WO2019159666A1 - Electronic component with cooler, and inverter - Google Patents

Electronic component with cooler, and inverter Download PDF

Info

Publication number
WO2019159666A1
WO2019159666A1 PCT/JP2019/002672 JP2019002672W WO2019159666A1 WO 2019159666 A1 WO2019159666 A1 WO 2019159666A1 JP 2019002672 W JP2019002672 W JP 2019002672W WO 2019159666 A1 WO2019159666 A1 WO 2019159666A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooler
wall
electronic component
flow path
plate
Prior art date
Application number
PCT/JP2019/002672
Other languages
French (fr)
Japanese (ja)
Inventor
英明 内勢
田島 豊
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201980012805.9A priority Critical patent/CN111699623B/en
Publication of WO2019159666A1 publication Critical patent/WO2019159666A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to an electronic component with a cooler and an inverter.
  • the inverter device described in JP 2014-96881 A includes a capacitor device (paragraph 0016).
  • the capacitor is accommodated in a container (paragraph 0017).
  • a first heat exchanger is provided on the first mounting surface of the container (paragraph 0020).
  • a second heat exchanger is provided on the second mounting surface of the container (paragraph 0028).
  • a supply pipe is connected to the first supply part of the first heat exchanger and the second supply part of the second heat exchanger (paragraph 0030).
  • the first exhaust part of the first heat exchanger 44 and the second exhaust part of the second heat exchanger are connected by an exhaust pipe (paragraph 0031).
  • the present invention is made to solve this problem.
  • the problem to be solved by the present invention is to provide an electronic component with a cooler capable of reducing the size, weight and cost of an apparatus including an electronic component with a cooler, and an inverter including the electronic component with a cooler. It is to be.
  • One exemplary embodiment of the present invention is directed to an electronic component with a cooler. *
  • the electronic component with a cooler includes a cooler, a first electronic component, a first electrical insulating material, and a second electrical insulating material.
  • the cooler includes a structure made of resin.
  • the first electronic component is cooled by a cooler. *
  • the cooler includes a first double wall, a second double wall, and a third double wall.
  • the first double wall has a first end and a second end that are separated from each other in a first direction.
  • the first double wall includes a first inner wall and a first outer wall.
  • the first double wall has a first flow path sandwiched between the first inner wall and the first outer wall.
  • the second double wall has a third end and a fourth end that are separated from each other in the second direction.
  • the second double wall includes a second inner wall and a second outer wall.
  • the second double wall has a second flow path sandwiched between the second inner wall and the second outer wall.
  • the second double wall faces the first double wall.
  • the third double wall has a fifth end and a sixth end that are separated from each other in a third direction.
  • the fifth end and the sixth end are connected to the second end and the third end, respectively.
  • the third double wall includes a third inner wall and a third outer wall.
  • the third double wall has a third flow path sandwiched between the third inner wall and the third outer wall.
  • the third direction is different from the first direction and the second direction. *
  • the first inner wall and the second inner wall each include a first plate and a second plate made of metal.
  • the first plate and the second plate are fixed to the structure.
  • the first electronic component includes a first cooled portion and a second cooled portion, and is disposed between the first double wall and the second double wall.
  • the second cooled part is separated from the first cooled part.
  • the first cooled part is in contact with the first plate via the first electrical insulating material.
  • the second cooled part comes into contact with the second plate via the second electrical insulating material.
  • One exemplary aspect of the present invention is also directed to an inverter that includes an electronic component with a cooler.
  • the first electronic component is accommodated in a space inside the cooler.
  • the component that holds and fixes the first electronic component can be omitted.
  • an apparatus provided with the electronic component with a cooler can be reduced in size, weight, and cost.
  • the second flow path is connected to the first flow path via the third flow path inside the third double wall.
  • a cooling pipe connecting the second flow path to the first flow path by connecting the second flow path to the first flow path via the third flow path inside the third double wall; and Parts for holding and fixing the cooling pipe can be omitted. For this reason, an apparatus provided with the electronic component with a cooler can be reduced in size, weight, and cost.
  • the portion of the cooler through which the heat flow from the first cooled portion and the second cooled portion hardly passes is made of resin. For this reason, an apparatus provided with the electronic component with a cooler can be reduced in weight and cost.
  • FIG. 1 is a block diagram schematically illustrating an inverter according to a first embodiment. It is sectional drawing which illustrates typically the electronic component with a 1st cooler with which the inverter of 1st Embodiment is equipped. It is an expanded sectional view showing typically some electronic components with a 1st cooler with which the inverter of a 1st embodiment is equipped. It is an expanded sectional view showing typically some electronic components with a 1st cooler with which the inverter of a 1st embodiment is equipped. It is sectional drawing which illustrates typically the 2nd electronic component with a cooler with which the inverter of 1st Embodiment is equipped. It is a block diagram showing typically the inverter of a 2nd embodiment.
  • the first exemplary embodiment of the present invention relates to an electronic component with a cooler and an inverter.
  • FIG. 1 is a block diagram schematically illustrating the inverter according to the first embodiment. *
  • An inverter 1000 illustrated in FIG. 1 is an inverter device that operates as a power conversion device that converts direct current into three-phase alternating current.
  • DC and control signals are input to the inverter 1000.
  • Inverter 1000 smoothes the input direct current, and switches the smoothed direct current according to the input control signal to generate a three-phase alternating current.
  • the generated three-phase alternating current is output from the inverter 1000.
  • the output three-phase alternating current is supplied to the electric motor.
  • the generated three-phase alternating current may be supplied to a load other than the electric motor.
  • the inverter 1000 may generate alternating current other than three-phase alternating current. For example, the inverter 1000 may generate a single-phase alternating current. *
  • the inverter 1000 includes a first electronic component with cooler 1020 and a second electronic component with cooler 1021. *
  • the first electronic component with a cooler 1020 is an electronic component with a cooler that includes a cooler and a smoothing capacitor that is cooled by the cooler. *
  • the second electronic component 1021 with a cooler is an electronic component with a cooler including a cooler and a semiconductor power module cooled by the cooler.
  • the inverter 1000 may include an electronic component with a cooler other than the first electronic component with cooler 1020 and the second electronic component with cooler 1021.
  • the inverter 1000 may include an electronic component that is not cooled by the cooler in addition to the electronic component that is cooled by the cooler.
  • a device other than the inverter 1000 may include the first electronic component with cooler 1020 and the second electronic component with cooler 1021.
  • FIG. 2 is a cross-sectional view schematically illustrating a first electronic component with a cooler provided in the inverter of the first embodiment.
  • 3 and 4 are enlarged cross-sectional views schematically illustrating a part of the first electronic component with a cooler provided in the inverter according to the first embodiment.
  • 3 and 4 are enlarged views of part A and part B of FIG. 2, respectively.
  • the first electronic component 1020 with a cooler includes a cooler 1040, a smoothing capacitor 1041, a first electrical insulator 1042, and a second electrical insulator 1043.
  • the smoothing capacitor 1041 is a capacitor that becomes a first electronic component in the first electronic component with cooler 1020, is cooled by the cooler 1040, and is cooled by the first electric insulating material 1042 and the second electric insulating material 1043. Electrically isolated from the vessel 1040.
  • the cooler 1040 also serves as a capacitor case. For this reason, the smoothing capacitor 1041 is accommodated in the space 1060 inside the cooler 1040. Smoothing capacitor 1041 smoothes the direct current input to inverter 1000. *
  • the first electronic component with cooler 1020 may include components other than the cooler 1040, the smoothing capacitor 1041, the first electrical insulating material 1042, and the second electrical insulating material 1043. *
  • the cooler 1040 has a box shape as illustrated in FIG. 2.
  • the cooler 1040 includes a first double wall 1081, a second double wall 1082, and a third double wall 1083. *
  • the first double wall 1081 has a first end 1101 and a second end 1102 that are separated from each other in the first direction D1.
  • the second double wall 1082 has a third end 1103 and a fourth end 1104 that are separated from each other in the second direction D2.
  • the third double wall 1083 has a fifth end 1105 and a sixth end 1106 that are separated from each other in the third direction D3.
  • the second direction D2 is a direction parallel to the first direction D1.
  • the second direction D2 may be inclined from a direction parallel to the first direction D1.
  • the third direction D3 is a direction perpendicular to the first direction D1 and the second direction D2.
  • the third direction D3 may be inclined from a direction perpendicular to the first direction D1 and the second direction D2. Therefore, the third direction D3 is defined as a direction different from the first direction D1 and the second direction D2. *
  • the second double wall 1082 faces the first double wall 1081. More specifically, the second double wall 1082 faces the first double wall 1081 through the capacitor 1360.
  • the fifth end 1105 of the third double wall 1083 is connected to the second end 1102 of the first double wall 1081.
  • the sixth end 1106 of the third double wall 1083 is connected to the third end 1103 of the second double wall 1082.
  • the cooler 1040 further includes a wall 1120. *
  • the wall 1120 includes a seventh end 1107 and an eighth end 1108 that are separated from each other in the fourth direction D4.
  • the fourth direction D4 is a direction parallel to the third direction D3.
  • the fourth direction D4 may be inclined from a direction parallel to the third direction D3.
  • the fourth direction D4 is a direction perpendicular to the first direction D1 and the second direction D2.
  • the fourth direction D4 may be inclined from a direction perpendicular to the first direction D1 and the second direction D2. Accordingly, the fourth direction D4 is defined as a direction different from the first direction D1 and the second direction D2. *
  • the wall 1120 faces the third double wall 1083. More specifically, the wall 1120 faces the third double wall 1083 through the capacitor 1360.
  • the seventh end 1107 of the wall 1120 is connected to the first end 1101 of the first double wall 1081.
  • the eighth end 1108 of the wall 1120 is connected to the fourth end 1104 of the second double wall 1082.
  • the cooler 1040 further includes a bottom 1140. *
  • the cooler 1040 has an internal space 1060 that is surrounded on all sides by a first double wall 1081, a second double wall 1082, a third double wall 1083, and a wall 1120.
  • the bottom 1140 closes one opening of the space 1060 inside the cooler 1040.
  • the cooler 1040 may include a lid that closes the other opening of the space 1060 inside the cooler 1040.
  • the first double wall 1081, the second double wall 1082, the third double wall 1083, the wall 1120, and the bottom 1140 constitute a cooler 1040 having a rectangular parallelepiped shape. Both or one of the wall 1120 and the bottom 1140 may be omitted.
  • the first double wall 1081, the second double wall 1082, and the third double wall 1083 provide a cooler having a U-shape. It is done.
  • a cooler having an interior space in which one side is surrounded by the first double wall 1081, the second double wall 1082, and the third double wall 1083 is opened. It is done.
  • the smoothing capacitor 1041 is disposed between the first double wall 1081 and the second double wall 1082.
  • the smoothing capacitor 1041 is accommodated in the space 1060 inside the cooler 1040 by arranging the smoothing capacitor 1041 between the first double wall 1081 and the second double wall 1082.
  • the smoothing capacitor 1041 is larger than other electronic components. Since the smoothing capacitor 1041 is accommodated in the space 1060 inside the cooler 1040, a terminal for holding and fixing the smoothing capacitor 1041, which is necessary when the smoothing capacitor 1041 is not accommodated in the space 1060 inside the cooler 1040, etc. This part can be omitted. The part is large and bulky and forms a dead space around it. For this reason, since the said part can be abbreviate
  • the smoothing capacitor 1041 generates heat by current. Further, the heat generation of the smoothing capacitor 1041 increases as the capacity of the smoothing capacitor 1041 decreases. The reason why the heat generation of the smoothing capacitor 1041 increases as the capacity of the smoothing capacitor 1041 decreases is because the load per capacity increases.
  • the smoothing capacitor 1041 needs to be effectively cooled in order to reduce the capacity of the smoothing capacitor 1041.
  • the smoothing capacitor 1041 includes a capacitor such as a film capacitor, and includes a first electrode 1161 and a second electrode 1162 as illustrated in FIGS. 2, 3, and 4.
  • the first electrode 1161 is disposed at one end of the smoothing capacitor 1041.
  • the second electrode 1162 is disposed at the other end of the smoothing capacitor 1041.
  • the first electrode 1161 and the second electrode 1162 need to be effectively cooled.
  • a space corresponding to the size of the two coolers is required.
  • a space for arranging piping connecting two coolers is also required.
  • Inverter 1000 is also provided with a cooler that cools the semiconductor power module. Therefore, the influence of the size of the piping that connects the two coolers and the size of the parts that hold and fix the two coolers on the size of inverter 1000 Is big.
  • the portion through which the heat flow from the smoothing capacitor 1041 passes needs to be made of a metal having high thermal conductivity.
  • the entire cooler 1040 is made of metal, it is difficult to reduce the weight and cost of the cooler 1040 and the inverter 1000.
  • the structure of the cooler 1040 that can effectively cool the smoothing capacitor 1041 and can reduce the size, weight, and cost of the inverter 1000 will be described.
  • the cooler 1040 includes a structure 1160 made of resin.
  • the cooler 1040 includes a first plate 1181 and a second plate 1182 made of metal.
  • the metal may be a pure metal or an alloy.
  • the first plate 1181 and the second plate 1182 are fixed to the structure body 1160. Therefore, the structure body 1160 serves as a support body that supports the first plate 1181 and the second plate 1182.
  • the cooler 1040 is manufactured by, for example, joining the first plate 1181 and the second plate 1182 to the structure 1160.
  • the first plate 1181 is a metal plate on one side.
  • the second plate 1182 is a metal plate on the other side. For this reason, the second plate 1182 faces the first plate 1181. *
  • the cooler 1040 has a double structure in which boxes are stacked. *
  • the first double wall 1081 includes a first inner wall 1201 and a first outer wall 1221 constituting a double structure.
  • the first inner wall 1201 includes a first plate 1181 made of metal.
  • the first double wall 1081 has a first flow path 1241 sandwiched between the first inner wall 1201 and the first outer wall 1221.
  • the first flow path 1241 has a coolant inlet 1260 at the first end 1101. *
  • the second double wall 1082 includes a second inner wall 1202 and a second outer wall 1222 that form a double structure.
  • the second inner wall 1202 is opposed to the first inner wall 1201 and includes a second plate 1182 made of metal.
  • the second double wall 1082 has a second flow path 1242 sandwiched between the second inner wall 1202 and the second outer wall 1222.
  • the second flow path 1242 has a coolant outlet 1261 at the fourth end 1104. *
  • the third double wall 1083 includes a third inner wall 1203 and a third outer wall 1223 constituting a double structure.
  • the third double wall 1083 has a third flow path 1243 sandwiched between the third inner wall 1203 and the third outer wall 1223.
  • the third flow path 1243 is connected to the first flow path 1241 at the fifth end 1105 of the third double wall 1083, and the third flow path 1243 is connected to the first end 1106 of the third double wall 1083. 2 channel 1242. *
  • the third flow path 1243 is connected to the first flow path 1241 and the second flow path 1242, the first flow path 1241, the third flow path 1243, and the second flow path from the coolant inlet 1260.
  • a path that reaches the coolant outlet 1261 sequentially through the flow path 1242 is formed.
  • the cooling liquid 1320 enters the first flow path 1241 through the cooling liquid inlet 1260, and sequentially flows through the first flow path 1241, the third flow path 1243, and the second flow path 1242.
  • the second channel 1242 exits through the outlet 1261.
  • the coolant inlet 1260 is connected to a pipe for guiding the coolant.
  • the first flow path 1241 is a path portion that is inside the first double wall 1081 and occupies a part of the path.
  • the third flow path 1243 is a side path portion that occupies a part of the path inside the third double wall 1083 between the first double wall 1081 and the second double wall 1082. ing.
  • the second flow path 1242 is a path portion that is inside the second double wall 1082 and occupies a part of the path.
  • the coolant outlet 1261 is connected to a pipe for guiding the coolant. *
  • One surface 1281 of the first plate 1181 is exposed to the first flow path 1241 as shown in FIG. For this reason, the coolant 1320 flowing through the first flow path 1241 directly contacts one surface 1281 of the first plate 1181.
  • One surface 1282 of the second plate 1182 is exposed to the second flow path 1242, as shown in FIG. For this reason, the coolant 1320 flowing through the second flow path 1242 directly contacts one surface 1282 of the second plate 1182.
  • the first double wall 1081, the second double wall 1082, and the third double wall 1083 constitute a double wall having a U-shape, as shown in FIG. Therefore, the first flow path 1241, the second flow path 1242, and the third flow path 1243 included in the first double wall 1081, the second double wall 1082, and the third double wall 1083, respectively, A flow path having a U-shape is formed. Therefore, the double wall having a U-shape has a flow path having a U-shape.
  • the U-shaped flow path guides the coolant 1320 on the plane disposed at the position of the first flow path 1241 and on the plane disposed at the position of the second flow path 1242. *
  • the cooling liquid 1320 is cooling water made of water or an aqueous solution. For this reason, the 1st flow path 1241, the 2nd flow path 1242, and the 3rd flow path 1243 become a water channel.
  • the water channel through which the cooling water flows is also called a cooling water channel.
  • the cooling liquid 1320 may be a cooling liquid other than the cooling water.
  • the degree of freedom of the shape of the structure 1160 made of resin is large. For this reason, the freedom degree of the shape of the cooler 1040 comprised by the structure 1160 which consists of resin except the 1st board 1181 and the 2nd board 1182 is large. Since the degree of freedom of the shape of the cooler 1040 is large, it is easy to produce a double wall having a U-shaped shape having a flow path having a U-shaped shape. It is also easy to form a bent portion having a wide width necessary for forming a flow path having a U-shape. *
  • the second flow path 1242 is connected to the first flow path 1241 through the third flow path 1243 inside the third double wall 1083.
  • the second flow path 1242 is connected to the first flow path 1241 through the third flow path 1243 inside the third double wall 1083, whereby the second flow path 1242 is connected to the first flow path 1241. It is possible to omit the cooling pipe to be connected to and parts for holding and fixing the cooling pipe. For this reason, the inverter 1000 can be reduced in size, weight, and cost. *
  • the third double wall 1083 having the third flow path 1243 that connects the second flow path 1242 to the first flow path 1241 is made of a resin, and is one of the coolers 1040 having a box shape. Part. For this reason, it is easy to form the third double wall 1083 that contributes to space saving. *
  • the smoothing capacitor 1041 includes a first cooled portion 1341 and a second cooled portion 1342 as illustrated in FIGS. 2, 3, and 4.
  • the first cooled part 1341 is the first electrode 1161.
  • the second cooled part 1342 is the second electrode 1162.
  • the position of the other end of the smoothing capacitor 1041 where the second electrode 1162 is disposed is different from the position of one end of the smoothing capacitor 1041 where the first electrode 1161 is disposed. For this reason, the second cooled part 1342 is separated from the first cooled part 1341. *
  • the flow path having the U-shape guides the coolant 1320 on two planes respectively disposed at two different positions. Therefore, according to the flow path having a U-shape, the smoothing capacitor 1041 that releases heat from the first cooled portion 1341 and the second cooled portion 1342 that are respectively arranged at two different positions is effective. Cooled.
  • the first cooled portion 1341 is disposed in the space 1060 inside the cooler 1040 and is in contact with the first plate 1181 through the first electrical insulating material 1042. As described above, the coolant 1320 flowing through the first flow path 1241 directly contacts one surface 1281 of the first plate 1181. Further, the first cooled portion 1341 is in contact with the other surface 1301 of the first plate 1181 through the first electrical insulating material 1042. In addition, since the first plate 1181 is made of a metal having high thermal conductivity, the first plate 1181 is a heat radiating plate that allows a heat flow to flow through the coolant 1320. For this reason, the heat released from the first cooled part 1341 is transmitted to the coolant 1320 flowing through the first flow path 1241 via the first plate 1181.
  • the first cooled portion 1341 is effectively cooled.
  • the second cooled portion 1342 is disposed in the space 1060 inside the cooler 1040 and is in contact with the second plate 1182 through the second electrical insulating material 1043.
  • the coolant 1320 flowing through the second flow path 1242 directly contacts one surface 1282 of the second plate 1182.
  • the second cooled portion 1342 is in contact with the other surface 1302 of the second plate 1182 through the second electrical insulating material 1043.
  • the second plate 1182 is made of a metal having high thermal conductivity, the second plate 1182 is a heat radiating plate that allows a heat flow to flow through the coolant 1320.
  • the heat released from the second cooled portion 1342 passes through the second plate 1182 made of a metal having high thermal conductivity to the coolant 1320 flowing through the second flow path 1242. Reportedly. By transferring heat through the second plate 1182 having high thermal conductivity, the second cooled part 1342 is effectively cooled.
  • the coolant 1320 to which heat is not transferred passes through the coolant inlet 1260 and enters the first flow path 1241, and the coolant 1320 to which heat is transferred passes through the coolant outlet 1261.
  • the coolant 1320 to which heat has been transferred is replaced with the coolant 1320 to which heat has not been transferred.
  • the smoothing capacitor 1041 is effectively cooled by the first to third technical features described above.
  • the first technical feature is that the heat emitted from the first cooled portion 1341 passes through the first plate 1181 having high thermal conductivity to the coolant 1320 flowing through the first flow path 1241. It is to be communicated.
  • the second technical feature is that the heat released from the second cooled portion 1342 passes through the second plate 1182 having a high thermal conductivity to the coolant 1320 flowing through the second flow path 1242. It is to be communicated.
  • a third technical feature is that the coolant 1320 to which heat is transmitted is replaced with a coolant 1320 to which heat is not transmitted.
  • the first electrical insulating material 1042 is an electrically necessary insulating material and has a plate shape.
  • the first electrical insulating material 1042 prevents the first cooled portion 1341 from coming into direct contact with the first plate 1181.
  • the first cooled portion 1341 is electrically insulated from the first plate 1181.
  • the second electrical insulating material 1043 is an electrically necessary insulating material and has a plate shape.
  • the second electrically insulating material 1043 prevents the second cooled portion 1342 from coming into direct contact with the second plate 1182. Further, the second cooled portion 1342 is electrically insulated from the second plate 1182.
  • the first cooled portion 1341 is brought into close contact with the first electrical insulating material 1042 or joined to the first electrical insulating material 1042.
  • the first electrical insulating material 1042 is brought into close contact with the first plate 1181 or bonded to the first plate 1181. Due to the close contact or bonding, the thermal resistance between the first cooled part 1341 and the first plate 1181 is lowered, and the first cooled part 1341 is effectively cooled.
  • the second cooled portion 1342 is brought into close contact with the second electrical insulating material 1043 or joined to the second electrical insulating material 1043.
  • the second electrical insulating material 1043 is brought into close contact with the second plate 1182 or joined to the second plate 1182. Due to the close contact or bonding, the thermal resistance between the second cooled portion 1342 and the second plate 1182 is lowered, and the second cooled portion 1342 is effectively cooled.
  • the portion through which the heat flow from the first cooled portion 1341 and the second cooled portion 1342 passes is made of metal.
  • the portion through which the heat flow from the first cooled portion 1341 and the second cooled portion 1342 hardly passes is made of resin.
  • the cooler 1040, the electronic component 1020 with a cooler, and the inverter 1000 can be reduced in weight and cost.
  • One surface 1281 of the first plate 1181 and one surface 1282 of the second plate 1182 may have heat radiation fins.
  • the heat radiation fins facilitate heat transfer from the first plate 1181 and the second plate 1182 to the coolant 1320. Since heat is easily transferred from the first plate 1181 and the second plate 1182 to the coolant 1320, the first cooled portion 1341 and the second cooled portion 1342 are effectively cooled, respectively. *
  • the smoothing capacitor 1041 includes a plurality of capacitors 1360, a first bus bar electrode 1361, and a second bus bar electrode 1362.
  • the smoothing capacitor 1041 may include a member other than the plurality of capacitors 1360, the first bus bar electrode 1361, and the second bus bar electrode 1362.
  • First bus bar electrode 1361 is electrically connected to one electrode 1380 provided for each of a plurality of capacitors 1360.
  • Second bus bar electrode 1362 is electrically connected to the other electrode 1381 provided in each of the plurality of capacitors 1360.
  • a plurality of capacitors 1360 are electrically connected in parallel by the first bus bar electrode 1361 and the second bus bar electrode 1362.
  • the plurality of capacitors 1360 may be replaced with one capacitor.
  • the first bus bar electrode 1361 and the second bus bar electrode 1362 may be omitted.
  • the first bus bar electrode 1361 includes a first cooled part 1341.
  • the second bus bar electrode 1362 includes a second cooled part 1342. *
  • At least a part of the first bus bar electrode 1361 and the second bus bar electrode 1362 is covered with a double wall having a U-shape. Since the first bus bar electrode 1361 and the second bus bar electrode 1362 are covered with a U-shaped double wall, the heat generated by the plurality of capacitors 1360 is generated by the first bus bar electrode 1361 and the second bus bar. It is transmitted to the coolant 1320 flowing through the first flow path 1241 and the second flow path 1242 via the electrodes 1362, respectively. The heat generated by the plurality of capacitors 1360 is transmitted to the coolant 1320, so that heat is radiated from the plurality of capacitors 1360. *
  • FIG. 5 is a cross-sectional view schematically illustrating a second electronic component with a cooler provided in the inverter of the first embodiment.
  • the smoothing capacitor 1041 is replaced with the semiconductor power module 1541, and the shape of the cooler 1040 is adapted to the semiconductor power module 1541 from the shape suitable for the smoothing capacitor 1041. It is different from the first electronic component with cooler 1020 shown in FIG. 2 in that the shape is changed. *
  • the semiconductor power module 1541 is a semiconductor power module that becomes the first electronic component in the second electronic component with cooler 1021.
  • the semiconductor power module 1541 switches the smoothed direct current according to the control signal input to the inverter 1000 to generate a three-phase alternating current.
  • the first cooled part 1341 is the back surface of the semiconductor power module 1541.
  • the second cooled part 1342 is the surface of the semiconductor power module 1541.
  • the back surface of the semiconductor power module 1541 is one surface of the semiconductor power module 1541.
  • the surface of the semiconductor power module 1541 is the other surface of the semiconductor power module 1541.
  • the height of the back surface of the semiconductor power module 1541 is different from the height of the surface of the semiconductor power module 1541. For this reason, the second cooled part 1342 is separated from the first cooled part 1341. *
  • the second electronic component 1021 with the cooler has the same advantages as the electronic component 1020 with the first cooler. *
  • the smoothing capacitor 1041 is replaced with a coil, and the shape of the cooler 1040 is changed from a shape that fits the smoothing capacitor 1041 to a shape that fits the coil, and the first electronic component with cooler 1020 shown in FIG.
  • Different electronic components with a cooler have advantages similar to those of the first electronic component with cooler 1020. *
  • the second exemplary embodiment of the present invention relates to an electronic component with a cooler and an inverter.
  • FIG. 6 is a block diagram schematically illustrating the inverter according to the second embodiment. *
  • An inverter 2000 illustrated in FIG. 6 is an inverter device that operates as a power conversion device that converts direct current into three-phase alternating current, similarly to the inverter 1000 illustrated in FIG. 1. *
  • the inverter 2000 includes an electronic component 2022 with a cooler. *
  • the electronic component 2022 with a cooler is an electronic component with a cooler including a cooler, a smoothing capacitor cooled by the cooler, and a semiconductor power module.
  • the inverter 2000 may include an electronic component with a cooler other than the electronic component 2022 with a cooler.
  • the inverter 2000 may include an electronic component that is not cooled by the cooler in addition to the electronic component that is cooled by the cooler.
  • a device other than the inverter 2000 may include the electronic component 2022 with a cooler.
  • FIG. 7 is a perspective view schematically illustrating an electronic component with a cooler provided in the inverter of the second embodiment.
  • FIG. 8 is a cross-sectional view schematically illustrating an electronic component with a cooler provided in the inverter of the second embodiment.
  • FIG. 8 illustrates a cross section at the position of section line CC in FIG.
  • the electronic component 2022 with a cooler illustrated in FIGS. 7 and 8 includes a semiconductor power module 1541 and a third electrical insulating material 2044, and the electronic component cooled by the cooler 1040 is changed from the smoothing capacitor 1041 alone to the smoothing capacitor. It differs from the 1st electronic component 1020 with a cooler shown in FIG. 2 by the point changed to 1041 and the semiconductor power module 1541.
  • the electronic component 2022 with a cooler includes a cooler 1040, a smoothing capacitor 1041, a semiconductor power module 1541, a first electrical insulation material 1042, a second electrical insulation material 1043, and a second electrical insulation material 1043. 3 electrical insulation 2044. *
  • the smoothing capacitor 1041 is a capacitor that becomes a first electronic component in the electronic component 2022 with a cooler, is cooled by the cooler 1040, and is cooled from the cooler 1040 by the first electrical insulating material 1042 and the second electrical insulating material 1043. Electrically insulated. Smoothing capacitor 1041 smoothes the direct current input to inverter 2000. *
  • the semiconductor power module 1541 is a semiconductor power module that becomes the second electronic component in the electronic component 2022 with the cooler, and is cooled by the cooler 1040 and electrically insulated from the cooler 1040 by the third electrical insulating material 2044.
  • the semiconductor power module 1541 switches the smoothed direct current to generate a three-phase alternating current.
  • the semiconductor power module 1541 includes a plurality of semiconductor elements that perform a switching operation.
  • Each of the plurality of semiconductor elements is an insulated gate bipolar transistor (IGBT).
  • the semiconductor power module 1541 is an IGBT module.
  • the semiconductor power module 1541 may be a semiconductor power module other than the IGBT module. *
  • the cooler 1040 provided in the electronic component 2022 with the cooler includes a third plate 2183 made of metal.
  • the metal may be a pure metal or an alloy.
  • the third plate 2183 is fixed to the structure 1160. *
  • the second outer wall 1222 provided in the electronic component 2022 with a cooler includes a third plate 2183 made of metal. *
  • One surface 2283 of the third plate 2183 is exposed to the second flow path 1242. For this reason, the coolant 1320 flowing through the second flow path 1242 directly contacts one surface 2283 of the third plate 2183.
  • the semiconductor power module 1541 is mounted on the other surface 2303 of the third plate 2183.
  • the semiconductor power module 1541 is disposed in a space outside the cooler 1040 and is in contact with the third plate 2183 via the third electrical insulating material 2044.
  • the coolant 1320 flowing through the second flow path 1242 directly contacts one surface 2283 of the third plate 2183.
  • the semiconductor power module 1541 is in contact with the other surface 2303 of the third plate 2183 through the third electrical insulating material 2044.
  • the third plate 2183 is made of a metal having high thermal conductivity, and thus serves as a heat radiating plate that allows a heat flow to flow through the coolant 1320. For this reason, the heat released from the semiconductor power module 1541 is transmitted to the coolant 1320 flowing through the second flow path 1242 via the third plate 2183 made of metal having high thermal conductivity. By transferring heat via the third plate 2183 having high thermal conductivity, the semiconductor power module 1541 is effectively cooled. *
  • the third electrical insulating material 2044 has a plate shape.
  • the third electrical insulating material 2044 prevents the semiconductor power module 1541 from coming into direct contact with the third plate 2183. Further, the semiconductor power module 1541 is electrically insulated from the third plate 2183. *
  • the semiconductor power module 1541 is brought into close contact with the third electrical insulating material 2044 or joined to the third electrical insulating material 2044.
  • the third electrical insulating material 2044 is brought into close contact with the third plate 2183 or joined to the third plate 2183. Due to the close contact or bonding, the thermal resistance between the semiconductor power module 1541 and the third plate 2183 is lowered, and the semiconductor power module 1541 is effectively cooled. *
  • One surface 2283 of the third plate 2183 is processed to form a heat radiating fin.
  • one surface 2283 of the 3rd board 2183 has a radiation fin.
  • the heat dissipating fin is preferably a minute dense heat dissipating fin having a large number of closely spaced fine protrusions.
  • the heat radiation fins facilitate heat transfer from the third plate 2183 to the coolant 1320. Since heat is easily transferred from the third plate 2183 to the coolant 1320, the semiconductor power module 1541 that generates a large amount of heat is effectively cooled. *
  • the structure of the third plate 2183 may be different from the structures of the first plate 1181 and the second plate 1182. For example, it is allowed that the first plate 1181 and the second plate 1182 have no heat radiation fins even though the third plate 2183 has heat radiation fins. *
  • the electronic component 2022 with the cooler has advantages similar to those of the electronic component 1020 with the first cooler and the electronic component 1021 with the second cooler. *
  • both the second inner wall 1202 and the second outer wall 1222 as well as the space 1060 inside the cooler 1040 and the space outside the cooler 1040 are smoothing capacitors. It is used for cooling two electronic components comprising 1041 and the semiconductor power module 1541. For this reason, it is possible to reduce the space required for cooling the two electronic components.
  • the semiconductor power module 1541 is disposed in the vicinity of the smoothing capacitor 1041 with the second double wall 1082 interposed therebetween. For this reason, the 1st bus-bar electrode 1361 and the 2nd bus-bar electrode 1362 which electrically connect the smoothing capacitor 1041 and the semiconductor power module 1541 mutually become short.
  • the parasitic inductance of the first bus bar electrode 1361 and the second bus bar electrode 1362 is reduced.
  • the surge voltage generated due to the switching operation of the semiconductor element inside the semiconductor power module 1541 is reduced. For this reason, the electrical performance of the electronic component 2022 with a cooler improves.
  • the semiconductor power module 1541 includes a plurality of semiconductor elements. Each semiconductor element becomes a local heat source. Further, each semiconductor element generates a large amount of heat. For this reason, the semiconductor power module 1541 includes a plurality of heat sources. Each heat source becomes a local heat source. The heat generated by each heat source is large. Therefore, the heat generated by the semiconductor power module 1541 is large. *
  • the back surface of the semiconductor power module 1541 When the back surface of the semiconductor power module 1541 is cooled, the back surface of the semiconductor power module 1541 needs to be uniformly cooled over a wide range. Therefore, the heat removal performance of the cooler 1040 needs to be uniform over a wide range. The cooler 1040 needs to have high heat removal performance.
  • the back surface of the semiconductor power module 1541 is cooled by a cooler having a linear cooling water channel extending along a one-stroke path, the back surface of the semiconductor power module 1541 is uniformly spread over a wide range.
  • a cooling water channel becomes long.
  • the pressure loss increases.
  • the pump that circulates the cooling water becomes larger.
  • the back surface of the semiconductor power module 1541 is cooled by a cooler having a strip-shaped cooling water channel extending from one end portion to the other end portion of the back surface of the semiconductor power module 1541, the back surface of the semiconductor power module 1541 is wide.
  • a rectifier that uniformly adjusts the flow of cooling water from one end to the other end in the width direction perpendicular to the direction from one end to the other end is required.
  • the rectifier may occupy some area of the cooler or may be a separate component from the cooler. However, in order to arrange the rectifier, a space for the arrangement is necessary.
  • the cooler 1040 has a third flow path 1243 upstream of the second flow path 1242 in which the coolant 1320 for cooling the semiconductor power module 1541 flows. Therefore, by providing a rectifier on the third double wall 1083 having the third flow path 1243, the flow of the coolant 1320 in the second flow path 1242 without increasing the size of the electronic component 2022 with a cooler.
  • the semiconductor power module 1541 can be effectively cooled.
  • FIG. 12 is a plan view schematically illustrating rectifying fins provided in the inverter according to the second embodiment. *
  • the third inner wall 1203 or the third outer wall 1223 includes a rectifying fin 2600 illustrated in FIG. *
  • the rectifying fin 2600 protrudes toward the third flow path 1243 at the third inner wall 1203 or the third outer wall 1223 and has a surface 2620.
  • the surface 2620 approaches the peripheral portion 2641 of the third flow path 1243 from the central portion 2640 of the third flow path 1243 as it proceeds in the direction D21 from the fifth end 1105 toward the sixth end 1106.
  • the central portion 2640 and the peripheral portion 2641 of the third flow path 1243 are respectively a central portion and a peripheral portion in a direction that is parallel to the spreading direction of the third inner wall 1203 or the third outer wall 1223 and perpendicular to the direction D21. is there. *
  • Part of the coolant 1320 flowing through the third flow path 1243 hits the surface 2620 and is guided from the central portion 2640 of the third flow path 1243 to the peripheral portion 2641 of the third flow path 1243.
  • a part of the cooling liquid 1320 is guided to the peripheral portion 2641 of the third flow path 1243, whereby the flow of the cooling liquid 1320 in the third flow path 1243 is adjusted. That is, the flow of the coolant 1320 is suppressed from becoming weak in the peripheral portion 2641 of the third flow path 1243.
  • the flow of the coolant 1320 in the third flow path 1243 is made uniform.
  • the third double wall 1083 does not need to be provided with a plate made of metal, and may be made of only resin. For this reason, it is easy and low-cost to provide the rectifying fins 2600 on the third double wall 1083.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inverter Devices (AREA)

Abstract

A cooler for cooling an electronic component, the cooler being provided with a structure made of a resin, and being provided with a first, a second, and a third double wall. An end part of the third double wall is connected to an end part of the first and second double walls. The second double wall faces the first double wall. The first and second double walls are respectively provided with a first and second inner wall. The first and second inner walls are respectively provided with a first and second plate made of metal. The first and second plates are fixed to the structure. First and second parts to be cooled, of the electronic component, are respectively in contact with the first and second plates with first and second electrical insulation materials interposed therebetween. The second part to be cooled is set away from the first part to be cooled.

Description

冷却器付き電子部品及びインバータElectronic parts and inverter with cooler
本発明は、冷却器付き電子部品及びインバータに関する。 The present invention relates to an electronic component with a cooler and an inverter.
特開2014-96881号公報に記載されたインバータ装置は、コンデンサ装置を備える(段落0016)。コンデンサ装置においては、コンデンサが収容体に収容される(段落0017)。収容体の第1の搭載面には、第1の熱交換器が設けられる(段落0020)。収容体の第2の搭載面には、第2の熱交換器が設けられる(段落0028)。第1の熱交換器の第1の供給部及び第2の熱交換器の第2の供給部には、供給管が接続される(段落0030)。第1の熱交換器44の第1の排出部と第2の熱交換器の第2の排出部とは、排出管によって接続される(段落0031)。  
特開2014-96881号公報
The inverter device described in JP 2014-96881 A includes a capacitor device (paragraph 0016). In the capacitor device, the capacitor is accommodated in a container (paragraph 0017). A first heat exchanger is provided on the first mounting surface of the container (paragraph 0020). A second heat exchanger is provided on the second mounting surface of the container (paragraph 0028). A supply pipe is connected to the first supply part of the first heat exchanger and the second supply part of the second heat exchanger (paragraph 0030). The first exhaust part of the first heat exchanger 44 and the second exhaust part of the second heat exchanger are connected by an exhaust pipe (paragraph 0031).
JP 2014-96881 A
特開2014-96881号公報に記載されたコンデンサ装置をインバータ装置の内部に設置するためには、供給管及び排出管を配置するスペースが必要になる。また、当該コンデンサ装置をインバータ装置の内部に設置するためには、供給管及び排出管を保持及び固定する部品を配置するスペースが必要になる。  In order to install the capacitor device described in Japanese Patent Application Laid-Open No. 2014-96881 inside the inverter device, a space for arranging the supply pipe and the discharge pipe is required. Further, in order to install the capacitor device inside the inverter device, a space is required for arranging parts for holding and fixing the supply pipe and the discharge pipe. *
このため、特開2014-96881号公報に記載されたコンデンサ装置をインバータ装置の内部に設置する場合は、インバータ装置を小型化、軽量化及び低コスト化することが困難であるという問題が生じる。当該問題は、コンデンサが他の電子部品に置き換えられた場合にも生じ、コンデンサ装置がインバータ装置以外の装置の内部に設置される場合にも生じる。  Therefore, when the capacitor device described in Japanese Patent Application Laid-Open No. 2014-96881 is installed inside the inverter device, there arises a problem that it is difficult to reduce the size, weight and cost of the inverter device. This problem also occurs when the capacitor is replaced with another electronic component, and also when the capacitor device is installed inside a device other than the inverter device. *
本発明は、この問題を解決するためになされる。本発明が解決しようとする課題は、冷却器付き電子部品を備える装置を小型化、軽量化及び低コスト化することができる冷却器付き電子部品、並びに当該冷却器付き電子部品を備えるインバータを提供することである。 The present invention is made to solve this problem. The problem to be solved by the present invention is to provide an electronic component with a cooler capable of reducing the size, weight and cost of an apparatus including an electronic component with a cooler, and an inverter including the electronic component with a cooler. It is to be.
本発明の例示的なひとつの態様は、冷却器付き電子部品に向けられる。  One exemplary embodiment of the present invention is directed to an electronic component with a cooler. *
冷却器付き電子部品は、冷却器、第1の電子部品、第1の電気絶縁材及び第2の電気絶縁材を備える。  The electronic component with a cooler includes a cooler, a first electronic component, a first electrical insulating material, and a second electrical insulating material. *
冷却器は、樹脂からなる構造体を備える。第1の電子部品は、冷却器により冷却される。  The cooler includes a structure made of resin. The first electronic component is cooled by a cooler. *
冷却器は、第1の二重壁、第2の二重壁及び第3の二重壁を備える。  The cooler includes a first double wall, a second double wall, and a third double wall. *
第1の二重壁は、第1の方向に互いに離れている第1の端部及び第2の端部を有する。第1の二重壁は、第1の内壁及び第1の外壁を備える。第1の二重壁は、第1の内壁と第1の外壁とに挟まれる第1の流路を有する。  The first double wall has a first end and a second end that are separated from each other in a first direction. The first double wall includes a first inner wall and a first outer wall. The first double wall has a first flow path sandwiched between the first inner wall and the first outer wall. *
第2の二重壁は、第2の方向に互いに離れている第3の端部及び第4の端部を有する。第2の二重壁は、第2の内壁及び第2の外壁を備える。第2の二重壁は、第2の内壁と第2の外壁とに挟まれる第2の流路を有する。第2の二重壁は、第1の二重壁に対向する。  The second double wall has a third end and a fourth end that are separated from each other in the second direction. The second double wall includes a second inner wall and a second outer wall. The second double wall has a second flow path sandwiched between the second inner wall and the second outer wall. The second double wall faces the first double wall. *
第3の二重壁は、第3の方向に互いに離れている第5の端部及び第6の端部を有する。第5の端部及び第6の端部は、第2の端部及び第3の端部にそれぞれ接続されている。第3の二重壁は、第3の内壁及び第3の外壁を備える。第3の二重壁は、第3の内壁と第3の外壁とに挟まれる第3の流路を有する。第3の方向は、第1の方向及び第2の方向と異なる。  The third double wall has a fifth end and a sixth end that are separated from each other in a third direction. The fifth end and the sixth end are connected to the second end and the third end, respectively. The third double wall includes a third inner wall and a third outer wall. The third double wall has a third flow path sandwiched between the third inner wall and the third outer wall. The third direction is different from the first direction and the second direction. *
第1の内壁及び第2の内壁は、それぞれ金属からなる第1の板及び第2の板を備える。第1の板及び第2の板は、構造体に固定される。  The first inner wall and the second inner wall each include a first plate and a second plate made of metal. The first plate and the second plate are fixed to the structure. *
第1の電子部品は、第1の被冷却部及び第2の被冷却部を備え、第1の二重壁と第2の二重壁との間に配置される。第2の被冷却部は、第1の被冷却部から離れている。  The first electronic component includes a first cooled portion and a second cooled portion, and is disposed between the first double wall and the second double wall. The second cooled part is separated from the first cooled part. *
第1の被冷却部は、第1の電気絶縁材を介して第1の板に接触する。第2の被冷却部は、第2の電気絶縁材を介して第2の板に接触する。  The first cooled part is in contact with the first plate via the first electrical insulating material. The second cooled part comes into contact with the second plate via the second electrical insulating material. *
本発明の例示的なひとつの態様は、冷却器付き電子部品を備えるインバータにも向けられる。 One exemplary aspect of the present invention is also directed to an inverter that includes an electronic component with a cooler.
本発明の例示的なひとつの態様によれば、第1の電子部品が冷却器の内部の空間に収容される。第1の電子部品が冷却器の内部の空間に収容されることにより、第1の電子部品を保持及び固定する部品を省略することができる。このため、冷却器付き電子部品を備える装置を小型化、軽量化及び低コスト化することができる。  According to an exemplary embodiment of the present invention, the first electronic component is accommodated in a space inside the cooler. By accommodating the first electronic component in the space inside the cooler, the component that holds and fixes the first electronic component can be omitted. For this reason, an apparatus provided with the electronic component with a cooler can be reduced in size, weight, and cost. *
また、本発明の例示的なひとつの態様によれば、第3の二重壁の内部の第3の流路を介して第2の流路が第1の流路につながる。第3の二重壁の内部の第3の流路を介して第2の流路が第1の流路につながることにより、第2の流路を第1の流路につなげる冷却配管、及び当該冷却配管を保持及び固定する部品を省略することができる。このため、冷却器付き電子部品を備える装置を小型化、軽量化及び低コスト化することができる。  Moreover, according to one exemplary aspect of the present invention, the second flow path is connected to the first flow path via the third flow path inside the third double wall. A cooling pipe connecting the second flow path to the first flow path by connecting the second flow path to the first flow path via the third flow path inside the third double wall; and Parts for holding and fixing the cooling pipe can be omitted. For this reason, an apparatus provided with the electronic component with a cooler can be reduced in size, weight, and cost. *
また、本発明の例示的なひとつの態様によれば、冷却器において第1の被冷却部及び第2の被冷却部からの熱流がほとんど通らない部分が樹脂からなる。このため、冷却器付き電子部品を備える装置を軽量化及び低コスト化することができる。 Moreover, according to one exemplary aspect of the present invention, the portion of the cooler through which the heat flow from the first cooled portion and the second cooled portion hardly passes is made of resin. For this reason, an apparatus provided with the electronic component with a cooler can be reduced in weight and cost.
第1実施形態のインバータを模式的に図示するブロック図である。1 is a block diagram schematically illustrating an inverter according to a first embodiment. 第1実施形態のインバータに備えられる第1の冷却器付き電子部品を模式的に図示する断面図である。It is sectional drawing which illustrates typically the electronic component with a 1st cooler with which the inverter of 1st Embodiment is equipped. 第1実施形態のインバータに備えられる第1の冷却器付き電子部品の一部を模式的に図示する拡大断面図である。It is an expanded sectional view showing typically some electronic components with a 1st cooler with which the inverter of a 1st embodiment is equipped. 第1実施形態のインバータに備えられる第1の冷却器付き電子部品の一部を模式的に図示する拡大断面図である。It is an expanded sectional view showing typically some electronic components with a 1st cooler with which the inverter of a 1st embodiment is equipped. 第1実施形態のインバータに備えられる第2の冷却器付き電子部品を模式的に図示する断面図である。It is sectional drawing which illustrates typically the 2nd electronic component with a cooler with which the inverter of 1st Embodiment is equipped. 第2実施形態のインバータを模式的に図示するブロック図である。It is a block diagram showing typically the inverter of a 2nd embodiment. 第2実施形態のインバータに備えられる冷却器付き電子部品を模式的に図示する斜視図である。It is a perspective view which illustrates typically the electronic component with a cooler with which the inverter of a 2nd embodiment is equipped. 第2実施形態のインバータに備えられる冷却器付き電子部品を模式的に図示する断面図である。It is sectional drawing which illustrates typically the electronic component with a cooler with which the inverter of 2nd Embodiment is equipped. 第2実施形態のインバータに備えられる冷却器を模式的に図示する斜視図である。It is a perspective view which illustrates typically the cooler with which the inverter of a 2nd embodiment is equipped. 第2実施形態のインバータに備えられる構造体を模式的に図示する斜視図である。It is a perspective view which illustrates typically the structure provided in the inverter of a 2nd embodiment. 第2実施形態のインバータに備えられる構造体、第1の板及び第2の板を模式的に図示する斜視図である。It is a perspective view which illustrates typically the structure with which the inverter of a 2nd embodiment is equipped, the 1st board, and the 2nd board. 第2実施形態のインバータに備えられる整流フィンを模式的に図示する平面図である。It is a top view which illustrates typically the rectification fin with which the inverter of a 2nd embodiment is equipped.
1 第1実施形態



 1.1 インバータの概略



 本発明の例示的な第1実施形態は、冷却器付き電子部品及びインバータに関する。 
1 First Embodiment



1.1 Outline of the inverter



The first exemplary embodiment of the present invention relates to an electronic component with a cooler and an inverter.
図1は第1実施形態のインバータを模式的に図示するブロック図である。  FIG. 1 is a block diagram schematically illustrating the inverter according to the first embodiment. *
図1に図示されるインバータ1000は、直流を三相交流に変換する電力変換装置として動作するインバータ装置である。インバータ1000には、直流及び制御用の信号が入力される。インバータ1000は、入力された直流を平滑し、平滑された直流を入力された制御用の信号にしたがってスイッチングし、三相交流を生成する。生成された三相交流は、インバータ1000から出力される。出力された三相交流は、電動機に供給される。生成された三相交流が電動機以外の負荷に供給されてもよい。インバータ1000が三相交流以外の交流を生成してもよい。例えば、インバータ1000が単相交流を生成してもよい。  An inverter 1000 illustrated in FIG. 1 is an inverter device that operates as a power conversion device that converts direct current into three-phase alternating current. DC and control signals are input to the inverter 1000. Inverter 1000 smoothes the input direct current, and switches the smoothed direct current according to the input control signal to generate a three-phase alternating current. The generated three-phase alternating current is output from the inverter 1000. The output three-phase alternating current is supplied to the electric motor. The generated three-phase alternating current may be supplied to a load other than the electric motor. The inverter 1000 may generate alternating current other than three-phase alternating current. For example, the inverter 1000 may generate a single-phase alternating current. *
インバータ1000は、第1の冷却器付き電子部品1020及び第2の冷却器付き電子部品1021を備える。  The inverter 1000 includes a first electronic component with cooler 1020 and a second electronic component with cooler 1021. *
第1の冷却器付き電子部品1020は、冷却器、及び当該冷却器により冷却される平滑コンデンサを備える冷却器付き電子部品である。  The first electronic component with a cooler 1020 is an electronic component with a cooler that includes a cooler and a smoothing capacitor that is cooled by the cooler. *
第2の冷却器付き電子部品1021は、冷却器、及び当該冷却器により冷却される半導体パワーモジュールを備える冷却器付き電子部品である。  The second electronic component 1021 with a cooler is an electronic component with a cooler including a cooler and a semiconductor power module cooled by the cooler. *
インバータ1000が、第1の冷却器付き電子部品1020及び第2の冷却器付き電子部品1021以外の冷却器付き電子部品を備えてもよい。インバータ1000が、冷却器により冷却される電子部品に加えて冷却器により冷却されない電子部品を備えてもよい。インバータ1000以外の装置が第1の冷却器付き電子部品1020及び第2の冷却器付き電子部品1021を備えてもよい。  The inverter 1000 may include an electronic component with a cooler other than the first electronic component with cooler 1020 and the second electronic component with cooler 1021. The inverter 1000 may include an electronic component that is not cooled by the cooler in addition to the electronic component that is cooled by the cooler. A device other than the inverter 1000 may include the first electronic component with cooler 1020 and the second electronic component with cooler 1021. *
1.2 第1の冷却器付き電子部品



 1.2.1 第1の冷却器付き電子部品の概略



 図2は、第1実施形態のインバータに備えられる第1の冷却器付き電子部品を模式的に図示する断面図である。図3及び図4は、第1実施形態のインバータに備えられる第1の冷却器付き電子部品の一部を模式的に図示する拡大断面図である。図3及び図4は、それぞれ図2の部分A及び部分Bを拡大して図示する。 
1.2 First electronic component with cooler



1.2.1 Outline of first electronic component with cooler



FIG. 2 is a cross-sectional view schematically illustrating a first electronic component with a cooler provided in the inverter of the first embodiment. 3 and 4 are enlarged cross-sectional views schematically illustrating a part of the first electronic component with a cooler provided in the inverter according to the first embodiment. 3 and 4 are enlarged views of part A and part B of FIG. 2, respectively.
第1の冷却器付き電子部品1020は、図2、図3及び図4に図示されるように、冷却器1040、平滑コンデンサ1041、第1の電気絶縁材1042及び第2の電気絶縁材1043を備える。  As shown in FIGS. 2, 3, and 4, the first electronic component 1020 with a cooler includes a cooler 1040, a smoothing capacitor 1041, a first electrical insulator 1042, and a second electrical insulator 1043. Prepare. *
平滑コンデンサ1041は、第1の冷却器付き電子部品1020において第1の電子部品となるコンデンサであり、冷却器1040により冷却され、第1の電気絶縁材1042及び第2の電気絶縁材1043により冷却器1040から電気的に絶縁される。冷却器1040は、コンデンサケースを兼ねる。このため、平滑コンデンサ1041は、冷却器1040の内部の空間1060に収容される。平滑コンデンサ1041は、インバータ1000に入力された直流を平滑する。  The smoothing capacitor 1041 is a capacitor that becomes a first electronic component in the first electronic component with cooler 1020, is cooled by the cooler 1040, and is cooled by the first electric insulating material 1042 and the second electric insulating material 1043. Electrically isolated from the vessel 1040. The cooler 1040 also serves as a capacitor case. For this reason, the smoothing capacitor 1041 is accommodated in the space 1060 inside the cooler 1040. Smoothing capacitor 1041 smoothes the direct current input to inverter 1000. *
第1の冷却器付き電子部品1020が冷却器1040、平滑コンデンサ1041、第1の電気絶縁材1042及び第2の電気絶縁材1043以外の部品を備えてもよい。  The first electronic component with cooler 1020 may include components other than the cooler 1040, the smoothing capacitor 1041, the first electrical insulating material 1042, and the second electrical insulating material 1043. *
1.2.2 平滑コンデンサの収容



 冷却器1040は、図2に図示されるように、箱状の形状を有する。 
1.2.2 Accommodation of smoothing capacitor



The cooler 1040 has a box shape as illustrated in FIG. 2.
冷却器1040は、第1の二重壁1081、第2の二重壁1082及び第3の二重壁1083を備える。  The cooler 1040 includes a first double wall 1081, a second double wall 1082, and a third double wall 1083. *
第1の二重壁1081は、第1の方向D1に互いに離れている第1の端部1101及び第2の端部1102を有する。第2の二重壁1082は、第2の方向D2に互いに離れている第3の端部1103及び第4の端部1104を有する。第3の二重壁1083は、第3の方向D3に互いに離れている第5の端部1105及び第6の端部1106を有する。第2の方向D2は、第1の方向D1と平行をなす方向である。第2の方向D2が、第1の方向D1と平行をなす方向から傾斜してもよい。第3の方向D3は、第1の方向D1及び第2の方向D2と垂直をなす方向である。第3の方向D3が、第1の方向D1及び第2の方向D2と垂直をなす方向から傾斜してもよい。したがって、第3の方向D3は、第1の方向D1及び第2の方向D2と異なる方向であると定義される。  The first double wall 1081 has a first end 1101 and a second end 1102 that are separated from each other in the first direction D1. The second double wall 1082 has a third end 1103 and a fourth end 1104 that are separated from each other in the second direction D2. The third double wall 1083 has a fifth end 1105 and a sixth end 1106 that are separated from each other in the third direction D3. The second direction D2 is a direction parallel to the first direction D1. The second direction D2 may be inclined from a direction parallel to the first direction D1. The third direction D3 is a direction perpendicular to the first direction D1 and the second direction D2. The third direction D3 may be inclined from a direction perpendicular to the first direction D1 and the second direction D2. Therefore, the third direction D3 is defined as a direction different from the first direction D1 and the second direction D2. *
第2の二重壁1082は、第1の二重壁1081に対向する。より具体的には、第2の二重壁1082は、コンデンサ1360を介して第1の二重壁1081に対向する。第3の二重壁1083の第5の端部1105は、第1の二重壁1081の第2の端部1102に接続される。第3の二重壁1083の第6の端部1106は、第2の二重壁1082の第3の端部1103に接続される。  The second double wall 1082 faces the first double wall 1081. More specifically, the second double wall 1082 faces the first double wall 1081 through the capacitor 1360. The fifth end 1105 of the third double wall 1083 is connected to the second end 1102 of the first double wall 1081. The sixth end 1106 of the third double wall 1083 is connected to the third end 1103 of the second double wall 1082. *
冷却器1040は、壁1120をさらに備える。  The cooler 1040 further includes a wall 1120. *
壁1120は、第4の方向D4に互いに離れている第7の端部1107及び第8の端部1108を備える。第4の方向D4は、第3の方向D3と平行をなす方向である。第4の方向D4が、第3の方向D3と平行をなす方向から傾斜してもよい。第4の方向D4は、第1の方向D1及び第2の方向D2と垂直をなす方向である。第4の方向D4が、第1の方向D1及び第2の方向D2と垂直をなす方向から傾斜してもよい。したがって、第4の方向D4は、第1の方向D1及び第2の方向D2と異なる方向であると定義される。  The wall 1120 includes a seventh end 1107 and an eighth end 1108 that are separated from each other in the fourth direction D4. The fourth direction D4 is a direction parallel to the third direction D3. The fourth direction D4 may be inclined from a direction parallel to the third direction D3. The fourth direction D4 is a direction perpendicular to the first direction D1 and the second direction D2. The fourth direction D4 may be inclined from a direction perpendicular to the first direction D1 and the second direction D2. Accordingly, the fourth direction D4 is defined as a direction different from the first direction D1 and the second direction D2. *
壁1120は、第3の二重壁1083に対向する。より具体的には、壁1120は、コンデンサ1360を介して第3の二重壁1083に対向する。壁1120の第7の端部1107は、第1の二重壁1081の第1の端部1101に接続される。壁1120の第8の端部1108は、第2の二重壁1082の第4の端部1104に接続される。


The wall 1120 faces the third double wall 1083. More specifically, the wall 1120 faces the third double wall 1083 through the capacitor 1360. The seventh end 1107 of the wall 1120 is connected to the first end 1101 of the first double wall 1081. The eighth end 1108 of the wall 1120 is connected to the fourth end 1104 of the second double wall 1082.


冷却器1040は、底1140をさらに備える。  The cooler 1040 further includes a bottom 1140. *
冷却器1040は、四方が第1の二重壁1081、第2の二重壁1082、第3の二重壁1083及び壁1120により囲まれる内部の空間1060を有する。底1140は、冷却器1040の内部の空間1060の一方の開口を塞ぐ。冷却器1040が、冷却器1040の内部の空間1060の他方の開口を塞ぐ蓋を備えてもよい。第1の二重壁1081、第2の二重壁1082、第3の二重壁1083、壁1120及び底1140により、直方体状の形状を有する冷却器1040が構成される。壁1120及び底1140の両方又は片方が省略されてもよい。壁1120及び底1140の両方が省略された場合は、第1の二重壁1081、第2の二重壁1082及び第3の二重壁1083により、U字状の形状を有する冷却器が得られる。壁1120が省略された場合は、三方が第1の二重壁1081、第2の二重壁1082及び第3の二重壁1083に囲まれ一方が開口した内部の空間を有する冷却器が得られる。  The cooler 1040 has an internal space 1060 that is surrounded on all sides by a first double wall 1081, a second double wall 1082, a third double wall 1083, and a wall 1120. The bottom 1140 closes one opening of the space 1060 inside the cooler 1040. The cooler 1040 may include a lid that closes the other opening of the space 1060 inside the cooler 1040. The first double wall 1081, the second double wall 1082, the third double wall 1083, the wall 1120, and the bottom 1140 constitute a cooler 1040 having a rectangular parallelepiped shape. Both or one of the wall 1120 and the bottom 1140 may be omitted. When both the wall 1120 and the bottom 1140 are omitted, the first double wall 1081, the second double wall 1082, and the third double wall 1083 provide a cooler having a U-shape. It is done. When the wall 1120 is omitted, a cooler having an interior space in which one side is surrounded by the first double wall 1081, the second double wall 1082, and the third double wall 1083 is opened. It is done. *
平滑コンデンサ1041は、第1の二重壁1081と第2の二重壁1082との間に配置される。平滑コンデンサ1041が第1の二重壁1081と第2の二重壁1082との間に配置されることにより、平滑コンデンサ1041は、冷却器1040の内部の空間1060に収容される。一般的に言って、平滑コンデンサ1041は他の電子部品と比較して大きい。平滑コンデンサ1041が冷却器1040の内部の空間1060に収容されることにより、平滑コンデンサ1041が冷却器1040の内部の空間1060に収容されない場合に必要となる、平滑コンデンサ1041を保持及び固定する端子等の部品を省略することができる。当該部品は、大きくて嵩張り、周囲にデッドスペースを形成する。このため、当該部品を省略することができることにより、第1の冷却器付き電子部品1020を備えるインバータ1000を小型化、軽量化及び低コスト化することができる。  The smoothing capacitor 1041 is disposed between the first double wall 1081 and the second double wall 1082. The smoothing capacitor 1041 is accommodated in the space 1060 inside the cooler 1040 by arranging the smoothing capacitor 1041 between the first double wall 1081 and the second double wall 1082. Generally speaking, the smoothing capacitor 1041 is larger than other electronic components. Since the smoothing capacitor 1041 is accommodated in the space 1060 inside the cooler 1040, a terminal for holding and fixing the smoothing capacitor 1041, which is necessary when the smoothing capacitor 1041 is not accommodated in the space 1060 inside the cooler 1040, etc. This part can be omitted. The part is large and bulky and forms a dead space around it. For this reason, since the said part can be abbreviate | omitted, the inverter 1000 provided with the electronic component 1020 with a 1st cooler can be reduced in size, weight, and cost. *
1.2.3 平滑コンデンサの冷却



 平滑コンデンサ1041は、電流により自己発熱する。また、平滑コンデンサ1041の発熱は、平滑コンデンサ1041の容量が小さくなるにつれて増える。平滑コンデンサ1041の容量が小さくなるにつれ平滑コンデンサ1041の発熱が増えるのは、容量当たりの負荷が増えるためである。 
1.2.3 Cooling of smoothing capacitor



The smoothing capacitor 1041 generates heat by current. Further, the heat generation of the smoothing capacitor 1041 increases as the capacity of the smoothing capacitor 1041 decreases. The reason why the heat generation of the smoothing capacitor 1041 increases as the capacity of the smoothing capacitor 1041 decreases is because the load per capacity increases.
一方、平滑コンデンサ1041を積極的に冷却するための構造を採用する等の冷却対策が不十分である場合、例えば平滑コンデンサ1041が樹脂で覆われる場合は、平滑コンデンサ1041が効果的に冷却されない。平滑コンデンサ1041が効果的に冷却されない場合は、容量当たりの負荷を減らして平滑コンデンサ1041の発熱を減らすために、平滑コンデンサ1041の容量が大きくされる。しかし、平滑コンデンサ1041の容量が大きくされた場合は、平滑コンデンサ1041が大きくなる。平滑コンデンサ1041が大きくなった場合は、インバータ1000も大きくなる。  On the other hand, when cooling measures such as adopting a structure for actively cooling the smoothing capacitor 1041 are insufficient, for example, when the smoothing capacitor 1041 is covered with resin, the smoothing capacitor 1041 is not effectively cooled. When the smoothing capacitor 1041 is not effectively cooled, the capacity of the smoothing capacitor 1041 is increased in order to reduce the load per capacity and reduce the heat generation of the smoothing capacitor 1041. However, when the capacity of the smoothing capacitor 1041 is increased, the smoothing capacitor 1041 is increased. When the smoothing capacitor 1041 is increased, the inverter 1000 is also increased. *
このため、インバータ1000を小型化するためには、平滑コンデンサ1041の容量を小さくするために、平滑コンデンサ1041が効果的に冷却される必要がある。  For this reason, in order to reduce the size of the inverter 1000, the smoothing capacitor 1041 needs to be effectively cooled in order to reduce the capacity of the smoothing capacitor 1041. *
平滑コンデンサ1041は、フィルムコンデンサ等のコンデンサを備え、図2、図3及び図4に図示されるように、第1の電極1161及び第2の電極1162を備える。第1の電極1161は、平滑コンデンサ1041の一端に配置される。第2の電極1162は、平滑コンデンサ1041の他端に配置される。平滑コンデンサ1041が効果的に冷却されるためには、第1の電極1161及び第2の電極1162が効果的に冷却される必要がある。しかし、第1の電極1161及び第2の電極1162をそれぞれ冷却する2個の冷却器が設けられた場合は、2個の冷却器のサイズに応じたスペースが必要になる。加えて、2個の冷却器を接続する配管を配置するスペースも必要になる。また、2個の冷却器を保持及び固定する部品を配置するスペースも必要になる。このため、大きなスペースが必要になる。インバータ1000においては、半導体パワーモジュールを冷却する冷却器も設けられるため、2個の冷却器を接続する配管、及び2個の冷却器を保持及び固定する部品のサイズがインバータ1000のサイズに与える影響は大きい。  The smoothing capacitor 1041 includes a capacitor such as a film capacitor, and includes a first electrode 1161 and a second electrode 1162 as illustrated in FIGS. 2, 3, and 4. The first electrode 1161 is disposed at one end of the smoothing capacitor 1041. The second electrode 1162 is disposed at the other end of the smoothing capacitor 1041. In order for the smoothing capacitor 1041 to be effectively cooled, the first electrode 1161 and the second electrode 1162 need to be effectively cooled. However, when two coolers for cooling the first electrode 1161 and the second electrode 1162 are provided, a space corresponding to the size of the two coolers is required. In addition, a space for arranging piping connecting two coolers is also required. In addition, a space for arranging parts for holding and fixing the two coolers is also required. For this reason, a large space is required. Inverter 1000 is also provided with a cooler that cools the semiconductor power module. Therefore, the influence of the size of the piping that connects the two coolers and the size of the parts that hold and fix the two coolers on the size of inverter 1000 Is big. *
また、冷却器1040においては、平滑コンデンサ1041からの熱流を流すために、平滑コンデンサ1041からの熱流が通る部分が高い熱伝導率を有する金属からなる必要がある。しかし、冷却器1040の全体が金属からなる場合は、冷却器1040及びインバータ1000を軽量化及び低コスト化することが困難になる。  Further, in the cooler 1040, in order to flow the heat flow from the smoothing capacitor 1041, the portion through which the heat flow from the smoothing capacitor 1041 passes needs to be made of a metal having high thermal conductivity. However, when the entire cooler 1040 is made of metal, it is difficult to reduce the weight and cost of the cooler 1040 and the inverter 1000. *
以下では、平滑コンデンサ1041を効果的に冷却でき、インバータ1000を小型化、軽量化及び低コスト化することができる冷却器1040の構造が説明される。  Hereinafter, the structure of the cooler 1040 that can effectively cool the smoothing capacitor 1041 and can reduce the size, weight, and cost of the inverter 1000 will be described. *
冷却器1040は、図2、図3及び図4に図示されるように、樹脂からなる構造体1160を備える。また、冷却器1040は、金属からなる第1の板1181及び第2の板1182を備える。金属は、純金属及び合金のいずれであってもよい。第1の板1181及び第2の板1182は、構造体1160に固定される。したがって、構造体1160は、第1の板1181及び第2の板1182を支持する支持体となる。冷却器1040は、例えば第1の板1181及び第2の板1182を構造体1160に接合することにより作製される。第1の板1181は、一面側の金属板である。第2の板1182は、他面側の金属板である。このため、第2の板1182は、第1の板1181に対向する。  As shown in FIGS. 2, 3, and 4, the cooler 1040 includes a structure 1160 made of resin. The cooler 1040 includes a first plate 1181 and a second plate 1182 made of metal. The metal may be a pure metal or an alloy. The first plate 1181 and the second plate 1182 are fixed to the structure body 1160. Therefore, the structure body 1160 serves as a support body that supports the first plate 1181 and the second plate 1182. The cooler 1040 is manufactured by, for example, joining the first plate 1181 and the second plate 1182 to the structure 1160. The first plate 1181 is a metal plate on one side. The second plate 1182 is a metal plate on the other side. For this reason, the second plate 1182 faces the first plate 1181. *
冷却器1040は、箱を重ねた二重構造を有する。  The cooler 1040 has a double structure in which boxes are stacked. *
第1の二重壁1081は、図2及び図3に図示されるように、二重構造を構成する第1の内壁1201及び第1の外壁1221を備える。第1の内壁1201は、金属からなる第1の板1181を備える。また、第1の二重壁1081は、第1の内壁1201と第1の外壁1221とに挟まれる第1の流路1241を有する。第1の流路1241は、第1の端部1101に冷却液の入口1260を有する。  As illustrated in FIGS. 2 and 3, the first double wall 1081 includes a first inner wall 1201 and a first outer wall 1221 constituting a double structure. The first inner wall 1201 includes a first plate 1181 made of metal. The first double wall 1081 has a first flow path 1241 sandwiched between the first inner wall 1201 and the first outer wall 1221. The first flow path 1241 has a coolant inlet 1260 at the first end 1101. *
第2の二重壁1082は、図2及び図4に図示されるように、二重構造を構成する第2の内壁1202及び第2の外壁1222を備える。第2の内壁1202は、第1の内壁1201に対向し、金属からなる第2の板1182を備える。また、第2の二重壁1082は、第2の内壁1202と第2の外壁1222とに挟まれる第2の流路1242を有する。第2の流路1242は、第4の端部1104に冷却液の出口1261を有する。  As shown in FIGS. 2 and 4, the second double wall 1082 includes a second inner wall 1202 and a second outer wall 1222 that form a double structure. The second inner wall 1202 is opposed to the first inner wall 1201 and includes a second plate 1182 made of metal. The second double wall 1082 has a second flow path 1242 sandwiched between the second inner wall 1202 and the second outer wall 1222. The second flow path 1242 has a coolant outlet 1261 at the fourth end 1104. *
第3の二重壁1083は、図2に図示されるように、二重構造を構成する第3の内壁1203及び第3の外壁1223を備える。また、第3の二重壁1083は、第3の内壁1203と第3の外壁1223とに挟まれる第3の流路1243を有する。第3の流路1243は、第3の二重壁1083の第5の端部1105において第1の流路1241とつながっており、第3の二重壁1083の第6の端部1106において第2の流路1242とつながっている。  As illustrated in FIG. 2, the third double wall 1083 includes a third inner wall 1203 and a third outer wall 1223 constituting a double structure. The third double wall 1083 has a third flow path 1243 sandwiched between the third inner wall 1203 and the third outer wall 1223. The third flow path 1243 is connected to the first flow path 1241 at the fifth end 1105 of the third double wall 1083, and the third flow path 1243 is connected to the first end 1106 of the third double wall 1083. 2 channel 1242. *
第3の流路1243が第1の流路1241及び第2の流路1242とつながっていることにより、冷却液の入口1260から第1の流路1241、第3の流路1243及び第2の流路1242を順次に経由して冷却液の出口1261に至る経路が構成される。冷却液1320は、冷却液の入口1260を通って第1の流路1241に入り、第1の流路1241、第3の流路1243及び第2の流路1242を順次に流れ、冷却液の出口1261を通って第2の流路1242から出る。  Since the third flow path 1243 is connected to the first flow path 1241 and the second flow path 1242, the first flow path 1241, the third flow path 1243, and the second flow path from the coolant inlet 1260. A path that reaches the coolant outlet 1261 sequentially through the flow path 1242 is formed. The cooling liquid 1320 enters the first flow path 1241 through the cooling liquid inlet 1260, and sequentially flows through the first flow path 1241, the third flow path 1243, and the second flow path 1242. The second channel 1242 exits through the outlet 1261. *
冷却液の入口1260は、冷却液を導く配管につながっている。第1の流路1241は、第1の二重壁1081の内部にあり経路の一部を占める経路部分となっている。第3の流路1243は、第1の二重壁1081と第2の二重壁1082との間にある第3の二重壁1083の内部にあり経路の一部を占める側面経路部分となっている。第2の流路1242は、第2の二重壁1082の内部にあり経路の一部を占める経路部分となっている。冷却液の出口1261は、冷却液を導く配管につながっている。  The coolant inlet 1260 is connected to a pipe for guiding the coolant. The first flow path 1241 is a path portion that is inside the first double wall 1081 and occupies a part of the path. The third flow path 1243 is a side path portion that occupies a part of the path inside the third double wall 1083 between the first double wall 1081 and the second double wall 1082. ing. The second flow path 1242 is a path portion that is inside the second double wall 1082 and occupies a part of the path. The coolant outlet 1261 is connected to a pipe for guiding the coolant. *
第1の板1181の一方の面1281は、図3に図示するように、第1の流路1241に露出する。このため、第1の流路1241を流れている冷却液1320は、第1の板1181の一方の面1281に直接的に接触する。第2の板1182の一方の面1282は、図4に図示するように、第2の流路1242に露出する。このため、第2の流路1242を流れている冷却液1320は、第2の板1182の一方の面1282に直接的に接触する。  One surface 1281 of the first plate 1181 is exposed to the first flow path 1241 as shown in FIG. For this reason, the coolant 1320 flowing through the first flow path 1241 directly contacts one surface 1281 of the first plate 1181. One surface 1282 of the second plate 1182 is exposed to the second flow path 1242, as shown in FIG. For this reason, the coolant 1320 flowing through the second flow path 1242 directly contacts one surface 1282 of the second plate 1182. *
第1の二重壁1081、第2の二重壁1082及び第3の二重壁1083は、図2に図示するように、U字状の形状を有する二重壁を構成する。このため、第1の二重壁1081、第2の二重壁1082及び第3の二重壁1083がそれぞれ有する第1の流路1241、第2の流路1242及び第3の流路1243は、U字状の形状を有する流路を構成する。したがって、U字状の形状を有する二重壁は、U字状の形状を有する流路を有する。U字状の形状を有する流路は、第1の流路1241の位置に配置される平面上及び第2の流路1242の位置に配置される平面上に冷却液1320を誘導する。  The first double wall 1081, the second double wall 1082, and the third double wall 1083 constitute a double wall having a U-shape, as shown in FIG. Therefore, the first flow path 1241, the second flow path 1242, and the third flow path 1243 included in the first double wall 1081, the second double wall 1082, and the third double wall 1083, respectively, A flow path having a U-shape is formed. Therefore, the double wall having a U-shape has a flow path having a U-shape. The U-shaped flow path guides the coolant 1320 on the plane disposed at the position of the first flow path 1241 and on the plane disposed at the position of the second flow path 1242. *
冷却液1320は、水又は水溶液からなる冷却水である。このため、第1の流路1241、第2の流路1242及び第3の流路1243は、水路となる。冷却水が流れる水路は、冷却水路とも呼ばれる。冷却液1320が冷却水以外の冷却液であってもよい。  The cooling liquid 1320 is cooling water made of water or an aqueous solution. For this reason, the 1st flow path 1241, the 2nd flow path 1242, and the 3rd flow path 1243 become a water channel. The water channel through which the cooling water flows is also called a cooling water channel. The cooling liquid 1320 may be a cooling liquid other than the cooling water. *
樹脂からなる構造体1160の形状の自由度は大きい。このため、第1の板1181及び第2の板1182以外は樹脂からなる構造体1160により構成される冷却器1040の形状の自由度は大きい。冷却器1040の形状の自由度が大きいため、U字状の形状を有する流路を有しU字状の形状を有する二重壁を作製することは容易である。U字状の形状を有する流路を形成するために必要な広い幅を有する折り曲げ部分を形成することも容易である。  The degree of freedom of the shape of the structure 1160 made of resin is large. For this reason, the freedom degree of the shape of the cooler 1040 comprised by the structure 1160 which consists of resin except the 1st board 1181 and the 2nd board 1182 is large. Since the degree of freedom of the shape of the cooler 1040 is large, it is easy to produce a double wall having a U-shaped shape having a flow path having a U-shaped shape. It is also easy to form a bent portion having a wide width necessary for forming a flow path having a U-shape. *
冷却器1040においては、第3の二重壁1083の内部の第3の流路1243を介して第2の流路1242が第1の流路1241につながる。第3の二重壁1083の内部の第3の流路1243を介して第2の流路1242が第1の流路1241につながることにより、第2の流路1242を第1の流路1241につなげる冷却配管、並びに当該冷却配管を保持及び固定する部品を省略することができる。このため、インバータ1000を小型化、軽量化及び低コスト化することができる。  In the cooler 1040, the second flow path 1242 is connected to the first flow path 1241 through the third flow path 1243 inside the third double wall 1083. The second flow path 1242 is connected to the first flow path 1241 through the third flow path 1243 inside the third double wall 1083, whereby the second flow path 1242 is connected to the first flow path 1241. It is possible to omit the cooling pipe to be connected to and parts for holding and fixing the cooling pipe. For this reason, the inverter 1000 can be reduced in size, weight, and cost. *
加えて、第2の流路1242を第1の流路1241につなげる第3の流路1243を有する第3の二重壁1083は、樹脂からなり、箱状の形状を有する冷却器1040の一部である。このため、省スペース化に寄与する第3の二重壁1083を形成することは容易である。  In addition, the third double wall 1083 having the third flow path 1243 that connects the second flow path 1242 to the first flow path 1241 is made of a resin, and is one of the coolers 1040 having a box shape. Part. For this reason, it is easy to form the third double wall 1083 that contributes to space saving. *
平滑コンデンサ1041は、図2、図3及び図4に図示されるように、第1の被冷却部1341及び第2の被冷却部1342を備える。第1の被冷却部1341は、第1の電極1161である。第2の被冷却部1342は、第2の電極1162である。第2の電極1162が配置される平滑コンデンサ1041の他端の位置は、第1の電極1161が配置される平滑コンデンサ1041の一端の位置とは異なる。このため、第2の被冷却部1342は、第1の被冷却部1341から離れている。  The smoothing capacitor 1041 includes a first cooled portion 1341 and a second cooled portion 1342 as illustrated in FIGS. 2, 3, and 4. The first cooled part 1341 is the first electrode 1161. The second cooled part 1342 is the second electrode 1162. The position of the other end of the smoothing capacitor 1041 where the second electrode 1162 is disposed is different from the position of one end of the smoothing capacitor 1041 where the first electrode 1161 is disposed. For this reason, the second cooled part 1342 is separated from the first cooled part 1341. *
U字状の形状を有する流路は、上述したように、互いに異なるふたつの位置にそれぞれ配置されるふたつの平面上に冷却液1320を誘導する。このため、U字状の形状を有する流路によれば、互いに異なるふたつの位置にそれぞれ配置される第1の被冷却部1341及び第2の被冷却部1342から熱を放つ平滑コンデンサ1041が効果的に冷却される。


As described above, the flow path having the U-shape guides the coolant 1320 on two planes respectively disposed at two different positions. Therefore, according to the flow path having a U-shape, the smoothing capacitor 1041 that releases heat from the first cooled portion 1341 and the second cooled portion 1342 that are respectively arranged at two different positions is effective. Cooled.


第1の被冷却部1341は、冷却器1040の内部の空間1060に配置され、第1の電気絶縁材1042を介して第1の板1181に接触する。第1の流路1241を流れている冷却液1320は、上述したように、第1の板1181の一方の面1281に直接的に接触する。また、第1の被冷却部1341は、第1の電気絶縁材1042を介して第1の板1181の他方の面1301に接触する。また、第1の板1181は、高い熱伝導率を有する金属からなるため、冷却液1320に熱流を流す放熱板となる。このため、第1の被冷却部1341から放たれた熱は、第1の板1181を経由して、第1の流路1241を流れている冷却液1320まで伝えられる。高い熱伝導率を有する第1の板1181を経由して熱を伝えることにより、第1の被冷却部1341は効果的に冷却される。第2の被冷却部1342は、冷却器1040の内部の空間1060に配置され、第2の電気絶縁材1043を介して第2の板1182に接触する。第2の流路1242を流れている冷却液1320は、上述したように、第2の板1182の一方の面1282に直接的に接触する。また、第2の被冷却部1342は、第2の電気絶縁材1043を介して第2の板1182の他方の面1302に接触する。また、第2の板1182は、高い熱伝導率を有する金属からなるため、冷却液1320に熱流を流す放熱板となる。このため、第2の被冷却部1342から放たれた熱は、高い熱伝導率を有する金属からなる第2の板1182を経由して、第2の流路1242を流れている冷却液1320まで伝えられる。高い熱伝導率を有する第2の板1182を経由して熱を伝えることにより、第2の被冷却部1342は効果的に冷却される。  The first cooled portion 1341 is disposed in the space 1060 inside the cooler 1040 and is in contact with the first plate 1181 through the first electrical insulating material 1042. As described above, the coolant 1320 flowing through the first flow path 1241 directly contacts one surface 1281 of the first plate 1181. Further, the first cooled portion 1341 is in contact with the other surface 1301 of the first plate 1181 through the first electrical insulating material 1042. In addition, since the first plate 1181 is made of a metal having high thermal conductivity, the first plate 1181 is a heat radiating plate that allows a heat flow to flow through the coolant 1320. For this reason, the heat released from the first cooled part 1341 is transmitted to the coolant 1320 flowing through the first flow path 1241 via the first plate 1181. By transferring heat through the first plate 1181 having high thermal conductivity, the first cooled portion 1341 is effectively cooled. The second cooled portion 1342 is disposed in the space 1060 inside the cooler 1040 and is in contact with the second plate 1182 through the second electrical insulating material 1043. As described above, the coolant 1320 flowing through the second flow path 1242 directly contacts one surface 1282 of the second plate 1182. Further, the second cooled portion 1342 is in contact with the other surface 1302 of the second plate 1182 through the second electrical insulating material 1043. In addition, since the second plate 1182 is made of a metal having high thermal conductivity, the second plate 1182 is a heat radiating plate that allows a heat flow to flow through the coolant 1320. For this reason, the heat released from the second cooled portion 1342 passes through the second plate 1182 made of a metal having high thermal conductivity to the coolant 1320 flowing through the second flow path 1242. Reportedly. By transferring heat through the second plate 1182 having high thermal conductivity, the second cooled part 1342 is effectively cooled. *
冷却器1040においては、熱が伝えられていない冷却液1320が冷却液の入口1260を通って第1の流路1241に入り、熱が伝えられた冷却液1320が冷却液の出口1261を通って第2の流路1242から出ることにより、熱が伝えられた冷却液1320が、熱が伝えられていない冷却液1320に入れ替えられる。  In the cooler 1040, the coolant 1320 to which heat is not transferred passes through the coolant inlet 1260 and enters the first flow path 1241, and the coolant 1320 to which heat is transferred passes through the coolant outlet 1261. By exiting the second flow path 1242, the coolant 1320 to which heat has been transferred is replaced with the coolant 1320 to which heat has not been transferred. *
上述した第1から第3までの技術的特徴により、平滑コンデンサ1041は、効果的に冷却される。第1の技術的特徴は、第1の被冷却部1341から放たれた熱が高い熱伝導率を有する第1の板1181を経由して第1の流路1241を流れている冷却液1320まで伝えられることである。第2の技術的特徴は、第2の被冷却部1342から放たれた熱が高い熱伝導率を有する第2の板1182を経由して第2の流路1242を流れている冷却液1320まで伝えられることである。第3の技術的特徴は、熱が伝えられた冷却液1320が、熱が伝えられていない冷却液1320に入れ替えられることである。平滑コンデンサ1041が効果的に冷却される場合は、平滑コンデンサ1041の容量を小さくできる。平滑コンデンサ1041の容量を小さくできる場合は、平滑コンデンサ1041、第1の冷却器付き電子部品1020及びインバータ1000を小型化できる。  The smoothing capacitor 1041 is effectively cooled by the first to third technical features described above. The first technical feature is that the heat emitted from the first cooled portion 1341 passes through the first plate 1181 having high thermal conductivity to the coolant 1320 flowing through the first flow path 1241. It is to be communicated. The second technical feature is that the heat released from the second cooled portion 1342 passes through the second plate 1182 having a high thermal conductivity to the coolant 1320 flowing through the second flow path 1242. It is to be communicated. A third technical feature is that the coolant 1320 to which heat is transmitted is replaced with a coolant 1320 to which heat is not transmitted. When the smoothing capacitor 1041 is effectively cooled, the capacity of the smoothing capacitor 1041 can be reduced. When the capacity of the smoothing capacitor 1041 can be reduced, the smoothing capacitor 1041, the first electronic component with cooler 1020, and the inverter 1000 can be downsized. *
第1の電気絶縁材1042は、電気的に必要な絶縁材であり、板状の形状を有する。第1の電気絶縁材1042により、第1の被冷却部1341が第1の板1181に直接的に接触することが防止される。また、第1の被冷却部1341が第1の板1181から電気的に絶縁される。第2の電気絶縁材1043は、電気的に必要な絶縁材であり、板状の形状を有する。第2の電気絶縁材1043により、第2の被冷却部1342が第2の板1182に直接的に接触することが防止される。また、第2の被冷却部1342が第2の板1182から電気的に絶縁される。  The first electrical insulating material 1042 is an electrically necessary insulating material and has a plate shape. The first electrical insulating material 1042 prevents the first cooled portion 1341 from coming into direct contact with the first plate 1181. In addition, the first cooled portion 1341 is electrically insulated from the first plate 1181. The second electrical insulating material 1043 is an electrically necessary insulating material and has a plate shape. The second electrically insulating material 1043 prevents the second cooled portion 1342 from coming into direct contact with the second plate 1182. Further, the second cooled portion 1342 is electrically insulated from the second plate 1182. *
第1の被冷却部1341は、第1の電気絶縁材1042に密着させられるか、又は第1の電気絶縁材1042に接合される。第1の電気絶縁材1042は、第1の板1181に密着させられるか、又は第1の板1181に接合される。密着又は接合により、第1の被冷却部1341と第1の板1181との間の熱抵抗が低下し、第1の被冷却部1341が効果的に冷却される。第2の被冷却部1342は、第2の電気絶縁材1043に密着させられるか、又は第2の電気絶縁材1043に接合される。第2の電気絶縁材1043は、第2の板1182に密着させられるか、又は第2の板1182に接合される。密着又は接合により、第2の被冷却部1342と第2の板1182との間の熱抵抗が低下し、第2の被冷却部1342が効果的に冷却される。  The first cooled portion 1341 is brought into close contact with the first electrical insulating material 1042 or joined to the first electrical insulating material 1042. The first electrical insulating material 1042 is brought into close contact with the first plate 1181 or bonded to the first plate 1181. Due to the close contact or bonding, the thermal resistance between the first cooled part 1341 and the first plate 1181 is lowered, and the first cooled part 1341 is effectively cooled. The second cooled portion 1342 is brought into close contact with the second electrical insulating material 1043 or joined to the second electrical insulating material 1043. The second electrical insulating material 1043 is brought into close contact with the second plate 1182 or joined to the second plate 1182. Due to the close contact or bonding, the thermal resistance between the second cooled portion 1342 and the second plate 1182 is lowered, and the second cooled portion 1342 is effectively cooled. *
冷却器1040においては、第1の被冷却部1341及び第2の被冷却部1342からの熱流が通る部分は、金属からなる。しかし、第1の被冷却部1341及び第2の被冷却部1342からの熱流がほとんど通らない部分は、樹脂からなる。このため、冷却器1040、冷却器付き電子部品1020及びインバータ1000を軽量化及び低コスト化することができる。  In the cooler 1040, the portion through which the heat flow from the first cooled portion 1341 and the second cooled portion 1342 passes is made of metal. However, the portion through which the heat flow from the first cooled portion 1341 and the second cooled portion 1342 hardly passes is made of resin. For this reason, the cooler 1040, the electronic component 1020 with a cooler, and the inverter 1000 can be reduced in weight and cost. *
第1の板1181の一方の面1281及び第2の板1182の一方の面1282が、放熱フィンを有してもよい。放熱フィンにより、第1の板1181及び第2の板1182から冷却液1320に熱が伝わりやすくなる。第1の板1181及び第2の板1182から冷却液1320に熱が伝わりやすくなることにより、それぞれ第1の被冷却部1341及び第2の被冷却部1342が効果的に冷却される。  One surface 1281 of the first plate 1181 and one surface 1282 of the second plate 1182 may have heat radiation fins. The heat radiation fins facilitate heat transfer from the first plate 1181 and the second plate 1182 to the coolant 1320. Since heat is easily transferred from the first plate 1181 and the second plate 1182 to the coolant 1320, the first cooled portion 1341 and the second cooled portion 1342 are effectively cooled, respectively. *
1.2.4 平滑コンデンサの構造



 平滑コンデンサ1041は、図2に図示されるように、複数のコンデンサ1360、第1のバスバー電極1361及び第2のバスバー電極1362を備える。平滑コンデンサ1041が複数のコンデンサ1360、第1のバスバー電極1361及び第2のバスバー電極1362以外の部材を備えてもよい。 
1.2.4 Structure of smoothing capacitor



As shown in FIG. 2, the smoothing capacitor 1041 includes a plurality of capacitors 1360, a first bus bar electrode 1361, and a second bus bar electrode 1362. The smoothing capacitor 1041 may include a member other than the plurality of capacitors 1360, the first bus bar electrode 1361, and the second bus bar electrode 1362.
第1のバスバー電極1361は、複数のコンデンサ1360の各々に備えらえる一方の電極1380に電気的に接続される。第2のバスバー電極1362は、複数のコンデンサ1360の各々に備えられる他方の電極1381に電気的に接続される。第1のバスバー電極1361及び第2のバスバー電極1362により、複数のコンデンサ1360は、電気的に並列接続される。複数のコンデンサ1360が1個のコンデンサに置き換えられてもよい。複数のコンデンサ1360が1個のコンデンサに置き換えられた場合は、第1のバスバー電極1361及び第2のバスバー電極1362が省略されてもよい。  First bus bar electrode 1361 is electrically connected to one electrode 1380 provided for each of a plurality of capacitors 1360. Second bus bar electrode 1362 is electrically connected to the other electrode 1381 provided in each of the plurality of capacitors 1360. A plurality of capacitors 1360 are electrically connected in parallel by the first bus bar electrode 1361 and the second bus bar electrode 1362. The plurality of capacitors 1360 may be replaced with one capacitor. When the plurality of capacitors 1360 are replaced with one capacitor, the first bus bar electrode 1361 and the second bus bar electrode 1362 may be omitted. *
第1のバスバー電極1361は、第1の被冷却部1341を備える。第2のバスバー電極1362は、第2の被冷却部1342を備える。  The first bus bar electrode 1361 includes a first cooled part 1341. The second bus bar electrode 1362 includes a second cooled part 1342. *
第1のバスバー電極1361及び第2のバスバー電極1362の少なくとも一部は、U字状の形状を有する二重壁に覆われる。第1のバスバー電極1361及び第2のバスバー電極1362がU字状の形状を有する二重壁に覆われることにより、複数のコンデンサ1360が発した熱が第1のバスバー電極1361及び第2のバスバー電極1362を経由してそれぞれ第1の流路1241及び第2の流路1242を流れている冷却液1320まで伝わる。複数のコンデンサ1360が発した熱が冷却液1320まで伝わることにより、複数のコンデンサ1360からの放熱が行われる。  At least a part of the first bus bar electrode 1361 and the second bus bar electrode 1362 is covered with a double wall having a U-shape. Since the first bus bar electrode 1361 and the second bus bar electrode 1362 are covered with a U-shaped double wall, the heat generated by the plurality of capacitors 1360 is generated by the first bus bar electrode 1361 and the second bus bar. It is transmitted to the coolant 1320 flowing through the first flow path 1241 and the second flow path 1242 via the electrodes 1362, respectively. The heat generated by the plurality of capacitors 1360 is transmitted to the coolant 1320, so that heat is radiated from the plurality of capacitors 1360. *
1.3 第2の冷却器付き電子部品



 図5は、第1実施形態のインバータに備えられる第2の冷却器付き電子部品を模式的に図示する断面図である。 
1.3 Electronic component with second cooler



FIG. 5 is a cross-sectional view schematically illustrating a second electronic component with a cooler provided in the inverter of the first embodiment.
図5に図示される第2の冷却器付き電子部品1021は、平滑コンデンサ1041が半導体パワーモジュール1541に置き換えられ、冷却器1040の形状が平滑コンデンサ1041に適合する形状から半導体パワーモジュール1541に適合する形状に変更された点で、図2に図示される第1の冷却器付き電子部品1020と相違する。  In the second electronic component 1021 with a cooler illustrated in FIG. 5, the smoothing capacitor 1041 is replaced with the semiconductor power module 1541, and the shape of the cooler 1040 is adapted to the semiconductor power module 1541 from the shape suitable for the smoothing capacitor 1041. It is different from the first electronic component with cooler 1020 shown in FIG. 2 in that the shape is changed. *
図5においては、第2の冷却器付き電子部品1021の構成が第1の冷却器付き電子部品1020の構成に相当する場合は、第1の冷却器付き電子部品1020の構成に付された参照符号と同じ参照符号が第2の冷却器付き電子部品1021の構成に付されている。また、第2の冷却器付き電子部品1021の説明にあたっては、第2の冷却器付き電子部品1021の構成が第1の冷却器付き電子部品1020の構成に相当する場合は、第2の冷却器付き電子部品1021の構成についての重複説明が省略される。  In FIG. 5, when the configuration of the second electronic component with cooler 1021 corresponds to the configuration of the first electronic component with cooler 1020, the reference given to the configuration of the first electronic component with cooler 1020 is attached. The same reference numerals as the reference numerals are attached to the configuration of the second electronic component 1021 with a cooler. In the description of the electronic component 1021 with the second cooler, when the configuration of the electronic component 1021 with the second cooler corresponds to the configuration of the electronic component 1020 with the first cooler, the second cooler A duplicate description of the configuration of the attached electronic component 1021 is omitted. *
半導体パワーモジュール1541は、第2の冷却器付き電子部品1021において第1の電子部品となる半導体パワーモジュールである。半導体パワーモジュール1541は、インバータ1000に入力された制御用の信号にしたがって平滑された直流をスイッチングし、三相交流を生成する。  The semiconductor power module 1541 is a semiconductor power module that becomes the first electronic component in the second electronic component with cooler 1021. The semiconductor power module 1541 switches the smoothed direct current according to the control signal input to the inverter 1000 to generate a three-phase alternating current. *
第2の冷却器付き電子部品1021においては、第1の被冷却部1341は、半導体パワーモジュール1541の裏面である。また、第2の被冷却部1342は、半導体パワーモジュール1541の表面である。半導体パワーモジュール1541の裏面は、半導体パワーモジュール1541の一方の面である。半導体パワーモジュール1541の表面は、半導体パワーモジュール1541の他方の面である。半導体パワーモジュール1541の裏面の高さは、半導体パワーモジュール1541の表面の高さとは異なる。このため、第2の被冷却部1342は、第1の被冷却部1341から離れている。  In the second electronic component with cooler 1021, the first cooled part 1341 is the back surface of the semiconductor power module 1541. The second cooled part 1342 is the surface of the semiconductor power module 1541. The back surface of the semiconductor power module 1541 is one surface of the semiconductor power module 1541. The surface of the semiconductor power module 1541 is the other surface of the semiconductor power module 1541. The height of the back surface of the semiconductor power module 1541 is different from the height of the surface of the semiconductor power module 1541. For this reason, the second cooled part 1342 is separated from the first cooled part 1341. *
第2の冷却器付き電子部品1021も、第1の冷却器付き電子部品1020の利点と同様の利点を有する。  The second electronic component 1021 with the cooler has the same advantages as the electronic component 1020 with the first cooler. *
平滑コンデンサ1041がコイルに置き換えられ、冷却器1040の形状が平滑コンデンサ1041に適合する形状からコイルに適合する形状に変更された点で図2に図示される第1の冷却器付き電子部品1020と相違する冷却器付き電子部品も、第1の冷却器付き電子部品1020の利点と同様の利点を有する。  The smoothing capacitor 1041 is replaced with a coil, and the shape of the cooler 1040 is changed from a shape that fits the smoothing capacitor 1041 to a shape that fits the coil, and the first electronic component with cooler 1020 shown in FIG. Different electronic components with a cooler have advantages similar to those of the first electronic component with cooler 1020. *
2 第2実施形態



 2.1 インバータの概略



 本発明の例示的な第2実施形態は、冷却器付き電子部品及びインバータに関する。 
2 Second Embodiment



2.1 Outline of the inverter



The second exemplary embodiment of the present invention relates to an electronic component with a cooler and an inverter.
図6は第2実施形態のインバータを模式的に図示するブロック図である。  FIG. 6 is a block diagram schematically illustrating the inverter according to the second embodiment. *
図6に図示されるインバータ2000は、図1に図示されるインバータ1000と同様に、直流を三相交流に変換する電力変換装置として動作するインバータ装置である。  An inverter 2000 illustrated in FIG. 6 is an inverter device that operates as a power conversion device that converts direct current into three-phase alternating current, similarly to the inverter 1000 illustrated in FIG. 1. *
インバータ2000は、冷却器付き電子部品2022を備える。  The inverter 2000 includes an electronic component 2022 with a cooler. *
冷却器付き電子部品2022は、冷却器、並びに当該冷却器により冷却される平滑コンデンサ及び半導体パワーモジュールを備える冷却器付き電子部品である。  The electronic component 2022 with a cooler is an electronic component with a cooler including a cooler, a smoothing capacitor cooled by the cooler, and a semiconductor power module. *
インバータ2000が、冷却器付き電子部品2022以外の冷却器付き電子部品を備えてもよい。インバータ2000が、冷却器により冷却される電子部品に加えて冷却器により冷却されない電子部品を備えてもよい。インバータ2000以外の装置が冷却器付き電子部品2022を備えてもよい。  The inverter 2000 may include an electronic component with a cooler other than the electronic component 2022 with a cooler. The inverter 2000 may include an electronic component that is not cooled by the cooler in addition to the electronic component that is cooled by the cooler. A device other than the inverter 2000 may include the electronic component 2022 with a cooler. *
2.2 冷却器付き電子部品



 図7は、第2実施形態のインバータに備えられる冷却器付き電子部品を模式的に図示する斜視図である。図8は、第2実施形態のインバータに備えられる冷却器付き電子部品を模式的に図示する断面図である。図8は、図7の切断線C-Cの位置における断面を図示する。 
2.2 Electronic parts with cooler



FIG. 7 is a perspective view schematically illustrating an electronic component with a cooler provided in the inverter of the second embodiment. FIG. 8 is a cross-sectional view schematically illustrating an electronic component with a cooler provided in the inverter of the second embodiment. FIG. 8 illustrates a cross section at the position of section line CC in FIG.
図7及び図8に図示される冷却器付き電子部品2022は、半導体パワーモジュール1541及び第3の電気絶縁材2044が追加され、冷却器1040により冷却される電子部品が平滑コンデンサ1041のみから平滑コンデンサ1041及び半導体パワーモジュール1541に変更された点で、図2に図示される第1の冷却器付き電子部品1020と相違する。  The electronic component 2022 with a cooler illustrated in FIGS. 7 and 8 includes a semiconductor power module 1541 and a third electrical insulating material 2044, and the electronic component cooled by the cooler 1040 is changed from the smoothing capacitor 1041 alone to the smoothing capacitor. It differs from the 1st electronic component 1020 with a cooler shown in FIG. 2 by the point changed to 1041 and the semiconductor power module 1541. FIG. *
図7及び図8においては、冷却器付き電子部品2022の構成が第1の冷却器付き電子部品1020の構成に相当する場合は、第1の冷却器付き電子部品1020の構成に付された参照符号と同じ参照符号が冷却器付き電子部品2022の構成に付されている。また、冷却器付き電子部品2022の説明にあたっては、冷却器付き電子部品2022の構成が第1の冷却器付き電子部品1020の構成に相当する場合は、冷却器付き電子部品2022の構成についての重複説明が省略される。


7 and 8, when the configuration of the electronic component with cooler 2022 corresponds to the configuration of the first electronic component with cooler 1020, the reference attached to the configuration of the first electronic component with cooler 1020 is referred to. The same reference numerals as the reference numerals are given to the configuration of the electronic component 2022 with a cooler. In the description of the electronic component 2022 with the cooler, when the configuration of the electronic component 2022 with the cooler corresponds to the configuration of the first electronic component with cooler 1020, the configuration of the electronic component 2022 with the cooler is duplicated. Explanation is omitted.


冷却器付き電子部品2022は、図7及び図8に図示されるように、冷却器1040、平滑コンデンサ1041、半導体パワーモジュール1541、第1の電気絶縁材1042、第2の電気絶縁材1043及び第3の電気絶縁材2044を備える。  As shown in FIGS. 7 and 8, the electronic component 2022 with a cooler includes a cooler 1040, a smoothing capacitor 1041, a semiconductor power module 1541, a first electrical insulation material 1042, a second electrical insulation material 1043, and a second electrical insulation material 1043. 3 electrical insulation 2044. *
平滑コンデンサ1041は、冷却器付き電子部品2022において第1の電子部品となるコンデンサであり、冷却器1040により冷却され、第1の電気絶縁材1042及び第2の電気絶縁材1043により冷却器1040から電気的に絶縁される。平滑コンデンサ1041は、インバータ2000に入力された直流を平滑する。  The smoothing capacitor 1041 is a capacitor that becomes a first electronic component in the electronic component 2022 with a cooler, is cooled by the cooler 1040, and is cooled from the cooler 1040 by the first electrical insulating material 1042 and the second electrical insulating material 1043. Electrically insulated. Smoothing capacitor 1041 smoothes the direct current input to inverter 2000. *
半導体パワーモジュール1541は、冷却器付き電子部品2022において第2の電子部品となる半導体パワーモジュールであり、冷却器1040により冷却され、第3の電気絶縁材2044により冷却器1040から電気的に絶縁される。半導体パワーモジュール1541は、平滑された直流をスイッチングし、三相交流を生成する。  The semiconductor power module 1541 is a semiconductor power module that becomes the second electronic component in the electronic component 2022 with the cooler, and is cooled by the cooler 1040 and electrically insulated from the cooler 1040 by the third electrical insulating material 2044. The The semiconductor power module 1541 switches the smoothed direct current to generate a three-phase alternating current. *
半導体パワーモジュール1541は、スイッチング動作を行う複数の半導体素子を備える。複数の半導体素子の各々は、絶縁ゲートバイポーラトランジスタ(IGBT)である。このため、半導体パワーモジュール1541は、IGBTモジュールである。半導体パワーモジュール1541がIGBTモジュール以外の半導体パワーモジュールであってもよい。  The semiconductor power module 1541 includes a plurality of semiconductor elements that perform a switching operation. Each of the plurality of semiconductor elements is an insulated gate bipolar transistor (IGBT). For this reason, the semiconductor power module 1541 is an IGBT module. The semiconductor power module 1541 may be a semiconductor power module other than the IGBT module. *
冷却器付き電子部品2022に備えられる冷却器1040は、金属からなる第3の板2183を備える。金属は、純金属及び合金のいずれであってもよい。第3の板2183は、構造体1160に固定される。  The cooler 1040 provided in the electronic component 2022 with the cooler includes a third plate 2183 made of metal. The metal may be a pure metal or an alloy. The third plate 2183 is fixed to the structure 1160. *
冷却器付き電子部品2022に備えられる第2の外壁1222は、金属からなる第3の板2183を備える。  The second outer wall 1222 provided in the electronic component 2022 with a cooler includes a third plate 2183 made of metal. *
第3の板2183の一方の面2283は、第2の流路1242に露出する。このため、第2の流路1242を流れている冷却液1320は、第3の板2183の一方の面2283に直接的に接触する。  One surface 2283 of the third plate 2183 is exposed to the second flow path 1242. For this reason, the coolant 1320 flowing through the second flow path 1242 directly contacts one surface 2283 of the third plate 2183. *
半導体パワーモジュール1541は、第3の板2183の他方の面2303上に実装される。半導体パワーモジュール1541は、冷却器1040の外部の空間に配置され、第3の電気絶縁材2044を介して第3の板2183に接触する。  The semiconductor power module 1541 is mounted on the other surface 2303 of the third plate 2183. The semiconductor power module 1541 is disposed in a space outside the cooler 1040 and is in contact with the third plate 2183 via the third electrical insulating material 2044. *
第2の流路1242を流れている冷却液1320は、上述したように、第3の板2183の一方の面2283に直接的に接触する。また、半導体パワーモジュール1541は、第3の電気絶縁材2044を介して第3の板2183の他方の面2303に接触する。また、第3の板2183は、高い熱伝導率を有する金属からなるため、冷却液1320に熱流を流す放熱板となる。このため、半導体パワーモジュール1541から放たれた熱は、高い熱伝導率を有する金属からなる第3の板2183を経由して、第2の流路1242を流れている冷却液1320まで伝えられる。高い熱伝導率を有する第3の板2183を経由して熱を伝えることにより、半導体パワーモジュール1541は効果的に冷却される。  As described above, the coolant 1320 flowing through the second flow path 1242 directly contacts one surface 2283 of the third plate 2183. The semiconductor power module 1541 is in contact with the other surface 2303 of the third plate 2183 through the third electrical insulating material 2044. Further, the third plate 2183 is made of a metal having high thermal conductivity, and thus serves as a heat radiating plate that allows a heat flow to flow through the coolant 1320. For this reason, the heat released from the semiconductor power module 1541 is transmitted to the coolant 1320 flowing through the second flow path 1242 via the third plate 2183 made of metal having high thermal conductivity. By transferring heat via the third plate 2183 having high thermal conductivity, the semiconductor power module 1541 is effectively cooled. *
第3の電気絶縁材2044は、板状の形状を有する。第3の電気絶縁材2044により、半導体パワーモジュール1541が第3の板2183に直接的に接触することが防止される。また、半導体パワーモジュール1541が第3の板2183から電気的に絶縁される。  The third electrical insulating material 2044 has a plate shape. The third electrical insulating material 2044 prevents the semiconductor power module 1541 from coming into direct contact with the third plate 2183. Further, the semiconductor power module 1541 is electrically insulated from the third plate 2183. *
半導体パワーモジュール1541は、第3の電気絶縁材2044に密着させられるか、又は第3の電気絶縁材2044に接合される。第3の電気絶縁材2044は、第3の板2183に密着させられるか、又は第3の板2183に接合される。密着又は接合により、半導体パワーモジュール1541と第3の板2183との間の熱抵抗が低下し、半導体パワーモジュール1541が効果的に冷却される。  The semiconductor power module 1541 is brought into close contact with the third electrical insulating material 2044 or joined to the third electrical insulating material 2044. The third electrical insulating material 2044 is brought into close contact with the third plate 2183 or joined to the third plate 2183. Due to the close contact or bonding, the thermal resistance between the semiconductor power module 1541 and the third plate 2183 is lowered, and the semiconductor power module 1541 is effectively cooled. *
第3の板2183の一方の面2283には、放熱フィンを形成する加工が行われている。このため、第3の板2183の一方の面2283は、放熱フィンを有する。放熱フィンは、望ましくは密集した多数の微細な突起を備える微細密集放熱フィンである。放熱フィンにより、第3の板2183から冷却液1320に熱が伝わりやすくなる。第3の板2183から冷却液1320に熱が伝わりやすくなることにより、発熱が大きい半導体パワーモジュール1541が効果的に冷却される。  One surface 2283 of the third plate 2183 is processed to form a heat radiating fin. For this reason, one surface 2283 of the 3rd board 2183 has a radiation fin. The heat dissipating fin is preferably a minute dense heat dissipating fin having a large number of closely spaced fine protrusions. The heat radiation fins facilitate heat transfer from the third plate 2183 to the coolant 1320. Since heat is easily transferred from the third plate 2183 to the coolant 1320, the semiconductor power module 1541 that generates a large amount of heat is effectively cooled. *
第3の板2183の構造が第1の板1181及び第2の板1182の構造と異なってもよい。例えば、第3の板2183が放熱フィンを有するにもかかわらず第1の板1181及び第2の板1182が放熱フィンを有しないことも許される。  The structure of the third plate 2183 may be different from the structures of the first plate 1181 and the second plate 1182. For example, it is allowed that the first plate 1181 and the second plate 1182 have no heat radiation fins even though the third plate 2183 has heat radiation fins. *
樹脂からなる構造体1160に金属からなる2枚以上の板が接合された構造が採用される場合は、当該2枚以上の板に互いに異なる構造を付与する加工が当該2枚以上の板に行われたときであっても、当該2枚以上の板を配置することが容易である。このため、第3の板2183の構造が第1の板1181及び第2の板1182の構造と異なることは、冷却器1040の作製を困難にしない。  In the case where a structure in which two or more plates made of metal are bonded to the structure 1160 made of resin is adopted, a process of giving different structures to the two or more plates is performed on the two or more plates. Even when it is broken, it is easy to arrange the two or more plates. For this reason, the structure of the third plate 2183 being different from the structures of the first plate 1181 and the second plate 1182 does not make the manufacture of the cooler 1040 difficult. *
冷却器付き電子部品2022も、第1の冷却器付き電子部品1020及び第2の冷却器付き電子部品1021の利点と同様の利点を有する。  The electronic component 2022 with the cooler has advantages similar to those of the electronic component 1020 with the first cooler and the electronic component 1021 with the second cooler. *
加えて、冷却器付き電子部品2022によれば、第2の内壁1202及び第2の外壁1222の両方、並びに冷却器1040の内部の空間1060及び冷却器1040の外部の空間の両方が、平滑コンデンサ1041及び半導体パワーモジュール1541からなる2個の電子部品の冷却に活用される。このため、2個の電子部品の冷却に要するスペースを小さくする省スペース化を図ることができる。  In addition, according to the electronic component 2022 with the cooler, both the second inner wall 1202 and the second outer wall 1222 as well as the space 1060 inside the cooler 1040 and the space outside the cooler 1040 are smoothing capacitors. It is used for cooling two electronic components comprising 1041 and the semiconductor power module 1541. For this reason, it is possible to reduce the space required for cooling the two electronic components. *
また、冷却器付き電子部品2022によれば、半導体パワーモジュール1541が、第2の二重壁1082を挟んで平滑コンデンサ1041に近接して配置される。このため、平滑コンデンサ1041と半導体パワーモジュール1541とを互いに電気的に接続する第1のバスバー電極1361及び第2のバスバー電極1362が短くなる。また、第1のバスバー電極1361及び第2のバスバー電極1362が短くなることにより、第1のバスバー電極1361及び第2のバスバー電極1362の寄生インダクタンスが小さくなる。第1のバスバー電極1361及び第2のバスバー電極1362の寄生インダクタンスが小さくなった場合は、半導体パワーモジュール1541の内部の半導体素子のスイッチング動作に伴って生じるサージ電圧が低下する。このため、冷却器付き電子部品2022の電気的性能が向上する。  Further, according to the electronic component 2022 with the cooler, the semiconductor power module 1541 is disposed in the vicinity of the smoothing capacitor 1041 with the second double wall 1082 interposed therebetween. For this reason, the 1st bus-bar electrode 1361 and the 2nd bus-bar electrode 1362 which electrically connect the smoothing capacitor 1041 and the semiconductor power module 1541 mutually become short. In addition, since the first bus bar electrode 1361 and the second bus bar electrode 1362 are shortened, the parasitic inductance of the first bus bar electrode 1361 and the second bus bar electrode 1362 is reduced. When the parasitic inductances of the first bus bar electrode 1361 and the second bus bar electrode 1362 are reduced, the surge voltage generated due to the switching operation of the semiconductor element inside the semiconductor power module 1541 is reduced. For this reason, the electrical performance of the electronic component 2022 with a cooler improves. *
半導体パワーモジュール1541は、上述したように、複数の半導体素子を備える。各半導体素子は、局所的な発熱源となる。また、各半導体素子の発熱は大きい。このため、半導体パワーモジュール1541は、複数の発熱源を備える。各発熱源は、局所的な発熱源となる。各発熱源の発熱は大きい。ゆえに、当該半導体パワーモジュール1541の発熱は大きい。  As described above, the semiconductor power module 1541 includes a plurality of semiconductor elements. Each semiconductor element becomes a local heat source. Further, each semiconductor element generates a large amount of heat. For this reason, the semiconductor power module 1541 includes a plurality of heat sources. Each heat source becomes a local heat source. The heat generated by each heat source is large. Therefore, the heat generated by the semiconductor power module 1541 is large. *
当該半導体パワーモジュール1541の裏面が冷却される場合は、半導体パワーモジュール1541の裏面が広い範囲に渡って均一に冷却される必要がある。したがって、冷却器1040の抜熱性能は、広い範囲に渡って均一である必要がある。冷却器1040は、高い抜熱性能を有する必要がある。  When the back surface of the semiconductor power module 1541 is cooled, the back surface of the semiconductor power module 1541 needs to be uniformly cooled over a wide range. Therefore, the heat removal performance of the cooler 1040 needs to be uniform over a wide range. The cooler 1040 needs to have high heat removal performance. *
一般的に、一筆書き状の経路に沿って延びる線状の冷却水路を有する冷却器により半導体パワーモジュール1541の裏面が冷却される場合は、半導体パワーモジュール1541の裏面を広い範囲に渡って均一に冷却するために、冷却水路が長くなる。冷却水路が長くなった場合は、圧力損失が増加する。圧力損失が増加した場合は、冷却水を循環させるポンプが大型化する。  Generally, when the back surface of the semiconductor power module 1541 is cooled by a cooler having a linear cooling water channel extending along a one-stroke path, the back surface of the semiconductor power module 1541 is uniformly spread over a wide range. In order to cool, a cooling water channel becomes long. When the cooling channel becomes longer, the pressure loss increases. When the pressure loss increases, the pump that circulates the cooling water becomes larger. *
これに対して、半導体パワーモジュール1541の裏面の一端部から他端部へ延びる帯状の冷却水路を有する冷却器により半導体パワーモジュール1541の裏面が冷却される場合は、半導体パワーモジュール1541の裏面を広い範囲に渡って均一に冷却するために、一端部から他端部への冷却水の流れを一端部から他端部へ向かう方向と垂直をなす幅方向について均一に調整する整流器が必要になる。整流器は、冷却器の一部の領域を占める場合もあるし、冷却器から独立した部品である場合もある。しかし、当該整流器を配置するためには、配置のためのスペースが必要である。  On the other hand, when the back surface of the semiconductor power module 1541 is cooled by a cooler having a strip-shaped cooling water channel extending from one end portion to the other end portion of the back surface of the semiconductor power module 1541, the back surface of the semiconductor power module 1541 is wide. In order to cool uniformly over a range, a rectifier that uniformly adjusts the flow of cooling water from one end to the other end in the width direction perpendicular to the direction from one end to the other end is required. The rectifier may occupy some area of the cooler or may be a separate component from the cooler. However, in order to arrange the rectifier, a space for the arrangement is necessary. *
冷却器1040は、半導体パワーモジュール1541を冷却する冷却液1320が流れている第2の流路1242の上流に第3の流路1243を有する。このため、第3の流路1243を有する第3の二重壁1083に整流器を設けることにより、冷却器付き電子部品2022を大型化することなく、第2の流路1242における冷却液1320の流れを均一化し半導体パワーモジュール1541を効果的に冷却することができる。  The cooler 1040 has a third flow path 1243 upstream of the second flow path 1242 in which the coolant 1320 for cooling the semiconductor power module 1541 flows. Therefore, by providing a rectifier on the third double wall 1083 having the third flow path 1243, the flow of the coolant 1320 in the second flow path 1242 without increasing the size of the electronic component 2022 with a cooler. The semiconductor power module 1541 can be effectively cooled. *
図12は、第2実施形態のインバータに備えられる整流フィンを模式的に図示する平面図である。  FIG. 12 is a plan view schematically illustrating rectifying fins provided in the inverter according to the second embodiment. *
第3の二重壁1083に整流器を設けるため、第3の内壁1203又は第3の外壁1223は、図12に図示される整流フィン2600を備える。  In order to provide a rectifier on the third double wall 1083, the third inner wall 1203 or the third outer wall 1223 includes a rectifying fin 2600 illustrated in FIG. *
整流フィン2600は、第3の内壁1203又は第3の外壁1223において第3の流路1243に向かって突出しており、面2620を有する。  The rectifying fin 2600 protrudes toward the third flow path 1243 at the third inner wall 1203 or the third outer wall 1223 and has a surface 2620. *
面2620は、第5の端部1105から第6の端部1106へ向かう方向D21に進むにつれて第3の流路1243の中央部2640から第3の流路1243の周辺部2641に寄る。第3の流路1243の中央部2640及び周辺部2641は、それぞれ第3の内壁1203又は第3の外壁1223の広がり方向と平行をなし方向D21と垂直をなす方向についての中央部及び周辺部である。  The surface 2620 approaches the peripheral portion 2641 of the third flow path 1243 from the central portion 2640 of the third flow path 1243 as it proceeds in the direction D21 from the fifth end 1105 toward the sixth end 1106. The central portion 2640 and the peripheral portion 2641 of the third flow path 1243 are respectively a central portion and a peripheral portion in a direction that is parallel to the spreading direction of the third inner wall 1203 or the third outer wall 1223 and perpendicular to the direction D21. is there. *
第3の流路1243を流れる冷却液1320の一部は、面2620に当たり、第3の流路1243の中央部2640から第3の流路1243の周辺部2641に導かれる。冷却液1320の一部が第3の流路1243の周辺部2641に導かれることにより、第3の流路1243における冷却液1320の流れが整えられる。すなわち、第3の流路1243の周辺部2641において冷却液1320の流れが弱くなることが抑制される。第3の流路1243の周辺部2641において冷却液1320の流れが弱くなることが抑制されることにより、第3の流路1243における冷却液1320の流れが均一化される。  Part of the coolant 1320 flowing through the third flow path 1243 hits the surface 2620 and is guided from the central portion 2640 of the third flow path 1243 to the peripheral portion 2641 of the third flow path 1243. A part of the cooling liquid 1320 is guided to the peripheral portion 2641 of the third flow path 1243, whereby the flow of the cooling liquid 1320 in the third flow path 1243 is adjusted. That is, the flow of the coolant 1320 is suppressed from becoming weak in the peripheral portion 2641 of the third flow path 1243. By suppressing the flow of the coolant 1320 from weakening in the peripheral portion 2641 of the third flow path 1243, the flow of the coolant 1320 in the third flow path 1243 is made uniform. *
平滑コンデンサ1041又は半導体パワーモジュール1541からの熱流は、第3の二重壁1083をほとんど通らない。このため、第3の二重壁1083は、第1の二重壁1081及び第2の二重壁1082と異なり、金属からなる板を備える必要はなく、樹脂のみにより構成されてもよい。このため、第3の二重壁1083に整流フィン2600を設けることは容易であり低コストで可能である。  The heat flow from the smoothing capacitor 1041 or the semiconductor power module 1541 hardly passes through the third double wall 1083. For this reason, unlike the first double wall 1081 and the second double wall 1082, the third double wall 1083 does not need to be provided with a plate made of metal, and may be made of only resin. For this reason, it is easy and low-cost to provide the rectifying fins 2600 on the third double wall 1083. *
なお、本発明は、発明の趣旨を損なわない範囲で種々の変更が可能であり、上記の実施形態に限定されない。 The present invention can be variously modified without departing from the spirit of the invention, and is not limited to the above-described embodiment.

Claims (6)

  1. 樹脂からなる構造体を備える冷却器と、



     前記冷却器により冷却される第1の電子部品と、



     第1の電気絶縁材と、



     第2の電気絶縁材と、



    を備え、 前記冷却器は、



      第1の方向に互いに離れている第1の端部及び第2の端部を有し、第1の内壁及び第1の外壁を備え、前記第1の内壁と前記第1の外壁とに挟まれ前記第1の端部に冷却液の入口を有する第1の流路を有し、前記第1の内壁が金属からなり前記構造体に固定される第1の板を備える第1の二重壁と、



      前記第1の二重壁に対向し、第2の方向に互いに離れている第3の端部及び第4の端部を有し、第2の内壁及び第2の外壁を備え、前記第2の内壁と前記第2の外壁とに挟まれ前記第4の端部に冷却液の出口を有する第2の流路を有し、前記第2の内壁が金属からなり前記構造体に固定される第2の板を備える第2の二重壁と、



      前記第1の方向及び前記第2の方向と異なる第3の方向に互いに離れており前記第2の端部及び前記第3の端部にそれぞれ接続されている第5の端部及び第6の端部を有し、第3の内壁及び第3の外壁を備え、前記第3の内壁と前記第3の外壁とに挟まれ前記第5の端部において前記第1の流路とつながっており前記第6の端部において前記第2の流路とつながっている第3の流路を有する第3の二重壁と、



    を備え、 前記第1の電子部品は、前記第1の電気絶縁材を介して前記第1の板に接触する第1の被冷却部、及び前記第2の電気絶縁材を介して前記第2の板に接触し前記第1の被冷却部から離れている第2の被冷却部を備え、前記第1の二重壁と前記第2の二重壁との間に配置される冷却器付き電子部品。
    A cooler having a structure made of resin;



    A first electronic component cooled by the cooler;



    A first electrical insulation;



    A second electrical insulation;



    The cooler comprises:



    A first end and a second end that are spaced apart from each other in a first direction, and include a first inner wall and a first outer wall, and are sandwiched between the first inner wall and the first outer wall. A first duplex having a first flow path having a coolant inlet at the first end, the first inner wall being made of metal and fixed to the structure. With walls,



    A third end and a fourth end facing the first double wall and spaced apart from each other in a second direction, comprising a second inner wall and a second outer wall; The second end wall is sandwiched between the inner wall and the second outer wall and has a coolant outlet at the fourth end, and the second inner wall is made of metal and fixed to the structure. A second double wall comprising a second plate;



    A fifth end and a sixth end that are separated from each other in a third direction different from the first direction and the second direction and are connected to the second end and the third end, respectively. An end portion, a third inner wall and a third outer wall, sandwiched between the third inner wall and the third outer wall, and connected to the first flow path at the fifth end portion; A third double wall having a third flow path connected to the second flow path at the sixth end;



    The first electronic component includes a first cooled part that contacts the first plate via the first electrical insulating material, and the second electronic component via the second electrical insulating material. A cooler disposed between the first double wall and the second double wall, the second coolable portion being in contact with the first plate and being separated from the first cooled portion Electronic components.
  2. 前記第1の電子部品は、コンデンサ、半導体パワーモジュール又はコイルである請求項1の冷却器付き電子部品。 The electronic component with a cooler according to claim 1, wherein the first electronic component is a capacitor, a semiconductor power module, or a coil.
  3. 前記冷却器により冷却される第2の電子部品と、



     第3の電気絶縁材と、



    をさらに備え、



     前記第2の外壁は、金属からなり前記構造体に固定される第3の板を備え、



     前記第2の電子部品は、前記第3の電気絶縁材を介して前記第3の板に接触する請求項1又は2の冷却器付き電子部品。
    A second electronic component cooled by the cooler;



    A third electrical insulation;



    Further comprising



    The second outer wall includes a third plate made of metal and fixed to the structure,



    The electronic component with a cooler according to claim 1 or 2, wherein the second electronic component is in contact with the third plate via the third electrical insulating material.
  4. 前記第1の電子部品は、直流を平滑する平滑コンデンサであり、



     前記第2の電子部品は、平滑された直流をスイッチングし交流を生成する半導体パワーモジュールである請求項3の冷却器付き電子部品。
    The first electronic component is a smoothing capacitor for smoothing direct current;



    The electronic component with a cooler according to claim 3, wherein the second electronic component is a semiconductor power module that switches a smoothed direct current to generate an alternating current.
  5. 前記第3の内壁又は前記第3の外壁は、



     前記第5の端部から前記第6の端部へ向かう方向に進むにつれて前記第3の流路の中央部から前記第3の流路の周辺部に寄る面を有する整流フィンを備える請求項1から4までのいずれかの冷却器付き電子部品。
    The third inner wall or the third outer wall is



    2. A rectifying fin having a surface that approaches a peripheral portion of the third flow path from a central portion of the third flow path as it proceeds in a direction from the fifth end to the sixth end. To 4 electronic components with a cooler.
  6. 請求項1から5までのいずれかの冷却器付き電子部品を備えるインバータ。 An inverter provided with the electronic component with a cooler in any one of Claim 1-5.
PCT/JP2019/002672 2018-02-13 2019-01-28 Electronic component with cooler, and inverter WO2019159666A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980012805.9A CN111699623B (en) 2018-02-13 2019-01-28 Electronic component with cooler and inverter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018022854 2018-02-13
JP2018-022854 2018-02-13

Publications (1)

Publication Number Publication Date
WO2019159666A1 true WO2019159666A1 (en) 2019-08-22

Family

ID=67618551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002672 WO2019159666A1 (en) 2018-02-13 2019-01-28 Electronic component with cooler, and inverter

Country Status (2)

Country Link
CN (1) CN111699623B (en)
WO (1) WO2019159666A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033334A1 (en) * 2019-08-21 2021-02-25 ソニー株式会社 Magnetic recording medium, cartridge, and recording/playback device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299584A (en) * 1999-04-12 2000-10-24 Wada Stainless Kogyo Kk Electronic board cooling device
JP2001352023A (en) * 2000-06-08 2001-12-21 Denso Corp Refrigerant cooling double-faced cooling semiconductor device
JP2016127772A (en) * 2015-01-08 2016-07-11 トヨタ自動車株式会社 Power converter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2926437B2 (en) * 1990-10-19 1999-07-28 キョーラク株式会社 Electronic device cooling structure
JP4265509B2 (en) * 2003-12-03 2009-05-20 株式会社デンソー Stacked cooler
JP4600220B2 (en) * 2005-09-01 2010-12-15 三菱マテリアル株式会社 Cooler and power module
US9077056B2 (en) * 2007-12-11 2015-07-07 Battery Patent Trust Device for housing electrochemical cells
JP5012824B2 (en) * 2009-01-30 2012-08-29 株式会社デンソー Laminated cooling device and manufacturing method of cooling pipe used therefor
JP2010206892A (en) * 2009-03-02 2010-09-16 Nissan Motor Co Ltd Device for cooling inverter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299584A (en) * 1999-04-12 2000-10-24 Wada Stainless Kogyo Kk Electronic board cooling device
JP2001352023A (en) * 2000-06-08 2001-12-21 Denso Corp Refrigerant cooling double-faced cooling semiconductor device
JP2016127772A (en) * 2015-01-08 2016-07-11 トヨタ自動車株式会社 Power converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033334A1 (en) * 2019-08-21 2021-02-25 ソニー株式会社 Magnetic recording medium, cartridge, and recording/playback device
US11610604B2 (en) 2019-08-21 2023-03-21 Sony Group Corporation Magnetic recording medium, cartridge, and recording and reproducing device

Also Published As

Publication number Publication date
CN111699623A (en) 2020-09-22
CN111699623B (en) 2023-10-24

Similar Documents

Publication Publication Date Title
US9986665B2 (en) Power conversion apparatus
JP5644712B2 (en) Power supply
US10410953B2 (en) Power conversion device including semiconductor module provided with laminated structure
WO2015194259A1 (en) Cooler and cooler fixing method
JP5535292B2 (en) Power converter
JP6932225B1 (en) Power converter
JP6183302B2 (en) Power converter
JP2021052443A (en) Power conversion device and motor integrated power conversion device
JP6945671B2 (en) Power converter
WO2013061786A1 (en) Power conversion device
CN108573939B (en) Power conversion device
WO2019159666A1 (en) Electronic component with cooler, and inverter
JP2019221048A (en) Electric power conversion device
JP7366082B2 (en) power converter
JP2020184847A (en) Power conversion device
JP6809563B2 (en) Power converter
JP2017162988A (en) Insulation substrate and electric power conversion system including the same
JP7386914B2 (en) power converter
JP2021040422A (en) Power conversion device
JP7343026B1 (en) power converter
JP6961047B1 (en) Power converter
JP2014127577A (en) Inverter device for vehicle
US20230230899A1 (en) Semiconductor apparatus
JP2023081449A (en) Power conversion device
JP2023003984A (en) Power conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19754310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP