JP2010114116A - Semiconductor device for power - Google Patents

Semiconductor device for power Download PDF

Info

Publication number
JP2010114116A
JP2010114116A JP2008282836A JP2008282836A JP2010114116A JP 2010114116 A JP2010114116 A JP 2010114116A JP 2008282836 A JP2008282836 A JP 2008282836A JP 2008282836 A JP2008282836 A JP 2008282836A JP 2010114116 A JP2010114116 A JP 2010114116A
Authority
JP
Japan
Prior art keywords
power semiconductor
wiring member
semiconductor device
cooling
metal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008282836A
Other languages
Japanese (ja)
Other versions
JP5164793B2 (en
Inventor
Yasushi Nakajima
泰 中島
Naoki Yoshimatsu
直樹 吉松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008282836A priority Critical patent/JP5164793B2/en
Publication of JP2010114116A publication Critical patent/JP2010114116A/en
Application granted granted Critical
Publication of JP5164793B2 publication Critical patent/JP5164793B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device for power that has been miniaturized, as compared with the conventional types. <P>SOLUTION: The semiconductor device for power includes a cooling section 10, a semiconductor module 20 for power, and a wiring member 30. The wiring member includes a metal plate 31 electrically connected to an electrode 22, extending from the semiconductor module for power; and an insulating resin section 32 that is sandwiched by the metal plate and the cooling section, conducts the heat of the metal plate to the cooling section, and is connected to the cooling section. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電力用半導体装置に関する。   The present invention relates to a power semiconductor device.

大きな電力を扱う装置に対して電力用トランジスタを含む電力用半導体装置が用いられる場合がある。このような電力用半導体装置は、発熱を伴うため放熱構造を採り、例えば以下のような構造が提案されている。即ち、放熱用部材としてのヒートシンクに、発熱体となる電力用半導体モジュールが取り付けられている。該電力用半導体モジュールの電極は、ヒートシンクにおける主放熱側とは反対側に位置する、電力用半導体モジュール搭載側の空間へ引き出され、外部接続端子へと中継する導電バスバー構造体と溶接され、電気的に結合されている(例えば、特許文献1)。   A power semiconductor device including a power transistor may be used for a device that handles a large amount of power. Such a power semiconductor device employs a heat dissipation structure because it generates heat, and for example, the following structure has been proposed. That is, a power semiconductor module serving as a heating element is attached to a heat sink as a heat radiating member. The electrode of the power semiconductor module is welded to the conductive bus bar structure that is drawn out to the space on the power semiconductor module mounting side located on the opposite side of the main heat dissipation side of the heat sink and relays to the external connection terminal. (For example, Patent Document 1).

特開2006−269702号公報JP 2006-269702 A

電力用半導体装置には、小型化の要請が高まっており、小型化されることに起因して高温動作化が進んでいる。即ち、例えば、常時、ジャンクション温度150℃を保証可能な製品は、従来の125℃を保証する製品に比べると、使用可能な電流密度を高くすることができることから、電力用半導体モジュールの面積を小型化することができる。   There is an increasing demand for miniaturization of power semiconductor devices, and high-temperature operation is progressing due to the miniaturization. That is, for example, a product that can always guarantee a junction temperature of 150 ° C can have a higher usable current density than a conventional product that guarantees a temperature of 125 ° C. Can be

しかしながら、上述のような高電流密度化した電力用半導体装置では、電力用半導体モジュールに接続される配線経路の温度上昇が問題となる。即ち、配線に使用する銅は、抵抗率の温度係数があるため、高温になるほど抵抗が高くなるという問題がある。又、同じ電流出力を得るに際し、電力用半導体モジュールの電流密度が高いほど、単位電流当たりの損失が増大する。よって、高電流密度化による小型化により、電力用半導体装置における損失が増大するという問題があった。上記損失により配線温度が上昇し、不適正な設計では、電力用半導体モジュール温度よりも配線温度の方が高くなってしまう場合も生じる。よって、配線の断面積を大きくするという対応が求められ、必要な底面積も増大するため冷却器も大型化する等、電力用半導体装置の小型化が困難となるという問題があった。   However, in the power semiconductor device having a high current density as described above, the temperature rise of the wiring path connected to the power semiconductor module becomes a problem. That is, since copper used for wiring has a temperature coefficient of resistivity, there is a problem that the resistance increases as the temperature increases. Further, when obtaining the same current output, the higher the current density of the power semiconductor module, the greater the loss per unit current. Therefore, there is a problem that the loss in the power semiconductor device increases due to the miniaturization due to the high current density. The wiring temperature rises due to the above loss, and an inappropriate design may cause the wiring temperature to be higher than the power semiconductor module temperature. Therefore, there has been a problem that it is difficult to reduce the size of the power semiconductor device, for example, a countermeasure for increasing the cross-sectional area of the wiring is required, and the required bottom area increases, so that the size of the cooler increases.

本発明は、このような問題を解決するためになされたもので、従来に比べて小型化可能な電力用半導体装置を提供することを目的とする。   The present invention has been made to solve such a problem, and an object of the present invention is to provide a power semiconductor device that can be reduced in size as compared with the prior art.

上記目的を達成するため、本発明は以下のように構成する。
即ち、本発明の一態様における電力用半導体装置は、電力用半導体素子を封止した電力用半導体モジュールと、上記電力用半導体モジュールと電気的に接続される配線部材と、上記電力用半導体モジュール及び上記配線部材を載置して接続し上記電力用半導体モジュール及び上記配線部材から伝導される熱を除去する冷却部とを備え、上記配線部材は、上記電力用半導体モジュールから延在する電極と電気的に接続される金属板と、上記金属板と上記冷却部とに挟まれて存在し上記金属板の熱を上記冷却部へ伝導しかつ上記冷却部に接続される絶縁樹脂部とを有することを特徴とする。
In order to achieve the above object, the present invention is configured as follows.
That is, a power semiconductor device according to an aspect of the present invention includes a power semiconductor module in which a power semiconductor element is sealed, a wiring member electrically connected to the power semiconductor module, the power semiconductor module, and A cooling unit that mounts and connects the wiring member and removes heat conducted from the power semiconductor module and the wiring member; and the wiring member is electrically connected to an electrode extending from the power semiconductor module. A metal plate that is electrically connected, and an insulating resin portion that is sandwiched between the metal plate and the cooling portion, conducts heat of the metal plate to the cooling portion, and is connected to the cooling portion. It is characterized by.

本発明の一態様における電力用半導体装置によれば、電力用半導体モジュールから延在する電極と接続される金属板と、該金属板と冷却部とに挟まれて存在し冷却部に接続される絶縁樹脂部とを有する配線部材を備えた。該配線部材によれば、絶縁樹脂部が介在する金属板と冷却部とを近接させて配置することで、金属板から冷却部への熱抵抗を低減することができる。よって、電力用半導体装置の通電時における金属板の温度上昇を抑制でき、電力用半導体装置における不要な損失の増大を防止することができる。したがって、過大な放熱手段を設ける必要はなく、電力用半導体装置の小型化を図ることができる。   According to the power semiconductor device of one aspect of the present invention, the metal plate connected to the electrode extending from the power semiconductor module and the metal plate and the cooling unit are present and connected to the cooling unit. A wiring member having an insulating resin portion was provided. According to the wiring member, the thermal resistance from the metal plate to the cooling unit can be reduced by arranging the metal plate with the insulating resin portion interposed therebetween and the cooling unit. Therefore, the temperature rise of the metal plate during energization of the power semiconductor device can be suppressed, and an increase in unnecessary loss in the power semiconductor device can be prevented. Therefore, it is not necessary to provide an excessive heat dissipation means, and the power semiconductor device can be reduced in size.

本発明の実施形態である電力用半導体装置について、図を参照しながら以下に説明する。尚、各図において、同一又は同様の構成部分については同じ符号を付している。   A power semiconductor device according to an embodiment of the present invention will be described below with reference to the drawings. In each figure, the same or similar components are denoted by the same reference numerals.

実施の形態1.
図1に、本実施形態における電力用半導体装置101の概略構成を示す。電力用半導体装置101は、基本的な構成部分として、電力用半導体素子21を封止した電力用半導体モジュール20と、電力用半導体モジュール20と電気的に接続される配線部材30Aと、電力用半導体モジュール20及び配線部材30Aを載置して電力用半導体モジュール20及び配線部材30Aと接続され、電力用半導体モジュール20及び配線部材30Aから伝導される熱を除去する冷却部10とを備える。これらの構成部分について、以下に説明する。
Embodiment 1 FIG.
FIG. 1 shows a schematic configuration of a power semiconductor device 101 according to the present embodiment. The power semiconductor device 101 includes, as basic components, a power semiconductor module 20 in which the power semiconductor element 21 is sealed, a wiring member 30A electrically connected to the power semiconductor module 20, and a power semiconductor. The module 20 and the wiring member 30A are placed and connected to the power semiconductor module 20 and the wiring member 30A. The cooling unit 10 removes heat conducted from the power semiconductor module 20 and the wiring member 30A. These components will be described below.

冷却部10は、熱伝導性の良い材料、例えば金属等にて形成され、さらに放熱性が良好となるような形状あるいは構造を採る。本実施形態では、冷却部10は、図示するように板状であり、冷却部10の内部には、例えば冷媒用通路を設けている。   The cooling unit 10 is formed of a material having good thermal conductivity, such as metal, and has a shape or a structure that further improves heat dissipation. In the present embodiment, the cooling unit 10 has a plate shape as illustrated, and a cooling medium passage is provided in the cooling unit 10, for example.

該冷媒用通路は、図示のように波板状の薄い金属板を、冷却部10の上板及び下板と積層してロウ付けすることで、複数の細い冷媒通路を一括形成可能である。図の手前側及び奥側には、上記波板が存在しない冷媒集合部(不図示)があり、該冷媒集合部には、不図示の入口配管及び出口配管が組みつけられる。このように冷媒の入口配管及び出口配管と、上板、下板、冷媒集合部、波板により細かく分断された冷媒通路とにより、冷却部10を構成する。また、必要に応じて冷却部10の側面の板を同じくロウ付けしてもよいし、上板もしくは下板もしくはその両方が、側面部を有してもよい。
このように冷却部10の内部に、冷却部10の断面を細かく分割した冷媒通路を設けることで、冷媒と冷却部10の内面との接触面積が増し、高い冷却性能を確保することができる。
The refrigerant passage can form a plurality of thin refrigerant passages by laminating and brazing corrugated thin metal plates with the upper and lower plates of the cooling unit 10 as shown in the figure. On the near side and the far side of the figure, there is a refrigerant collecting portion (not shown) where the corrugated plate does not exist, and an inlet pipe and an outlet pipe (not shown) are assembled to the refrigerant collecting portion. In this way, the cooling section 10 is configured by the refrigerant inlet pipe and outlet pipe and the refrigerant passage finely divided by the upper plate, the lower plate, the refrigerant collecting portion, and the corrugated plate. Further, if necessary, the side plate of the cooling unit 10 may be brazed, or the upper plate, the lower plate, or both may have side portions.
As described above, by providing the refrigerant passage in which the cross section of the cooling unit 10 is finely divided in the cooling unit 10, the contact area between the refrigerant and the inner surface of the cooling unit 10 is increased, and high cooling performance can be ensured.

冷却部10の材料としては、例えばアルミニウム合金や銅合金などの熱伝導率の高い材料が適する。また耐腐食性の観点から、冷媒と接する内面には、犠牲腐食部などを備えることが好ましい。産業的にはアルミニウムの場合、上板もしくは接合に用いる板状ロウ材に、亜鉛層などを有し、一括ロウ付けすることで、犠牲腐食部を内部に一括成型可能である。波板としては、その板厚が0.1mmから1mmの範囲であれば、プレス加工にて成型可能である。上板、下板は、1mmから5mm程度の板圧が、剛性などの観点から好適である。例えば一括ロウ付けの場合、ベルト炉や真空炉でのロウ付けが行われるが、平板状の外形は、加工上の制約が少なく、例えば均熱化や、ロウ付け装置における空間を小さくでき小型化可能なこと等からから好ましい。   As a material of the cooling unit 10, a material having high thermal conductivity such as an aluminum alloy or a copper alloy is suitable. From the viewpoint of corrosion resistance, it is preferable to provide a sacrificial corrosion portion or the like on the inner surface in contact with the refrigerant. Industrially, in the case of aluminum, the sacrificial corrosion portion can be collectively formed inside by having a zinc layer or the like on the upper plate or a plate-like brazing material used for joining, and brazing together. The corrugated plate can be formed by press working if the plate thickness is in the range of 0.1 mm to 1 mm. A plate pressure of about 1 mm to 5 mm is suitable for the upper plate and the lower plate from the viewpoint of rigidity and the like. For example, in the case of batch brazing, brazing is performed in a belt furnace or a vacuum furnace, but the flat plate shape has less processing restrictions, for example, it can be made uniform by heat equalization and space in the brazing device can be reduced in size. It is preferable because it is possible.

以上の説明ではロウ付けにより冷却部10を構成した場合について述べたが、冷媒との接触面積の増加が可能な冷媒通路を有するものであれば、他の構造、工法によるものであっても差し支えないことは言うまでもない。   In the above description, the case where the cooling unit 10 is configured by brazing has been described. However, as long as it has a refrigerant passage capable of increasing the contact area with the refrigerant, other structures and construction methods may be used. It goes without saying that there is nothing.

本実施形態では、冷却部10の厚み方向51に直交する幅方向52における冷却部10の中央部にて、冷却部10は、以下に説明する配線部材30Aにおける絶縁樹脂部32の凸部32aを収納するための凹部10aを有する。
又、冷却部10の載置面10bには、電力用半導体モジュール20が載置、固定され、配線部材30Aが載置、固定される。
In the present embodiment, at the central portion of the cooling portion 10 in the width direction 52 orthogonal to the thickness direction 51 of the cooling portion 10, the cooling portion 10 has the convex portion 32a of the insulating resin portion 32 in the wiring member 30A described below. It has a recess 10a for storing.
Further, the power semiconductor module 20 is mounted and fixed on the mounting surface 10b of the cooling unit 10, and the wiring member 30A is mounted and fixed.

電力用半導体モジュール20は、例えばIGBTのような動作に伴い発熱する電力用半導体素子21を樹脂23で封止して形成されたもので、本実施形態では、同一構造を有する2つの電力用半導体モジュール20−1、20−2を有する。ここでは、両モジュールを区別することなく電力用半導体モジュール20として説明する。尚、電力用半導体装置101に備わる電力用半導体モジュール20の個数は、一つ以上であり、2つに限定するものではない。   The power semiconductor module 20 is formed by sealing a power semiconductor element 21 that generates heat with an operation such as an IGBT with a resin 23. In this embodiment, two power semiconductors having the same structure are used. Modules 20-1 and 20-2 are included. Here, it demonstrates as the power semiconductor module 20, without distinguishing both modules. The number of power semiconductor modules 20 provided in the power semiconductor device 101 is one or more, and is not limited to two.

電力用半導体素子21には、例えば銅製にてなる主電極22の一端部が半田にて電気的に接続され、主電極22の一端部は、樹脂23にて封止される。一方、主電極22の他端部は、電力用半導体モジュール20の外側へ突出し、以下で説明する配線部材30Aと電気的に接続される。又、主電極22は、電力用半導体モジュール20の外側で、配線部材30Aとの接続部分に至るまでの間に、屈曲部22aを有する。該屈曲部22aは、熱膨張等により電力用半導体モジュール20、主電極22、等が変位したときにおける応力緩衝部として作用する。   For example, one end of a main electrode 22 made of copper is electrically connected to the power semiconductor element 21 with solder, and one end of the main electrode 22 is sealed with a resin 23. On the other hand, the other end portion of the main electrode 22 protrudes to the outside of the power semiconductor module 20 and is electrically connected to a wiring member 30A described below. Further, the main electrode 22 has a bent portion 22a between the outside of the power semiconductor module 20 and the connection portion with the wiring member 30A. The bent portion 22a functions as a stress buffer portion when the power semiconductor module 20, the main electrode 22, and the like are displaced due to thermal expansion or the like.

又、発熱する電力用半導体素子21の放熱を行うため、電力用半導体素子21は、金属材等にてなる熱伝導部材に載置されて半田で接合され、上記熱伝導部材の一面は、図示するように冷却部10に接触する電力用半導体モジュール20の放熱面24に露出している。又、電力用半導体素子21、主電極22、上記熱伝導部材等を封止する樹脂23は、電気的な絶縁物であり、放熱性を向上させるために熱伝導率の大きい材料が好ましい。例えばエポキシ樹脂に高熱伝導率を有する材料のフィラーを混ぜたものや、セラミック等が用いられる。   Further, in order to dissipate heat from the power semiconductor element 21 that generates heat, the power semiconductor element 21 is placed on a heat conducting member made of a metal material or the like and joined by soldering. Thus, it is exposed to the heat radiation surface 24 of the power semiconductor module 20 in contact with the cooling unit 10. The resin 23 for sealing the power semiconductor element 21, the main electrode 22, the heat conducting member and the like is an electrical insulator, and a material having high thermal conductivity is preferable in order to improve heat dissipation. For example, an epoxy resin mixed with a filler having a high thermal conductivity, ceramic, or the like is used.

配線部材30Aは、金属板31と絶縁樹脂部32とを有し、金属板31は、電力用半導体モジュール20から延在する主電極22と電気的に接続され、絶縁樹脂部32は、金属板31と冷却部10とに挟まれて存在し、金属板31の熱を冷却部10へ伝導しかつ冷却部10に接続される。金属板31は、通常、銅もしくは銅合金、もしくはアルミニウムもしくはアルミニウム合金にてなり、電流容量に応じて、必要な金属板31の厚み及び幅は異なるが、一例として、金属板31の肉厚は0.8mm〜1mm程度、幅は10mm程度である。   The wiring member 30A includes a metal plate 31 and an insulating resin portion 32. The metal plate 31 is electrically connected to the main electrode 22 extending from the power semiconductor module 20, and the insulating resin portion 32 is a metal plate. 31, and is present between the cooling unit 10, conducts heat of the metal plate 31 to the cooling unit 10, and is connected to the cooling unit 10. The metal plate 31 is usually made of copper or copper alloy, or aluminum or aluminum alloy, and the required thickness and width of the metal plate 31 differ depending on the current capacity. As an example, the thickness of the metal plate 31 is The width is about 0.8 mm to 1 mm, and the width is about 10 mm.

尚、本実施形態では、上述のように2つの電力用半導体モジュール20−1,20−2を備えることから、これらに対応して2つの金属板31が一つの配線部材30Aの上表面に露出して配置され、対向する2つの金属板31の間には、絶縁樹脂部32の一部が設けられ、各金属板31の電気的絶縁を図っている。又、絶縁樹脂部32は、金属板31を挟持し固定している。このような絶縁樹脂部32を構成する絶縁樹脂としては、PPS(ポリフェニレンサルファイド)が挙げられる。PPSの熱伝導率は、通常、1W/mK未満である。   In the present embodiment, since the two power semiconductor modules 20-1 and 20-2 are provided as described above, the two metal plates 31 are exposed on the upper surface of one wiring member 30A corresponding to these. A part of the insulating resin portion 32 is provided between the two metal plates 31 that are arranged and face each other, and the respective metal plates 31 are electrically insulated. The insulating resin portion 32 holds and fixes the metal plate 31. Examples of the insulating resin constituting the insulating resin portion 32 include PPS (polyphenylene sulfide). The thermal conductivity of PPS is usually less than 1 W / mK.

又、金属板31は、L字形の断面形状にてなり、その一端部を形成する放熱面積拡大部31aと、放熱面積拡大部31aと一体成型され他端部を形成する屈曲部31bとを有する。放熱面積拡大部31aは、冷却部10との間に絶縁樹脂部32を介在させながら冷却部10に沿って概ね平行にて上記幅方向52に延在し、金属板31から冷却部10への放熱面積を増加させる部分である。屈曲部31bは、放熱面積拡大部31aから屈曲し、冷却部10の厚み方向51に沿って冷却部10から離れる方へ延在する。   The metal plate 31 has an L-shaped cross-sectional shape, and includes a heat radiation area expanding portion 31a that forms one end portion thereof, and a bent portion 31b that is integrally formed with the heat radiation area expanding portion 31a and forms the other end portion. . The heat dissipating area expanding portion 31 a extends in the width direction 52 substantially in parallel with the cooling portion 10 with the insulating resin portion 32 interposed therebetween, and extends from the metal plate 31 to the cooling portion 10. This is the part that increases the heat dissipation area. The bent portion 31 b is bent from the heat radiation area expanding portion 31 a and extends in a direction away from the cooling portion 10 along the thickness direction 51 of the cooling portion 10.

配線部材30Aでは、金属板31の放熱面積拡大部31aに、電力用半導体モジュール20から延在する主電極22が重ねられ、この重畳部分にて、放熱面積拡大部31aと主電極22とは、両者を貫通するボルト7、及びナット8にて締結され、電気的に接続される。本実施形態ではこのような締結方法を採るため、ナット8から突出するボルト7の先端、及びナット8と、冷却部10との電気的絶縁を図る必要がある。よって、配線部材30Aの絶縁樹脂部32は、ボルト7及びナット8の収納部に相当し上記厚み方向51に沿って凸状に形成された凸部32aを有する。凸部32aは、冷却部10に形成された、上述の、凹部10aに嵌め込まれる。   In the wiring member 30A, the main electrode 22 extending from the power semiconductor module 20 is superimposed on the heat dissipation area expanding portion 31a of the metal plate 31, and at this overlapping portion, the heat dissipation area expanding portion 31a and the main electrode 22 are The bolt 7 and the nut 8 that penetrate both are fastened and electrically connected. In this embodiment, in order to adopt such a fastening method, it is necessary to achieve electrical insulation between the tip of the bolt 7 protruding from the nut 8 and the nut 8 and the cooling unit 10. Therefore, the insulating resin portion 32 of the wiring member 30 </ b> A corresponds to a housing portion for the bolt 7 and the nut 8 and has a convex portion 32 a formed in a convex shape along the thickness direction 51. The convex portion 32 a is fitted into the above-described concave portion 10 a formed in the cooling unit 10.

又、絶縁樹脂部32の内、特に、冷却部10に接続される接続部32bは、上記厚み方向51において、金属板31の放熱面積拡大部31aと冷却板10との間の絶縁性に支障がでない程度の距離で最小限の距離にて形成されるのが好ましい。厚み方向51における接続部32bの距離(厚さ)は、一例として最低1mm程度である。
本実施形態では、このように、金属板31の放熱面積拡大部31aと冷却板10とを極力熱的に近接させる接続部32bを設けたことで、金属板31の熱をより効率的に冷却部10へ伝導させることができ、配線部材30Aの昇温を抑制することができる。
Further, in the insulating resin part 32, in particular, the connection part 32 b connected to the cooling part 10 interferes with the insulation between the heat radiation area enlarged part 31 a of the metal plate 31 and the cooling plate 10 in the thickness direction 51. Preferably, it is formed at a minimum distance with a distance that is not. As an example, the distance (thickness) of the connecting portion 32b in the thickness direction 51 is at least about 1 mm.
In this embodiment, the heat of the metal plate 31 is cooled more efficiently by providing the connection portion 32b that brings the heat radiation area expanding portion 31a of the metal plate 31 and the cooling plate 10 into thermal proximity as much as possible. It can be made to conduct to part 10, and temperature rise of wiring member 30A can be controlled.

又、このように極力薄い接続部32bを確保するため、ボルト7及びナット8からなる締結部は、接続部32bから外れて配置した構成を採っている。そして上述のように、上記締結部を収納するために凸部32aを形成するが、凸部32aを設けたことによる、上記厚み方向51における当該電力用半導体装置101の大型化を防止するため、凸部32aを収納する凹部10aを冷却部10に形成している。このような構成を採ることによっても、放熱性の向上を図りながら、電力用半導体装置101の小型化、薄型化を図ることができる。   Moreover, in order to ensure the connection part 32b as thin as possible in this way, the fastening part which consists of the volt | bolt 7 and the nut 8 has taken the structure arrange | positioned away from the connection part 32b. Then, as described above, the convex portion 32a is formed to accommodate the fastening portion. In order to prevent the power semiconductor device 101 from being enlarged in the thickness direction 51 due to the provision of the convex portion 32a, A concave portion 10 a that houses the convex portion 32 a is formed in the cooling portion 10. Also by adopting such a configuration, the power semiconductor device 101 can be reduced in size and thickness while improving heat dissipation.

以上のように構成された冷却部10、電力用半導体モジュール20、及び配線部材30Aは、以下のように構成されて電力用半導体装置101が形成される。即ち、電力用半導体モジュール20の放熱面24は、熱伝導グリスを介して冷却部10の載置面10bに載置され固着される。これにより、電力用半導体素子21が発した熱は、電力用半導体モジュール20内に封止され電力用半導体素子21と接合されている上記熱伝導部材、樹脂23、及び上記熱伝導グリス等を介して冷却部10へ伝導し、放散される。又、電力用半導体素子21の熱は、主電極22を介して配線部材30Aにも伝導させる。配線部材30Aでは、凸部32aが冷却部10の凹部10aに収納され、絶縁樹脂部32の接続部32bと、冷却部10の載置面10bとが固着剤6にて接続される。   The cooling unit 10, the power semiconductor module 20, and the wiring member 30 </ b> A configured as described above are configured as follows to form the power semiconductor device 101. That is, the heat radiating surface 24 of the power semiconductor module 20 is mounted and fixed on the mounting surface 10b of the cooling unit 10 via the heat conductive grease. Thereby, the heat generated by the power semiconductor element 21 is encapsulated in the power semiconductor module 20 and is bonded to the power semiconductor element 21 through the heat conducting member, the resin 23, the heat conducting grease, and the like. Then, it is conducted to the cooling unit 10 and diffused. The heat of the power semiconductor element 21 is also conducted to the wiring member 30 </ b> A through the main electrode 22. In the wiring member 30 </ b> A, the convex portion 32 a is accommodated in the concave portion 10 a of the cooling unit 10, and the connection portion 32 b of the insulating resin portion 32 and the mounting surface 10 b of the cooling unit 10 are connected by the adhesive 6.

固着剤6は、絶縁樹脂部32における熱伝導率よりも高い熱伝導率を有するもので、一例として接着剤が挙げられる。固着剤6としては、例えば銅および銅の酸化物の粉末や、アルミニウムやアルミ酸化物の粉末フィラー入りの接着剤などが挙げられる。このような固着剤6として、好ましくは熱伝導率1W/mK以上のものを用いると、金属板31から絶縁樹脂部32を介して冷却部10へ伝導する放熱性が高まり、金属板31の温度上昇を抑制することができる。   The fixing agent 6 has a thermal conductivity higher than that of the insulating resin portion 32, and an example thereof is an adhesive. Examples of the fixing agent 6 include powders of copper and copper oxides, and adhesives containing powder fillers of aluminum and aluminum oxide. When such a fixing agent 6 having a thermal conductivity of 1 W / mK or more is preferably used, heat dissipation from the metal plate 31 to the cooling unit 10 through the insulating resin portion 32 is enhanced, and the temperature of the metal plate 31 is increased. The rise can be suppressed.

尚、上述の説明では、金属板31の放熱面積拡大部31aと、電力用半導体モジュール20の主電極22との締結後に、配線部材30Aを冷却部10に接続しているが、これに限定するものではなく、冷却部10へ配線部材30Aを接続した後に、放熱面積拡大部31aと主電極22との締結を行うこともできる。   In the above description, the wiring member 30A is connected to the cooling unit 10 after the heat radiation area expanding portion 31a of the metal plate 31 and the main electrode 22 of the power semiconductor module 20 are fastened. Instead of connecting the wiring member 30 </ b> A to the cooling part 10, the heat radiation area expanding part 31 a and the main electrode 22 can be fastened.

以上説明したように本実施形態の電力用半導体装置101によれば、配線部材30Aの金属板31と冷却板10との間の距離を小さくし、かつ配線部材30Aの絶縁樹脂部32よりも熱伝導率の高い固着剤6にて配線部材30Aと冷却板10とを固着している。これにより、配線部材30Aの金属板31の温度上昇が最小限になり、電力用半導体装置101の使用時の温度上昇による抵抗増大という悪影響を最小限に収めることができる。よって、高温での動作特性を向上することができ、かつ、例えば冷却器を大型化する等の措置が必要なく、電力用半導体装置の小型化を図ることができる。   As described above, according to the power semiconductor device 101 of the present embodiment, the distance between the metal plate 31 of the wiring member 30A and the cooling plate 10 is reduced, and more heat than the insulating resin portion 32 of the wiring member 30A. The wiring member 30 </ b> A and the cooling plate 10 are fixed by the fixing agent 6 having high conductivity. As a result, the temperature rise of the metal plate 31 of the wiring member 30A is minimized, and the adverse effect of increased resistance due to temperature rise during use of the power semiconductor device 101 can be minimized. Therefore, it is possible to improve the operating characteristics at high temperatures and to reduce the size of the power semiconductor device without requiring measures such as increasing the size of the cooler.

実施の形態2.
図2を参照して、本発明の実施の形態2における電力用半導体装置102について説明する。
電力用半導体装置102においても、電力用半導体装置101と同様に、基本的な構成部分として、電力用半導体モジュール20と、電力用半導体モジュール20と電気的に接続される配線部材30Bと、電力用半導体モジュール20及び配線部材30Bを載置して電力用半導体モジュール20及び配線部材30Bと接続され、電力用半導体モジュール20及び配線部材30Bから伝導される熱を除去する冷却部15とを備える。
Embodiment 2. FIG.
A power semiconductor device 102 according to the second embodiment of the present invention will be described with reference to FIG.
Similarly to the power semiconductor device 101, the power semiconductor device 102 includes, as basic components, the power semiconductor module 20, a wiring member 30 </ b> B electrically connected to the power semiconductor module 20, and the power semiconductor device 102. The semiconductor module 20 and the wiring member 30B are placed, connected to the power semiconductor module 20 and the wiring member 30B, and provided with a cooling unit 15 that removes heat conducted from the power semiconductor module 20 and the wiring member 30B.

ここで、配線部材30Bは、上述した配線部材30Aと同じ機能を有するが、構造を異にする。又、冷却部15についても、上述した冷却部10と同じ機能を有するが、若干構造を異にする。電力用半導体装置102におけるその他の構成部分は、上述した電力用半導体装置101の構成部分に同じである。よって、以下では、冷却部15及び配線部材30Bについて説明を行うとともに、主に、実施形態1との相違部分について説明を行い、同じ構成部分についてのここでの説明は省略する。   Here, the wiring member 30B has the same function as the above-described wiring member 30A, but has a different structure. The cooling unit 15 also has the same function as the cooling unit 10 described above, but has a slightly different structure. Other components of the power semiconductor device 102 are the same as those of the power semiconductor device 101 described above. Therefore, in the following, the cooling unit 15 and the wiring member 30B will be described, mainly the differences from the first embodiment will be described, and the description of the same components will be omitted here.

冷却部15は、上述の冷却部10と比べると、凹部10aを有しない点で相違する。冷却部15のその他の構成は、冷却部10の構成に同じである。   The cooling unit 15 is different from the above-described cooling unit 10 in that it does not have the concave portion 10a. Other configurations of the cooling unit 15 are the same as those of the cooling unit 10.

配線部材30Bは、上述した配線部材30Aと同様に、金属板31と絶縁樹脂部32Bとを有する。配線部材30Bの金属板31は、配線部材30Aの金属板31と同様に、L字形にてなり、放熱面積拡大部31a及び屈曲部31bを有する。一方、配線部材30Bでは、上記厚み方向51において、2つの金属板31の放熱面積拡大部31aは、絶縁樹脂部32を介して重なって配置され、かつ絶縁樹脂部32にて封止されている点で、配線部材30Aと相違する。又、各金属板31の屈曲部31bは、厚み方向51に沿って冷却部15から離れる方へ延在し、配線部材30Bの絶縁樹脂部32の上面から突出する点でも配線部材30Aと相違する。   The wiring member 30B includes a metal plate 31 and an insulating resin portion 32B, similarly to the wiring member 30A described above. Similar to the metal plate 31 of the wiring member 30A, the metal plate 31 of the wiring member 30B is L-shaped and has a heat radiation area expanding portion 31a and a bent portion 31b. On the other hand, in the wiring member 30 </ b> B, in the thickness direction 51, the heat radiation area enlarged portions 31 a of the two metal plates 31 are disposed so as to overlap with each other via the insulating resin portion 32 and sealed with the insulating resin portion 32. This is different from the wiring member 30A. Further, the bent portion 31b of each metal plate 31 extends away from the cooling portion 15 along the thickness direction 51, and differs from the wiring member 30A in that it protrudes from the upper surface of the insulating resin portion 32 of the wiring member 30B. .

絶縁樹脂部32Bは、凸部32aを有しない点で絶縁樹脂部32と相違する。尚、絶縁樹脂部32の接続部32bに対応する部分を、絶縁樹脂部32Bでは接続部32Bbとする。接続部32Bbの構成、機能は、接続部32bの場合に同じである。   The insulating resin portion 32B is different from the insulating resin portion 32 in that it does not have the convex portion 32a. A portion corresponding to the connection portion 32b of the insulating resin portion 32 is a connection portion 32Bb in the insulating resin portion 32B. The configuration and function of the connection unit 32Bb are the same as those of the connection unit 32b.

さらに、配線部材30Bでは、金属板31と、電力用半導体モジュール20から延在する主電極22との接続方法が大きく異なる。即ち、配線部材30Aでは、ボルト7及びナット8にて両者を締結したが、配線部材30Bでは、金属板31における屈曲部31bの端部と同位置に主電極22の他端を配置させて、屈曲部31bの端部と主電極22の他端とを溶接にて接合している。尚、この接合部分を溶接部9とする。溶接方法としては、抵抗溶接、アーク溶接、レーザ溶接などがあるが、冷却板15の載置面15bに対して垂直方向から溶接のエネルギーを投入する必要があるため、アーク溶接ならびにレーザ溶接が好適である。本実施形態では、アーク溶接の場合について例を示す。   Furthermore, in the wiring member 30B, the connection method between the metal plate 31 and the main electrode 22 extending from the power semiconductor module 20 is greatly different. That is, in the wiring member 30A, both are fastened by the bolt 7 and the nut 8, but in the wiring member 30B, the other end of the main electrode 22 is disposed at the same position as the end of the bent portion 31b in the metal plate 31. The end of the bent portion 31b and the other end of the main electrode 22 are joined by welding. This joined portion is referred to as a welded portion 9. As welding methods, there are resistance welding, arc welding, laser welding, and the like, but it is necessary to input welding energy from a direction perpendicular to the mounting surface 15b of the cooling plate 15, and therefore arc welding and laser welding are preferable. It is. In this embodiment, an example is shown for arc welding.

以上のように構成された電力用半導体モジュール20、配線部材30B、及び冷却部15は、以下のように構成されて電力用半導体装置102が形成される。即ち、電力用半導体モジュール20の放熱面24は、熱伝導グリスを介して冷却部15の載置面15bに載置され固着される。又、配線部材30Bは、絶縁樹脂部32Bの接続部32Bbと、冷却部15の載置面15bとを固着剤6にて接続して、載置面15bに固定される。   The power semiconductor module 20, the wiring member 30B, and the cooling unit 15 configured as described above are configured as follows to form the power semiconductor device 102. That is, the heat radiating surface 24 of the power semiconductor module 20 is mounted and fixed on the mounting surface 15b of the cooling unit 15 via the thermal conductive grease. In addition, the wiring member 30B is fixed to the mounting surface 15b by connecting the connecting portion 32Bb of the insulating resin portion 32B and the mounting surface 15b of the cooling unit 15 with the adhesive 6.

配線部材30Bの固定後、上述のように、金属板31の屈曲部31bの端部と電力用半導体モジュール20の主電極22の他端とが溶接され溶接部9を形成する。本実施形態では、上述のように、接続部32Bbを介して金属板31は冷却部15に近接して位置し、かつ配線部材30Bが熱伝導率の比較的高い固着剤6にて冷却部15に接続されている。よって、配線部材30Bにおける絶縁樹脂部32Bから冷却部15へ熱が良好に伝導され、絶縁樹脂部32Bの温度上昇が抑制される。したがって、溶接時の熱により絶縁樹脂部32Bが影響を受けることは少なく、上記厚み方向51における上記溶接部9の位置を配線部材30Bに近接して配置することができる。即ち、厚み方向51における電力用半導体装置102の薄型化を達成することができる。   After fixing the wiring member 30B, the end of the bent portion 31b of the metal plate 31 and the other end of the main electrode 22 of the power semiconductor module 20 are welded to form the welded portion 9 as described above. In the present embodiment, as described above, the metal plate 31 is positioned close to the cooling unit 15 via the connection unit 32Bb, and the wiring member 30B is fixed by the fixing agent 6 having a relatively high thermal conductivity. It is connected to the. Therefore, heat is conducted well from the insulating resin part 32B to the cooling part 15 in the wiring member 30B, and the temperature rise of the insulating resin part 32B is suppressed. Therefore, the insulating resin portion 32B is hardly affected by heat during welding, and the position of the welded portion 9 in the thickness direction 51 can be disposed close to the wiring member 30B. That is, the power semiconductor device 102 can be thinned in the thickness direction 51.

尚、本実施形態では、上述のように、冷却部15への配線部材30Bの固定後に溶接を行い、溶接部9を形成しているが、これに限定されず、溶接部9の形成後に配線部材30Bを冷却部15へ固定することもできる。   In this embodiment, as described above, welding is performed after the wiring member 30B is fixed to the cooling unit 15 to form the welded part 9, but the present invention is not limited to this, and wiring is performed after the welded part 9 is formed. The member 30 </ b> B can be fixed to the cooling unit 15.

以上説明した本実施形態2の電力用半導体装置102によれば、実施形態1の電力用半導体装置101が有する効果を奏することは勿論であるが、電力用半導体装置101に比べて、冷却部に凹部10aを形成する必要がなく、冷却部15の構造が単純化されるという効果がある。又、上述のように厚み方向51における溶接部9の位置を低く抑えることができることから、電力用半導体装置102の薄型化を図ることもできる。
又、配線部材30Bにおいて、図示するように、各金属板31の放熱面積拡大部31aを厚み方向51に重ねて配置している。よって、実施形態1における配線部材30Aの構成に比べて、配線部材30Bの上記幅方向52におけるサイズを小さくすることができる。よって、電力用半導体装置102の幅方向52のサイズの小型化を図ることもできる。
According to the power semiconductor device 102 of the second embodiment described above, the power semiconductor device 101 of the first embodiment has the effect that the power semiconductor device 101 of the first embodiment has. There is no need to form the recess 10a, and the structure of the cooling unit 15 is simplified. Further, since the position of the welded portion 9 in the thickness direction 51 can be kept low as described above, the power semiconductor device 102 can be reduced in thickness.
Further, in the wiring member 30B, as shown in the figure, the heat radiation area enlarged portions 31a of the respective metal plates 31 are arranged so as to overlap in the thickness direction 51. Therefore, compared with the configuration of the wiring member 30A in the first embodiment, the size of the wiring member 30B in the width direction 52 can be reduced. Therefore, the size of the power semiconductor device 102 in the width direction 52 can be reduced.

実施の形態3.
図3を参照して、本発明の実施の形態3における電力用半導体装置103について説明する。
電力用半導体装置103においても、電力用半導体装置101と同様に、基本的な構成部分として、電力用半導体モジュール20と、電力用半導体モジュール20と電気的に接続される配線部材30Cと、電力用半導体モジュール20及び配線部材30Cを載置して電力用半導体モジュール20及び配線部材30Cと接続され、電力用半導体モジュール20及び配線部材30Cから伝導される熱を除去する冷却部15とを備える。即ち、本実施形態の電力用半導体装置103では、実施形態2の冷却部15を用い、実施形態1における配線部材30Aでのボルト7及びナット8による締結に代えて溶接を行う形態を採る。よって以下には、実施形態1、2との相違部分に相当する配線部材30Cについて主に説明し、前述と同じ構成部分に関するここでの説明は省略する。
Embodiment 3 FIG.
With reference to FIG. 3, a power semiconductor device 103 according to the third embodiment of the present invention will be described.
In the power semiconductor device 103, as in the power semiconductor device 101, the power semiconductor module 20, the wiring member 30 </ b> C electrically connected to the power semiconductor module 20, and the power The semiconductor module 20 and the wiring member 30C are placed, connected to the power semiconductor module 20 and the wiring member 30C, and provided with a cooling unit 15 that removes heat conducted from the power semiconductor module 20 and the wiring member 30C. That is, the power semiconductor device 103 according to the present embodiment employs a mode in which the cooling unit 15 according to the second embodiment is used and welding is performed instead of the fastening with the bolts 7 and the nuts 8 in the wiring member 30A according to the first embodiment. Therefore, in the following, the wiring member 30C corresponding to the difference from the first and second embodiments will be mainly described, and the description here regarding the same components as described above will be omitted.

配線部材30Cは、実施形態1にて述べた配線部材30Aに類似した形状を採り、2つの金属板31と絶縁樹脂部32Cとを有するが、一方、絶縁樹脂部32Cは、凸部32aを有しない。即ち、配線部材30Cでは、配線部材30Aと同様に、L字形にてなる2つの金属板31が配線部材30Cの上表面に露出し対向して配置され、各金属板31は絶縁樹脂部32Cにて電気的に絶縁されるとともに挟持、固定される。又、絶縁樹脂部32Cは、冷却部15に接続される接続部32bを有する。   The wiring member 30C has a shape similar to the wiring member 30A described in the first embodiment, and includes two metal plates 31 and an insulating resin portion 32C. On the other hand, the insulating resin portion 32C has a convex portion 32a. do not do. That is, in the wiring member 30C, similarly to the wiring member 30A, two L-shaped metal plates 31 are disposed on the upper surface of the wiring member 30C so as to be opposed to each other, and each metal plate 31 is disposed on the insulating resin portion 32C. Are electrically insulated and sandwiched and fixed. The insulating resin portion 32 </ b> C has a connection portion 32 b connected to the cooling portion 15.

このような構成を有する配線部材30Cは、上述した各実施形態と同様に、電力用半導体モジュール20とともに冷却部15の載置面15aに載置され、固着剤6にて載置面15aに固定される。配線部材30Cが冷却部15に固定されたとき、電力用半導体モジュール20から延在する主電極22の他端と、配線部材30Cにおける金属板31の放熱面積拡大部31aとが重なり当接している。そして、この、主電極22と放熱面積拡大部31aとの重畳部分に対して、上記厚み方向51からレーザ光を照射し、主電極22と放熱面積拡大部31aとを溶接し溶接部9を形成する。
以上の動作にて、本実施形態の電力用半導体装置103が作製される。
The wiring member 30 </ b> C having such a configuration is placed on the placement surface 15 a of the cooling unit 15 together with the power semiconductor module 20 and fixed to the placement surface 15 a with the adhesive 6, as in the above-described embodiments. Is done. When the wiring member 30C is fixed to the cooling unit 15, the other end of the main electrode 22 extending from the power semiconductor module 20 and the heat radiation area enlarged portion 31a of the metal plate 31 in the wiring member 30C are in contact with each other. . Then, a laser beam is irradiated from the thickness direction 51 to the overlapping portion of the main electrode 22 and the heat radiation area enlarged portion 31a, and the main electrode 22 and the heat radiation area enlarged portion 31a are welded to form the welded portion 9. To do.
With the above operation, the power semiconductor device 103 of this embodiment is manufactured.

本実施形態の電力用半導体装置103によれば、上述のように、接続部32bを介して金属板31は冷却部15に近接して位置し、かつ配線部材30Cが熱伝導率の比較的高い固着剤6にて冷却部15に接続されている。よって、配線部材30Cにおける絶縁樹脂部32Cから冷却部15へ熱が良好に伝導され、絶縁樹脂部32Cの温度上昇が抑制される。したがって、溶接時の熱により絶縁樹脂部32Cが影響を受けることは少ない。よって、実施形態1と同様に、高温での動作特性を向上することができ、かつ、例えば冷却器を大型化する等の措置が必要なく、電力用半導体装置の小型化を図ることができる。
さらに、実施形態2の構成に比べて厚み方向51における溶接部9の位置がより低くなることから、電力用半導体装置103の薄型化を達成することができる。
According to the power semiconductor device 103 of the present embodiment, as described above, the metal plate 31 is located close to the cooling unit 15 via the connection portion 32b, and the wiring member 30C has a relatively high thermal conductivity. The fixing agent 6 is connected to the cooling unit 15. Therefore, heat is conducted well from the insulating resin part 32C in the wiring member 30C to the cooling part 15, and the temperature rise of the insulating resin part 32C is suppressed. Therefore, the insulating resin portion 32C is hardly affected by heat during welding. Therefore, similarly to the first embodiment, it is possible to improve the operating characteristics at high temperature, and to reduce the size of the power semiconductor device without requiring measures such as increasing the size of the cooler.
Furthermore, since the position of the welded portion 9 in the thickness direction 51 is lower than that in the configuration of the second embodiment, the power semiconductor device 103 can be thinned.

又、電力用半導体モジュール20から延在する主電極22の他端が配線部材30Cにおける金属板31の放熱面積拡大部31aに当接するように、主電極22の高さを予め設定しておくことで、電力用半導体モジュール20及び配線部材30Cを冷却部15に載置した時点において、別途、加圧手段を用いることなく、主電極22の他端と放熱面積拡大部31aとを当接させることができる。したがって、簡便な溶接動作を可能にする。   Further, the height of the main electrode 22 is set in advance so that the other end of the main electrode 22 extending from the power semiconductor module 20 contacts the heat radiation area enlarged portion 31a of the metal plate 31 in the wiring member 30C. Thus, when the power semiconductor module 20 and the wiring member 30C are placed on the cooling unit 15, the other end of the main electrode 22 and the heat radiation area expanding unit 31a are brought into contact with each other without using a pressurizing unit. Can do. Therefore, a simple welding operation is possible.

本発明の実施の形態1における電力用半導体装置の構造を示す断面図である。It is sectional drawing which shows the structure of the power semiconductor device in Embodiment 1 of this invention. 本発明の実施の形態2における電力用半導体装置の構造を示す断面図である。It is sectional drawing which shows the structure of the power semiconductor device in Embodiment 2 of this invention. 本発明の実施の形態3における電力用半導体装置の構造を示す断面図である。It is sectional drawing which shows the structure of the power semiconductor device in Embodiment 3 of this invention.

符号の説明Explanation of symbols

6 固着剤、10 冷却部、15 冷却部、20 電力用半導体モジュール、
21 電力用半導体素子、22 主電極、30A〜30C 配線部材、31 金属板、 31a 放熱面積拡大部、31b 屈曲部、32 絶縁樹脂部、
101〜103 電力用半導体装置。
6 Adhesive agent, 10 cooling part, 15 cooling part, 20 power semiconductor module,
21 power semiconductor element, 22 main electrode, 30A to 30C wiring member, 31 metal plate, 31a heat radiation area enlarged portion, 31b bent portion, 32 insulating resin portion,
101-103 Power semiconductor device.

Claims (4)

電力用半導体素子を封止した電力用半導体モジュールと、上記電力用半導体モジュールと電気的に接続される配線部材と、上記電力用半導体モジュール及び上記配線部材を載置して接続し上記電力用半導体モジュール及び上記配線部材から伝導される熱を除去する冷却部とを備え、
上記配線部材は、上記電力用半導体モジュールから延在する電極と電気的に接続される金属板と、上記金属板と上記冷却部とに挟まれて存在し上記金属板の熱を上記冷却部へ伝導しかつ上記冷却部に接続される絶縁樹脂部とを有する、
ことを特徴とする電力用半導体装置。
A power semiconductor module in which a power semiconductor element is sealed; a wiring member electrically connected to the power semiconductor module; and the power semiconductor module and the wiring member mounted and connected to each other. A module and a cooling section for removing heat conducted from the wiring member,
The wiring member is sandwiched between a metal plate electrically connected to an electrode extending from the power semiconductor module, the metal plate and the cooling unit, and heat of the metal plate is transferred to the cooling unit. An insulating resin part that conducts and is connected to the cooling part,
A power semiconductor device.
上記絶縁樹脂部は、当該絶縁樹脂部よりも熱伝導の良好な接着部材にて上記冷却部と接続される、請求項1記載の電力用半導体装置。   The power semiconductor device according to claim 1, wherein the insulating resin portion is connected to the cooling portion by an adhesive member having better thermal conductivity than the insulating resin portion. 上記金属板は、上記絶縁樹脂部を介在させながら上記冷却部に沿って延在し上記冷却部への放熱面積を増加させる放熱面積拡大部と、上記放熱面積拡大部から屈曲し上記冷却部の厚み方向に沿って上記冷却部から離れる方へ延在し上記放熱面積拡大部と一体成型される屈曲部とを有し、上記電極と上記金属板とは、上記屈曲部の端部にて溶接される、請求項1又は2記載の電力用半導体装置。   The metal plate extends along the cooling part while interposing the insulating resin part, and increases a heat radiation area to increase the heat radiation area to the cooling part. A bent portion that extends in the thickness direction away from the cooling portion and is integrally formed with the heat radiation area expanding portion, and the electrode and the metal plate are welded at the end of the bent portion. The power semiconductor device according to claim 1 or 2. 上記金属板は、上記絶縁樹脂部を介在させながら上記冷却部に沿って延在し上記冷却部への放熱面積を増加させる放熱面積拡大部を有し、上記電極は、上記放熱面積拡大部に重なり溶接される、請求項1又は2記載の電力用半導体装置。   The metal plate has a heat radiation area expanding portion that extends along the cooling portion while interposing the insulating resin portion and increases a heat radiation area to the cooling portion, and the electrode is disposed on the heat radiation area expanding portion. The power semiconductor device according to claim 1, wherein the power semiconductor device is overlap welded.
JP2008282836A 2008-11-04 2008-11-04 Power semiconductor device Active JP5164793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008282836A JP5164793B2 (en) 2008-11-04 2008-11-04 Power semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008282836A JP5164793B2 (en) 2008-11-04 2008-11-04 Power semiconductor device

Publications (2)

Publication Number Publication Date
JP2010114116A true JP2010114116A (en) 2010-05-20
JP5164793B2 JP5164793B2 (en) 2013-03-21

Family

ID=42302478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008282836A Active JP5164793B2 (en) 2008-11-04 2008-11-04 Power semiconductor device

Country Status (1)

Country Link
JP (1) JP5164793B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014175612A (en) * 2013-03-12 2014-09-22 Shindengen Electric Mfg Co Ltd Heat radiation structure of terminal and semiconductor device
JP2014195024A (en) * 2013-03-29 2014-10-09 Mitsubishi Electric Corp Semiconductor device
WO2017130370A1 (en) * 2016-01-29 2017-08-03 三菱電機株式会社 Semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000114445A (en) * 1998-09-25 2000-04-21 Internatl Rectifier Corp Semiconductor package
JP2004259791A (en) * 2003-02-25 2004-09-16 Hitachi Ltd Power semiconductor module
JP2006269702A (en) * 2005-03-24 2006-10-05 Mitsubishi Electric Corp Power converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000114445A (en) * 1998-09-25 2000-04-21 Internatl Rectifier Corp Semiconductor package
JP2004259791A (en) * 2003-02-25 2004-09-16 Hitachi Ltd Power semiconductor module
JP2006269702A (en) * 2005-03-24 2006-10-05 Mitsubishi Electric Corp Power converter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014175612A (en) * 2013-03-12 2014-09-22 Shindengen Electric Mfg Co Ltd Heat radiation structure of terminal and semiconductor device
JP2014195024A (en) * 2013-03-29 2014-10-09 Mitsubishi Electric Corp Semiconductor device
WO2017130370A1 (en) * 2016-01-29 2017-08-03 三菱電機株式会社 Semiconductor device
JPWO2017130370A1 (en) * 2016-01-29 2018-04-19 三菱電機株式会社 Semiconductor device
CN108496247A (en) * 2016-01-29 2018-09-04 三菱电机株式会社 Semiconductor device
US10714404B2 (en) 2016-01-29 2020-07-14 Mitsubishi Electric Corporation Semiconductor device
DE112016006331B4 (en) 2016-01-29 2021-07-22 Mitsubishi Electric Corporation Semiconductor device

Also Published As

Publication number Publication date
JP5164793B2 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP7204770B2 (en) Double-sided cooling power module and manufacturing method thereof
JP5206822B2 (en) Semiconductor device
JP5382049B2 (en) Semiconductor device
JP4120876B2 (en) Semiconductor device
WO2015033724A1 (en) Power semiconductor module
JP2009117428A (en) Method for power semiconductor module, fabrication, its apparatus, power semiconductor module thereof and its junction method
JP5659938B2 (en) Semiconductor unit and semiconductor device using the same
JP2011216822A (en) Power semiconductor module
JP5821949B2 (en) SEMICONDUCTOR DEVICE, INVERTER DEVICE HAVING THE SAME, AND VEHICLE ROTARY ELECTRIC DEVICE HAVING THE SAME
JP2007335663A (en) Semiconductor module
WO2013088864A1 (en) Semiconductor device
JP4989552B2 (en) Electronic components
WO2015141284A1 (en) Semiconductor module unit and semiconductor module
JP6003624B2 (en) Semiconductor module
JP2007059875A (en) Heat dissipation member, and package for electronic part housing using this and electronic apparatus
JP4575034B2 (en) Inverter device
JP5164793B2 (en) Power semiconductor device
JP5217015B2 (en) Power converter and manufacturing method thereof
JP2009164647A (en) Semiconductor device
JP2006190728A (en) Electric power semiconductor device
JP4935783B2 (en) Semiconductor device and composite semiconductor device
JP2016174034A (en) Semiconductor power module
JP5971051B2 (en) Semiconductor unit
WO2014045758A1 (en) Power semiconductor module
JP4535004B2 (en) Double-sided cooling type semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5164793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250