JP4292913B2 - Semiconductor cooling unit - Google Patents

Semiconductor cooling unit Download PDF

Info

Publication number
JP4292913B2
JP4292913B2 JP2003287927A JP2003287927A JP4292913B2 JP 4292913 B2 JP4292913 B2 JP 4292913B2 JP 2003287927 A JP2003287927 A JP 2003287927A JP 2003287927 A JP2003287927 A JP 2003287927A JP 4292913 B2 JP4292913 B2 JP 4292913B2
Authority
JP
Japan
Prior art keywords
cooling unit
refrigerant
semiconductor cooling
semiconductor
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003287927A
Other languages
Japanese (ja)
Other versions
JP2005057130A (en
Inventor
知章 仲野
次郎 海老原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003287927A priority Critical patent/JP4292913B2/en
Publication of JP2005057130A publication Critical patent/JP2005057130A/en
Application granted granted Critical
Publication of JP4292913B2 publication Critical patent/JP4292913B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、半導体モジュールを有してなり、該半導体モジュールの冷却手段を備えた半導体冷却ユニットに関する。   The present invention relates to a semiconductor cooling unit that includes a semiconductor module and includes cooling means for the semiconductor module.

従来より、DC−DCコンバータ回路やインバータ回路等の電力変換回路は、例えば、電気自動車やハイブリッド自動車等の動力源である交流モータに通電する駆動電流を生成するのに用いられることがある。
一般に、電気自動車やハイブリッド自動車等では、交流モータから大きな駆動トルクを得る必要があるため、駆動電流として大電流が必要となる。
そしてそのため、その交流モータ向けの駆動電流を生成する上記電力変換回路においては、該電力変換回路を構成するIGBT等の電力用半導体素子を含む半導体モジュールからの発熱が大きくなる傾向にある。
Conventionally, a power conversion circuit such as a DC-DC converter circuit or an inverter circuit is sometimes used to generate a drive current for energizing an AC motor that is a power source of an electric vehicle or a hybrid vehicle.
Generally, in an electric vehicle, a hybrid vehicle, or the like, a large driving torque needs to be obtained from an AC motor, and thus a large current is required as a driving current.
Therefore, in the power conversion circuit that generates the drive current for the AC motor, heat generation from the semiconductor module including the power semiconductor element such as IGBT constituting the power conversion circuit tends to increase.

そこで、電力変換回路を構成する複数の半導体モジュールを均一性高く冷却できるように、冷却用媒体(冷媒)の供給及び排出を担う一対のヘッダの間に多数の扁平冷却チューブを配置し、該扁平冷却チューブの間に半導体モジュールを挟持した冷却チューブ並列型の電力変換装置が提案されている(例えば、特許文献1参照。)。
この電力変換装置では、冷却チューブと半導体モジュールとの間の熱伝達効率を向上するべく、両者間に当接荷重を作用して、その接触面積を広く確保している。
Therefore, a large number of flat cooling tubes are arranged between a pair of headers that supply and discharge the cooling medium (refrigerant) so that the plurality of semiconductor modules constituting the power conversion circuit can be cooled with high uniformity. A cooling tube parallel type power converter in which a semiconductor module is sandwiched between cooling tubes has been proposed (see, for example, Patent Document 1).
In this power converter, in order to improve the heat transfer efficiency between the cooling tube and the semiconductor module, a contact load is applied between the two to ensure a wide contact area.

しかしながら、上記従来の電力変換装置では、次のような問題がある。すなわち、上記冷却チューブと上記半導体モジュールとの間に当接荷重を作用するための機構或いは部材が必要となるため、構造が複雑化すると共に、体格が大型化するおそれがある。
さらに、荷重の作用方向において、寸法変化を生じるため、その形状精度を高く維持することが難しいという問題がある。
特開2002−26215号公報
However, the conventional power conversion device has the following problems. That is, since a mechanism or member for applying a contact load between the cooling tube and the semiconductor module is required, the structure is complicated and the size of the body may be increased.
Furthermore, since a dimensional change occurs in the direction of the load, there is a problem that it is difficult to maintain a high shape accuracy.
JP 2002-26215 A

本発明は、かかる従来の問題点に鑑みてなされたもので、放熱効率に優れ、高い形状精度を有する優れた半導体冷却ユニットを提供しようとするものである。   The present invention has been made in view of such conventional problems, and an object of the present invention is to provide an excellent semiconductor cooling unit having excellent heat radiation efficiency and high shape accuracy.

第1の発明は、電力用の半導体素子と冷媒を流動させる一対の冷媒流路とを有してなり、該一対の冷媒流路の間に上記半導体素子を配置してなる半導体冷却ユニットにおいて、
上記半導体素子は、該半導体素子を挟むように配置した一対の平板状の電極板を有しており、
かつ、上記冷媒流路は、その内壁面の少なくとも一部を上記電極板の一部により構成してあり、
また、一対の上記電極板と上記半導体素子とは、モールド樹脂により一体的に覆ってあり、上記各冷媒流路は、上記モールド樹脂の内部において、上記電極板に面して形成してあることを特徴とする半導体冷却ユニットにある(請求項1)。
A first aspect of the present invention is a semiconductor cooling unit comprising a power semiconductor element and a pair of refrigerant flow paths for flowing a refrigerant, and the semiconductor element is disposed between the pair of refrigerant flow paths.
The semiconductor element has a pair of flat electrode plates arranged so as to sandwich the semiconductor element,
And the coolant channel is Ri at least a portion of the inner wall constitutes a part of the electrode plate Thea,
The pair of electrode plates and the semiconductor element are integrally covered with a mold resin, and each of the coolant channels is formed facing the electrode plate inside the mold resin. (Claim 1).

上記第1の発明の半導体冷却ユニットは、内壁面の少なくとも一部として上記電極板の表面を利用した上記冷媒流路を有している。
そのため、上記電極板によれば、上記冷媒流路を流動する冷媒に対して、直接的かつ効率的に、上記半導体素子の発熱を放熱することができる。
The semiconductor cooling unit according to the first aspect of the invention has the refrigerant flow path using the surface of the electrode plate as at least a part of the inner wall surface.
Therefore, according to the electrode plate, heat generated by the semiconductor element can be radiated directly and efficiently to the refrigerant flowing through the refrigerant flow path.

また、上記半導体冷却ユニットでは、上記冷媒流路を形成する冷媒配管等の部材を、上記電極板に対して押し付ける必要がない。
そのため、上記第1の発明の上記半導体冷却ユニットは、当接荷重を作用させるための機構や構造等が必要でないため、その構造が簡単であり、かつ、当接荷重による寸法変化を生じるおそれがなく、形状精度に優れている。
In the semiconductor cooling unit, it is not necessary to press a member such as a refrigerant pipe that forms the refrigerant flow path against the electrode plate.
Therefore, the semiconductor cooling unit according to the first aspect of the invention does not require a mechanism or a structure for applying a contact load, so that the structure is simple and a dimensional change due to the contact load may occur. There is no shape accuracy.

以上のように、上記第1の発明の半導体冷却ユニットは、放熱効率に優れ、高い形状精度を有するユニットである。   As described above, the semiconductor cooling unit according to the first aspect of the invention is a unit having excellent heat dissipation efficiency and high shape accuracy.

また、一対の上記電極板と上記半導体素子とは、モールド樹脂により一体的に覆ってあり、上記各冷媒流路は、上記モールド樹脂の内部において、上記電極板に面して形成してある。
これにより、上記モールド樹脂により成形した上記冷媒流路を流動する上記冷媒を、上記電極板の表面に接触させて、両者間の熱伝達効率を向上することができる。
Further, the pair of the electrode plate and the semiconductor element, Yes covers integrally by molding resin, each coolant channel, in the interior of the mold resin, Ru Thea formed facing the electrode plate .
Thereby , the said refrigerant | coolant which flows through the said refrigerant | coolant flow path shape | molded with the said mold resin can be made to contact the surface of the said electrode plate, and the heat transfer efficiency between both can be improved.

また、上記半導体冷却ユニットは、冷媒の供給及び排出を行う一対のヘッダ部を有してなり、該一対のヘッダ部には、上記半導体素子を挟持した上記一対の冷媒流路を複数、並列して接続してあることが好ましい(請求項)。
この場合には、上記一対の冷媒流路を有する複数の上記半導体冷却ユニットをコンパクトに構成することができる。
Further, the semiconductor cooling unit includes a pair of header portions for supplying and discharging a refrigerant, and the pair of headers sandwiching the semiconductor element are arranged in parallel in the pair of header portions. Are preferably connected (claim 2 ).
In this case, the plurality of semiconductor cooling units having the pair of refrigerant flow paths can be configured in a compact manner.

上記第1発明においては、上記冷媒は、電気的な絶縁性を有する冷媒であることが好ましい(請求項3)。
この場合には、上記冷媒を介して電気的な短絡が生じるおそれを抑制して、上記半導体冷却ユニットの電気的な信頼性を向上できる。
In the first invention, the coolant is preferably a refrigerant having an electrical insulation property (claim 3).
In this case, the electrical reliability of the semiconductor cooling unit can be improved by suppressing the possibility of an electrical short circuit through the refrigerant.

また、上記冷媒に接触する上記電極板の表面には、電気的な絶縁性を有する絶縁被膜を形成してあることが好ましい(請求項4)。
この場合には、上記冷媒を介して電気的な短絡を生じるおそれを抑制できる。
そして、上記冷媒と上記電極板との間に上記絶縁被膜を配置してあるため、上記冷媒としては、導電性を有する冷媒を採用することができる。
The surface of the electrode plate in contact with the refrigerant, it is preferable that is formed with an insulating film having an electrical insulation property (claim 4).
In this case, the possibility of causing an electrical short circuit through the refrigerant can be suppressed.
And since the said insulating film is arrange | positioned between the said refrigerant | coolant and the said electrode plate, the refrigerant | coolant which has electroconductivity can be employ | adopted as the said refrigerant | coolant.

参考例1
本例の半導体冷却ユニット1について、図1〜図5を用いて説明する。
本例の半導体冷却ユニット1は、図1及び図2に示すごとく、電力用の半導体素子11と冷媒を流動させる一対の冷媒流路21とを有してなり、該一対の冷媒流路21の間に半導体素子11を配置してなるユニットである。
上記半導体素子11は、該半導体素子11を挟むように配置した一対の平板状の電極板151、152を有している。
上記冷媒流路21は、その内壁面の少なくとも一部を電極板15の表面により構成してある。
以下に、この内容について詳しく説明する。
( Reference Example 1 )
The semiconductor cooling unit 1 of this example will be described with reference to FIGS.
As shown in FIGS. 1 and 2, the semiconductor cooling unit 1 of the present example includes a power semiconductor element 11 and a pair of refrigerant channels 21 for flowing a refrigerant. A unit in which the semiconductor element 11 is disposed between them.
The semiconductor element 11 has a pair of flat electrode plates 151 and 152 disposed so as to sandwich the semiconductor element 11.
The refrigerant flow path 21 is constituted by at least a part of its inner wall surface by the surface of the electrode plate 15.
This content will be described in detail below.

本例の半導体冷却ユニット1は、例えば、電気自動車用の走行モータに通電する駆動電流を生成する電力変換装置(図示略)の一部をなす。
そして、この半導体冷却ユニット1は、図1に示すごとく、電力用の半導体素子11としてのIGBT素子(以下、IGBT素子11と記載。)を収容してなり、該IGBT素子11を挟むように一対の電極板151、152を配置してなるユニットである。
そして、上記IGBT素子11が、上記電力変換装置のインバータ回路或いは、DC−DCコンバータ回路を構成している。
The semiconductor cooling unit 1 of this example forms a part of a power conversion device (not shown) that generates a drive current for energizing a travel motor for an electric vehicle, for example.
As shown in FIG. 1, this semiconductor cooling unit 1 accommodates an IGBT element (hereinafter referred to as IGBT element 11) as a power semiconductor element 11, and a pair so as to sandwich the IGBT element 11. These electrode plates 151 and 152 are arranged.
The IGBT element 11 constitutes an inverter circuit or a DC-DC converter circuit of the power converter.

本例の半導体冷却ユニット1では、図1に示すごとく、IGBT素子11の両面に、電極板151、152をハンダ接合してなる。すなわち、IGBT素子11と電極板151、152との間には、ハンダ接合層111を形成してある。
そして、本例の半導体冷却ユニット1は、図1及び図2に示すごとく、ハンダ接合したIGBT素子11と一対の電極板151、152とを、モールド樹脂100により一体的に覆ってなる。
In the semiconductor cooling unit 1 of this example, as shown in FIG. 1, electrode plates 151 and 152 are soldered to both surfaces of the IGBT element 11. That is, the solder bonding layer 111 is formed between the IGBT element 11 and the electrode plates 151 and 152.
And the semiconductor cooling unit 1 of this example integrally covers the soldered IGBT element 11 and the pair of electrode plates 151 and 152 with the mold resin 100 as shown in FIGS.

上記半導体冷却ユニット1では、上記一対の電極板151、152の間に、図2に示すごとく、上記IGBT素子11と、モータの回転を滑らかにするために必要なフライホイールダイオード素子12とを配置してある。
この半導体冷却ユニット1は、図1及び図2に示すごとく、電力信号用の端子であって上記各電極板151、152と一体をなす電力端子150と、制御信号用の端子であってモールド樹脂中に保持した制御端子160とを有してなる。
そして、電力端子150と制御端子160とは、上記電極板15に平行な面内において対向配置されている。
In the semiconductor cooling unit 1, between the pair of electrode plates 151 and 152, as shown in FIG. 2, the IGBT element 11 and the flywheel diode element 12 necessary for smoothing the rotation of the motor are arranged. It is.
As shown in FIGS. 1 and 2, the semiconductor cooling unit 1 includes a power signal terminal that is integral with the electrode plates 151 and 152, and a control signal terminal that is a mold resin. And a control terminal 160 held therein.
The power terminal 150 and the control terminal 160 are disposed to face each other in a plane parallel to the electrode plate 15.

また、上記電極板151、152は、図1に示すごとく、内部に冷媒を流動させる中空部21を形成した扁平形状の部材である。本例では、97%のアルミを含有したアルミ合金より、上記冷却チューブを形成した。
中空部21を流動する冷媒によれば、IGBT素子11等から発生し、電極板151、152に伝達された熱を効率良く吸熱することができる。
Moreover, the said electrode plates 151 and 152 are flat members which formed the hollow part 21 which makes a refrigerant | coolant flow inside, as shown in FIG. In this example, the cooling tube was formed from an aluminum alloy containing 97% aluminum.
According to the refrigerant flowing through the hollow portion 21, heat generated from the IGBT element 11 and transmitted to the electrode plates 151 and 152 can be absorbed efficiently.

なお、IGBT素子11の一方の面の端部には、制御端子160との接続信号線であるボンディングワイヤ116を接続するボンディング部115を形成してある。
そこで、該ボンディング部115を避けて電極板152を接合できるよう、該電極板152は、冷媒の流動方向に直交する方向における幅を他方の電極板151よりも狭くしてある。
A bonding portion 115 for connecting a bonding wire 116 that is a connection signal line to the control terminal 160 is formed at the end of one surface of the IGBT element 11.
Therefore, the width of the electrode plate 152 in the direction orthogonal to the flow direction of the refrigerant is narrower than that of the other electrode plate 151 so that the electrode plate 152 can be bonded to avoid the bonding portion 115.

本例の半導体冷却ユニット1を使用するに当たっては、例えば、図3に示すごとく、ガラス繊維入り66ナイロンよりなるタンク形状をなし、冷媒の供給及び排出を行う一対のヘッダ部41、42に対して、複数の半導体冷却ユニット1を並列的に接続して構成することができる。
すなわち、各半導体冷却ユニット1の電極板151、152の冷媒流動方向の両端部を、ヘッダ部41及び42に接続してある。
ここで、電気的な絶縁性を有するガラス繊維入り66ナイロンよりなるヘッダ部41、42によれば、各電極板151、152相互間の電気的な絶縁を確保して、各素子11、12の電気的な短絡を防止することができる。
In using the semiconductor cooling unit 1 of this example, for example, as shown in FIG. 3, the tank shape is made of 66 nylon containing glass fiber, and the pair of header portions 41 and 42 for supplying and discharging the refrigerant is used. A plurality of semiconductor cooling units 1 can be connected in parallel.
That is, both end portions of the electrode plates 151 and 152 of each semiconductor cooling unit 1 in the refrigerant flow direction are connected to the header portions 41 and 42.
Here, according to the header portions 41 and 42 made of 66 nylon with glass fiber having electrical insulation, electrical insulation between the electrode plates 151 and 152 is ensured, and each of the elements 11 and 12 is secured. An electrical short circuit can be prevented.

併せて、本例の半導体冷却ユニット1では、電気的な絶縁性を有する冷媒を上記中空部21に流動させるように構成してある。
そのため、上記冷媒を介して、上記各素子11、12が電気的に短絡するおそれが少ない。
なお、上記各電極板151、152の中空部21の内壁面に絶縁塗膜を形成すれば、導電性を有する冷媒を採用することも可能になる。
In addition, the semiconductor cooling unit 1 of the present example is configured such that an electrically insulating refrigerant flows through the hollow portion 21.
Therefore, there is little possibility that the elements 11 and 12 are electrically short-circuited through the refrigerant.
In addition, if an insulating coating film is formed on the inner wall surface of the hollow portion 21 of each of the electrode plates 151 and 152, it is possible to employ a conductive coolant.

さらになお、上記のガラス繊維入り66ナイロンよりなるヘッダ部41、42に代えて、導電性を有する素材、例えば、アルミ合金等によりヘッダ部41、42を形成する一方、ヘッダ部41、42と電極板15との間に絶縁性の高い部材を介設して、両者を絶縁状態で接続することもできる。
さらに、本例では、複数の半導体冷却ユニット1を並列させて構成したが、これに代えて、一対のヘッダ部41、41に対して、1個の半導体冷却ユニット1を接続することもできる。
Furthermore, instead of the header parts 41 and 42 made of 66 nylon containing glass fiber, the header parts 41 and 42 are formed of a conductive material, for example, an aluminum alloy, while the header parts 41 and 42 and the electrodes are formed. A highly insulating member may be interposed between the plate 15 and the two in an insulated state.
Furthermore, in this example, the plurality of semiconductor cooling units 1 are configured in parallel. However, instead of this, one semiconductor cooling unit 1 can be connected to the pair of header portions 41 and 41.

また、本例では、IGBT素子11に接合した電極板151と電極板152とを別部品として半導体冷却ユニット1を構成したが、図4に示すごとく、電極板151を共通化することもできる。
各電極板150についての電極端子150の先端位置にズレを生じるが、電極端子150と組み合わせるソケット側で、ズレを吸収できれば問題は生じない。
In this example, the semiconductor cooling unit 1 is configured with the electrode plate 151 and the electrode plate 152 bonded to the IGBT element 11 as separate components. However, as shown in FIG. 4, the electrode plate 151 can be shared.
Although a deviation occurs at the tip position of the electrode terminal 150 for each electrode plate 150, there is no problem if the deviation can be absorbed on the socket side combined with the electrode terminal 150.

さらに、電極板155の中空部21を、図5に示すごとく、リブ210によって区画することもできる。この場合には、冷媒に接触する電極板155の表面積を広く確保して、両者間の熱伝達効率を向上することができる。
さらにまた、図6に示すごとく、中空部21を形成した部分を、電極端子150と比べて板厚に形成することもできる。この場合には、中空部21を流動する冷媒の流量を増やして、IGBT素子11の冷却性能を向上することができる。
Further, the hollow portion 21 of the electrode plate 155 can be partitioned by ribs 210 as shown in FIG. In this case, it is possible to secure a large surface area of the electrode plate 155 in contact with the refrigerant and improve the heat transfer efficiency between them.
Furthermore, as shown in FIG. 6, the portion where the hollow portion 21 is formed can be formed with a plate thickness as compared with the electrode terminal 150. In this case, the cooling performance of the IGBT element 11 can be improved by increasing the flow rate of the refrigerant flowing through the hollow portion 21.

なお、同図の半導体冷却ユニット1では、IGBT素子11の一方の面側に、熱伝導性が良い銅よりなるプレート状のブロック110を介設して電極端子150を接合してある。プレート状のブロック110を介設すれば、電極端子150とボンディングワイヤ116との干渉を回避することができる。
そのため、この場合には、IGBT素子11の両面において、略同一形状の電極端子150を素子表面に沿ってずらすことなく配設することができる。
In the semiconductor cooling unit 1 in the figure, an electrode terminal 150 is joined to one surface side of the IGBT element 11 with a plate-shaped block 110 made of copper having good thermal conductivity. If the plate-like block 110 is interposed, interference between the electrode terminal 150 and the bonding wire 116 can be avoided.
Therefore, in this case, the electrode terminals 150 having substantially the same shape can be arranged on both surfaces of the IGBT element 11 without shifting along the element surface.

参考例2
本例は、参考例1を基にして、上記電極板の構成を変更した例である。この例の内容について、図7〜図11を用いて説明する。
本例の電極板17は、図7に示すごとく、端子部171と冷媒流路部172との2分割構造を呈している。そして、両者は、予め、ろう付けにより一体に接合してあり、実施例1の電極板と略同形状に形成してある。
( Reference Example 2 )
In this example, the configuration of the electrode plate is changed based on Reference Example 1 . The contents of this example will be described with reference to FIGS.
As shown in FIG. 7, the electrode plate 17 of this example has a two-part structure of a terminal portion 171 and a refrigerant flow path portion 172. Both of them are previously joined together by brazing and formed in substantially the same shape as the electrode plate of Example 1.

また、図8及び図9に示すごとく、端子部181、191と冷媒流路部182、192とを重ね合わせて接合し、一体の電極板18、19とすることもできる。
ここで、端子部181、191と冷媒流路部182、192との位置関係については、図8に示すごとく、端子部181とIGBT素子11との間に冷媒流路部182を配置しても良く、図9に示すごとく、端子部191の外側に冷媒流路部192を配置することもできる。
なお、上記ろう付け接合に代えて、はんだ接合とすることもできる。さらに、端子部181、191と、冷媒流路部182、192との間に熱伝導性グリスを介設したうえ、モールド樹脂100により一体的に覆って両者を接合することもできる。
Further, as shown in FIGS. 8 and 9, the terminal portions 181 and 191 and the refrigerant flow path portions 182 and 192 can be overlapped and joined to form the integrated electrode plates 18 and 19.
Here, regarding the positional relationship between the terminal portions 181 and 191 and the refrigerant flow passage portions 182 and 192, as shown in FIG. 8, the refrigerant flow passage portion 182 is disposed between the terminal portion 181 and the IGBT element 11. As shown in FIG. 9, it is possible to dispose the coolant channel portion 192 outside the terminal portion 191.
In addition, it can replace with the said brazing joining and can also be set as solder joining. Furthermore, it is also possible to interpose a heat conductive grease between the terminal portions 181 and 191 and the refrigerant flow path portions 182 and 192, and to cover them integrally with the mold resin 100 and join them together.

さらに、図8に示した半導体冷却ユニット1を基にして、中空部21の形状を変更することもできる。すなわち、図10に示すごとく、中空部21をリブ210により区画した冷媒流路部183を用いることができる。
なお、同図の半導体冷却ユニット1では、IGBT素子11の一方の面側に、熱伝導性が良い銅よりなるプレート状のブロック110を介設して冷媒流路部183を接合してある。プレート状のブロック110を介設すれば、冷媒流路部183とボンディングワイヤ116との干渉を回避することができる。
そのため、この場合には、IGBT素子11の両面において、略同一形状の冷媒流路部183を素子表面に沿ってずらすことなく配設することができる。
Furthermore, the shape of the hollow portion 21 can be changed based on the semiconductor cooling unit 1 shown in FIG. That is, as shown in FIG. 10, it is possible to use the refrigerant flow path portion 183 in which the hollow portion 21 is partitioned by the rib 210.
In the semiconductor cooling unit 1 in the figure, the refrigerant flow path portion 183 is joined to one surface side of the IGBT element 11 with a plate-like block 110 made of copper having good thermal conductivity. If the plate-shaped block 110 is interposed, interference between the refrigerant flow path portion 183 and the bonding wire 116 can be avoided.
Therefore, in this case, on both surfaces of the IGBT element 11, it is possible to dispose the refrigerant flow path portions 183 having substantially the same shape without shifting along the element surface.

また、同様に、図9に示した半導体冷却ユニット1を基にして、中空部21の形状を変更することもできる。
すなわち、図11に示すごとく、中空部21をリブ210により区画した冷媒流路部193を用いることができる。
なお、その他の構成及び作用効果については参考例1と同様である。
Similarly, the shape of the hollow portion 21 can be changed based on the semiconductor cooling unit 1 shown in FIG.
That is, as shown in FIG. 11, it is possible to use a refrigerant flow path portion 193 in which the hollow portion 21 is partitioned by the rib 210.
Other configurations and operational effects are the same as in Reference Example 1 .

実施例1
本例は、参考例1を基にして、上記冷媒流路の構成を変更した例である。この内容について、図12を用いて説明する。
本例の半導体冷却ユニット1は、一対の電極板15によりIGBT素子11を挟持したうえ、モールド樹脂100により一体的に覆ってある。
( Example 1 )
In this example, the configuration of the refrigerant flow path is changed based on Reference Example 1 . The contents will be described with reference to FIG.
In the semiconductor cooling unit 1 of this example, the IGBT element 11 is sandwiched between a pair of electrode plates 15 and is integrally covered with a mold resin 100.

そして、半導体冷却ユニット1を覆うモールド樹脂100の内部には、各電極板15の表面に沿って冷媒流路211を形成してある。
すなわち、本例の冷媒流路211は、その内周壁が、モールド樹脂100の表面と電極板15の表面とにより形成されてなる流路である。
そのため、この冷媒流路211を流動する冷媒は、電極板15の表面に接触し、該電極板15との間で直接的に熱交換することができる。
A coolant channel 211 is formed along the surface of each electrode plate 15 in the mold resin 100 covering the semiconductor cooling unit 1.
That is, the coolant channel 211 of this example is a channel in which the inner peripheral wall is formed by the surface of the mold resin 100 and the surface of the electrode plate 15.
Therefore, the refrigerant flowing through the refrigerant flow path 211 contacts the surface of the electrode plate 15 and can directly exchange heat with the electrode plate 15.

なお、上記冷媒流路211に流動させる冷媒としては、電気的な絶縁性を有する冷媒を使用する必要がある。
一方、電極板15の表面に絶縁被膜を形成する場合には、導電性を有する冷媒を適用することもできる。
なお、その他の構成及び作用効果については、参考例1と同様である。
In addition, as a refrigerant | coolant made to flow through the said refrigerant | coolant flow path 211, it is necessary to use the refrigerant | coolant which has electrical insulation.
On the other hand, when an insulating film is formed on the surface of the electrode plate 15, a conductive coolant can be applied.
Other configurations and operational effects are the same as in Reference Example 1 .

参考例3
本例は、参考例1を基にして、上記半導体冷却ユニットの構成を変更した例である。この内容について、図13及び図14を用いて説明する。
本例の半導体冷却ユニット1は、図13に示すごとく、IGBT素子11等を収容した半導体モジュール2を、冷媒を流動させる冷媒配管4の内部に配置してなるユニットである。
( Reference Example 3 )
In this example, the configuration of the semiconductor cooling unit is changed based on Reference Example 1. The contents will be described with reference to FIGS.
As shown in FIG. 13, the semiconductor cooling unit 1 of this example is a unit in which a semiconductor module 2 containing an IGBT element 11 and the like is arranged inside a refrigerant pipe 4 through which a refrigerant flows.

上記半導体モジュール2は、一対の電極板15の間にIGBT素子11を配置したうえ、電極板15の表面が露出する状態でモールド樹脂100により一体成形してなる。
そして、この半導体モジュール2は、電気的な絶縁性を備えた冷媒を流動させた冷媒配管4の内部に配置してある。
本例の半導体冷却ユニット1では、冷媒中に半導体モジュール2を浸漬してあるため、その内部のIGBT素子11を冷却する性能が高い。
The semiconductor module 2 is integrally formed with the mold resin 100 with the IGBT element 11 disposed between the pair of electrode plates 15 and the surface of the electrode plate 15 exposed.
And this semiconductor module 2 is arrange | positioned inside the refrigerant | coolant piping 4 to which the refrigerant | coolant provided with the electrical insulation was made to flow.
In the semiconductor cooling unit 1 of this example, since the semiconductor module 2 is immersed in the refrigerant, the performance of cooling the IGBT element 11 inside thereof is high.

なお、図14に示すごとく、電極板15の表面に、伝熱フィン159を形成することも有効である。この場合には、冷媒と電極板15との接触面積を拡大して、熱伝達効率をさらに向上することができる。
また、半導体モジュール2の外表面のうち冷媒と接触する部分に、電気的な絶縁性を有する絶縁被膜を形成することもできる。この場合には、導電性を有する冷媒中に、半導体モジュール2を浸漬することができる。
As shown in FIG. 14, it is also effective to form heat transfer fins 159 on the surface of the electrode plate 15. In this case, the contact area between the refrigerant and the electrode plate 15 can be expanded to further improve the heat transfer efficiency.
In addition, an insulating film having electrical insulation can be formed on a portion of the outer surface of the semiconductor module 2 that comes into contact with the refrigerant. In this case, the semiconductor module 2 can be immersed in a conductive coolant.

なお、その他の構成及び作用効果については、参考例1と同様である。
さらになお、上記冷媒配管4に代えて、冷媒の流入及び流出がない冷媒タンク中に半導体モジュール2を浸漬することもできる。
この場合には、タンク中の冷媒の自然対流を利用して半導体モジュール2を冷却することができる。
Other configurations and operational effects are the same as in Reference Example 1 .
Furthermore, it can replace with the said refrigerant | coolant piping 4, and the semiconductor module 2 can also be immersed in the refrigerant | coolant tank which does not flow in and out of a refrigerant | coolant.
In this case, the semiconductor module 2 can be cooled using natural convection of the refrigerant in the tank.

参考例4
本例は、参考例1を基にして、上記半導体冷却ユニットの冷媒流路の接続構造を変更した例である。この例の内容について、図15〜19を用いて説明する。
本例の半導体冷却ユニット1では、電極板151、152の端部の位置を変更してある。
( Reference Example 4 )
This example is an example in which the connection structure of the refrigerant flow path of the semiconductor cooling unit is changed based on Reference Example 1. The contents of this example will be described with reference to FIGS.
In the semiconductor cooling unit 1 of this example, the positions of the end portions of the electrode plates 151 and 152 are changed.

本例の半導体冷却ユニット1は、中空部を形成した一対の電極板15の間にIGBT素子11等を挟持した上、モールド樹脂100により一体的に覆ってなるユニットである。
図15に示す半導体冷却ユニット1では、電極板15の両端部は、半導体冷却ユニット1の端面に位置しており、該端面には中空部が開口している。
図16に示す半導体冷却ユニット1では、電極板15の両端部は、半導体冷却ユニット1をなすモールド樹脂100の内部に位置している。
図17に示す半導体冷却ユニット1では、電極板15の一方の端部は、モールド樹脂100から突出しており、他方の端部はモールド樹脂100の内部にある。
The semiconductor cooling unit 1 of this example is a unit formed by sandwiching an IGBT element 11 and the like between a pair of electrode plates 15 having a hollow portion, and then integrally covering with a mold resin 100.
In the semiconductor cooling unit 1 shown in FIG. 15, both end portions of the electrode plate 15 are located on the end face of the semiconductor cooling unit 1, and a hollow portion is opened on the end face.
In the semiconductor cooling unit 1 shown in FIG. 16, both end portions of the electrode plate 15 are located inside the mold resin 100 constituting the semiconductor cooling unit 1.
In the semiconductor cooling unit 1 shown in FIG. 17, one end of the electrode plate 15 protrudes from the mold resin 100 and the other end is inside the mold resin 100.

なお、図16及び図17に示す半導体冷却ユニット1の場合において、電極板15の端部をモールド樹脂100の内部に配置する場合、各中空部に連通する開口形状としては、各中空部ごとに開口部105(図18)を設けても良く、各中空部を集合した単一の開口部106(図19)を設けても良い。
なお、その他の構成及び作用効果については参考例1と同様である。
In the case of the semiconductor cooling unit 1 shown in FIGS. 16 and 17, when the end portion of the electrode plate 15 is disposed inside the mold resin 100, the opening shape communicating with each hollow portion is set for each hollow portion. The opening part 105 (FIG. 18) may be provided, and the single opening part 106 (FIG. 19) which gathered each hollow part may be provided.
Other configurations and operational effects are the same as in Reference Example 1 .

参考例1における、半導体冷却ユニットの断面構造を示す断面図。Sectional drawing which shows the cross-section of the semiconductor cooling unit in the reference example 1. FIG. 参考例1における、半導体冷却ユニットを示す上面図。The top view which shows the semiconductor cooling unit in the reference example 1. FIG. 参考例1における、半導体冷却ユニットの接続構造を示す断面図。Sectional drawing which shows the connection structure of the semiconductor cooling unit in the reference example 1. FIG. 参考例1における、その他の半導体冷却ユニットの断面構造を示す断面図。Sectional drawing which shows the cross-section of the other semiconductor cooling unit in the reference example 1. FIG. 参考例1における、その他の半導体冷却ユニットの断面構造を示す断面図。Sectional drawing which shows the cross-section of the other semiconductor cooling unit in the reference example 1. FIG. 参考例1における、その他の半導体冷却ユニットの断面構造を示す断面図。Sectional drawing which shows the cross-section of the other semiconductor cooling unit in the reference example 1. FIG. 参考例2における、半導体冷却ユニットの断面構造を示す断面図。Sectional drawing which shows the cross-section of the semiconductor cooling unit in the reference example 2. FIG. 参考例2における、その他の半導体冷却ユニットの断面構造を示す断面図。Sectional drawing which shows the cross-section of the other semiconductor cooling unit in the reference example 2. 参考例2における、その他の半導体冷却ユニットの断面構造を示す断面図。Sectional drawing which shows the cross-section of the other semiconductor cooling unit in the reference example 2. 参考例2における、その他の半導体冷却ユニットの断面構造を示す断面図。Sectional drawing which shows the cross-section of the other semiconductor cooling unit in the reference example 2. 参考例2における、その他の半導体冷却ユニットの断面構造を示す断面図。Sectional drawing which shows the cross-section of the other semiconductor cooling unit in the reference example 2. 実施例1における、半導体冷却ユニットの断面構造を示す断面図。Sectional drawing which shows the cross-section of the semiconductor cooling unit in Example 1. FIG. 参考例3における、半導体冷却ユニットの断面構造を示す断面図。Sectional drawing which shows the cross-section of the semiconductor cooling unit in the reference example 3. FIG. 参考例3における、その他の半導体冷却ユニットの断面構造を示す断面図。Sectional drawing which shows the cross-section of the other semiconductor cooling unit in the reference example 3 . 参考例4における、半導体冷却ユニットその1を示す上面図。 The top view which shows the semiconductor cooling unit 1 in the reference example 4. FIG. 参考例4における、半導体冷却ユニットその2を示す上面図。 The top view which shows the semiconductor cooling unit 2 in the reference example 4. FIG. 参考例4における、半導体冷却ユニットその3を示す上面図。 The top view which shows the semiconductor cooling unit 3 in the reference example 4. FIG. 参考例4における、半導体冷却ユニットその2(その3)を示す側面図。 The side view which shows the semiconductor cooling unit 2 in the reference example 4 (the 3). 参考例4における、その他の半導体冷却ユニットその2(その3)を示す側面図。 The side view which shows the other semiconductor cooling unit 2 in the reference example 4 (the 3).

符号の説明Explanation of symbols

1 半導体冷却ユニット
100 モールド樹脂
11 IGBT素子
110 熱緩衝板
150 電力端子
160 制御端子
151、152、17、18、19 電極板
171、181、191 端子部
172、182、192 冷媒流路部
2 半導体モジュール
21、211 中空部
DESCRIPTION OF SYMBOLS 1 Semiconductor cooling unit 100 Mold resin 11 IGBT element 110 Thermal buffer board 150 Power terminal 160 Control terminal 151,152,17,18,19 Electrode plate 171,181,191 Terminal part 172,182,192 Coolant flow path part 2 Semiconductor module 21, 211 Hollow part

Claims (4)

電力用の半導体素子と冷媒を流動させる一対の冷媒流路とを有してなり、該一対の冷媒流路の間に上記半導体素子を配置してなる半導体冷却ユニットにおいて、
上記半導体素子は、該半導体素子を挟むように配置した一対の平板状の電極板を有しており、
かつ、上記冷媒流路は、その内壁面の少なくとも一部を上記電極板の一部により構成してあり、
また、一対の上記電極板と上記半導体素子とは、モールド樹脂により一体的に覆ってあり、上記各冷媒流路は、上記モールド樹脂の内部において、上記電極板に面して形成してあることを特徴とする半導体冷却ユニット。
In a semiconductor cooling unit comprising a semiconductor element for electric power and a pair of refrigerant passages for flowing a refrigerant, and the semiconductor element is disposed between the pair of refrigerant passages,
The semiconductor element has a pair of flat electrode plates arranged so as to sandwich the semiconductor element,
And the said refrigerant | coolant flow path comprises at least one part of the inner wall surface by a part of said electrode plate,
The pair of electrode plates and the semiconductor element are integrally covered with a mold resin, and each of the coolant channels is formed facing the electrode plate inside the mold resin. A semiconductor cooling unit.
請求項1において、上記半導体冷却ユニットは、冷媒の供給及び排出を行う一対のヘッダ部を有してなり、該一対のヘッダ部には、上記半導体素子を挟持した上記一対の冷媒流路を複数、並列して接続してあることを特徴とする半導体冷却ユニット。   2. The semiconductor cooling unit according to claim 1, wherein the semiconductor cooling unit includes a pair of header parts for supplying and discharging a refrigerant, and the pair of header parts includes a plurality of the pair of refrigerant flow paths sandwiching the semiconductor element. The semiconductor cooling unit is connected in parallel. 請求項1又は2において、上記冷媒は、電気的な絶縁性を有する冷媒であることを特徴とする半導体冷却ユニット。3. The semiconductor cooling unit according to claim 1, wherein the refrigerant is an electrically insulating refrigerant. 請求項1〜3のいずれか1項において、上記冷媒に接触する上記電極板の表面には、電気的な絶縁性を有する絶縁被膜を形成してあることを特徴とする半導体冷却ユニット。The semiconductor cooling unit according to any one of claims 1 to 3, wherein an insulating film having electrical insulation is formed on a surface of the electrode plate in contact with the refrigerant.
JP2003287927A 2003-08-06 2003-08-06 Semiconductor cooling unit Expired - Fee Related JP4292913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003287927A JP4292913B2 (en) 2003-08-06 2003-08-06 Semiconductor cooling unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003287927A JP4292913B2 (en) 2003-08-06 2003-08-06 Semiconductor cooling unit

Publications (2)

Publication Number Publication Date
JP2005057130A JP2005057130A (en) 2005-03-03
JP4292913B2 true JP4292913B2 (en) 2009-07-08

Family

ID=34366765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003287927A Expired - Fee Related JP4292913B2 (en) 2003-08-06 2003-08-06 Semiconductor cooling unit

Country Status (1)

Country Link
JP (1) JP4292913B2 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303290A (en) * 2005-04-22 2006-11-02 Mitsubishi Electric Corp Semiconductor device
JP4569766B2 (en) * 2005-05-31 2010-10-27 トヨタ自動車株式会社 Semiconductor device
JP2007067084A (en) * 2005-08-30 2007-03-15 Toshiba Corp Power semiconductor element and semiconductor power converter
JP4805636B2 (en) * 2005-08-30 2011-11-02 株式会社東芝 Power semiconductor device and semiconductor power converter
JP4594831B2 (en) * 2005-08-31 2010-12-08 株式会社東芝 Power semiconductor device
JP4729443B2 (en) * 2006-06-13 2011-07-20 トヨタ自動車株式会社 Semiconductor device
JP4833795B2 (en) * 2006-10-31 2011-12-07 新日本製鐵株式会社 Semiconductor device connection leads
US7876564B2 (en) * 2007-05-25 2011-01-25 CCZ Technology Group, Inc. Method and apparatus for cooling computer memory
JP4719187B2 (en) * 2007-06-15 2011-07-06 トヨタ自動車株式会社 Semiconductor device cooling structure
JP2010062511A (en) * 2008-08-07 2010-03-18 Calsonic Kansei Corp Semiconductor device
JP5242629B2 (en) * 2010-05-10 2013-07-24 株式会社東芝 Power semiconductor device
DE102011003284B4 (en) * 2011-01-27 2015-04-16 Semikron Elektronik Gmbh & Co. Kg Power semiconductor element and arrangement of a power semiconductor element to at least one solar cell
JP2012174856A (en) * 2011-02-21 2012-09-10 Hitachi Cable Ltd Heat sink and manufacturing method of the same
WO2013069277A1 (en) * 2011-11-07 2013-05-16 ダイキン工業株式会社 Semiconductor device
JP5965687B2 (en) * 2012-03-23 2016-08-10 株式会社 日立パワーデバイス Power semiconductor module
JP5444486B2 (en) * 2013-02-15 2014-03-19 株式会社東芝 Inverter device
US9961798B2 (en) 2013-04-04 2018-05-01 Infineon Technologies Austria Ag Package and a method of manufacturing the same
JP2015153932A (en) * 2014-02-17 2015-08-24 トヨタ自動車株式会社 semiconductor module
DE102014208255B4 (en) * 2014-04-30 2016-09-01 Conti Temic Microelectronic Gmbh Circuit arrangement, current transformer with a circuit arrangement
JP6925279B2 (en) * 2015-04-13 2021-08-25 アーベーベー・シュバイツ・アーゲーABB Schweiz AG Power electronics module
DE102015214928A1 (en) 2015-08-05 2017-02-09 Siemens Aktiengesellschaft Component module and power module
EP3249686A1 (en) * 2016-05-24 2017-11-29 Mitsubishi Electric R&D Centre Europe B.V. A power module
JP7075837B2 (en) * 2018-06-29 2022-05-26 三菱重工業株式会社 Cooling structure of semiconductor elements and cooling structure of electronic devices
JP2020027904A (en) * 2018-08-15 2020-02-20 株式会社東芝 Semiconductor device and power converter
JP2021177676A (en) * 2020-05-08 2021-11-11 株式会社日立製作所 Power conversion device
CN111987001A (en) * 2020-07-16 2020-11-24 杰群电子科技(东莞)有限公司 Manufacturing method of power semiconductor structure, chip carrier and power semiconductor structure
CN111933596A (en) * 2020-07-16 2020-11-13 杰群电子科技(东莞)有限公司 Chip carrier and semiconductor packaging product comprising same
JP7024900B1 (en) 2021-02-19 2022-02-24 富士電機株式会社 Semiconductor device
JP7001186B1 (en) 2021-03-18 2022-01-19 富士電機株式会社 Manufacturing methods for semiconductor devices, semiconductor modules, vehicles, and semiconductor devices
US20240215210A1 (en) * 2022-12-23 2024-06-27 Hamilton Sundstrand Corporation Oil-cooled rectifier diode assembly

Also Published As

Publication number Publication date
JP2005057130A (en) 2005-03-03

Similar Documents

Publication Publication Date Title
JP4292913B2 (en) Semiconductor cooling unit
JP5206822B2 (en) Semiconductor device
JP6186143B2 (en) Power converter
WO2014083976A1 (en) Inverter device
JP5217884B2 (en) Semiconductor device
JP6263311B2 (en) Power converter
US9992915B2 (en) Power conversion device
JP2007006575A (en) Three-phase inverter device
JP2010087002A (en) Heating component cooling structure
WO2014020806A1 (en) Cooling structure and power converter
WO2021053975A1 (en) Power converter and motor-integrated power converter
JP2010135697A (en) Lamination module structure
JP2006294921A (en) Power converter
JP4228830B2 (en) Semiconductor cooling unit
JP4016917B2 (en) Semiconductor cooling unit
JP6899784B2 (en) Power semiconductor device
JP4935783B2 (en) Semiconductor device and composite semiconductor device
JP5971051B2 (en) Semiconductor unit
JP2020010560A (en) Power conversion device
WO2019142543A1 (en) Power semiconductor device
JP5621812B2 (en) Semiconductor device
JP2010114116A (en) Semiconductor device for power
WO2017119286A1 (en) Power semiconductor module
CN219679073U (en) Vehicle controller and vehicle
JP2016092868A (en) Lamination unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4292913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees