数の第1の接続部280においては、電気抵抗によるジュール熱が発生する。複数の第1の接続部280において電気抵抗によるジュール熱が発生するため、複数の第1の接続部280は、局所的な発熱部となる。また、複数の第2の接続部においては、電気抵抗によるジュール熱が発生する。複数の第2の接続部において電気抵抗によるジュール熱が発生するため、複数の第2の接続部は、局所的な発熱部となる。また、第1の発熱部140及び第2の発熱部142は、それぞれ複数の第1の接続部280及び複数の第2の接続部により構成される。  In the plurality of first connection portions 280, Joule heat is generated due to electric resistance. Since Joule heat due to electric resistance is generated in the plurality of first connection portions 280, the plurality of first connection portions 280 become local heat generating portions. In addition, Joule heat due to electrical resistance is generated in the plurality of second connection portions. Since Joule heat due to electrical resistance is generated in the plurality of second connection portions, the plurality of second connection portions become local heat generating portions. Moreover, the 1st heat generating part 140 and the 2nd heat generating part 142 are comprised by the some 1st connection part 280 and the some 2nd connection part, respectively. *
第1の電子部品120が平滑コンデンサ110である場合は、第1の絶縁膜160は、第1の冷却器122と第1のバスバ262との間に配置される。また、第2の絶縁膜200は、第2の冷却器126と第2のバスバ264との間に配置される。  When the first electronic component 120 is the smoothing capacitor 110, the first insulating film 160 is disposed between the first cooler 122 and the first bus bar 262. The second insulating film 200 is disposed between the second cooler 126 and the second bus bar 264. *
また、第1の電子部品120が平滑コンデンサ110である場合は、平滑コンデンサ110を効果的に冷却することができるので、発熱を抑止するために電気的に必要な静電容量以上の静電容量を有するコンデンサを平滑コンデンサ110として採用する必要がない。また、電気的に必要な静電容量以上の静電容量を有するコンデンサを平滑コンデンサ110として採用する必要がないことにより、平滑コンデンサ110及び電力変換装置100を小型化することができる。  Further, when the first electronic component 120 is the smoothing capacitor 110, the smoothing capacitor 110 can be effectively cooled, so that the electrostatic capacity is more than the electrostatic capacity that is electrically necessary to suppress heat generation. It is not necessary to employ a capacitor having the smoothing capacitor 110. Moreover, since it is not necessary to employ | adopt as the smoothing capacitor 110 the capacitor | condenser which has an electrostatic capacity more than an electrostatic capacitance required electrically, the smoothing capacitor 110 and the power converter device 100 can be reduced in size. *
第1の電子部品120がパワーモジュール112であってもよい。第1の電子部品120がパワーモジュール112である場合は、第1の発熱部140は、パワーモジュール112の第1の面である。また、第2の発熱部142は、パワーモジュール112の第2の面である。パワーモジュール112の第2の面は、パワーモジュール112の第1の面の反対の側にある。  The first electronic component 120 may be the power module 112. When the first electronic component 120 is the power module 112, the first heat generating unit 140 is the first surface of the power module 112. Further, the second heat generating part 142 is the second surface of the power module 112. The second surface of the power module 112 is on the opposite side of the first surface of the power module 112. *
本実施形態において、冷却液Lは、水又は水溶液からなる冷却液である。ただし、冷却液Lが水又は水溶液からなる冷却液以外の冷却液であってよい。  In the present embodiment, the cooling liquid L is a cooling liquid composed of water or an aqueous solution. However, the coolant L may be a coolant other than the coolant composed of water or an aqueous solution. *
本実施形態において、第1の配管124と第2の配管128との間の隙間、及びメス形はめ込み部130とオス形はめ込み部132との間の隙間に、必要に応じて樹脂又は接着剤が充填されてもよい。第1の配管124と第2の配管128との間の隙間に樹脂又は接着剤が充填されることにより、第1の配管124と第2の配管128との間の隙間からの冷却液Lの漏れを防止することができる。また、メス形はめ込み部130とオス形はめ込み部132との間の隙間に樹脂又は接着剤が充填されることにより、ケース230からの充填物250の漏れを防止することができる。特に、充填物250が樹脂硬化物である場合は、硬化前樹脂の漏れを防止することができる。  In the present embodiment, resin or adhesive is added to the gap between the first pipe 124 and the second pipe 128 and the gap between the female fitting part 130 and the male fitting part 132 as necessary. It may be filled. By filling the gap between the first pipe 124 and the second pipe 128 with resin or adhesive, the coolant L from the gap between the first pipe 124 and the second pipe 128 is filled. Leakage can be prevented. In addition, the resin 250 or the adhesive is filled in the gap between the female fitting portion 130 and the male fitting portion 132, so that leakage of the filling material 250 from the case 230 can be prevented. In particular, when the filler 250 is a cured resin, leakage of the uncured resin can be prevented. *
3 第1変形例

 図6は、本発明の例示的な実施形態の第1変形例の電力変換装置を模式的に図示する断面図である。 
3 First Modification

FIG. 6 is a cross-sectional view schematically illustrating a power conversion device according to a first modification of the exemplary embodiment of the present invention.
第1変形例においては、第1の配管124及び第2の配管128は、金属からなる。また、図6に図示されるように、第1の配管124及び第2の配管128が、電力変換装置100に備えられる連絡管300が有する連絡管流路310に差し込まれることにより、第2の配管流路220が第1の配管流路180につなげられる。連絡管300は、樹脂からなる。連絡管流路310には、冷却液Lが流れる。  In the first modification, the first pipe 124 and the second pipe 128 are made of metal. In addition, as illustrated in FIG. 6, the first pipe 124 and the second pipe 128 are inserted into the connecting pipe flow path 310 included in the connecting pipe 300 provided in the power converter 100, thereby The piping channel 220 is connected to the first piping channel 180. The connecting pipe 300 is made of resin. The coolant L flows through the connecting pipe flow path 310. *
4 第2変形例

 図7は、本発明の例示的な実施形態の第2変形例の電力変換装置を模式的に図示する断面図である。 
4 Second modification

FIG. 7 is a cross-sectional view schematically illustrating a power conversion device according to a second modification of the exemplary embodiment of the present invention.
第2変形例において、図7に図示されるように、第1の冷却器122は、第1の金属板400及び第1の部位402を備える。第1の金属板400は、第1の発熱部140に直接的又は間接的に接触する。第1の部位402は、樹脂からなる。第1の部位402には、第1の配管124及びメス形はめ込み部130が接続される。第1の金属板400は、第1の部位402に接合される。  In the second modified example, as illustrated in FIG. 7, the first cooler 122 includes a first metal plate 400 and a first portion 402. The first metal plate 400 directly or indirectly contacts the first heat generating part 140. The first part 402 is made of resin. The first pipe 402 and the female fitting part 130 are connected to the first part 402. The first metal plate 400 is joined to the first part 402. *
第2変形例においては、第1の発熱部140から第1の金属板400を経由して熱が伝わるので、第1の発熱部140を効果的に冷却できる。  In the second modification, heat is transmitted from the first heat generating part 140 via the first metal plate 400, so that the first heat generating part 140 can be effectively cooled. *
また、第2変形例においては、樹脂からなる第1の配管124及びメス形はめ込み部130に接続される第1の部位402が樹脂からなるので、第1の配管124、メス形はめ込み部130及び第1の部位402を一体的に作製することができる。そのため、電力変換装置100を低コスト化することができる。なお、第1の配管124、メス形はめ込み部130及び第1の部位402は第1の発熱部140からの熱を伝えることにほとんど寄与しないので、第1の配管124、メス形はめ込み部130及び第1の部位402が樹脂からなることは、第1の発熱部140を効果的に冷却することの障害とはならない。  In the second modification example, the first pipe 124 made of resin and the first portion 402 connected to the female fitting part 130 are made of resin, so the first pipe 124, the female fitting part 130 and The first portion 402 can be manufactured integrally. Therefore, the cost of the power conversion device 100 can be reduced. Since the first pipe 124, the female fitting part 130, and the first part 402 hardly contribute to the transfer of heat from the first heat generating part 140, the first pipe 124, the female fitting part 130, and The fact that the first portion 402 is made of resin does not become an obstacle to effectively cooling the first heat generating portion 140. *
また、第2変形例においては、第2の冷却器126は、第2の金属板420及び第2の部位422を備える。第2の金属板420は、第2の発熱部142に直接的又は間接的に接触する。第2の部位422は、樹脂からなる。第2の部位422には、第2の配管128及びオス形はめ込み部132が接続される。第2の金属板420は、第2の部位422に接合される。 
In the second modification, the second cooler 126 includes a second metal plate 420 and a second portion 422. The second metal plate 420 directly or indirectly contacts the second heat generating part 142. The second part 422 is made of resin. A second pipe 128 and a male fitting part 132 are connected to the second part 422. The second metal plate 420 is joined to the second portion 422.
第2変形例において、第2の発熱部142から第2の金属板420を経由して熱が伝わるので、第2の発熱部142を効果的に冷却できる。  In the second modification, heat is transferred from the second heat generating part 142 via the second metal plate 420, so that the second heat generating part 142 can be effectively cooled. *
また、第2変形例においては、樹脂からなる第2の配管128及びオス形はめ込み部132に接続される第2の部位422が樹脂からなるので、第2の配管128、オス形はめ込み部132及び第2の部位422を一体的に作製することができる。また、第2の配管128、オス形はめ込み部132及び第2の部位422を一体的に作製することができるので、電力変換装置100を低コスト化することができる。なお、第2の配管128、オス形はめ込み部132及び第2の部位422は第2の発熱部142からの熱を伝えることにほとんど寄与しないので、第2の配管128、オス形はめ込み部132及び第2の部位422が樹脂からなることは、第2の発熱部142を効果的に冷却することの障害とはならない。  In the second modification, the second pipe 128 made of resin and the second part 422 connected to the male fitting part 132 are made of resin, so that the second pipe 128, the male fitting part 132 and The second portion 422 can be manufactured integrally. Moreover, since the 2nd piping 128, the male fitting part 132, and the 2nd site | part 422 can be produced integrally, the power converter device 100 can be reduced in cost. Note that the second pipe 128, the male fitting part 132, and the second part 422 contribute little to the transfer of heat from the second heat generating part 142, so the second pipe 128, the male fitting part 132, and The fact that the second portion 422 is made of resin does not become an obstacle to effectively cooling the second heat generating portion 142. *
5 第3変形例 図8は、本発明の例示的な実施形態の第3変形例の電力変換装置を模式的に図示する断面図である。図9は、本発明の例示的な実施形態の第3変形例の電力変換装置に備えられる第1の対向部及び第2の対向部を模式的に図示する平面図である。図10は、本発明の例示的な実施形態の第3変形例の電力変換装置に備えられる第1の対向部及び第2の対向部を模式的に図示する断面図である。図10は、図9に図示される切断線A-A’により示される切断位置における断面を図示する。  5 Third Modification FIG. 8 is a cross-sectional view schematically illustrating a power conversion device according to a third modification of the exemplary embodiment of the present invention. FIG. 9 is a plan view schematically illustrating the first facing portion and the second facing portion provided in the power conversion device of the third modified example of the exemplary embodiment of the present invention. FIG. 10 is a cross-sectional view schematically illustrating a first facing portion and a second facing portion provided in a power conversion device of a third modified example of the exemplary embodiment of the present invention. FIG. 10 illustrates a cross-section at the cutting position indicated by the cutting line A-A ′ illustrated in FIG. 9. *
第3変形例においては、図8に図示されるように、第2変形例と同様に、第1の冷却器122は、第1の金属板400及び第1の部位402を備える。第1の金属板400は、第1の発熱部140に直接的又は間接的に接触する。第1の部位402は、樹脂からなる。第1の部位402には、第1の配管124及びメス形はめ込み部130が接続される。第1の金属板400は、第1の部位402に接合される。  In the third modified example, as illustrated in FIG. 8, the first cooler 122 includes a first metal plate 400 and a first portion 402 as in the second modified example. The first metal plate 400 directly or indirectly contacts the first heat generating part 140. The first part 402 is made of resin. The first pipe 402 and the female fitting part 130 are connected to the first part 402. The first metal plate 400 is joined to the first part 402. *
また、第3変形例においては、図9及び図10に図示されるように、第1の冷却器流路170は、第1の方向D1に延びる。冷却液Lは、第1の冷却器流路170において、第1の方向D1に流れる。  In the third modification, as shown in FIGS. 9 and 10, the first cooler flow path 170 extends in the first direction D1. The coolant L flows in the first direction D1 in the first cooler flow path 170. *
また、第3変形例においては、第1の冷却器122は、第1の対向部500を備える。第1の対向部500は、樹脂からなる。第1の対向部500は、第1の対向面510を有する。第1の対向面510は、第1の冷却器流路170を挟んで第1の金属板400に対向する。第1の対向部500は、第1の突起520を第1の対向面510に備える。第1の突起520は、第1の突起表面530を有する。第1の突起表面530は、第1の方向D1に進むにつれて第1の発熱部140に寄る。  In the third modification, the first cooler 122 includes a first facing portion 500. The first facing portion 500 is made of resin. The first facing portion 500 has a first facing surface 510. The first facing surface 510 faces the first metal plate 400 with the first cooler channel 170 interposed therebetween. The first facing portion 500 includes a first protrusion 520 on the first facing surface 510. The first protrusion 520 has a first protrusion surface 530. The first protrusion surface 530 approaches the first heat generating portion 140 as it proceeds in the first direction D1. *
また、第3変形例においては、第1の突起520は、第1のフィン540及び第1の山状部分542を備える。また、第1の突起表面530は、第1のフィン540が有する第1のフィン表面560、及び第1の山状部分542が有する第1の山状部分表面562を有する。第1のフィン540及び第1の山状部分542の片方が省略されてもよい。第1のフィン540は、湾曲板状の形状を有する。第1のフィン表面560は、凹形状を有する湾曲面である。第1のフィン540が、平板状の形状を有してもよい。  Further, in the third modification, the first protrusion 520 includes a first fin 540 and a first mountain-shaped portion 542. The first protrusion surface 530 includes a first fin surface 560 included in the first fin 540 and a first mountain-shaped portion surface 562 included in the first mountain-shaped portion 542. One of the first fin 540 and the first mountain-shaped portion 542 may be omitted. The first fin 540 has a curved plate shape. The first fin surface 560 is a curved surface having a concave shape. The first fin 540 may have a flat shape. *
第1のフィン表面560は、第1の対向面510と平行をなし第1の方向D1と垂直をなす方向について、第1の方向D1に進むにつれて第1の発熱部140に寄る。第1のフィン540は、第1の対向面510と平行をなす方向の冷却液Lの流れを制御する。  The first fin surface 560 approaches the first heat generating section 140 as it proceeds in the first direction D1 in a direction parallel to the first facing surface 510 and perpendicular to the first direction D1. The first fin 540 controls the flow of the coolant L in the direction parallel to the first facing surface 510. *
第1の山状部分表面562は、第1の対向面510と垂直をなす方向について、第1の方向D1に進むにつれて第1の発熱部140に寄る。第1の山状部分542は、第1の対向面510と垂直をなす方向について冷却液Lの流れを制御する。  The first mountain-shaped portion surface 562 approaches the first heat generating portion 140 as it proceeds in the first direction D1 in the direction perpendicular to the first facing surface 510. The first mountain-shaped portion 542 controls the flow of the coolant L in the direction perpendicular to the first facing surface 510. *
冷却液Lが第1の冷却器流路170において第1の方向D1に流れた場合は、冷却液Lの流れの一部は、第1のフィン表面560に当たって第1の発熱部140上に集中させられる。また、冷却液Lの流れの一部が第1の発熱部140上に集中させられることにより、第1の発熱部140を効果的に冷却することができる。先述したように第1の発熱部140は局所的な発熱部であるため、冷却液Lの流れの一部を第1の発熱部140上に集中させることは可能である。なお、冷却液Lの流れの一部を第1の発熱部140上に集中させた場合でも、残余の冷却液Lの流れは絞られないので、圧損の増加もほとんど問題とならない。  When the cooling liquid L flows in the first direction D1 in the first cooler flow path 170, a part of the flow of the cooling liquid L hits the first fin surface 560 and is concentrated on the first heat generating part 140. Be made. Further, by concentrating a part of the flow of the coolant L on the first heat generating part 140, the first heat generating part 140 can be effectively cooled. As described above, since the first heat generating part 140 is a local heat generating part, it is possible to concentrate a part of the flow of the coolant L on the first heat generating part 140. Even when a part of the flow of the cooling liquid L is concentrated on the first heat generating portion 140, the flow of the remaining cooling liquid L is not restricted, so that an increase in pressure loss hardly causes a problem. *
また、冷却液Lが第1の冷却器流路170において第1の方向D1に流れた場合は、冷却液Lの流れの一部は、第1の山状部分表面562に当たって第1の発熱部140に衝突させられる。また、冷却液Lの流れの一部が第1の発熱部140に衝突させられることにより、第1の発熱部140を効果的に冷却することができる。  Further, when the cooling liquid L flows in the first cooler flow path 170 in the first direction D1, a part of the flow of the cooling liquid L hits the first mountain-shaped portion surface 562 and the first heat generating portion. 140 is caused to collide. In addition, since a part of the flow of the coolant L is caused to collide with the first heat generating part 140, the first heat generating part 140 can be effectively cooled. *
第3の変形例においては、第1の金属板400がフィンを有しない平板であってもよい。このため、第1の金属板400を低コスト化することができる。また、樹脂からなる第1の対向部500に第1の突起520を設けることは、低コストで可能である。  In the third modification, the first metal plate 400 may be a flat plate having no fins. For this reason, the cost of the first metal plate 400 can be reduced. Further, it is possible to provide the first protrusion 520 on the first facing portion 500 made of resin at a low cost. *
第1の突起520の位置及び形状は、第1の発熱部140上における冷却液Lの流れが均一になるように設計される。  The position and shape of the first protrusion 520 are designed so that the flow of the coolant L on the first heat generating portion 140 is uniform. *
また、第3変形例においては、図8に図示されるように、第2変形例と同様に、第2の冷却器126は、第2の金属板420及び第2の部位422を備える。第2の金属板420は、第2の発熱部142に直接的又は間接的に接触する。第2の部位422は、樹脂からなる。第2の部位422には、第2の配管128及びメス形はめ込み部130が接続される。第2の金属板420は、第2の部位422に接合される。  Further, in the third modified example, as illustrated in FIG. 8, the second cooler 126 includes a second metal plate 420 and a second portion 422 as in the second modified example. The second metal plate 420 directly or indirectly contacts the second heat generating part 142. The second part 422 is made of resin. A second pipe 128 and a female fitting part 130 are connected to the second part 422. The second metal plate 420 is joined to the second portion 422. *
また、第3変形例においては、図9及び図10に図示されるように、第2の冷却器流路210は、第2の方向D2に延びる。冷却液Lは、第2の冷却器流路210において第2の方向D2に流れる。  In the third modified example, as illustrated in FIGS. 9 and 10, the second cooler flow path 210 extends in the second direction D2. The cooling liquid L flows in the second direction D2 in the second cooler flow path 210. *
また、第3変形例においては、第2の冷却器126は、第2の対向部570を備える。第2の対向部570は、樹脂からなる。第2の対向部570は、第2の対向面580を有する。第2の対向面580は、第2の冷却器流路210を挟んで第2の金属板420に対向する。第2の対向部570は、第2の対向面580において第2の突起590を備える。第2の突起590は、第2の突起表面600を有する。第2の突起表面600は、第2の方向D2に進むにつれて第2の発熱部142に寄る。  In the third modification, the second cooler 126 includes a second facing portion 570. The second facing portion 570 is made of resin. The second facing portion 570 has a second facing surface 580. The second facing surface 580 faces the second metal plate 420 with the second cooler flow path 210 interposed therebetween. The second facing portion 570 includes a second protrusion 590 on the second facing surface 580. The second protrusion 590 has a second protrusion surface 600. The second protrusion surface 600 approaches the second heat generating portion 142 as it proceeds in the second direction D2. *
また、第3変形例においては、第2の突起590は、第2のフィン601及び第2の山状部分602を備える。また、第2の突起表面600は、第2のフィン601が有する第2のフィン表面610、及び第2の山状部分602が有する第2の山状部分表面612を有する。第2のフィン601及び第2の山状部分602の片方が省略されてもよい。第2のフィン601は、湾曲板状の形状を有する。第2のフィン表面610は、凹形状を有する湾曲面である。第2のフィン601が、平板状の形状を有してもよい。  Further, in the third modification, the second protrusion 590 includes a second fin 601 and a second mountain-shaped portion 602. The second protrusion surface 600 includes a second fin surface 610 included in the second fin 601 and a second peak-shaped portion surface 612 included in the second peak-shaped portion 602. One of the second fin 601 and the second mountain-shaped portion 602 may be omitted. The second fin 601 has a curved plate shape. The second fin surface 610 is a curved surface having a concave shape. The second fin 601 may have a flat shape. *
第2のフィン表面610は、第2の対向面580と平行をなし第2の方向D2と垂直をなす方向について、第2の方向D2に進むにつれて第2の発熱部142に寄る。第2のフィン601は、第2の対向面580と平行をなす方向の冷却液Lの流れを制御する。  The second fin surface 610 approaches the second heat generating portion 142 as it proceeds in the second direction D2 in a direction parallel to the second facing surface 580 and perpendicular to the second direction D2. The second fin 601 controls the flow of the coolant L in the direction parallel to the second facing surface 580. *
第2の山状部分表面612は、第2の対向面580と垂直をなす方向について、第2の方向D2に進むにつれて第2の発熱部142に寄る。第2の山状部分602は、第2の対向面580と垂直をなす方向について冷却液Lの流れを制御する。  The second mountain-shaped portion surface 612 approaches the second heat generating portion 142 as it proceeds in the second direction D2 in the direction perpendicular to the second facing surface 580. The second mountain-shaped portion 602 controls the flow of the coolant L in the direction perpendicular to the second facing surface 580. *
冷却液Lが第2の冷却器流路210において第2の方向D2に流れた場合は、冷却液Lの流れの一部は、第2のフィン表面610に当たって第2の発熱部142上に集中させられる。また、冷却液Lの流れの一部が第2の発熱部142上に集中させられることにより、第2の発熱部142を効果的に冷却することができる。先述したように第2の発熱部142は局所的な発熱部であるため、冷却液Lの流れの一部を第2の発熱部142上に集中させることは可能である。なお、冷却液Lの流れの一部を第2の発熱部142上に集中させた場合でも、残余の冷却液Lの流れは絞られないので、圧損の増加もほとんど問題とならない。  When the cooling liquid L flows in the second direction D2 in the second cooler flow path 210, a part of the flow of the cooling liquid L hits the second fin surface 610 and is concentrated on the second heat generating part 142. Be made. In addition, since a part of the flow of the coolant L is concentrated on the second heat generating part 142, the second heat generating part 142 can be effectively cooled. As described above, since the second heat generating portion 142 is a local heat generating portion, it is possible to concentrate a part of the flow of the coolant L on the second heat generating portion 142. Even when a part of the flow of the cooling liquid L is concentrated on the second heat generating portion 142, the flow of the remaining cooling liquid L is not restricted, so that an increase in pressure loss hardly causes a problem. *
また、冷却液Lが第2の冷却器流路210において第2の方向D2に流れた場合は、冷却液Lの流れの一部は、第2の山状部分表面612に当たって第2の発熱部142に衝突させられる。また、冷却液Lの流れの一部が第2の発熱部142に衝突させられることにより、第2の発熱部142を効果的に冷却することができる。  Further, when the cooling liquid L flows in the second direction D2 in the second cooler flow path 210, a part of the flow of the cooling liquid L hits the second mountain-shaped portion surface 612 and the second heat generating portion. 142. Moreover, the second heat generating part 142 can be effectively cooled by causing a part of the flow of the coolant L to collide with the second heat generating part 142. *
第3の変形例においては、第2の金属板420がフィンを有しない平板であってもよい。このため、第2の金属板420を低コスト化することができる。また、樹脂からなる対向部570に第2の突起590を設けることは、低コストで可能である。  In the third modification, the second metal plate 420 may be a flat plate having no fins. For this reason, the cost of the second metal plate 420 can be reduced. Further, it is possible to provide the second protrusion 590 on the facing portion 570 made of resin at a low cost. *
第2の突起590の位置及び形状は、第2の発熱部142上における冷却液Lの流れが均一になるように設計される。  The position and shape of the second protrusion 590 are designed so that the flow of the coolant L on the second heat generating portion 142 is uniform. *
第3変形例において採用された構造は、平滑コンデンサ110の発熱量がパワーモジュール112の発熱量より少ないこと、及び第1の発熱部140及び第2の発熱部142が局所的な発熱部であることを利用している。このため、第3変形例において採用された構造は、平滑コンデンサ110が、同様の特徴を有する他の電子部品に置き換えられた場合にも採用されうる。  The structure adopted in the third modified example is that the calorific value of the smoothing capacitor 110 is less than the calorific value of the power module 112, and the first heat generating part 140 and the second heat generating part 142 are local heat generating parts. I use that. For this reason, the structure adopted in the third modification can also be adopted when the smoothing capacitor 110 is replaced with another electronic component having the same characteristics. *
6 第4変形例 



図11は、本発明の例示的な実施形態の第4変形例の電力変換装置を模式的に図示する断面図である。 
6 Fourth Modification



FIG. 11: is sectional drawing which illustrates typically the power converter device of the 4th modification of exemplary embodiment of this invention.
第4変形例の電力変換装置100においては、第2の電子部品700、及び第2の電子部品700を冷却する第3の冷却器702が第3変形例の電力変換装置100に付加される。  In the power conversion device 100 of the fourth modified example, a second electronic component 700 and a third cooler 702 that cools the second electronic component 700 are added to the power conversion device 100 of the third modified example. *
第4変形例においては、電力変換装置100は、第2の電子部品700及び第3の冷却器702をさらに備える。第2の電子部品700は、第3の発熱部710を有する。  In the fourth modification, the power conversion device 100 further includes a second electronic component 700 and a third cooler 702. The second electronic component 700 has a third heat generating part 710. *
第4変形例においては、第2の電子部品700は、パワーモジュール112である。また、第3の発熱部710は、パワーモジュール112の第1の面である。  In the fourth modification, the second electronic component 700 is the power module 112. The third heat generating unit 710 is the first surface of the power module 112. *
第4変形例においては、第1の冷却器122は、第1の部位402を備える。第1の部位402は、樹脂からなる。また、第1の冷却器122は、反対側表面720を有する。反対側表面720は、第1の表面150と反対の側にある。  In the fourth modification, the first cooler 122 includes a first portion 402. The first part 402 is made of resin. The first cooler 122 also has an opposite surface 720. The opposite surface 720 is on the opposite side of the first surface 150. *
第4変形例においては、第3の冷却器702は、第3の表面730を有する。第3の表面730は、第3の発熱部710に直接的に又は間接的に接触する。第3の表面730は、第1の表面150と垂直をなす。第3の冷却器702は、反対側表面720に接続される。第3の冷却器702は、第3の部位740を備える。第3の部位740は、樹脂からなる。第3の部位740は、第1の部位402に接続される。樹脂からなる第1の部位402に樹脂からなる第3の部位740を接続することは容易であるので、第4変形例においては、第3の部位740を備える第3の冷却器702を容易に付加することができる。  In the fourth modification, the third cooler 702 has a third surface 730. The third surface 730 contacts the third heat generating part 710 directly or indirectly. The third surface 730 is perpendicular to the first surface 150. The third cooler 702 is connected to the opposite surface 720. The third cooler 702 includes a third portion 740. The third portion 740 is made of resin. The third part 740 is connected to the first part 402. Since it is easy to connect the third part 740 made of resin to the first part 402 made of resin, in the fourth modified example, the third cooler 702 including the third part 740 is easily provided. Can be added. *
第4変形例において、第1の部位402及び第3の部位740が樹脂からなるので、第1の部位402を備える第1の冷却器122が内部に有する第1の冷却器流路170、及び第3の部位740を備える第3の冷却器702が内部に有する第3の冷却器流路750からなる冷却器流路760の形状の自由度が高い。例えば、折り返しを有する冷却器流路760、及び互いに垂直をなす方向に延びる区間を有する冷却器流路760等の、金属からなり箱形状を有する冷却器の内部に形成することが困難な立体的な形状を有する冷却器流路760を容易に形成することができる。また、冷却器流路760の形状の自由度が高いため、第1の部位402を備える第1の冷却器122が有する第1の表面150、及び第3の部位740を備える第3の冷却器702が有する第3の表面730の位置の自由度が高い。また、第1の表面150及び第3の表面730の位置の自由度が高いため、第1の表面150及び第2の表面190にそれぞれ接触する第1の電子部品120、並びに第3の表面730に接触する第2の電子部品700の位置及び姿勢の自由度が高い。  In the fourth modification, since the first part 402 and the third part 740 are made of resin, the first cooler flow path 170 included in the first cooler 122 including the first part 402, and The degree of freedom of the shape of the cooler flow path 760 including the third cooler flow path 750 included in the third cooler 702 including the third portion 740 is high. For example, it is difficult to form inside a cooler having a box shape made of metal, such as a cooler flow channel 760 having a turn and a cooler flow channel 760 having sections extending in a direction perpendicular to each other. The cooler channel 760 having a simple shape can be easily formed. Moreover, since the freedom degree of the shape of the cooler flow path 760 is high, the 3rd cooler provided with the 1st surface 150 which the 1st cooler 122 provided with the 1st site | part 402 has, and the 3rd site | part 740 is provided. The degree of freedom of the position of the third surface 730 included in 702 is high. Further, since the first surface 150 and the third surface 730 are highly flexible, the first electronic component 120 and the third surface 730 that are in contact with the first surface 150 and the second surface 190, respectively. There is a high degree of freedom in the position and posture of the second electronic component 700 in contact with *
第4変形例においては、第1の表面150及び第3の表面730の位置の自由度が高いことを利用して、平滑コンデンサ110が電力変換装置100に備えられるケースの底面に寝かして配置される。また、パワーモジュール112が当該表面に平行に配置される。  In the fourth modification, the smoothing capacitor 110 is placed on the bottom surface of the case provided in the power conversion device 100 by utilizing the high degree of freedom in the positions of the first surface 150 and the third surface 730. The Moreover, the power module 112 is arrange | positioned in parallel with the said surface. *
また、平滑コンデンサ110とパワーモジュール112とを接続するバスバ電極が短くなる高さにパワーモジュール112が配置される。  Further, the power module 112 is arranged at a height at which the bus bar electrode connecting the smoothing capacitor 110 and the power module 112 becomes short. *
また、パワーモジュール112の上方の空間が駆動回路を配置するために利用される。また、第3の冷却器702の下方の空間が電流センサ、電流コネクタ、交流出力の端子台等の大型部品を配置するために利用される。  Further, the space above the power module 112 is used for arranging the drive circuit. Further, the space below the third cooler 702 is used for arranging large parts such as a current sensor, a current connector, and an AC output terminal block. *
なお、第4変形例においては、第2の冷却器126は、第2の部位422を備える。第2の部位422は、樹脂からなる。第2の冷却器126は、反対側表面770を有する。反対側表面770は、第2の表面190と反対の側にある。第3の冷却器702が反対側表面770に接続されてもよい。第3の冷却器702が反対側表面770に接続される場合は、第3の部位740は、第2の部位422に接続される。  In the fourth modification, the second cooler 126 includes a second portion 422. The second part 422 is made of resin. Second cooler 126 has an opposite surface 770. The opposite surface 770 is on the opposite side of the second surface 190. A third cooler 702 may be connected to the opposite surface 770. When the third cooler 702 is connected to the opposite surface 770, the third portion 740 is connected to the second portion 422. *
この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。 Although the present invention has been described in detail, the above description is illustrative in all aspects, and the present invention is not limited thereto. It is understood that countless variations that are not illustrated can be envisaged without departing from the scope of the present invention.
100 電力変換装置 110 平滑コンデンサ 112 パワーモジュール 120 第1の電子部品 122 第1の冷却器 124 第1の配管 126 第2の冷却器 128 第2の配管 130 メス形はめ込み部 132 オス形はめ込み部 140 第1の発熱部 142 第2の発熱部 100 Power converter 110 Smoothing capacitor 112 Power module 120 First electronic component 122 First cooler 124 First pipe 126 Second cooler 128 Second pipe 130 Female fitting part 132 Male fitting part 140 No. 1 exothermic part 142 second exothermic part

Claims (6)

  1. 第1の発熱部及び第2の発熱部を備える第1の電子部品と、



     前記第1の発熱部に直接的に又は間接的に接触する第1の表面を有し、冷却液が流れる第1の冷却器流路を内部に有する第1の冷却器と、



     前記第1の表面から伸び、前記冷却液が流れ前記第1の冷却器流路とつながる第1の配管流路を有する第1の配管と、



     前記第2の発熱部に直接的に又は間接的に接触し前記第1の電子部品を挟んで前記第1の表面に対向する第2の表面を有し、前記冷却液が流れる第2の冷却器流路を内部に有する第2の冷却器と、



     前記第2の表面から伸び、前記冷却液が流れ前記第1の配管流路及び前記第2の冷却器流路とつながる第2の配管流路を有する第2の配管と、



     樹脂からなり、前記第1の表面から伸びるメス形はめ込み部と、



     樹脂からなり、前記第2の表面から伸び、前記メス形はめ込み部にはめ込まれ、前記メス形はめ込み部とともに前記第1の電子部品を囲むオス形はめ込み部と、



    を備える電力変換装置。
    A first electronic component comprising a first heat generating part and a second heat generating part;



    A first cooler having a first surface that directly or indirectly contacts the first heat generating portion and having a first cooler channel through which a coolant flows;



    A first pipe having a first pipe flow path extending from the first surface and through which the coolant flows and is connected to the first cooler flow path;



    Second cooling that has a second surface that directly or indirectly contacts the second heat generating portion and faces the first surface with the first electronic component interposed therebetween, and in which the coolant flows. A second cooler having a vessel channel therein;



    A second pipe extending from the second surface and having a second pipe flow path through which the coolant flows and is connected to the first pipe flow path and the second cooler flow path;



    A female-type fitting portion made of resin and extending from the first surface;



    A male-type inset part made of resin, extending from the second surface, fitted into the female-type inset part, and surrounding the first electronic component together with the female-type inset part;



    A power conversion device comprising:
  2. 前記第1の配管及び前記第2の配管は、樹脂からなり、



     前記第1の冷却器は、



     前記第1の発熱部に直接的に又は間接的に接触する第1の金属板と、



     樹脂からなり、前記第1の配管及び前記メス形はめ込み部が接続される第1の部位と、



    を備え、



     前記第2の冷却器は、



     前記第2の発熱部に直接的に又は間接的に接触する第2の金属板と、



     樹脂からなり、前記第2の配管及び前記オス形はめ込み部が接続される第2の部位と、



    を備える請求項1の電力変換装置。
    The first pipe and the second pipe are made of resin,



    The first cooler is



    A first metal plate that directly or indirectly contacts the first heat generating part;



    A first portion made of resin, to which the first pipe and the female fitting portion are connected;



    With



    The second cooler is



    A second metal plate that directly or indirectly contacts the second heat generating part;



    A second portion made of resin, to which the second pipe and the male fitting portion are connected;



    The power converter of Claim 1 provided with.
  3. 前記第1の冷却器流路は、第1の方向に延び、



     前記冷却液は、前記第1の冷却器流路において前記第1の方向に流れ、



     前記第1の冷却器は、



     前記第1の発熱部に直接的に又は間接的に接触する第1の金属板と、



     樹脂からなり、前記第1の冷却器流路を挟んで前記第1の金属板に対向する第1の対向面を有し、前記第1の方向に進むにつれて前記第1の発熱部に寄る第1の突起表面を有する第1の突起を前記第1の対向面に備える第1の対向部と、



    を備える請求項1又は2の電力変換装置。
    The first cooler flow path extends in a first direction;



    The coolant flows in the first direction in the first cooler flow path;



    The first cooler is



    A first metal plate that directly or indirectly contacts the first heat generating part;



    A first opposing surface made of resin and facing the first metal plate across the first cooler flow path, approaching the first heat generating portion as it proceeds in the first direction; A first facing portion having a first protrusion having a surface of one protrusion on the first facing surface;



    The power converter of Claim 1 or 2 provided with.
  4. 前記第2の冷却器流路は、第2の方向に延び、

     前記冷却液は、前記第2の冷却器流路において前記第2の方向に流れ、

     前記第2の冷却器は、

     前記第2の発熱部に直接的に又は間接的に接触する第2の金属板と、

     樹脂からなり、前記第2の冷却器流路を挟んで前記第2の金属板に対向する第2の対向面を有し、前記第2の方向に進むにつれて前記第2の発熱部に寄る第2の突起表面を有する第2の突起を前記第2の対向面に備える第2の対向部と、

    を備える請求項1から3までのいずれかの電力変換装置。
    The second cooler flow path extends in a second direction;

    The coolant flows in the second direction in the second cooler flow path;

    The second cooler is

    A second metal plate that directly or indirectly contacts the second heat generating part;

    A second opposing surface made of resin and facing the second metal plate across the second cooler flow path, and approaching the second heat generating portion as it proceeds in the second direction. A second opposing portion having a second protrusion having two protrusion surfaces on the second opposing surface;

    A power converter according to any one of claims 1 to 3.
  5. 前記第1の冷却器は、樹脂からなる第1の部位を備え前記第1の表面と反対の側にある反対側表面を有し、



     第3の発熱部を有する第2の電子部品と、



     前記第3の発熱部に直接的に又は間接的に接触し前記第1の表面と垂直をなす第3の表面を有し、前記反対側表面に接続され、樹脂からなり前記第1の部位に接続される第3の部位を備える、第3の冷却器をさらに備える



    請求項1から4までのいずれかの電力変換装置。
    The first cooler comprises a first portion made of resin and has an opposite surface on the opposite side of the first surface;



    A second electronic component having a third heat generating part;



    A third surface that is in direct or indirect contact with the third heat generating portion and perpendicular to the first surface, is connected to the opposite surface, and is made of resin and is attached to the first portion; A third cooler further comprising a third portion to be connected;



    The power converter device in any one of Claim 1 to 4.
  6. 前記第2の冷却器は、樹脂からなる第2の部位を備え、前記第2の表面と反対の側にある反対側表面を有し、



     第3の発熱部を有する第2の電子部品と、



     前記第3の発熱部に直接的に又は間接的に接触し前記第2の表面と垂直をなす第3の表面を有し、前記反対側表面に接続され、樹脂からなり前記第2の部位に接続される第3の部位を備える、第3の冷却器と、



    をさらに備える請求項1から5までのいずれかの電力変換装置。
    The second cooler includes a second portion made of resin, and has an opposite surface on the opposite side of the second surface,



    A second electronic component having a third heat generating part;



    A third surface that is in direct or indirect contact with the third heat generating portion and perpendicular to the second surface, is connected to the opposite surface and is made of a resin and is connected to the second portion; A third cooler comprising a third portion to be connected;



    The power converter according to any one of claims 1 to 5, further comprising:
PCT/JP2019/013346 2018-03-30 2019-03-27 Power conversion device WO2019189454A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980022084.XA CN111903046A (en) 2018-03-30 2019-03-27 Power conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-067542 2018-03-30
JP2018067542 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019189454A1 true WO2019189454A1 (en) 2019-10-03

Family

ID=68062093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013346 WO2019189454A1 (en) 2018-03-30 2019-03-27 Power conversion device

Country Status (2)

Country Link
CN (1) CN111903046A (en)
WO (1) WO2019189454A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016127772A (en) * 2015-01-08 2016-07-11 トヨタ自動車株式会社 Power converter
JP2016149907A (en) * 2015-02-13 2016-08-18 株式会社デンソー Electric power conversion system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5563383B2 (en) * 2010-06-21 2014-07-30 日立オートモティブシステムズ株式会社 Power converter
CN103944359B (en) * 2014-05-08 2016-05-18 安徽江淮汽车股份有限公司 The integrated morphology of a kind of driving governor and direct current transducer
CN107407529A (en) * 2015-03-25 2017-11-28 三菱电机株式会社 Cooler, power inverter and cooling system
CN106655807B (en) * 2015-10-29 2019-02-26 台达电子企业管理(上海)有限公司 Power supply change-over device
JP6540496B2 (en) * 2015-12-17 2019-07-10 株式会社デンソー Power converter
CN107639992B (en) * 2016-07-21 2022-05-20 杭州三花研究院有限公司 Thermal management system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016127772A (en) * 2015-01-08 2016-07-11 トヨタ自動車株式会社 Power converter
JP2016149907A (en) * 2015-02-13 2016-08-18 株式会社デンソー Electric power conversion system

Also Published As

Publication number Publication date
CN111903046A (en) 2020-11-06

Similar Documents

Publication Publication Date Title
JP4292913B2 (en) Semiconductor cooling unit
JP5737275B2 (en) Inverter device
US9198332B2 (en) Cooling-type switching element module
JP6117362B2 (en) Power converter
JP5760985B2 (en) Power converter
JP2018207718A (en) Electric power conversion system
JP6036585B2 (en) Power converter
JP7243582B2 (en) power converter
JP6887521B2 (en) Power converter
JP6932225B1 (en) Power converter
JP5733234B2 (en) Power converter
WO2019208406A1 (en) Power conversion device
CN113728546A (en) Power conversion device
JP2005073342A (en) Packaging structure of semiconductor device
JP4055042B2 (en) Inverter device
WO2019189454A1 (en) Power conversion device
JP2018121457A (en) Power conversion device
JP2017017999A (en) Electric power conversion system
JP2018148176A (en) Power conversion equipment
WO2019244502A1 (en) Electric power converter
JP2019122064A (en) Power conversion device
JP2007180155A (en) Condenser device
JP2003047259A (en) Power converter
JP2023000459A (en) Power conversion equipment
WO2019159666A1 (en) Electronic component with cooler, and inverter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774517

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19774517

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP