JP5217015B2 - Power converter and manufacturing method thereof - Google Patents

Power converter and manufacturing method thereof Download PDF

Info

Publication number
JP5217015B2
JP5217015B2 JP2008006853A JP2008006853A JP5217015B2 JP 5217015 B2 JP5217015 B2 JP 5217015B2 JP 2008006853 A JP2008006853 A JP 2008006853A JP 2008006853 A JP2008006853 A JP 2008006853A JP 5217015 B2 JP5217015 B2 JP 5217015B2
Authority
JP
Japan
Prior art keywords
semiconductor element
main surface
surface electrode
electrode
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008006853A
Other languages
Japanese (ja)
Other versions
JP2009170645A (en
Inventor
豊 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008006853A priority Critical patent/JP5217015B2/en
Publication of JP2009170645A publication Critical patent/JP2009170645A/en
Application granted granted Critical
Publication of JP5217015B2 publication Critical patent/JP5217015B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power converter capable of highly efficiently cooling a semiconductor element for converting power without causing upsizing, a cost rise, an increase in thermal resistance, and stress concentration, and to provide a manufacturing method thereof. <P>SOLUTION: The power converter has a first semiconductor element main surface electrode structure 27 which has a semiconductor element 11 having a main surface electrode, a first electrode 15 having insulation members 24 on a rear surface end portion together with a step difference receiving portion 15a for inserting the semiconductor element 11, positioning the main surface substrate on the receiving portion 15a, disposed so as to cover the semiconductor element 11, and bonded to the semiconductor element 11 via the insulation member, a heat spreader 19 having a heat transmission region 19a closely disposed to a wire bonding wire 26 for electrically connecting the main surface electrode and the first electrode 15, and mounted on the main surface electrode to the first electrode 15 via a heat conductive material; a first substrate 13 mounted by solder on each of the rear surfaces of the structure 27 and the insulation member 24; and a first heat radiator 17 having the first substrate 13 mounted via an insulator. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

この発明は、電力変換装置及びその製造方法に関し、特に、多数の半導体素子を用いるために発熱に対する充分な対策を必要とする電力変換装置及びその製造方法に関する。   The present invention relates to a power conversion device and a method for manufacturing the same, and more particularly to a power conversion device and a method for manufacturing the power conversion device that require sufficient measures against heat generation in order to use a large number of semiconductor elements.

従来、一般に電力変換を行なう電力変換装置として、例えば、「半導体装置」(特許文献1参照)が知られている。
図15は、従来の半導体装置の構造を模式的に示す断面説明図である。図15に示すように、従来の半導体装置1は、下側半導体素子2と上側半導体素子3を有している。下側半導体素子2は、はんだ4aによって接続された、両側に金属パターンを有する絶縁基板5aを介して、冷却器6aに実装されており、上側半導体素子3は、はんだ4bによって接続された、両側に金属パターンを有する絶縁基板5bを介して、冷却器6bに実装されている。
Conventionally, as a power conversion device that generally performs power conversion, for example, a “semiconductor device” (see Patent Document 1) is known.
FIG. 15 is a cross-sectional explanatory view schematically showing the structure of a conventional semiconductor device. As shown in FIG. 15, the conventional semiconductor device 1 has a lower semiconductor element 2 and an upper semiconductor element 3. The lower semiconductor element 2 is mounted on the cooler 6a via an insulating substrate 5a having metal patterns on both sides connected by solder 4a, and the upper semiconductor element 3 is connected on both sides by solder 4b. It is mounted on the cooler 6b through an insulating substrate 5b having a metal pattern.

下側半導体素子2の主面電極上には電極7aが実装され、電極7a上には絶縁材8aを介して冷却器6bが載置されており、上側半導体素子3の主面電極上には電極7bが実装され、電極7b上には絶縁材8bを介して冷却器6cが載置されている。
この従来の半導体装置1は、下側半導体素子2と上側半導体素子3の何れも表面側及び裏面側にそれぞれ冷却器6a,6b,6cを有することで、冷却性能を高め温度上昇を抑えようとしている。また、両半導体素子2,3を上下に重ねた積層構造とすることで、平面大きさの縮小化を図っている。
特開2001−244407号公報
An electrode 7 a is mounted on the main surface electrode of the lower semiconductor element 2, and a cooler 6 b is placed on the electrode 7 a via an insulating material 8 a, and on the main surface electrode of the upper semiconductor element 3. An electrode 7b is mounted, and a cooler 6c is placed on the electrode 7b via an insulating material 8b.
The conventional semiconductor device 1 has the coolers 6a, 6b, and 6c on the front surface side and the back surface side of the lower semiconductor element 2 and the upper semiconductor element 3, respectively, thereby improving the cooling performance and suppressing the temperature rise. Yes. In addition, the planar size is reduced by forming a stacked structure in which the semiconductor elements 2 and 3 are stacked one above the other.
JP 2001-244407 A

しかしながら、従来の半導体装置1においては、以下の問題点がある。
半導体素子2もしくは3の両面を冷却する為には、半導体素子の両面側に熱抵抗を少なく、冷却器や放熱体を接合する必要がある。各部材を固定保持する際、各部材間に応力が発生し易いが、発生する応力を緩和したり応力の発生自体を防ぐための対応が困難である。特に半導体素子の平面に活電位に接続する電極面を形成した場合、電極面と冷却器や放熱体と熱抵抗を少なく接合することは非常に困難となる。
この発明の目的は、電力変換を行なう半導体素子を、熱抵抗増大化、応力集中を招くことなく、効率良く電極面からも冷却することができる電力変換装置及びその製造方法を提供することである。
However, the conventional semiconductor device 1 has the following problems.
In order to cool both surfaces of the semiconductor element 2 or 3, it is necessary to join a cooler or a heat radiator with less thermal resistance on both surfaces of the semiconductor element. When each member is fixedly held, stress is likely to be generated between the members, but it is difficult to take measures to alleviate the generated stress or prevent the stress itself. In particular, when an electrode surface connected to the live potential is formed on the plane of the semiconductor element, it is very difficult to join the electrode surface, the cooler, and the heat radiating body with little thermal resistance.
An object of the present invention is to provide a power conversion device capable of efficiently cooling a semiconductor element that performs power conversion from the electrode surface without increasing thermal resistance and causing stress concentration, and a method for manufacturing the same. .

上記目的を達成するため、この発明に係る電力変換装置は、主面電極を有する半導体素子と、前記半導体素子を入り込ませる受け部と共に裏面側端部に絶縁物領域を有し、前記受け部に前記主面電極を位置させて前記半導体素子の主面側の一部を覆って配置され、絶縁性部材を介して前記半導体素子に接合された上面電極と、前記主面電極及び前記上面電極を電気的に接続するワイヤボンディング線に近接配置された伝熱領域を有し、前記主面電極及び前記上面電極の上に熱伝導性材料を介して実装されたヒートスプレッダと、を有する半導体素子主面電極側構造体と、前記半導体素子主面電極側構造体及び前記絶縁物領域のそれぞれの裏面にはんだ付け実装した基板と、前記基板を絶縁物を介して実装した放熱器とを有している。
In order to achieve the above object, a power conversion device according to the present invention has a semiconductor element having a main surface electrode, and a receiving part into which the semiconductor element is inserted, and has an insulator region at a rear side end part. The main surface electrode is positioned so as to cover a part of the main surface side of the semiconductor element and is joined to the semiconductor element via an insulating member, and the main surface electrode and the upper surface electrode are arranged A semiconductor element main surface having a heat transfer region disposed in proximity to a wire bonding line to be electrically connected, and a heat spreader mounted on the main surface electrode and the upper surface electrode via a heat conductive material An electrode-side structure, a substrate on which the semiconductor element main surface electrode-side structure and the insulator region are soldered and mounted, and a radiator on which the substrate is mounted via an insulator. .

この発明によれば、半導体素子主面電極側構造体は、主面電極を有する半導体素子と、半導体素子を入り込ませる受け部と共に裏面側端部に絶縁物領域を有し、受け部に主面電極を位置させて半導体素子の主面側の一部を覆って配置され、絶縁性部材を介して半導体素子に接合された上面電極と、主面電極及び上面電極を電気的に接続するワイヤボンディング線に近接配置された伝熱領域を有し、主面電極及び上面電極の上に熱伝導性材料を介して実装されたヒートスプレッダとを有しており、この半導体素子主面電極側構造体及び絶縁物領域のそれぞれの裏面に基板をはんだ付け実装し、基板を絶縁物を介して放熱器に実装している。 According to the present invention, the semiconductor element main surface electrode side structure has a semiconductor element having a main surface electrode, and a receiving portion into which the semiconductor element is inserted, and has an insulating region at the back surface side end portion, and the receiving portion has a main surface. An electrode is positioned so as to cover a part of the main surface side of the semiconductor element, and an upper surface electrode joined to the semiconductor element via an insulating member, and wire bonding for electrically connecting the main surface electrode and the upper surface electrode A heat spreader disposed adjacent to the wire, and having a heat spreader mounted on the main surface electrode and the upper surface electrode via a heat conductive material, the semiconductor element main surface electrode side structure, and A substrate is soldered and mounted on each back surface of the insulator region, and the substrate is mounted on the radiator via the insulator.

これにより、電力変換を行なう半導体素子の主面電極側に、熱抵抗増大化、応力集中を招くことなくヒートスプレッダを配置することができ、効率良く冷却することができる。
また、この発明に係る電力変換装置の製造方法により、上記電力変換装置を実現することができる。
As a result, the heat spreader can be disposed on the main surface electrode side of the semiconductor element that performs power conversion without causing an increase in thermal resistance and stress concentration, and can be efficiently cooled.
Moreover, the said power converter device is realizable with the manufacturing method of the power converter device which concerns on this invention.

以下、この発明を実施するための最良の形態について図面を参照して説明する。
(第1実施の形態)
図1は、この発明の第1実施の形態に係る電力変換装置の構成を示す断面説明図である。図2は、図1のA−A線に沿う断面説明図である。図3は、図1の絶縁層及び放熱器を除いた各部断面構造を示し、(a)はB−B線に沿う断面説明図、(b)はC−C線に沿う断面説明図である。
図1から図3に示すように、電力変換装置10は、2個の第1半導体素子11a,11b、2個の第2半導体素子12a,12b、第1基板13、第2基板14、第1電極(上面電極)15、第2電極(上面電極)16、第1放熱器17、第2放熱器18、及びヒートスプレッダ19を有しており、これらを層状に積み重ねて形成されている。
The best mode for carrying out the present invention will be described below with reference to the drawings.
(First embodiment)
FIG. 1 is a cross-sectional explanatory view showing the configuration of the power conversion device according to the first embodiment of the present invention. FIG. 2 is a cross-sectional explanatory view taken along the line AA of FIG. FIG. 3 shows a cross-sectional structure of each part excluding the insulating layer and the radiator of FIG. 1, (a) is a cross-sectional explanatory view along the line BB, and (b) is a cross-sectional explanatory view along the line CC. .
As shown in FIGS. 1 to 3, the power conversion device 10 includes two first semiconductor elements 11a and 11b, two second semiconductor elements 12a and 12b, a first substrate 13, a second substrate 14, and a first substrate. An electrode (upper surface electrode) 15, a second electrode (upper surface electrode) 16, a first heat radiator 17, a second heat radiator 18, and a heat spreader 19 are formed and stacked in layers.

第1半導体素子11aと第1半導体素子11b、第2半導体素子12aと第2半導体素子12bは、それぞれ横並びに離間して配置されている。2個の第1半導体素子11a,11bと2個の第2半導体素子12a,12bの間には、金属体からなるヒートスプレッダ19が挟み込まれており、第1半導体素子11a,11bの外側には第1基板13を介して第1放熱器17が、第2半導体素子12a,12bの外側には第2基板14を介して第2放熱器18が、それぞれ位置している。
つまり、2個の第1半導体素子11a,11b、第1基板13及び第1放熱器17と、2個の第2半導体素子12a,12b、第2基板14及び第2放熱器18は、ヒートスプレッダ19を挟み、それぞれの主面側が向き合うように対向して(図中、上下に)配置されている。
The first semiconductor element 11a and the first semiconductor element 11b, and the second semiconductor element 12a and the second semiconductor element 12b are arranged side by side and spaced apart from each other. A heat spreader 19 made of a metal body is sandwiched between the two first semiconductor elements 11a and 11b and the two second semiconductor elements 12a and 12b, and outside the first semiconductor elements 11a and 11b, A first heat radiator 17 is located via the first substrate 13, and a second heat radiator 18 is located outside the second semiconductor elements 12 a and 12 b via the second substrate 14.
That is, the two first semiconductor elements 11a and 11b, the first substrate 13 and the first heat radiator 17, and the two second semiconductor elements 12a and 12b, the second substrate 14 and the second heat radiator 18 are composed of the heat spreader 19. With the main surfaces facing each other (up and down in the figure).

第1放熱器17の主面上には、絶縁層20を介して第1基板13が、第1基板13の主面上には、はんだ層21を介して第1半導体素子11a,11bが、それぞれ実装されている。第2放熱器18の主面上には、絶縁層22を介して第2基板14が、第2基板14の主面上には、はんだ層23を介して第2半導体素子12a,12bが、それぞれ実装されている。
図2に示すように、第1半導体素子11a,11bの主面側に位置する第1電極15は、裏面(第1放熱器17側面)内側に、第1半導体素子11a,11bを入り込ませる段差状受け部15aを有しており、この段差状受け部15aを、第1半導体素子11a,11bの上面に被せるように、第1電極15が配置されている。また、段差状受け部15aの外側の第1電極15の裏面には、絶縁部材(絶縁物領域)24が配置されており、この絶縁部材24の裏面には、金属箔が装着されている。
On the main surface of the first radiator 17, the first substrate 13 is interposed via the insulating layer 20. On the main surface of the first substrate 13, the first semiconductor elements 11 a and 11 b are connected via the solder layer 21. Each is implemented. On the main surface of the second radiator 18, the second substrate 14 is interposed via the insulating layer 22. On the main surface of the second substrate 14, the second semiconductor elements 12 a and 12 b are interposed via the solder layer 23. Each is implemented.
As shown in FIG. 2, the first electrode 15 located on the main surface side of the first semiconductor elements 11a and 11b has a step that allows the first semiconductor elements 11a and 11b to enter inside the back surface (side surface of the first radiator 17). The first electrode 15 is disposed so as to cover the upper surfaces of the first semiconductor elements 11a and 11b with the step receiving portion 15a. An insulating member (insulator region) 24 is disposed on the back surface of the first electrode 15 outside the stepped receiving portion 15a, and a metal foil is attached to the back surface of the insulating member 24.

そして、第1半導体素子11a,11bの各上面と、第1電極15の段差状受け部15a及び絶縁部材24の側面を、絶縁性接着剤25で接合することにより、第1半導体素子11a,11bを段差状受け部15aに嵌め込ませて、第1半導体素子11a,11bの主面電極を第1電極15で覆った状態になる。
更に、第1半導体素子11a,11bの主面電極と第1電極15を、ワイヤボンディング線26で電気的に接続することにより、第1半導体素子主面電極側構造体27が形成される。なお、第1半導体素子11a,11bの主面電極と、第1電極15の代わりに第1電極15上に配置した接続電極(図示せず)を、ワイヤボンディング線26で電気的に接続しても良い。
Then, the upper surfaces of the first semiconductor elements 11a and 11b, the stepped receiving portions 15a of the first electrode 15 and the side surfaces of the insulating member 24 are joined with an insulating adhesive 25, whereby the first semiconductor elements 11a and 11b are joined. Is fitted into the step receiving portion 15a, and the main surface electrodes of the first semiconductor elements 11a and 11b are covered with the first electrode 15.
Furthermore, the first semiconductor element main surface electrode side structure 27 is formed by electrically connecting the main surface electrodes of the first semiconductor elements 11 a and 11 b and the first electrode 15 with the wire bonding lines 26. The main surface electrodes of the first semiconductor elements 11 a and 11 b and the connection electrodes (not shown) arranged on the first electrodes 15 instead of the first electrodes 15 are electrically connected by wire bonding lines 26. Also good.

ヒートスプレッダ19の下面側(第1半導体素子11a,11b側)には、櫛状の突起部19aが、伝熱領域として形成されている。突起部19aは、隣接する突起部19a間の凹部にワイヤボンディング線26を配置するために設けても良い。このヒートスプレッダ19を、第1半導体素子主面電極側構造体27の主面上に、突起部(伝熱領域)19aと第1半導体素子11a,11bのワイヤボンディング線26とが近接するように配置する。そして、第1半導体素子主面電極側構造体27の主面側となる第1半導体素子11a,11bの主面電極、第1電極15の段差状受け部15a近傍部分、及びヒートスプレッダ19を、熱伝導性部材28により接合する。   On the lower surface side (first semiconductor element 11a, 11b side) of the heat spreader 19, a comb-like protrusion 19a is formed as a heat transfer region. The protrusion 19a may be provided in order to dispose the wire bonding line 26 in the recess between the adjacent protrusions 19a. The heat spreader 19 is disposed on the main surface of the first semiconductor element main surface electrode-side structure 27 so that the protrusion (heat transfer region) 19a and the wire bonding lines 26 of the first semiconductor elements 11a and 11b are close to each other. To do. Then, the main surface electrodes of the first semiconductor elements 11a and 11b, which are the main surface side of the first semiconductor element main surface electrode side structure 27, the stepped receiving portion 15a vicinity portion of the first electrode 15, and the heat spreader 19 are heated. The conductive member 28 is used for bonding.

また、第1半導体素子主面電極側構造体27の裏面側となる、第1半導体素子11a,11bと絶縁部材24のそれぞれの裏面を、はんだ付けによるはんだ層21を介して、第1基板13に実装し、更に、第1基板13を、絶縁層20を介して第1放熱器17に実装する。
そして、ヒートスプレッダ19を挟んで第2放熱器18側にも、上述した、第1放熱器17側に位置する第1半導体素子主面電極側構造体27と同様の構成を有する第2半導体素子主面電極側構造体29が、第1半導体素子主面電極側構造体27と対称形状に位置している(図1参照)。
Further, the first substrate 13 is connected to the back surfaces of the first semiconductor elements 11a and 11b and the insulating member 24 on the back surface side of the first semiconductor element main surface electrode side structure 27 via the solder layer 21 by soldering. Further, the first substrate 13 is mounted on the first radiator 17 via the insulating layer 20.
The second semiconductor element main body having the same configuration as that of the first semiconductor element main surface electrode-side structure 27 located on the first heat radiator 17 side also on the second radiator 18 side with the heat spreader 19 interposed therebetween. The surface electrode side structure 29 is positioned symmetrically with the first semiconductor element main surface electrode side structure 27 (see FIG. 1).

この第2半導体素子主面電極側構造体29は、2個の第2半導体素子12a,12b、第2基板14、第2電極16、第2放熱器18、及びヒートスプレッダ19を有している。第2半導体素子12a,12bと絶縁部材30のそれぞれの裏面を、はんだ付けによるはんだ層23を介して、第2基板14に実装し、更に、第2基板14を、絶縁層22を介して第2放熱器18に実装する。   The second semiconductor element main surface electrode side structure 29 includes two second semiconductor elements 12 a and 12 b, a second substrate 14, a second electrode 16, a second radiator 18, and a heat spreader 19. The back surfaces of the second semiconductor elements 12a and 12b and the insulating member 30 are mounted on the second substrate 14 via the solder layer 23 by soldering, and further the second substrate 14 is connected to the second substrate 14 via the insulating layer 22. 2 Mount on the radiator 18.

また、第2半導体素子12a,12bの各上面と、第2電極16の段差状受け部16a及び絶縁部材30の側面を、絶縁性接着剤31で接合で接合することにより、第2半導体素子12a,12bを段差状受け部16aに嵌め込ませて、第2半導体素子12a,12bの主面電極を第2電極16で覆った状態にし、第2半導体素子12a,12bの主面電極と第2電極16を、ワイヤボンディング線32で電気的に接続する。更に、第2半導体素子主面電極側構造体29の主面側となる第2半導体素子12a,12bの主面電極、第2電極16の段差状受け部16a近傍部分、及びヒートスプレッダ19を、熱伝導性部材33により接合する。   In addition, the upper surfaces of the second semiconductor elements 12a and 12b, the stepped receiving portions 16a of the second electrode 16 and the side surfaces of the insulating member 30 are joined by an insulating adhesive 31 to join the second semiconductor element 12a. 12b are fitted into the step receiving portion 16a so that the main surface electrodes of the second semiconductor elements 12a and 12b are covered with the second electrode 16, and the main surface electrodes and second electrodes of the second semiconductor elements 12a and 12b are covered. 16 are electrically connected by a wire bonding line 32. Further, the main surface electrodes of the second semiconductor elements 12a and 12b that are the main surface side of the second semiconductor element main surface electrode side structure 29, the stepped receiving portion 16a vicinity portion of the second electrode 16, and the heat spreader 19 are heated. Bonding is performed by the conductive member 33.

つまり、ヒートスプレッダ19は、下面側に有する突起部(伝熱領域)19aと同様の突起部(伝熱領域)19bを、上面側(第2半導体素子12a,12b側)にも有しており、このヒートスプレッダ19の下面側に、第1半導体素子主面電極側構造体27の主面側を接合すると共に、ヒートスプレッダ19の上面側に、第2半導体素子主面電極側構造体29の主面側を接合している。第1半導体素子主面電極側構造体27の裏面は、第1基板13に、第2半導体素子主面電極側構造体29の裏面は、第2基板14に、それぞれはんだ付け実装されており、第1基板13の裏面は、絶縁層20を介して第1放熱器17に、第2基板14の裏面は、絶縁層22を介して第2放熱器18に、それぞれ実装されている。   That is, the heat spreader 19 has a protrusion (heat transfer region) 19b similar to the protrusion (heat transfer region) 19a on the lower surface side also on the upper surface side (second semiconductor elements 12a and 12b side). The main surface side of the first semiconductor element main surface electrode side structure 27 is joined to the lower surface side of the heat spreader 19, and the main surface side of the second semiconductor element main surface electrode side structure 29 is connected to the upper surface side of the heat spreader 19. Are joined. The back surface of the first semiconductor element main surface electrode side structure 27 is soldered and mounted on the first substrate 13 and the back surface of the second semiconductor element main surface electrode side structure 29 is soldered and mounted on the second substrate 14, respectively. The back surface of the first substrate 13 is mounted on the first heat radiator 17 via the insulating layer 20, and the back surface of the second substrate 14 is mounted on the second heat radiator 18 via the insulating layer 22.

即ち、第1半導体素子11の上に第2半導体素子12が位置するように、第1半導体素子主面電極側構造体27と第2半導体素子主面電極側構造体29が上下に積層配置されている。
このように、電力変換装置10は、半導体素子主面電極側構造体と、半導体素子主面電極側構造体及び前記絶縁物領域のそれぞれの裏面にはんだ付け実装した基板と、基板を絶縁物を介して実装した放熱器とを有しており、半導体素子主面電極側構造体は、主面電極を有する半導体素子と、半導体素子を入り込ませる受け部と共に裏面側端部に絶縁物領域を有し、受け部に主面電極を位置させて半導体素子を覆って配置され、絶縁性部材を介して半導体素子に接合された上面電極と、主面電極及び上面電極を電気的に接続するワイヤボンディング線に近接配置された伝熱領域を有し、主面電極及び上面電極の上に熱伝導性材料を介して実装されたヒートスプレッダとを有している。
That is, the first semiconductor element main surface electrode-side structure 27 and the second semiconductor element main surface electrode-side structure 29 are stacked one above the other so that the second semiconductor element 12 is positioned on the first semiconductor element 11. ing.
Thus, the power conversion device 10 includes a semiconductor element main surface electrode side structure, a substrate soldered and mounted on the back surface of each of the semiconductor element main surface electrode side structure and the insulator region, and the substrate with an insulator. The semiconductor element main surface electrode side structure has an insulator region at the back side end portion together with the semiconductor element having the main surface electrode and the receiving portion into which the semiconductor element is inserted. Then, the main surface electrode is positioned on the receiving portion so as to cover the semiconductor element, and the upper surface electrode joined to the semiconductor element through the insulating member and the wire bonding for electrically connecting the main surface electrode and the upper surface electrode. It has a heat transfer region disposed close to the wire, and has a heat spreader mounted on the main surface electrode and the upper surface electrode via a heat conductive material.

つまり、電力変換装置10は、ヒートスプレッダ19の一面側に、半導体素子主面電極側構造体からなる第1半導体素子主面電極側構造体27、基板からなる第1基板13、及び放熱器からなる第1放熱器17を、ヒートスプレッダ19の他面側に、半導体素子主面電極側構造体からなる第2半導体素子主面電極側構造体29、基板からなる第2基板14、及び放熱器からなる第2放熱器18を積層し、第1半導体素子主面電極側構造体27と第2半導体素子主面電極側構造体29をヒートスプレッダ19を境に対向配置して形成されている。
ここで、第1半導体素子主面電極側構造体27は、第1半導体素子11a,11bの一方或いは両方を、第2半導体素子主面電極側構造体29は、第2半導体素子12a,12bの一方或いは両方を、それぞれ有していても良い。
That is, the power conversion device 10 includes, on one surface side of the heat spreader 19, the first semiconductor element main surface electrode side structure 27 including the semiconductor element main surface electrode side structure, the first substrate 13 including the substrate, and the radiator. The first heat radiator 17 is formed on the other surface side of the heat spreader 19 by a second semiconductor element main surface electrode side structure 29 made of a semiconductor element main surface electrode side structure, a second substrate 14 made of a substrate, and a heat radiator. The second heat radiator 18 is stacked, and the first semiconductor element main surface electrode side structure 27 and the second semiconductor element main surface electrode side structure 29 are arranged to face each other with the heat spreader 19 as a boundary.
Here, the first semiconductor element main surface electrode side structure 27 is one or both of the first semiconductor elements 11a and 11b, and the second semiconductor element main surface electrode side structure 29 is the second semiconductor elements 12a and 12b. One or both may be provided.

そして、第1半導体素子11と第2半導体素子12を、電気的に同一の動作をしない状態を有する素子同士の組み合わせとする。
図3に示すように、第1半導体素子11a,11b或いは第2半導体素子12a,12bの各主面電極上において、ヒートスプレッダ19の突起部(伝熱領域)19aが無い部分では、ワイヤボンディング線26がヒートスプレッダ19に近接している((a)参照)が、同じく主面電極上において、ヒートスプレッダ19の突起部(伝熱領域)19aがある部分では、突起部(伝熱領域)19aが主面電極に近接している((b)参照)。
And let the 1st semiconductor element 11 and the 2nd semiconductor element 12 be the combination of the elements which have the state which does not carry out the electrically same operation | movement.
As shown in FIG. 3, on the main surface electrodes of the first semiconductor elements 11a and 11b or the second semiconductor elements 12a and 12b, the wire bonding line 26 is formed in a portion where the protrusion (heat transfer area) 19a of the heat spreader 19 is not present. Is close to the heat spreader 19 (see (a)), but the projection (heat transfer region) 19a is the main surface in the portion where the protrusion (heat transfer region) 19a of the heat spreader 19 is also on the main surface electrode. Close to the electrode (see (b)).

なお、この実施の形態では、第1半導体素子11a,11bが絶縁ゲート型バイポーラトランジスタ(Insulated Gate Bipolar Transistor:IGBT)又は金属酸化シリコン電界効果トランスミッタ(Metal−Oxide Silicon Field−Effect Transmitter:MOSFET)であり、第2の半導体素子がダイオードである。これにより、インバータ回路を構成して電動機を運転することができる。
また、この実施の形態に係る電力変換装置10が、インバータ回路となるスイッチ回路を構成する場合は、次のようにすればよい。
In this embodiment, the first semiconductor elements 11a and 11b are insulated gate bipolar transistors (IGBTs) or metal-oxide field-effect transmitters (MOSFETs). The second semiconductor element is a diode. Thereby, an inverter circuit can be comprised and an electric motor can be drive | operated.
Moreover, what is necessary is just to do as follows, when the power converter device 10 concerning this embodiment comprises the switch circuit used as an inverter circuit.

第1半導体素子11a,11bとしてのIGBTと第2半導体素子12a,12bとしてのダイオードを、電気的に通電方向を逆向きにする逆並列配置にしてスイッチ回路を構成し、このスイッチ回路を適宣電気的に接続してインバータ回路を形成する。このようなスイッチ回路を構成するためには、第1半導体素子11a,11bを実装している第1基板13と、第2半導体素子12a,12bを実装している第2基板14を、電極で接続する。   A switch circuit is configured by arranging the IGBTs as the first semiconductor elements 11a and 11b and the diodes as the second semiconductor elements 12a and 12b in an antiparallel arrangement in which the energization direction is electrically reversed. Electrically connected to form an inverter circuit. In order to configure such a switch circuit, the first substrate 13 on which the first semiconductor elements 11a and 11b are mounted and the second substrate 14 on which the second semiconductor elements 12a and 12b are mounted are formed with electrodes. Connecting.

つまり、第1半導体素子11a,11bの主面に接合されている上面電極15に、第1接続電極34を、第2半導体素子12a,12bの主面に接合されている上面電極16に第2接続電極35を、それぞれ接続し、また、第1接続電極34と第2接続電極35を、接続する。更に、第1基板13と第2基板14を、第3接続電極36で接続する。各接続電極34,35,36の接続は、例えば、超音波接合やレーザ溶接等の従来の接続方法により行うことができる。   That is, the first connection electrode 34 is connected to the upper surface electrode 15 joined to the main surface of the first semiconductor elements 11a and 11b, and the second connection is made to the upper surface electrode 16 joined to the main surface of the second semiconductor elements 12a and 12b. The connection electrodes 35 are connected to each other, and the first connection electrode 34 and the second connection electrode 35 are connected to each other. Further, the first substrate 13 and the second substrate 14 are connected by the third connection electrode 36. Each connection electrode 34, 35, 36 can be connected by a conventional connection method such as ultrasonic bonding or laser welding.

次に、この発明に係る電力変換装置10の製造方法を説明する。
電力変換装置10を製造するに際し、先ず、第1工程として、第1半導体素子主面電極側構造体27及び第2半導体素子主面電極側構造体29を形成する。その後、第2工程として、第1半導体素子主面電極側構造体27を第1基板13に、第2半導体素子主面電極側構造体29を第2基板14に、それぞれ実装し、次に、第3工程として、第1半導体素子主面電極側構造体27及び第2半導体素子主面電極側構造体29をヒートスプレッダ19に接合する。
Next, a method for manufacturing the power conversion device 10 according to the present invention will be described.
When manufacturing the power converter 10, first, the first semiconductor element main surface electrode side structure 27 and the second semiconductor element main surface electrode side structure 29 are formed as a first step. Then, as a second step, the first semiconductor element main surface electrode side structure 27 is mounted on the first substrate 13 and the second semiconductor element main surface electrode side structure 29 is mounted on the second substrate 14, respectively. As a third step, the first semiconductor element main surface electrode side structure 27 and the second semiconductor element main surface electrode side structure 29 are bonded to the heat spreader 19.

即ち、第1工程により、第1半導体素子11a,11bを第1電極15に固定する場合、固定した後に、第1半導体素子主面電極側構造体27として、金属箔を有する絶縁部材24と第1半導体素子11a,11bを一括してはんだ付けする。第1半導体素子11a,11bは、複数個であっても第1電極15に固定されているので、はんだ付け位置ずれ時の両半導体素子11a,11b同士の干渉を防ぐために、はんだ付けの際に両半導体素子11a,11bの間隔を大きく開ける必要はない。また、第1半導体素子主面電極側構造体27は比較的重量があるので、これ自体は、はんだ付けの際に位置ずれを起こし難い。
なお、第1半導体素子主面電極側構造体27は、例えば、以下の手順で容易に形成することができる。
That is, when the first semiconductor elements 11a and 11b are fixed to the first electrode 15 by the first process, the first semiconductor element main surface electrode-side structure 27 and the insulating member 24 having a metal foil and the first semiconductor element 11 are fixed after the fixing. 1 The semiconductor elements 11a and 11b are soldered together. Even if there are a plurality of first semiconductor elements 11a and 11b, they are fixed to the first electrode 15. Therefore, in order to prevent interference between the semiconductor elements 11a and 11b when the soldering position is displaced, It is not necessary to increase the distance between the two semiconductor elements 11a and 11b. Further, since the first semiconductor element main surface electrode side structure 27 is relatively heavy, the structure itself is less likely to be displaced during soldering.
The first semiconductor element main surface electrode side structure 27 can be easily formed, for example, by the following procedure.

図4は、図1の電力変換装置の製造工程において、第1半導体素子主面電極側構造体側のみについての製造工程(a)〜(e)を示す断面説明図である。図4に示すように、先ず、第1電極15の裏面側及び絶縁部材24の側面に、絶縁性接着剤25を塗布する((a)参照)。塗布後、作業台等(図示せず)の平坦面上に、第1半導体素子11a,11bを置き、その上に、絶縁性接着剤25を塗布した第1電極15を被せる((b)参照)。この際、第1半導体素子11a,11bと第1電極15の位置合わせは、治具等を用いることにより容易にできる。   FIG. 4 is a cross-sectional explanatory diagram illustrating manufacturing steps (a) to (e) only for the first semiconductor element main surface electrode side structure side in the manufacturing process of the power conversion device of FIG. 1. As shown in FIG. 4, first, an insulating adhesive 25 is applied to the back surface side of the first electrode 15 and the side surface of the insulating member 24 (see (a)). After the application, the first semiconductor elements 11a and 11b are placed on a flat surface of a work table or the like (not shown), and the first electrode 15 to which the insulating adhesive 25 is applied is placed thereon (see (b)). ). At this time, the first semiconductor elements 11a and 11b and the first electrode 15 can be easily aligned by using a jig or the like.

その後、絶縁性接着剤25を熱硬化させることにより、第1半導体素子11a,11bの裏面と第1電極15の端部にある絶縁部材24の裏面を、同一平面に形成して、第1半導体素子11a,11bと第1電極15を接合することができ、第1半導体素子主面電極側構造体27が形成される。
次に、第1基板13の主面上にはんだを塗布して、第1半導体素子主面電極側構造体27を載置する。これにより、第1基板13上に、はんだ層21を介して第1半導体素子主面電極側構造体27が積層される((c)参照)。その後、第1半導体素子11a,11b上に、第1半導体素子11a,11bの主面電極と第1電極15を電気的に接続するワイヤボンディング線26を配置する((d)参照)。
Thereafter, by thermally curing the insulating adhesive 25, the back surfaces of the first semiconductor elements 11a and 11b and the back surface of the insulating member 24 at the end of the first electrode 15 are formed in the same plane, and the first semiconductor The elements 11a and 11b and the first electrode 15 can be joined, and the first semiconductor element main surface electrode side structure 27 is formed.
Next, solder is applied onto the main surface of the first substrate 13 to place the first semiconductor element main surface electrode-side structure 27. Thereby, the first semiconductor element main surface electrode side structure 27 is laminated on the first substrate 13 via the solder layer 21 (see (c)). After that, the wire bonding line 26 that electrically connects the main surface electrodes of the first semiconductor elements 11a and 11b and the first electrode 15 is disposed on the first semiconductor elements 11a and 11b (see (d)).

ワイヤボンディング線26を配置した後、ワイヤボンディング線26を覆って、第1半導体素子11a,11b及び第1電極15の上に熱伝導性部材28を塗布し、その上にヒートスプレッダ19を被せる。このとき、ワイヤボンディング線26が、ヒートスプレッダ19の突起部(伝熱領域)19aの間の凹部に位置するようにする((e)参照)。これにより、第1半導体素子主面電極側構造体27の主面側となる第1半導体素子11a,11bの主面電極、第1電極15の段差状受け部15a近傍部分、及びヒートスプレッダ19が、熱伝導性部材28により接合される。
なお、ここでは、電力変換装置10の製造工程を、第1半導体素子主面電極側構造体27の側のみについて説明したが、第2半導体素子主面電極側構造体29についても、第1半導体素子主面電極側構造体27の製造工程(a)〜(e)と同様の工程で製造することができる。
After the wire bonding line 26 is disposed, a heat conductive member 28 is applied on the first semiconductor elements 11a and 11b and the first electrode 15 so as to cover the wire bonding line 26, and the heat spreader 19 is placed thereon. At this time, the wire bonding line 26 is positioned in a recess between the protrusions (heat transfer regions) 19a of the heat spreader 19 (see (e)). Thereby, the main surface electrodes of the first semiconductor elements 11a and 11b which are the main surface side of the first semiconductor element main surface electrode side structure 27, the stepped receiving portion 15a vicinity portion of the first electrode 15, and the heat spreader 19 are Bonded by the heat conductive member 28.
In addition, although the manufacturing process of the power converter device 10 was demonstrated only about the 1st semiconductor element main surface electrode side structure 27 side here, it is 1st semiconductor also about the 2nd semiconductor element main surface electrode side structure 29. The element main surface electrode-side structure 27 can be manufactured by the same processes as the manufacturing processes (a) to (e).

上述した構成を有することにより、電力変換装置10は以下に示す効果を得ることができる。なお、ここで説明する、第1半導体素子11a,11bを備えた第1半導体素子主面電極側構造体27に関して得られる効果は、第2半導体素子12a,12bを備えた第2半導体素子主面電極側構造体29に関しても同様に得られるが、第2半導体素子主面電極側構造体29についての説明は省略する。また、以後、第1半導体素子11a,11bを第1半導体素子11と、第2半導体素子12a,12bを第2半導体素子12と、それぞれ省略して説明する。   By having the configuration described above, the power conversion device 10 can obtain the following effects. In addition, the effect acquired regarding the 1st semiconductor element main surface electrode side structure 27 provided with 1st semiconductor element 11a, 11b demonstrated here is the 2nd semiconductor element main surface provided with 2nd semiconductor element 12a, 12b. Although the electrode-side structure 29 can be obtained in the same manner, the description of the second semiconductor element main surface electrode-side structure 29 is omitted. In the following description, the first semiconductor elements 11a and 11b are omitted from the first semiconductor element 11 and the second semiconductor elements 12a and 12b are omitted as the second semiconductor element 12, respectively.

先ず、以下に示す第1から第3の効果により、第1半導体素子11において生じる発熱を、主面電極側からより一層放熱することができる。これにより、第1半導体素子11の裏面から第1放熱器17側への放熱に加えて第1半導体素子11の主面電極からも放熱されるが、その第1半導体素子11の主面電極からの放熱が増大するので、第1半導体素子11の温度上昇を、更に抑制することができる。   First, due to the following first to third effects, heat generated in the first semiconductor element 11 can be further radiated from the main surface electrode side. Thereby, in addition to heat radiation from the back surface of the first semiconductor element 11 to the first radiator 17 side, heat is radiated from the main surface electrode of the first semiconductor element 11, but from the main surface electrode of the first semiconductor element 11. Therefore, the temperature rise of the first semiconductor element 11 can be further suppressed.

第1の効果として、ヒートスプレッダ19を、第1半導体素子11に更に近接して配置することが容易にできる。即ち、第1半導体素子11の主面側を第1電極15により覆っている状態であるため、この第1電極15にヒートスプレッダ19を載せることにより、ヒートスプレッダ19の伝熱領域19aを第1半導体素子11の主面電極に、接触させることなく十分に近接させることが容易にできる。伝熱領域19aと第1半導体素子11の主面電極との間隔は、主に第1電極15の厚さや高さで決まるが、第1電極15の加工に際しては、通常の機械加工により十分な精度を確保することができる。   As a first effect, the heat spreader 19 can be easily disposed closer to the first semiconductor element 11. That is, since the main surface side of the first semiconductor element 11 is covered with the first electrode 15, the heat spreader 19 is placed on the first electrode 15, so that the heat transfer region 19 a of the heat spreader 19 is placed in the first semiconductor element. It is possible to easily bring the electrode 11 into sufficient proximity without being brought into contact with the eleven main surface electrodes. The distance between the heat transfer region 19a and the main surface electrode of the first semiconductor element 11 is mainly determined by the thickness and height of the first electrode 15. However, when the first electrode 15 is processed, it is sufficient by normal machining. Accuracy can be ensured.

よって、ヒートスプレッダ19の突起部(伝熱領域)19aが第1半導体素子11に接触して、第1半導体素子11を傷つけてしまう事態の発生を防ぎつつ、第1半導体素子11とヒートスプレッダ19を低い熱抵抗で熱結合することができる。このため、主面電極からヒートスプレッダ19への放熱効果が大きくなる。
なお、第1半導体素子11の主面電極の電気接続は、ワイヤボンディング線26により行なうため、電気接続に支障は出ない。また、ヒートスプレッダ19の突起部(伝熱領域)19a間にワイヤボンディング線26を嵌め込む構造であるため、突起部(伝熱領域)19aがワイヤボンディング線26に悪影響を与えることはない。更に、ワイヤボンディング線26自体も金属であることから、主面電極からの熱流がワイヤボンディング線26を経てヒートスプレッダ19に達することにより、更に、ヒートスプレッダ19への放熱効果が大きくなる。
Therefore, the first semiconductor element 11 and the heat spreader 19 are kept low while preventing the occurrence of a situation in which the protrusion (heat transfer region) 19a of the heat spreader 19 contacts the first semiconductor element 11 and damages the first semiconductor element 11. It can be thermally coupled with thermal resistance. For this reason, the heat dissipation effect from the main surface electrode to the heat spreader 19 is increased.
In addition, since the electrical connection of the main surface electrode of the 1st semiconductor element 11 is performed by the wire bonding line 26, there is no problem in electrical connection. Further, since the wire bonding wire 26 is fitted between the protrusions (heat transfer regions) 19 a of the heat spreader 19, the protrusions (heat transfer regions) 19 a do not adversely affect the wire bonding wires 26. Furthermore, since the wire bonding line 26 itself is also a metal, the heat flow from the main surface electrode reaches the heat spreader 19 through the wire bonding line 26, thereby further increasing the heat dissipation effect to the heat spreader 19.

第2の効果として、第1半導体素子11の主面電極からの熱伝導には、突起部(伝熱領域)19aやワイヤボンディング線26だけでなく、第1電極15も寄与する。即ち、主面電極からの熱流は、第1電極15側へも広がってヒートスプレッダ19にも達する。このため、熱抵抗が金属よりは相対的に大きい熱伝導性部材28や絶縁性接着剤25における熱流密度を低減して、これらの部分で生じる温度勾配を抑制することができる。よって、主面電極側からの放熱効果が向上する。
第3の効果として、第1電極15自体も放熱に寄与することができる。即ち、第2の効果で述べたように、第1電極15にも熱流が流れることにより、熱流の全てがヒートスプレッダ19を流れるのではなく、第1電極15も放熱経路とすることができる。これにより、熱抵抗が下がり、更に、放熱効果が向上する。
As a second effect, not only the protrusion (heat transfer region) 19a and the wire bonding line 26 but also the first electrode 15 contributes to the heat conduction from the main surface electrode of the first semiconductor element 11. That is, the heat flow from the main surface electrode spreads to the first electrode 15 side and reaches the heat spreader 19. For this reason, the heat flow density in the heat conductive member 28 and the insulating adhesive 25 whose heat resistance is relatively larger than that of the metal can be reduced, and the temperature gradient generated in these portions can be suppressed. Therefore, the heat dissipation effect from the main surface electrode side is improved.
As a third effect, the first electrode 15 itself can also contribute to heat dissipation. That is, as described in the second effect, since the heat flow also flows through the first electrode 15, not all of the heat flow flows through the heat spreader 19, but the first electrode 15 can also serve as a heat dissipation path. Thereby, thermal resistance falls and the heat dissipation effect improves further.

以上により、第1半導体素子11の主面電極からヒートスプレッダ19へ、更に、ヒートスプレッダ19から第1電極15を経て第1放熱器17へと熱流路が形成され、第1半導体素子11の温度を下げる放熱効果を向上させることができる。
第4の効果として、ヒートスプレッダ19を、第1半導体素子11上に高い位置精度を以って配置することが容易に、且つ、広いスペースを必要とせずにできる。
Thus, a heat flow path is formed from the main surface electrode of the first semiconductor element 11 to the heat spreader 19, and further from the heat spreader 19 to the first radiator 17 through the first electrode 15, and the temperature of the first semiconductor element 11 is lowered. The heat dissipation effect can be improved.
As a fourth effect, it is possible to easily dispose the heat spreader 19 on the first semiconductor element 11 with high positional accuracy and without requiring a large space.

図5は、効果の説明に用いる第1半導体素子主面電極側構造体を示し、(a)はヒートスプレッダ装着前の断面説明図、(b)はヒートスプレッダ装着後の断面説明図である。図5に示すように、第1半導体素子主面電極側構造体27において、第1半導体素子11の主面電極の上にヒートスプレッダ19を配置する際、第1電極15の端部を位置合わせの基準としてヒートスプレッダ19の端部を合わせれば、ヒートスプレッダ19の突起部(伝熱領域)19aが第1電極15の段差状受け部15aに干渉することなく、ヒートスプレッダ19を容易に配置することができる。更に、段差状受け部15aを必要以上に大きくすることがないので、段差状受け部15aを大きくしたことによる放熱効果の悪化も起きない。   FIGS. 5A and 5B show the first semiconductor element main surface electrode-side structure used for explaining the effects. FIG. 5A is a cross-sectional explanatory view before mounting the heat spreader, and FIG. 5B is a cross-sectional explanatory view after mounting the heat spreader. As shown in FIG. 5, in the first semiconductor element main surface electrode side structure 27, when the heat spreader 19 is disposed on the main surface electrode of the first semiconductor element 11, the end of the first electrode 15 is aligned. If the end portions of the heat spreader 19 are aligned as a reference, the heat spreader 19 can be easily arranged without the projection (heat transfer region) 19a of the heat spreader 19 interfering with the stepped receiving portion 15a of the first electrode 15. Furthermore, since the stepped receiving portion 15a is not made larger than necessary, the heat radiation effect is not deteriorated due to the enlarged stepped receiving portion 15a.

即ち、D−D線を基準として、第1半導体素子11の実装位置Xやワイヤボンディング線26の位置Yを決めることができる((a)参照)。また、同様に、D−D線を基準として、ヒートスプレッダ19を配置すれば、突起部(伝熱領域)19aの位置Z((b)参照)を容易に高精度に定めることができる。このことにより、ワイヤボンディング線26の間に突起部(伝熱領域)19aを容易に入れ込むことができる。   That is, the mounting position X of the first semiconductor element 11 and the position Y of the wire bonding line 26 can be determined with reference to the DD line (see (a)). Similarly, if the heat spreader 19 is arranged based on the DD line, the position Z (see (b)) of the protrusion (heat transfer region) 19a can be easily determined with high accuracy. Accordingly, the protrusion (heat transfer region) 19a can be easily inserted between the wire bonding wires 26.

以上より、ヒートスプレッダ19の突起部(伝熱領域)19aがワイヤボンディング線26に干渉することを容易に防止することができる。そして、突起部(伝熱領域)19aとワイヤボンディング線26の間に過剰な隙間を設けることによる、放熱効果の悪化も防ぐことができる。更に、ヒートスプレッダ19を配置する際に、突起部(伝熱領域)19aとワイヤボンディング線26の嵌め合い部分が直接目視し難いとしても、容易に嵌め合わせて配置することができる。その上、ヒートスプレッダ19は、第1電極15上に熱伝導性部材28を介して接合されるので、このヒートスプレッダ19を保持固定するための特別な部品は不要となり、小型化を図ることができる。   From the above, it is possible to easily prevent the protrusion (heat transfer region) 19a of the heat spreader 19 from interfering with the wire bonding line 26. And the deterioration of the heat dissipation effect by providing an excessive clearance gap between the projection part (heat-transfer area | region) 19a and the wire bonding line 26 can also be prevented. Furthermore, when the heat spreader 19 is arranged, even if it is difficult to directly see the fitting portion between the protrusion (heat transfer region) 19a and the wire bonding line 26, the heat spreader 19 can be easily fitted and arranged. In addition, since the heat spreader 19 is joined to the first electrode 15 via the heat conductive member 28, a special part for holding and fixing the heat spreader 19 becomes unnecessary, and the size can be reduced.

第5の効果として、第1電極15を第1半導体素子11の近傍に配置しても、容易に電気絶縁を確保することができる。即ち、第1半導体素子11の主面電極からの放熱効果を良くするためには、ヒートスプレッダ19のみならず、第1電極15も金属であることが望ましい。更に、熱伝導性部材28も、一般的に導電性を有する材料の方が熱伝導性も良い。よって、ヒートスプレッダ19や第1電極15は、熱伝導性部材28を介して第1半導体素子11の主面電極と同電位になることもある。   As a fifth effect, even if the first electrode 15 is disposed in the vicinity of the first semiconductor element 11, electrical insulation can be easily ensured. That is, in order to improve the heat dissipation effect from the main surface electrode of the first semiconductor element 11, it is desirable that not only the heat spreader 19 but also the first electrode 15 is a metal. Further, the heat conductive member 28 is generally better in heat conductivity in a material having conductivity. Therefore, the heat spreader 19 and the first electrode 15 may be at the same potential as the main surface electrode of the first semiconductor element 11 through the heat conductive member 28.

一方、第1半導体素子11の側面は、一般的に第1半導体素子11の裏面や基板と同電位である。本構成では、第1半導体素子11の側面を絶縁性接着剤25を介して第1電極15に接合するので、第1半導体素子11の側面と第1電極15の電気的絶縁を容易に、且つ、確実に確保することができる。更に、熱伝導性部材28が第1半導体素子11の側面に回り込むことも、この絶縁性接着剤25により防止することができる。よって、熱伝導性部材28を介しての、第1半導体素子11の主面電極と側面の電気的短絡も、容易に、且つ、確実に防止することができる。   On the other hand, the side surface of the first semiconductor element 11 is generally at the same potential as the back surface of the first semiconductor element 11 and the substrate. In this configuration, the side surface of the first semiconductor element 11 is joined to the first electrode 15 via the insulating adhesive 25, so that the side surface of the first semiconductor element 11 and the first electrode 15 can be easily electrically insulated, and , Can be ensured reliably. Furthermore, the insulating adhesive 25 can also prevent the heat conductive member 28 from going around the side surface of the first semiconductor element 11. Therefore, an electrical short circuit between the main surface electrode and the side surface of the first semiconductor element 11 through the heat conductive member 28 can be easily and reliably prevented.

第6の効果として、第1半導体素子11の主面電極を、容易、且つ、確実に保護することができる。即ち、第1半導体素子11の主面電極側は、熱伝導性部材28を介してヒートスプレッダ19により覆われており、また、第1半導体素子11の側面は、絶縁性接着剤25を介して第1電極15により囲われている。よって、外部から直接湿気等が進入し難く、第1半導体素子11自体を容易に保護することができる。
第7の効果として、電力変換装置10は、第1半導体素子11が複数個で構成される場合でも、各第1半導体素子11の放熱効果を上げると共に装置を小型化することができる。例えば、電流容量を大きくするために、第1半導体素子11が複数個で構成されている場合、一方の第1半導体素子11を第1半導体素子主面電極側構造体27に配置し、他方の第1半導体素子11を第2半導体素子主面電極側構造体29に配置することができる。
As a sixth effect, the main surface electrode of the first semiconductor element 11 can be easily and reliably protected. That is, the main surface electrode side of the first semiconductor element 11 is covered with the heat spreader 19 via the heat conductive member 28, and the side surface of the first semiconductor element 11 is covered with the insulating adhesive 25 via the insulating adhesive 25. Surrounded by one electrode 15. Therefore, it is difficult for moisture or the like to enter directly from the outside, and the first semiconductor element 11 itself can be easily protected.
As a seventh effect, the power conversion device 10 can increase the heat dissipation effect of each first semiconductor element 11 and reduce the size of the device even when the plurality of first semiconductor elements 11 are configured. For example, in order to increase the current capacity, when there are a plurality of first semiconductor elements 11, one first semiconductor element 11 is disposed on the first semiconductor element main surface electrode-side structure 27, and the other The first semiconductor element 11 can be disposed on the second semiconductor element main surface electrode side structure 29.

このような構成により、各第1半導体素子11を、裏面側からだけでなく主面電極側からも冷却することができるので、放熱効果を向上させることができる。更に、第1半導体素子11の主面側放熱のために、複雑な形状のヒートスプレッダ19を用いること無く、ヒートスプレッダ19の一面側と他面側の突起部(伝熱領域)19a,19bを活用することにより、主面電極側からの放熱効果を発揮することができる。よって、装置の小型化も可能になる。   With such a configuration, each first semiconductor element 11 can be cooled not only from the back surface side but also from the main surface electrode side, so that the heat dissipation effect can be improved. Further, for the heat radiation on the main surface side of the first semiconductor element 11, the protrusions (heat transfer regions) 19 a and 19 b on one surface side and the other surface side of the heat spreader 19 are utilized without using the heat spreader 19 having a complicated shape. Thereby, the heat dissipation effect from the main surface electrode side can be exhibited. Therefore, the apparatus can be downsized.

即ち、予め、第1半導体素子主面電極側構造体27と第2半導体素子主面電極側構造体29を形成しておき、或いは両半導体素子主面電極側構造体27,31をそれぞれの基板13,14にはんだ付け実装しておく。その後、両半導体素子主面電極側構造体27,31の主面側に、ヒートスプレッダ19を配置すれば良い。このため、ヒートスプレッダ19を保持固定するための特別な部品を必要としないので、装置サイズの小型化が可能になり、合わせて製造コストの削減も可能になる。
第8の効果として、第1半導体素子主面電極側構造体27と第2半導体素子主面電極側構造体29のそれぞれの内部において、ヒートスプレッダ19を介して対向している複数の第1半導体素子11の主面電極が同電位であるならば、例えば、電力変換装置10の電流容量を大きくするために、複数の第1半導体素子11を並列接続している場合等は、更に、次の効果も得ることができる。
That is, the first semiconductor element main surface electrode side structure 27 and the second semiconductor element main surface electrode side structure 29 are formed in advance, or both the semiconductor element main surface electrode side structures 27 and 31 are formed on the respective substrates. 13 and 14 are soldered and mounted. After that, the heat spreader 19 may be disposed on the main surface side of both semiconductor element main surface electrode-side structures 27 and 31. For this reason, since no special parts for holding and fixing the heat spreader 19 are required, the size of the apparatus can be reduced, and the manufacturing cost can also be reduced.
As an eighth effect, a plurality of first semiconductor elements facing each other through the heat spreader 19 inside each of the first semiconductor element main surface electrode side structure 27 and the second semiconductor element main surface electrode side structure 29. If the main surface electrodes of 11 have the same potential, for example, when the plurality of first semiconductor elements 11 are connected in parallel in order to increase the current capacity of the power converter 10, the following effects are further obtained. Can also be obtained.

各第1半導体素子11の主面電極とヒートスプレッダ19の間に、絶縁材を介在させる必要が無い。一般に、導電性を有する材料の方が絶縁材料よりも熱伝導率が高い。よって、熱伝導性部材28として、熱伝導率の高い銀ペースト等の導電性接着材料を活用して、放熱効果を上げることができる。また、各第1半導体素子11の主面電極とヒートスプレッダ19の間にも、絶縁材料を介在させる必要が無いので、放熱効果を向上させることができる。合わせて絶縁材料と、ヒートスプレッダ19や各第1半導体素子11の主面電極を接合する際に生じる、材料が有する熱膨張率差に基づく熱応力を起因とする信頼性低下の発生も、防止することができる。   There is no need to interpose an insulating material between the main surface electrode of each first semiconductor element 11 and the heat spreader 19. In general, a conductive material has higher thermal conductivity than an insulating material. Therefore, a heat radiation effect can be enhanced by utilizing a conductive adhesive material such as a silver paste having a high thermal conductivity as the thermal conductive member 28. Moreover, since it is not necessary to interpose an insulating material between the main surface electrode of each 1st semiconductor element 11 and the heat spreader 19, the heat dissipation effect can be improved. In addition, it is possible to prevent the deterioration of reliability caused by the thermal stress based on the difference in thermal expansion coefficient of the material, which occurs when the insulating material and the heat spreader 19 or the main surface electrode of each first semiconductor element 11 are joined. be able to.

第9の効果として、例えば、電力変換装置10がインバータ装置であるとし、第1半導体素子11としてのIGBTと第2半導体素子12としてのダイオードを、電気的に通電方向を逆向きにする逆並列配置にしてスイッチ回路を構成し、このスイッチ回路を適宣接続してインバータ装置を構成したとする。
この場合、第1半導体素子11と第2半導体素子12は、両素子のオン・オフが切り替わる極短時間の遷移状態を除き、両半導体素子11,12に同時に電流が流れることはなく、加えて、両半導体素子11,12の主面電極は、電気的には同電位である。
よって、先ず、第1半導体素子主面電極側構造体27が有する第1半導体素子11の上には、第2半導体素子主面電極側構造体29が有する第2半導体素子12が位置する構成とすると、次の効果が生じる。
As a ninth effect, for example, it is assumed that the power conversion device 10 is an inverter device, and the IGBT as the first semiconductor element 11 and the diode as the second semiconductor element 12 are electrically connected in the reverse direction. It is assumed that a switch circuit is configured in the arrangement, and the inverter circuit is configured by appropriately connecting the switch circuit.
In this case, in the first semiconductor element 11 and the second semiconductor element 12, currents do not flow through the semiconductor elements 11 and 12 at the same time except for an extremely short transition state in which both elements are switched on and off. The main surface electrodes of both semiconductor elements 11 and 12 are electrically at the same potential.
Therefore, first, the second semiconductor element 12 included in the second semiconductor element main surface electrode side structure 29 is positioned on the first semiconductor element 11 included in the first semiconductor element main surface electrode side structure 27. Then, the following effects occur.

第10の効果として、第1半導体素子11と第2半導体素子12の放熱効果が、更に、向上する。即ち、両半導体素子11,12が同時に通電して、共に大きな発熱を生じる事態を回避することができる。例えば、電力変換装置10を電動自動車車両に用いる場合、車両発進時には、主に、IGBTである第1半導体素子11が発熱し、回生時には、ダイオードである第2半導体素子12が発熱する。よって、本構成により、車両発進時のような第1半導体素子11が主に発熱する場合は、この素子の裏面と主面の双方から放熱できる。この場合、第2半導体素子12の発熱は小さく、第1半導体素子11の放熱の妨げにはならない。   As a tenth effect, the heat dissipation effect of the first semiconductor element 11 and the second semiconductor element 12 is further improved. That is, it is possible to avoid a situation in which both semiconductor elements 11 and 12 are energized at the same time and both generate large heat. For example, when the power conversion device 10 is used in an electric automobile vehicle, the first semiconductor element 11 that is an IGBT mainly generates heat when starting the vehicle, and the second semiconductor element 12 that is a diode generates heat during regeneration. Therefore, according to this configuration, when the first semiconductor element 11 mainly generates heat, such as when the vehicle starts, heat can be radiated from both the back surface and the main surface of the element. In this case, heat generation of the second semiconductor element 12 is small and does not hinder heat dissipation of the first semiconductor element 11.

また、第2半導体素子12も、裏面と主面側の双方から放熱されており、温度上昇を抑制することができる。同様に、回生時等、第2半導体素子12が主に発熱する場合も、第2半導体素子12の放熱効果を向上させることができ、加えて、第1半導体素子11の温度上昇も抑制することができる。
なお、第1半導体素子11と第2半導体素子12の各主面電極は同電位であるので、上述した第2の効果にあるように、導電性を有しても熱伝導性の良い熱伝導性部材28を使用することができ、その上、ヒートスプレッダ19への放熱経路にも絶縁材を介在する必要が無いので、更に大きな放熱効果を得ることができる。
第11の効果として、この発明に係る電力変換装置10の製造工程を採用することにより、以下の効果も追加して得ることができる。
Moreover, the 2nd semiconductor element 12 is also thermally radiated from both the back surface and the main surface side, and can suppress a temperature rise. Similarly, when the second semiconductor element 12 mainly generates heat, such as during regeneration, the heat dissipation effect of the second semiconductor element 12 can be improved, and in addition, the temperature rise of the first semiconductor element 11 can be suppressed. Can do.
In addition, since each main surface electrode of the 1st semiconductor element 11 and the 2nd semiconductor element 12 is the same electric potential, as it has the 2nd effect mentioned above, even if it has electroconductivity, heat conductivity with favorable heat conductivity is carried out. In addition, since it is not necessary to interpose an insulating material in the heat dissipation path to the heat spreader 19, a greater heat dissipation effect can be obtained.
As an eleventh effect, the following effects can be additionally obtained by employing the manufacturing process of the power conversion device 10 according to the present invention.

その1、第1の工程の後に、第2の工程と第3の工程を行なうことにより、第1半導体素子11をはんだ付け実装する際に、その位置ずれが生じることを防止することができる。これにより、はんだ付け位置ずれを考慮してレイアウト設計することによる、電力変換装置のサイズの大型化や、はんだ付け部分の形状変化による当該部分における熱応力耐量の低下を、防止することができる。
また、第2工程でのはんだ付け実装を容易に実施することができ、更に、第1半導体素子11の側面と第1電極15の端部や絶縁部材24の側面の間に位置する絶縁性接着剤25が、はんだ付け時にはんだ21が第1半導体素子11の主面電極側に回り込むのを防いで、はんだ21が回り込んだ場合に起こる電気的短絡の発生を、確実に防止することができる。
By performing the second step and the third step after the first and first steps, it is possible to prevent the positional deviation from occurring when the first semiconductor element 11 is mounted by soldering. Thereby, it is possible to prevent an increase in the size of the power conversion device due to the layout design in consideration of the soldering position shift and a decrease in the thermal stress resistance in the portion due to the shape change of the soldered portion.
In addition, the soldering mounting in the second step can be easily performed, and further, the insulating bonding located between the side surface of the first semiconductor element 11 and the end portion of the first electrode 15 or the side surface of the insulating member 24. The agent 25 prevents the solder 21 from wrapping around the main surface electrode side of the first semiconductor element 11 during soldering, and can reliably prevent the occurrence of an electrical short circuit that occurs when the solder 21 wraps around. .

その2、第1電極15を、容易に実装配置することができる。即ち、予め、第1半導体素子11を第1基板13にはんだ付け実装した後に、第1電極15を固定するならば、はんだ付け実装はし難くなる。つまり、第1電極15を固定するためのはんだ付けをするならば、第1半導体素子11を実装しているはんだ付け部分への悪影響を及ぼすことは避け難い。特に、はんだ付けの際に、所謂鉛フリーはんだを用いると、はんだ付け温度の設定自由度が少なく、はんだ付け温度が異なる2種類のはんだ材を使い分けることが著しく困難になりかねない。   Second, the first electrode 15 can be easily mounted and arranged. That is, if the first electrode 15 is fixed after the first semiconductor element 11 is soldered and mounted on the first substrate 13 in advance, soldering and mounting becomes difficult. That is, if soldering for fixing the first electrode 15 is performed, it is difficult to avoid adversely affecting the soldered portion on which the first semiconductor element 11 is mounted. In particular, when so-called lead-free solder is used during soldering, there are few degrees of freedom in setting the soldering temperature, and it may be extremely difficult to selectively use two types of solder materials having different soldering temperatures.

これに対し、この発明に係る工程手順により、前述したように、第1半導体素子11と絶縁部材24の裏面を同一平面にした上で、第1半導体素子11と第1電極15を固定することができるので、1回のはんだ付けにより、第1半導体素子主面電極側構造体27として、第1半導体素子11と第1電極15を容易に実装固定することができる。
その3、複数の第1半導体素子11を第1電極15に固定する場合、各第1半導体素子11に多少の厚さばらつきがあっても、支障が生じない。一般に、半導体素子は、製造上の都合によって厚さに幾ばくかのばらつきが生じることは避け難いが、この発明に係る工程手順では、絶縁性接着剤25の潰れ程度により、これらの厚さばらつきがあったとしても、各第1半導体素子11と絶縁部材24のそれぞれの裏面を容易に同一平面にすることができる。よって、このような場合でも、容易に、即ち、製造コストを抑えて電力変換装置10を形成することができる。
On the other hand, as described above, the first semiconductor element 11 and the first electrode 15 are fixed after the back surfaces of the first semiconductor element 11 and the insulating member 24 are flush with each other by the process procedure according to the present invention. Therefore, the first semiconductor element 11 and the first electrode 15 can be easily mounted and fixed as the first semiconductor element main surface electrode side structure 27 by one soldering.
Third, when a plurality of first semiconductor elements 11 are fixed to the first electrode 15, even if there is some thickness variation in each first semiconductor element 11, no trouble occurs. In general, it is unavoidable that the semiconductor element has some variation in thickness due to manufacturing convenience. However, in the process procedure according to the present invention, the thickness variation depends on the degree of collapse of the insulating adhesive 25. Even if it exists, each back surface of each 1st semiconductor element 11 and the insulating member 24 can be easily made into the same plane. Therefore, even in such a case, the power conversion device 10 can be formed easily, that is, at a reduced manufacturing cost.

以上のように、第2の工程により、第1半導体素子11の裏面を第1基板13にはんだ付け実装し、ヒートスプレッダ19を接合する第3の工程に先立って、第1の工程を行なうことにより、上記その1からその3の効果を得ることができる。
なお、第1半導体素子11の裏面に、第1基板13とはんだ付けした際の熱応力を緩和するために、第1半導体素子11と第1基板13の中間程度の熱膨張率を有する熱応力緩衝板(図示せず)を予めはんだ付け接合してから、上記第1の工程を行なっても、同様の効果を得ることができる。
(第2実施の形態)
As described above, by performing the first step prior to the third step of soldering and mounting the back surface of the first semiconductor element 11 to the first substrate 13 and joining the heat spreader 19 in the second step. The effects 1 to 3 can be obtained.
In addition, in order to relieve the thermal stress when soldered to the first substrate 13 on the back surface of the first semiconductor element 11, the thermal stress having an intermediate thermal expansion coefficient between the first semiconductor element 11 and the first substrate 13. The same effect can be obtained even if the first step is performed after the buffer plate (not shown) is soldered and joined in advance.
(Second Embodiment)

図6は、この発明の第2実施の形態に係る電力変換装置の構成を示す断面説明図である。図6に示すように、電力変換装置40は、ヒートスプレッダ19に代えて、ヒートスプレッダ41を有している。このヒートスプレッダ41は、薄板状に形成されたその一面側(第1放熱器17側)及び他面側(第2放熱器18側)に、伝熱領域(図中、破線で示す)として機能する第2ワイヤボンディング線42を配置しており、第2ワイヤボンディング線42は、第1半導体素子11の主面電極に接続されているワイヤボンディング線26の間、及び第2半導体素子12の主面電極に接続されているワイヤボンディング線32の間に、望ましくは近接して、それぞれ配置されている。
その他の構成及び作用は、第1実施の形態に係る電力変換装置10と同様である。
FIG. 6 is a cross-sectional explanatory view showing the configuration of the power converter according to the second embodiment of the present invention. As illustrated in FIG. 6, the power conversion device 40 includes a heat spreader 41 instead of the heat spreader 19. The heat spreader 41 functions as a heat transfer area (indicated by a broken line in the figure) on one side (first radiator 17 side) and the other side (second radiator 18 side) formed in a thin plate shape. The second wire bonding lines 42 are arranged, and the second wire bonding lines 42 are between the wire bonding lines 26 connected to the main surface electrodes of the first semiconductor element 11 and the main surface of the second semiconductor element 12. The wire bonding lines 32 connected to the electrodes are preferably disposed close to each other.
Other configurations and operations are the same as those of the power conversion device 10 according to the first embodiment.

上記構成を有することにより、第1実施の形態において得られた効果に加え、以下の効果も得ることができる。
第1の効果として、ヒートスプレッダ41は、加工が容易になって、製造コストの低減が可能になる。即ち、ヒートスプレッダ41は、ヒートスプレッダ19に比べ、突起部(伝熱領域)19aを形成するための微細な凸部加工を施す必要が無く、特に、一面側と他面側の双方に施す必要が無くなる。一方、第2ワイヤボンディング線42は、容易に接続することができる。よって、ヒートスプレッダ41の加工に関するコストを、更に低減することができる。
By having the said structure, in addition to the effect acquired in 1st Embodiment, the following effects can also be acquired.
As a first effect, the heat spreader 41 can be easily processed, and the manufacturing cost can be reduced. That is, the heat spreader 41 does not need to be subjected to fine projection processing for forming the protrusion (heat transfer region) 19a, and in particular, does not need to be applied to both one side and the other side compared to the heat spreader 19. . On the other hand, the second wire bonding line 42 can be easily connected. Therefore, the cost related to the processing of the heat spreader 41 can be further reduced.

なお、第2ワイヤボンディング線42も金属であるため、第2ワイヤボンディング線42は、ヒートスプレッダ19に設けた突起部(伝熱領域)19aと同様に、伝熱領域として放熱に寄与する。
(第3実施の形態)
図7は、この発明の第3実施の形態に係る電力変換装置の構成を示す断面説明図である。図7に示すように、電力変換装置45は、ヒートスプレッダ41に代えて、ヒートスプレッダ46を有している。このヒートスプレッダ46は、第2ワイヤボンディング線42が接続されているボンディング線接続部分46aが、第1電極15(第2電極16)に接合されている電極接合部分46bよりも厚く(第1放熱器17から第2放熱器18に向かう方向の長さが長く)形成されている。
In addition, since the 2nd wire bonding line 42 is also a metal, the 2nd wire bonding line 42 contributes to heat dissipation as a heat transfer area | region like the projection part (heat transfer area | region) 19a provided in the heat spreader 19. FIG.
(Third embodiment)
FIG. 7 is a cross-sectional explanatory view showing the configuration of the power converter according to the third embodiment of the present invention. As illustrated in FIG. 7, the power conversion device 45 includes a heat spreader 46 instead of the heat spreader 41. In this heat spreader 46, the bonding wire connecting portion 46a to which the second wire bonding wire 42 is connected is thicker than the electrode joining portion 46b joined to the first electrode 15 (second electrode 16) (first heat radiator). The length in the direction from 17 to the second radiator 18 is long).

その他の構成及び作用は、第2実施の形態に係る電力変換装置40と同様である。
上記構成を有することにより、第2実施の形態において得られた効果に加え、以下の効果も得ることができる。
第2ワイヤボンディング線42を、第1半導体素子11(第2半導体素子12)の主面電極に一層近づけることができるので、更に、放熱効果が向上する。
Other configurations and operations are the same as those of the power conversion device 40 according to the second embodiment.
By having the said structure, in addition to the effect acquired in 2nd Embodiment, the following effects can also be acquired.
Since the second wire bonding line 42 can be brought closer to the main surface electrode of the first semiconductor element 11 (second semiconductor element 12), the heat dissipation effect is further improved.

特に、ヒートスプレッダ46の端部は、第1電極15(第2電極16)に接続するために薄く形成する、或いは第1半導体素子11(第2半導体素子12)の主面電極から離れた高さにヒートスプレッダ46の一面側或いは他面側が位置する形状になる、可能性がある。この場合でも、第1半導体素子11(第2半導体素子12)の主面電極と、その直上のヒートスプレッダ46を近接配置することができる。更に、これらの間の大部分の空間を、ワイヤボンディング線26と第2ワイヤボンディング線42による金属体で占めることができるので、この空間内部の熱抵抗も低減することができる。
なお、ヒートスプレッダ46の端部を適切な治具で固定することにより、ヒートスプレッダ46の一面側と他面側の双方に第2ワイヤボンディング線42を設けることは、容易である。
In particular, the end portion of the heat spreader 46 is formed thin to connect to the first electrode 15 (second electrode 16), or the height away from the main surface electrode of the first semiconductor element 11 (second semiconductor element 12). There is a possibility that one side or the other side of the heat spreader 46 is positioned. Even in this case, the main surface electrode of the first semiconductor element 11 (second semiconductor element 12) and the heat spreader 46 immediately above the main surface electrode can be disposed close to each other. Further, since most of the space between them can be occupied by the metal body formed by the wire bonding line 26 and the second wire bonding line 42, the thermal resistance inside the space can also be reduced.
Note that it is easy to provide the second wire bonding lines 42 on both the one side and the other side of the heat spreader 46 by fixing the end of the heat spreader 46 with an appropriate jig.

(第4実施の形態)
図8は、この発明の第4実施の形態に係る電力変換装置の構成を示す断面説明図である。図8に示すように、電力変換装置50は、第1基板13(第2基板14)の主面に突設した突起部材51a(51b)、及び絶縁部材24(30)の裏面側の金属箔と第1基板13(第2基板14)の主面側の間に配置したスペーサ52a(52b)を有している。そして、突起部材51a(51b)に絶縁部材24(30)の側面を接触させて、絶縁部材24(30)を位置決め配置すると共に、スペーサ52a(52b)を介して、はんだ付け実装を行なう。
その他の構成及び作用は、第1実施の形態に係る電力変換装置10と同様である。
(Fourth embodiment)
FIG. 8 is an explanatory cross-sectional view showing the configuration of the power converter according to the fourth embodiment of the present invention. As illustrated in FIG. 8, the power conversion device 50 includes a protruding member 51 a (51 b) protruding from the main surface of the first substrate 13 (second substrate 14) and a metal foil on the back side of the insulating member 24 (30). And a spacer 52a (52b) disposed between the main surfaces of the first substrate 13 (second substrate 14). Then, the side surface of the insulating member 24 (30) is brought into contact with the protruding member 51a (51b), and the insulating member 24 (30) is positioned and disposed, and solder mounting is performed via the spacer 52a (52b).
Other configurations and operations are the same as those of the power conversion device 10 according to the first embodiment.

上記構成を有することにより、第1実施の形態において得られた効果に加え、以下の効果も得ることができる。
第1半導体素子主面電極側構造体27(第2半導体素子主面電極側構造体29)を第1基板13(第2基板14)にはんだ付け実装する際に、はんだ付け位置を高精度に合わせることができる。
特に、この発明に係る製造工程によって、予め、第1半導体素子11(第2半導体素子12)と第1電極15(第2電極16)が絶縁性接着剤25により接合固定されているので、絶縁部材24(30)を、突起部材51a(51b)に接触させてはんだ付け実装することにより、第1半導体素子11(第2半導体素子12)のはんだ付け位置を高精度に合わせることが容易にできる。
By having the said structure, in addition to the effect acquired in 1st Embodiment, the following effects can also be acquired.
When soldering and mounting the first semiconductor element main surface electrode side structure 27 (second semiconductor element main surface electrode side structure 29) to the first substrate 13 (second substrate 14), the soldering position is set with high accuracy. Can be matched.
In particular, since the first semiconductor element 11 (second semiconductor element 12) and the first electrode 15 (second electrode 16) are bonded and fixed in advance by the insulating adhesive 25 by the manufacturing process according to the present invention, insulation is performed. By soldering and mounting the member 24 (30) in contact with the protruding member 51a (51b), the soldering position of the first semiconductor element 11 (second semiconductor element 12) can be easily adjusted with high accuracy. .

また、はんだ付け形状が変動することが無いので、はんだ付け部分の熱応力耐量が変動することは無く、更に、この突起部材51a(51b)を、直接、第1半導体素子11(第2半導体素子12)に接触或いは近接させることではないので、突起部材51a(51b)の存在が、第1半導体素子11(第2半導体素子12)のはんだ付け部分に悪影響を与えることは無い。
また、絶縁部材24(31)の裏面側の金属箔と第1基板13(第2基板14)の間にスペーサ52a(52b)を介してはんだ付け実装すれば、はんだ付け厚さを所定の値に容易に制御することができる。特に、この発明に係る製造工程によれば、第1半導体素子11(第2半導体素子12)と第1基板13(第2基板14)の間のはんだ付け厚さを、容易に制御することができる。これにより、はんだ付け部の熱応力耐量が変動してしまう事態を確実に防止することができる。
Further, since the soldering shape does not change, the thermal stress resistance of the soldered portion does not change, and the protruding member 51a (51b) is directly connected to the first semiconductor element 11 (second semiconductor element). 12), the presence of the protruding member 51a (51b) does not adversely affect the soldered portion of the first semiconductor element 11 (second semiconductor element 12).
Further, if solder mounting is performed between the metal foil on the back surface side of the insulating member 24 (31) and the first substrate 13 (second substrate 14) via the spacer 52a (52b), the soldering thickness is set to a predetermined value. Can be easily controlled. In particular, according to the manufacturing process of the present invention, it is possible to easily control the soldering thickness between the first semiconductor element 11 (second semiconductor element 12) and the first substrate 13 (second substrate 14). it can. Thereby, the situation where the heat stress tolerance of a soldering part changes can be prevented reliably.

なお、スペーサ52a(52b)も、第1半導体素子11(第2半導体素子12)の下方或いは近傍に位置することはないので、スペーサ52a(52b)の存在が第1半導体素子11(第2半導体素子12)と第1基板13(第2基板14)の間のはんだ付け部分や、第1半導体素子11(第2半導体素子12)の裏面への電流の流れに対して悪影響を与えることは無い。
なお、上記効果は、突起部材51a(51b)及びスペーサ52a(52b)を有する構成を、第2実施の形態に係る電力変換装置40及び第3実施の形態に係る電力変換装置45において適用しても、同様に得ることができる。
(第5実施の形態)
Since the spacer 52a (52b) is not positioned below or in the vicinity of the first semiconductor element 11 (second semiconductor element 12), the presence of the spacer 52a (52b) is the first semiconductor element 11 (second semiconductor element). There is no adverse effect on the current flow to the soldered portion between the element 12) and the first substrate 13 (second substrate 14) and to the back surface of the first semiconductor element 11 (second semiconductor element 12). .
In addition, the said effect applies the structure which has the protrusion member 51a (51b) and the spacer 52a (52b) in the power converter device 40 which concerns on 2nd Embodiment, and the power converter device 45 which concerns on 3rd Embodiment. Can be obtained as well.
(Fifth embodiment)

図9は、この発明の第5実施の形態に係る電力変換装置の電極部分と絶縁部領域の構成を示し、(a)は断面説明図、(b)は下面側説明図である。図9に示すように、第1電極15(第2電極16)に代えて、略平板形状に形成された第1電極55(第2電極、図示しない)を有すると共に、第1電極55(第2電極、図示しない)の裏面外周部分に、裏面外周に沿った長方形枠状の絶縁物領域56を有している。この絶縁物領域56は、例えば、窒化アルミニウムやアルミナにより、略長方形状平板を複数個、枠状に接合して形成されている。なお、以後の説明において、第2電極についての説明は省略するが、第2電極についても第1電極55と同様である。
その他の構成及び作用は、第1実施の形態に係る第1電極15(第2電極16)と同様である。
FIGS. 9A and 9B show configurations of an electrode portion and an insulating region of a power conversion device according to a fifth embodiment of the present invention, where FIG. 9A is a cross-sectional explanatory view and FIG. 9B is a bottom side explanatory view. As shown in FIG. 9, in place of the first electrode 15 (second electrode 16), the first electrode 55 (second electrode, not shown) formed in a substantially flat plate shape is included, and the first electrode 55 (first electrode) A rectangular frame-shaped insulator region 56 along the outer periphery of the back surface is provided on the outer periphery of the back surface of two electrodes (not shown). The insulator region 56 is formed by joining a plurality of substantially rectangular flat plates in a frame shape with, for example, aluminum nitride or alumina. In the following description, the description of the second electrode is omitted, but the second electrode is the same as the first electrode 55.
Other configurations and operations are the same as those of the first electrode 15 (second electrode 16) according to the first embodiment.

上記構成を有することにより、上記各実施の形態において得られた効果に加え、以下の効果も得ることができる。
第1電極55を、更に、容易に形成することができる。第1電極55の端部と絶縁物領域56を合わせた高さの必要値は、凡そ数百μmから1mm程度である。よって、第1電極55を略平板状にして、絶縁物領域56を、従来技術により、例えば、表裏面に金属箔を有するセラミックス基板を接合して形成しても、本構成に必要な第1電極55と絶縁物領域56を形成することができる。
これにより、第1電極55を形成する際に、複雑な加工を施すことによる製造コストの増加を防止することができる。また、絶縁物領域56側の面もある程度の厚さを有するので、はんだが第1電極55の端部に接触して電気的短絡が生じる事態を容易に防止することができる。
By having the said structure, in addition to the effect acquired in said each embodiment, the following effects can also be acquired.
The first electrode 55 can be further easily formed. A required value of the total height of the end portion of the first electrode 55 and the insulator region 56 is about several hundred μm to about 1 mm. Therefore, even if the first electrode 55 is formed in a substantially flat plate shape and the insulator region 56 is formed by bonding a ceramic substrate having a metal foil on the front and back surfaces by a conventional technique, for example, the first electrode necessary for this configuration is used. An electrode 55 and an insulator region 56 can be formed.
Thereby, when forming the 1st electrode 55, the increase in manufacturing cost by performing a complicated process can be prevented. In addition, since the surface on the insulator region 56 side also has a certain thickness, it is possible to easily prevent a situation where an electrical short circuit occurs due to the solder contacting the end portion of the first electrode 55.

(第6実施の形態)
図10は、この発明の第6実施の形態に係る電力変換装置の構成を示し、(a)は図3の(a)と同様の断面説明図、(b)は図3の(b)と同様の断面説明図である。図10に示すように、電力変換装置60は、第1半導体素子11が制御端子61を有すると共に、第1電極15の上に回路基板62を配置し、制御端子61と回路基板62を導電部材61aにより電気的に接続している((a)参照)。また、ヒートスプレッダ19が、第1半導体素子11に対向する面に配線パターン63を有し、制御端子61と配線パターン63をピン64等によって、電気的に接続している((b)参照)。
その他の構成及び作用は、第1実施の形態に係る電力変換装置10と同様である。
(Sixth embodiment)
FIG. 10 shows the configuration of the power conversion device according to the sixth embodiment of the present invention, in which (a) is a cross-sectional explanatory view similar to (a) of FIG. 3, and (b) is (b) of FIG. It is similar sectional explanatory drawing. As shown in FIG. 10, in the power conversion device 60, the first semiconductor element 11 has the control terminal 61, the circuit board 62 is disposed on the first electrode 15, and the control terminal 61 and the circuit board 62 are connected to the conductive member. 61a is electrically connected (see (a)). The heat spreader 19 has a wiring pattern 63 on the surface facing the first semiconductor element 11, and the control terminal 61 and the wiring pattern 63 are electrically connected by a pin 64 or the like (see (b)).
Other configurations and operations are the same as those of the power conversion device 10 according to the first embodiment.

上記構成を有することにより、以下の効果を得ることができる。
第1の効果として、第1半導体素子11が、例えば、IGBT等であり、ゲートによる制御端子61を有する場合においても、この制御端子61と回路基板62を、容易に、且つ、省スペースで電気的に接続することができる。特に、第1電極15上に回路基板62を配置するので、第1基板13上に回路基板62を配置するための特段のスペースを設ける必要がない。よって、電力変換装置を小型化することができる。
By having the said structure, the following effects can be acquired.
As a first effect, even when the first semiconductor element 11 is, for example, an IGBT or the like and has a control terminal 61 using a gate, the control terminal 61 and the circuit board 62 can be easily and space-saving connected to each other. Can be connected. In particular, since the circuit board 62 is arranged on the first electrode 15, it is not necessary to provide a special space for arranging the circuit board 62 on the first board 13. Therefore, a power converter device can be reduced in size.

第2の効果として、第1半導体素子11の電気的動作が、更に、安定化する。即ち、IGBT等では、主面電極であるエミッタの電位に対して、制御端子61であるゲートの電位を設定して、第1半導体素子11の電気的動作を制御する。この実施の形態に係る構成では、エミッタ電位である第1電極15の直上に回路基板62を配置して、ゲートに対する電気的接続を行う。これにより、ゲート接続線が、エミッタ電極側とより一層容量結合し易くなると共に、第1電極15が第1半導体素子11の裏面電位と同じである第1基板13や、その他の電位の配線等からのシールド効果も得られる。よって、第1半導体素子11のゲート(制御端子61)電位がノイズ等で乱される悪影響が低減し、第1半導体素子11の電気的動作が安定化する。   As a second effect, the electrical operation of the first semiconductor element 11 is further stabilized. That is, in the IGBT or the like, the electric potential of the first semiconductor element 11 is controlled by setting the potential of the gate that is the control terminal 61 with respect to the potential of the emitter that is the main surface electrode. In the configuration according to this embodiment, the circuit board 62 is disposed immediately above the first electrode 15 that is the emitter potential, and electrical connection to the gate is performed. As a result, the gate connection line is more easily capacitively coupled to the emitter electrode side, and the first substrate 13 whose first electrode 15 is the same as the back surface potential of the first semiconductor element 11, wiring of other potentials, etc. Shielding effect can be obtained. Therefore, the adverse effect of disturbing the gate (control terminal 61) potential of the first semiconductor element 11 due to noise or the like is reduced, and the electrical operation of the first semiconductor element 11 is stabilized.

第3の効果として、ヒートスプレッダ19に設けたピン64等の配線部材により、ヒートスプレッダ19を載置する際に、配線パターン63と制御端子61を接続することができる。よって、制御端子61と回路基板62をワイヤボンディングにより接続する工程を省くことができ、製造コストを更に低減させることができる。
(第7実施の形態)
As a third effect, the wiring pattern 63 and the control terminal 61 can be connected when the heat spreader 19 is placed by a wiring member such as a pin 64 provided on the heat spreader 19. Therefore, the process of connecting the control terminal 61 and the circuit board 62 by wire bonding can be omitted, and the manufacturing cost can be further reduced.
(Seventh embodiment)

図11は、この発明の第7実施の形態に係る電力変換装置の絶縁層及び放熱器を除いた構成を示す断面説明図である。図11に示すように、電力変換装置65は、第1半導体素子主面電極側構造体27と第2半導体素子主面電極側構造体29のそれぞれが、第1半導体素子11と第2半導体素子12の何れか一方、若しくは両方を有する。更に、第1半導体素子11の上には、第2半導体素子12が位置するように、第1半導体素子主面電極側構造体27と第2半導体素子主面電極側構造体29が積層配置される。更に、第1半導体素子主面電極側構造体27と第2半導体素子主面電極側構造体29の内部において、第1半導体素子11と第2半導体素子12が隣接して配置されている。加えて、第1半導体素子11と第2半導体素子12は、電気的に異なる動作を行なうものである。
その他の構成及び作用は、第1実施の形態に係る電力変換装置10と同様である。
FIG. 11 is a cross-sectional explanatory view showing a configuration excluding an insulating layer and a heat radiator of a power conversion device according to a seventh embodiment of the present invention. As shown in FIG. 11, the power conversion device 65 includes a first semiconductor element main surface electrode side structure 27 and a second semiconductor element main surface electrode side structure 29, each of which includes the first semiconductor element 11 and the second semiconductor element. Any one of 12 or both. Further, a first semiconductor element main surface electrode side structure 27 and a second semiconductor element main surface electrode side structure 29 are stacked on the first semiconductor element 11 so that the second semiconductor element 12 is positioned. The Further, the first semiconductor element 11 and the second semiconductor element 12 are disposed adjacent to each other inside the first semiconductor element main surface electrode side structure 27 and the second semiconductor element main surface electrode side structure 29. In addition, the first semiconductor element 11 and the second semiconductor element 12 perform an electrically different operation.
Other configurations and operations are the same as those of the power conversion device 10 according to the first embodiment.

上記構成を有することにより、上記各実施の形態により得られる効果に加えて、以下の効果を得ることができる。
電力変換装置65が、電流容量を大きくするために半導体素子を複数個、つまり、第1半導体素子11と第2半導体素子12を並列接続する場合、第1の効果として、第1半導体素子主面電極側構造体27や第2半導体素子主面電極側構造体29の内部において、電気的に同一の動作を行なう第1半導体素子11同士や第2半導体素子12同士を隣接させるレイアウトにする必要が無くなり、この隣接レイアウトにしなくても、電力変換装置の小型化を図ることができる。そして、この構成により、隣接している半導体素子同士の熱干渉、即ち、電気的に同一の動作をする隣接半導体素子によって自らの温度が上昇する事態を、防止することができる。
By having the said structure, in addition to the effect acquired by said each embodiment, the following effects can be acquired.
When the power conversion device 65 connects a plurality of semiconductor elements, that is, the first semiconductor element 11 and the second semiconductor element 12 in parallel in order to increase the current capacity, the first effect is that the first semiconductor element main surface In the electrode side structure 27 and the second semiconductor element main surface electrode side structure 29, it is necessary to have a layout in which the first semiconductor elements 11 and the second semiconductor elements 12 that perform the same electrical operation are adjacent to each other. The power converter can be reduced in size without the adjacent layout. With this configuration, it is possible to prevent thermal interference between adjacent semiconductor elements, that is, a situation where the temperature of the semiconductor element increases due to adjacent semiconductor elements that perform the same electrical operation.

第2の効果として、第1半導体素子11と第2半導体素子12の大きさが異なる場合でも、電力変換装置をより一層小型化することができる。即ち、例えば、第1半導体素子主面電極側構造体27に大きい第1半導体素子11を実装したことにより、第2半導体素子主面電極側構造体29に実装されている小さい第2半導体素子12の周辺に、無駄なスペースが生じることを防止することができる。両半導体素子11,12を隣り合わせて配置した状態で、第1半導体素子主面電極側構造体27と第2半導体素子主面電極側構造体29を共に高密度実装、即ち、両半導体素子11,12を近接配置した実装ができるので、電力変換装置の更なる小型化を図ることができる。
(第8実施の形態)
As a second effect, even when the sizes of the first semiconductor element 11 and the second semiconductor element 12 are different, the power conversion device can be further downsized. That is, for example, by mounting the large first semiconductor element 11 on the first semiconductor element main surface electrode side structure 27, the small second semiconductor element 12 mounted on the second semiconductor element main surface electrode side structure 29. It is possible to prevent a useless space from being generated around. With the two semiconductor elements 11 and 12 disposed adjacent to each other, the first semiconductor element main surface electrode side structure 27 and the second semiconductor element main surface electrode side structure 29 are both mounted at high density, that is, both the semiconductor elements 11, Since 12 can be mounted close to each other, the power converter can be further reduced in size.
(Eighth embodiment)

図12は、この発明の第8実施の形態に係る電力変換装置の絶縁層及び放熱器を除いた構成を示し、(a)は図11と同様の断面説明図、(b)は図3(a)と同様の断面説明図である。図12に示すように、電力変換装置70は、第1電極15(第2電極16)に代えて、絶縁物材料で形成された第1電極71(第2電極72)を有している。
その他の構成及び作用は、第1実施の形態に係る電力変換装置10と同様である。
上記構成を有することにより、上記各実施の形態により得られる効果に加えて、以下の効果を得ることができる。
12 shows the configuration of the power conversion device according to the eighth embodiment of the present invention excluding the insulating layer and the radiator, (a) is a cross-sectional explanatory view similar to FIG. 11, and (b) is FIG. It is sectional explanatory drawing similar to a). As illustrated in FIG. 12, the power conversion device 70 includes a first electrode 71 (second electrode 72) formed of an insulating material instead of the first electrode 15 (second electrode 16).
Other configurations and operations are the same as those of the power conversion device 10 according to the first embodiment.
By having the said structure, in addition to the effect acquired by said each embodiment, the following effects can be acquired.

上面電極(第1電極71、第2電極72)を金属体で形成した場合には、基板に対する電気的絶縁を行うために絶縁部材24(図1参照)を接合する必要があったが、上面電極(第1電極71、第2電極72)を絶縁物材料で形成したことにより、上面電極に絶縁部材を接合する必要がない。よって、製造コストを、更に低減することができる。なお、第1半導体素子11,12の主面電極に対する電気的接続は、この絶縁物材料による第1電極71(第2電極72)上に金属配線板(図示せず)を設けて行えば良い。
(第9実施の形態)
When the upper surface electrodes (first electrode 71 and second electrode 72) are formed of a metal body, it is necessary to join the insulating member 24 (see FIG. 1) to electrically insulate the substrate. Since the electrodes (the first electrode 71 and the second electrode 72) are formed of an insulating material, it is not necessary to join an insulating member to the upper surface electrode. Therefore, the manufacturing cost can be further reduced. The electrical connection to the main surface electrodes of the first semiconductor elements 11 and 12 may be performed by providing a metal wiring board (not shown) on the first electrode 71 (second electrode 72) made of this insulating material. .
(Ninth embodiment)

図13は、この発明の第9実施の形態に係る電力変換装置の構成を示し、(a)は図3(a)と同様の断面説明図、(b)は図3(b)と同様の断面説明図である。図13に示すように、電力変換装置75は、ヒートスプレッダ19に代えて金属体からなるヒートスプレッダ76を有している。ヒートスプレッダ76は、第1接続電極34及び第2接続電極35(図3参照)を兼ねており、このヒートスプレッダ76と第1電極15(第2電極16)を、電気伝導性と熱伝導性を共に備える接着部材77により接合している。
その他の構成及び作用は、第1実施の形態に係る電力変換装置10と同様である。
上記構成を有することにより、上記各実施の形態により得られる効果に加えて、以下の効果を得ることができる。
FIG. 13 shows a configuration of a power conversion device according to the ninth embodiment of the present invention, in which (a) is a cross-sectional explanatory view similar to FIG. 3 (a), and (b) is similar to FIG. 3 (b). FIG. As illustrated in FIG. 13, the power conversion device 75 includes a heat spreader 76 made of a metal body instead of the heat spreader 19. The heat spreader 76 also serves as the first connection electrode 34 and the second connection electrode 35 (see FIG. 3). The heat spreader 76 and the first electrode 15 (second electrode 16) have both electrical conductivity and thermal conductivity. It is joined by an adhesive member 77 provided.
Other configurations and operations are the same as those of the power conversion device 10 according to the first embodiment.
By having the said structure, in addition to the effect acquired by said each embodiment, the following effects can be acquired.

第1半導体素子11(第2半導体素子12)の主面電極を、ワイヤボンディング線26(32)を介して第1電極15(第2電極16)に電気的に接続しており、この第1電極15(第2電極16)に何らかの接続電極を設けて、電力変換装置75の電気的接続を成す必要があるが、この実施の形態に係る構成によれば、金属体のヒートスプレッダ76が接続電極として機能し、電力変換装置75の電気的接続を成すことができる。よって、電力変換装置75の更なる小型化と製造コストの低減を図ることができる。
なお、上記各実施の形態では、第1半導体素子11の上に第2半導体素子12が、ヒートスプレッダ19(41,46,76)を挟んで対向配置された構造において説明したが、本発明にあっては、両半導体素子11,12の対向配置構造に限るものではない。
The main surface electrode of the first semiconductor element 11 (second semiconductor element 12) is electrically connected to the first electrode 15 (second electrode 16) via the wire bonding line 26 (32). It is necessary to provide some connection electrode on the electrode 15 (second electrode 16) to establish electrical connection of the power conversion device 75. According to the configuration of this embodiment, the metal heat spreader 76 is connected to the connection electrode. And the electric connection of the power converter 75 can be made. Therefore, the power converter 75 can be further downsized and the manufacturing cost can be reduced.
In each of the above embodiments, the second semiconductor element 12 has been described as being opposed to the first semiconductor element 11 with the heat spreader 19 (41, 46, 76) interposed therebetween. Thus, the present invention is not limited to the opposed arrangement structure of the semiconductor elements 11 and 12.

図14は、この発明に係る電力変換装置の変形例を示す断面説明図である。図14に示すように、電力変換装置80は、第1放熱器17の主面上に、絶縁層20を介して第1基板13が、第1基板13の主面上に、はんだ層21を介して第1半導体素子11a,11bが、それぞれ実装されており、第1半導体素子11a,11bの主面上には、ヒートスプレッダ81が配置されている。
ヒートスプレッダ81は、第1半導体素子11a,11b側の面とは反対側の面、即ち、第2半導体素子12a,12b側の面が、伝熱領域となる突起部19aを設けない平坦面からなる他は、ヒートスプレッダ19と同様の構成及び作用を有している。このヒートスプレッダ81の上に、記載順に積層した絶縁物82、第2基板83、絶縁物84を介して、第2放熱器85を実装した構成を有している。なお、ヒートスプレッダ81の上に、絶縁物82を介して第2放熱器85を実装しても良い。
FIG. 14 is a cross-sectional explanatory view showing a modification of the power converter according to the present invention. As shown in FIG. 14, in the power conversion device 80, the first substrate 13 is disposed on the main surface of the first radiator 17 via the insulating layer 20, and the solder layer 21 is disposed on the main surface of the first substrate 13. The first semiconductor elements 11a and 11b are respectively mounted, and a heat spreader 81 is disposed on the main surface of the first semiconductor elements 11a and 11b.
In the heat spreader 81, the surface on the side opposite to the surface on the first semiconductor elements 11a, 11b side, that is, the surface on the second semiconductor elements 12a, 12b side is a flat surface not provided with the protrusion 19a serving as a heat transfer region. Others have the same configuration and operation as the heat spreader 19. The second heat radiator 85 is mounted on the heat spreader 81 via an insulator 82, a second substrate 83, and an insulator 84 stacked in the order of description. Note that the second radiator 85 may be mounted on the heat spreader 81 via an insulator 82.

このような構成を有する電力変換装置80においても、上記各実施の形態で得られた効果を同様に得ることができる。
また、ヒートスプレッダ81の上に第2放熱器85を配置せず、第2基板83が第1基板13又は第1放熱器17に接続される構成とし、第2基板83からの熱流を第1放熱器17に流すようにしても、上記各実施の形態で得られた効果を同様に得ることができる。
また、上記各実施の形態及び変形例については、何れも金属からなる基板上に半導体素子を実装する構造において説明したが、本発明はこれに限るものではなく、セラミックス基板若しくは表裏面双方に金属箔を有するセラミックス基板の上に半導体素子を実装した構造においても、また、そのセラミックス基板が裏面にベースプレートを介して放熱器に実装される構造においても、上記各実施の形態及び変形例で得られた効果を同様に得ることができる。
Even in the power conversion device 80 having such a configuration, the effects obtained in the above embodiments can be similarly obtained.
Further, the second radiator 85 is not disposed on the heat spreader 81, and the second substrate 83 is connected to the first substrate 13 or the first radiator 17, and the heat flow from the second substrate 83 is used as the first heat dissipation. Even if it is made to flow through the container 17, the effects obtained in the above embodiments can be obtained in the same manner.
In addition, each of the above embodiments and modifications has been described in the structure in which a semiconductor element is mounted on a metal substrate. However, the present invention is not limited to this, and the metal is formed on both the ceramic substrate and the front and back surfaces. Even in a structure in which a semiconductor element is mounted on a ceramic substrate having a foil, and in a structure in which the ceramic substrate is mounted on a radiator via a base plate on the back surface, the above embodiments and modifications are obtained. The same effect can be obtained as well.

このように、この発明に係る電力変換装置は、主面電極を有する半導体素子と、前記半導体素子を入り込ませる受け部と共に裏面側端部に絶縁物領域を有し、前記受け部に前記主面電極を位置させて前記半導体素子を覆って配置され、絶縁性部材を介して前記半導体素子に接合された上面電極と、前記主面電極及び前記上面電極を電気的に接続するワイヤボンディング線に近接配置された伝熱領域を有し、前記主面電極及び前記上面電極の上に熱伝導性材料を介して実装されたヒートスプレッダと、を有する半導体素子主面電極側構造体と、前記半導体素子主面電極側構造体及び前記絶縁物領域のそれぞれの裏面にはんだ付け実装した基板と、前記基板を絶縁物を介して実装した放熱器とを有することを特徴としている。   As described above, the power conversion device according to the present invention includes a semiconductor element having a main surface electrode, a receiving part for allowing the semiconductor element to enter, and an insulating region at a rear side end part, and the receiving part includes the main surface. An electrode is disposed so as to cover the semiconductor element, and is close to the upper surface electrode joined to the semiconductor element through an insulating member, and the wire bonding line that electrically connects the main surface electrode and the upper surface electrode. A semiconductor element main surface electrode-side structure having a heat transfer region disposed and having a heat spreader mounted on the main surface electrode and the upper surface electrode via a heat conductive material; It has the board | substrate which solder-mounted on each back surface of the surface electrode side structure and the said insulator area | region, and the heat radiator which mounted the said board | substrate through the insulator.

また、この発明において、前記ヒートスプレッダの一面側に、前記半導体素子主面電極側構造体からなる第1半導体素子主面電極側構造体、前記基板からなる第1基板、及び前記放熱器からなる第1放熱器を、前記ヒートスプレッダの他面側に、前記半導体素子主面電極側構造体からなる第2半導体素子主面電極側構造体、前記基板からなる第2基板、及び前記放熱器からなる第2放熱器を積層し、前記第1半導体素子主面電極側構造体と前記第2半導体素子主面電極側構造体を前記ヒートスプレッダを境に対向配置することが好ましい。   Further, in the present invention, on one surface side of the heat spreader, a first semiconductor element main surface electrode side structure composed of the semiconductor element main surface electrode side structure, a first substrate composed of the substrate, and a first radiator composed of the radiator. 1 heat radiator on the other surface side of the heat spreader, a second semiconductor element main surface electrode side structure made of the semiconductor element main surface electrode side structure, a second substrate made of the substrate, and a first heat sink made of the heat radiator. It is preferable that two heat radiators are stacked and the first semiconductor element main surface electrode side structure and the second semiconductor element main surface electrode side structure are arranged to face each other with the heat spreader as a boundary.

また、この発明において、前記第1半導体素子主面電極側構造体と前記第2半導体素子主面電極側構造体のそれぞれが、電気的に異なった動作をする第1半導体素子及び第2半導体素子の何れか一方若しくは両方を有し、前記第1半導体素子と前記第2半導体素子を対向することなく配置したことが好ましい。
また、この発明において、前記ヒートスプレッダの前記ワイヤボンディング線の間に、前記伝熱領域として機能する第2ワイヤボンディング線を配置したことが好ましい。
また、この発明において、前記ヒートスプレッダは、前記第2ワイヤボンディング線との接続部分が、前記上面電極との接合部分より厚く形成されていることが好ましい。
In the present invention, the first semiconductor element and the second semiconductor element in which the first semiconductor element main surface electrode side structure and the second semiconductor element main surface electrode side structure are electrically operated differently. Preferably, the first semiconductor element and the second semiconductor element are arranged without facing each other.
In the present invention, it is preferable that a second wire bonding line functioning as the heat transfer region is disposed between the wire bonding lines of the heat spreader.
Moreover, in this invention, it is preferable that the connection part with the said 2nd wire bonding line is formed in the said heat spreader thicker than the junction part with the said upper surface electrode.

また、この発明において、前記基板の主面に突設した、前記絶縁物領域の側面を接触させる突起部材、及び前記絶縁物領域の裏面側と前記基板の間に配置するスペーサの少なくとも一方を有することが好ましい。
また、この発明において、前記上面電極を平板状に形成し、前記絶縁物領域を長方形状平板を複数個、枠状に接合して形成することが好ましい。
また、この発明において、前記第1半導体素子が制御端子を有し、前記制御端子を前記上面電極の上に配置した回路基板に電気的に接続することが好ましい。
Further, in the present invention, at least one of a projecting member protruding from the main surface of the substrate and contacting the side surface of the insulator region and a spacer disposed between the back surface side of the insulator region and the substrate is provided. It is preferable.
In the present invention, it is preferable that the upper surface electrode is formed in a flat plate shape, and the insulator region is formed by joining a plurality of rectangular flat plates in a frame shape.
In the present invention, it is preferable that the first semiconductor element has a control terminal, and the control terminal is electrically connected to a circuit board disposed on the upper surface electrode.

また、この発明において、前記第1半導体素子が制御端子を有し、前記ヒートスプレッダの前記第1半導体素子に対向する面に配線パターンを有し、前記制御端子と前記配線パターンを電気的に接続することが好ましい。
また、この発明において、前記第1半導体素子主面電極側構造体及び前記第2半導体素子主面電極側構造体は、それぞれが前記第1半導体素子と前記第2半導体素子の何れか一方或いは両方を有すると共に、前記第1半導体素子と前記第2半導体素子が対向しないように積層配置され、前記第1半導体素子及び前記第2半導体素子は、隣接配置されて電気的に異なった動作をすることが好ましい。
Further, in the present invention, the first semiconductor element has a control terminal, has a wiring pattern on a surface of the heat spreader facing the first semiconductor element, and electrically connects the control terminal and the wiring pattern. It is preferable.
In the present invention, each of the first semiconductor element main surface electrode side structure and the second semiconductor element main surface electrode side structure is either one or both of the first semiconductor element and the second semiconductor element. And the first semiconductor element and the second semiconductor element are stacked so as not to face each other, and the first semiconductor element and the second semiconductor element are arranged adjacent to each other and perform different operations. Is preferred.

また、この発明において、前記上面電極が絶縁物材料で形成されていることが好ましい。
また、この発明において、前記上面電極と前記ヒートスプレッダを、電気伝導性及び熱伝導性を有する接着材料により接合することが好ましい。
また、この発明において、前記第1半導体素子が絶縁ゲート型バイポーラトランジスタ(IGBT)又は金属酸化シリコン電界効果トランスミッタ(MOSFET)であり、前記第2半導体素子がダイオードであり、インバータ回路を成すスイッチ回路を構成することが好ましい。
Moreover, in this invention, it is preferable that the said upper surface electrode is formed with the insulator material.
Moreover, in this invention, it is preferable to join the said upper surface electrode and the said heat spreader with the adhesive material which has electrical conductivity and heat conductivity.
In the present invention, the first semiconductor element is an insulated gate bipolar transistor (IGBT) or a metal-silicon-oxide field effect transmitter (MOSFET), the second semiconductor element is a diode, and a switch circuit forming an inverter circuit is provided. It is preferable to configure.

また、この発明に係る電力変換装置の製造方法は、上記半導体素子主面電極側構造体を形成する第1の工程と、前記半導体素子主面電極側構造体を基板に実装する第2の工程と、前記半導体素子主面電極側構造体をヒートスプレッダに接合する第3の工程とを有し、前記第1の工程の後に、前記第2の工程と前記第3の工程を行なうことを特徴としている。
また、この発明において、前記基板の主面に突起部材を突設し、前記半導体素子と前記上面電極を接合固定する絶縁物領域の裏面側と前記基板の間にスペーサを配置し、前記絶縁物領域を前記突起部材に接触させると共に前記スペーサを介して前記半導体素子主面電極側構造体を前記基板にハンダ付け実装することが好ましい。
Moreover, the manufacturing method of the power converter device according to the present invention includes a first step of forming the semiconductor element main surface electrode side structure and a second step of mounting the semiconductor element main surface electrode side structure on the substrate. And a third step of bonding the semiconductor element main surface electrode side structure to a heat spreader, and the second step and the third step are performed after the first step. Yes.
Further, in the present invention, a protruding member is provided on the main surface of the substrate, and a spacer is disposed between the back surface side of the insulating region for bonding and fixing the semiconductor element and the upper surface electrode, and the substrate. It is preferable that the region is brought into contact with the protruding member and the semiconductor element main surface electrode-side structure is soldered and mounted on the substrate via the spacer.

この発明の第1実施の形態に係る電力変換装置の構成を示す断面説明図である。It is a section explanatory view showing the composition of the power converter concerning a 1st embodiment of this invention. 図1のA−A線に沿う断面説明図である。FIG. 2 is a cross-sectional explanatory view taken along line AA in FIG. 1. 図1の絶縁層及び放熱器を除いた各部断面構造を示し、(a)はB−B線に沿う断面説明図、(b)はC−C線に沿う断面説明図である。The cross-section structure of each part except the insulating layer and heat radiator of FIG. 1 is shown, (a) is a cross-sectional explanatory drawing along the BB line, (b) is a cross-sectional explanatory drawing along the CC line. 図1の電力変換装置の製造工程において、第1半導体素子主面電極側構造体側のみについての製造工程(a)〜(e)を示す断面説明図である。In the manufacturing process of the power converter device of FIG. 1, it is cross-sectional explanatory drawing which shows the manufacturing process (a)-(e) only about the 1st semiconductor element main surface electrode side structure side. 効果の説明に用いる第1半導体素子主面電極側構造体を示し、(a)はヒートスプレッダ装着前の断面説明図、(b)はヒートスプレッダ装着後の断面説明図である。The 1st semiconductor element main surface electrode side structure used for description of an effect is shown, (a) is a section explanatory view before heat spreader mounting, (b) is a section explanatory view after heat spreader mounting. この発明の第2実施の形態に係る電力変換装置の構成を示す断面説明図である。It is a section explanatory view showing the composition of the power converter concerning a 2nd embodiment of this invention. この発明の第3実施の形態に係る電力変換装置の構成を示す断面説明図である。It is a section explanatory view showing the composition of the power converter concerning a 3rd embodiment of this invention. この発明の第4実施の形態に係る電力変換装置の構成を示す断面説明図である。It is a section explanatory view showing the composition of the power converter concerning a 4th embodiment of this invention. この発明の第5実施の形態に係る電力変換装置の電極部分と絶縁部領域の構成を示し、(a)は断面説明図、(b)は下面側説明図である。The structure of the electrode part and insulating part area | region of the power converter device which concerns on 5th Embodiment of this invention is shown, (a) is sectional explanatory drawing, (b) is a lower surface side explanatory drawing. この発明の第6実施の形態に係る電力変換装置の構成を示し、(a)は図3の(a)と同様の断面説明図、(b)は図3の(b)と同様の断面説明図である。The structure of the power converter device which concerns on 6th Embodiment of this invention is shown, (a) is cross-sectional explanatory drawing similar to (a) of FIG. 3, (b) is cross-sectional explanatory drawing similar to (b) of FIG. FIG. この発明の第7実施の形態に係る電力変換装置の絶縁層及び放熱器を除いた構成を示す断面説明図である。It is sectional explanatory drawing which shows the structure except the insulating layer and heat radiator of the power converter device which concerns on 7th Embodiment of this invention. この発明の第8実施の形態に係る電力変換装置の絶縁層及び放熱器を除いた構成を示し、(a)は図11と同様の断面説明図、(b)は図3(a)と同様の断面説明図である。The structure except the insulating layer and heat radiator of the power converter device which concerns on 8th Embodiment of this invention is shown, (a) is sectional explanatory drawing similar to FIG. 11, (b) is similar to FIG. 3 (a). FIG. この発明の第9実施の形態に係る電力変換装置の構成を示し、(a)は図3(a)と同様の断面説明図、(b)は図3(b)と同様の断面説明図である。The structure of the power converter device which concerns on 9th Embodiment of this invention is shown, (a) is sectional explanatory drawing similar to Fig.3 (a), (b) is sectional explanatory drawing similar to FIG.3 (b). is there. この発明に係る電力変換装置の変形例を示す断面説明図である。It is sectional explanatory drawing which shows the modification of the power converter device which concerns on this invention. 従来の半導体装置の構造を模式的に示す断面説明図である。It is sectional explanatory drawing which shows the structure of the conventional semiconductor device typically.

符号の説明Explanation of symbols

10,40,45,50,60,65,70,75,80 電力変換装置
11a,11b 第1半導体素子
12a,12b 第2半導体素子
13 第1基板
14,83 第2基板
15,55,71 第1電極
15a,16a 段差状受け部
16,72 第2電極
17 第1放熱器
18,85 第2放熱器
19,41,46,76,81 ヒートスプレッダ
19a,19b 突起部
20,22 絶縁層
21,23 はんだ層
24,30 絶縁部材
25,31 絶縁性接着剤
26,32 ワイヤボンディング線
27 第1半導体素子主面電極側構造体
28,33 熱伝導性部材
29 第2半導体素子主面電極側構造体
34 第1接続電極
35 第2接続電極
36 第3接続電極
42 第2ワイヤボンディング線
46a ボンディング線接続部分
46b 電極接合部分
51a,51b 突起部材
52a,52b スペーサ
56 絶縁物領域
61 制御端子
62 回路基板
63 配線パターン
64 ピン
77 接着部材
82,84 絶縁物
10, 40, 45, 50, 60, 65, 70, 75, 80 Power conversion device 11a, 11b First semiconductor element 12a, 12b Second semiconductor element 13 First substrate 14, 83 Second substrate 15, 55, 71 First 1 electrode 15a, 16a Stepped receiving portion 16, 72 Second electrode 17 First heat radiator 18, 85 Second heat radiator 19, 41, 46, 76, 81 Heat spreader 19a, 19b Protruding portion 20, 22 Insulating layer 21, 23 Solder layer 24, 30 Insulating member 25, 31 Insulating adhesive 26, 32 Wire bonding line 27 First semiconductor element main surface electrode side structure 28, 33 Thermal conductive member 29 Second semiconductor element main surface electrode side structure 34 First connection electrode 35 Second connection electrode 36 Third connection electrode 42 Second wire bonding line 46a Bonding line connection portion 46b Electrode bonding portion 51a, 51b Protrusion member 52a, 52b Spacer 56 Insulator region 61 Control terminal 62 Circuit board 63 Wiring pattern 64 Pin 77 Adhesive member 82, 84 Insulator

Claims (15)

主面電極を有する半導体素子と、前記半導体素子を入り込ませる受け部と共に裏面側端部に絶縁物領域を有し、前記受け部に前記主面電極を位置させて前記半導体素子の主面側の一部を覆って配置され、絶縁性部材を介して前記半導体素子に接合された上面電極と、前記主面電極及び前記上面電極を電気的に接続するワイヤボンディング線に近接配置された伝熱領域を有し、前記主面電極及び前記上面電極の上に熱伝導性材料を介して実装されたヒートスプレッダと、を有する半導体素子主面電極側構造体と、前記半導体素子主面電極側構造体及び前記絶縁物領域のそれぞれの裏面にはんだ付け実装した基板と、前記基板を絶縁物を介して実装した放熱器とを有する電力変換装置。 A semiconductor element having a main surface electrode, and a receiving portion into which the semiconductor element is inserted, and an insulating region at a rear surface side end portion, and the main surface electrode is positioned in the receiving portion so that the main surface side of the semiconductor element is An upper surface electrode that is disposed so as to cover a part and is bonded to the semiconductor element via an insulating member, and a heat transfer region that is disposed in proximity to a wire bonding line that electrically connects the main surface electrode and the upper surface electrode. A heat spreader mounted on the main surface electrode and the upper surface electrode via a heat conductive material, a semiconductor element main surface electrode side structure, and the semiconductor element main surface electrode side structure, The power converter device which has the board | substrate which carried out the soldering mounting on each back surface of the said insulator area | region, and the heat radiator which mounted the said board | substrate through the insulator. 前記ヒートスプレッダの一面側に、前記半導体素子主面電極側構造体からなる第1半導体素子主面電極側構造体、前記基板からなる第1基板、及び前記放熱器からなる第1放熱器を、前記ヒートスプレッダの他面側に、前記半導体素子主面電極側構造体からなる第2半導体素子主面電極側構造体、前記基板からなる第2基板、及び前記放熱器からなる第2放熱器を積層し、前記第1半導体素子主面電極側構造体と前記第2半導体素子主面電極側構造体を前記ヒートスプレッダを境に対向配置した請求項1に記載の電力変換装置。 On one surface side of the heat spreader, a first semiconductor element main surface electrode side structure composed of the semiconductor element main surface electrode side structure, a first substrate composed of the substrate, and a first radiator composed of the heat radiator, On the other surface side of the heat spreader, a second semiconductor element main surface electrode side structure composed of the semiconductor element main surface electrode side structure, a second substrate composed of the substrate, and a second radiator composed of the heat radiator are laminated. 2. The power conversion device according to claim 1, wherein the first semiconductor element main surface electrode side structure and the second semiconductor element main surface electrode side structure are opposed to each other with the heat spreader as a boundary. 前記第1半導体素子主面電極側構造体と前記第2半導体素子主面電極側構造体のそれぞれが、電気的に異なった動作をする第1半導体素子及び第2半導体素子の何れか一方若しくは両方を有し、前記第1半導体素子と前記第2半導体素子を対向することなく配置した請求項2に記載の電力変換装置。 Either or both of the first semiconductor element and the second semiconductor element in which the first semiconductor element main surface electrode side structure and the second semiconductor element main surface electrode side structure operate differently electrically. The power conversion device according to claim 2, wherein the first semiconductor element and the second semiconductor element are arranged without facing each other. 前記ヒートスプレッダの前記ワイヤボンディング線の間に、前記伝熱領域として機能する第2ワイヤボンディング線を配置した請求項1から3のいずれか一項に記載の電力変換装置。 4. The power conversion device according to claim 1, wherein a second wire bonding line that functions as the heat transfer region is disposed between the wire bonding lines of the heat spreader. 5. 前記ヒートスプレッダは、前記第2ワイヤボンディング線との接続部分が、前記上面電極との接合部分より厚く形成されている請求項4に記載の電力変換装置。 The power converter according to claim 4, wherein the heat spreader is formed such that a connection portion with the second wire bonding line is thicker than a bonding portion with the upper surface electrode. 前記基板の主面に突設した、前記絶縁物領域の側面を接触させる突起部材、及び前記絶縁物領域の裏面側と前記基板の間に配置するスペーサの少なくとも一方を有する請求項1から5のいずれか一項に記載の電力変換装置。 6. The device according to claim 1, comprising at least one of a projecting member protruding from a main surface of the substrate and contacting a side surface of the insulator region, and a spacer disposed between the back surface side of the insulator region and the substrate. The power converter device as described in any one. 前記上面電極を平板状に形成し、前記絶縁物領域を長方形状平板を複数個、枠状に接合して形成する請求項1から6のいずれか一項に記載の電力変換装置。 The power converter according to any one of claims 1 to 6, wherein the upper surface electrode is formed in a flat plate shape, and the insulator region is formed by joining a plurality of rectangular flat plates in a frame shape. 前記第1半導体素子が制御端子を有し、前記制御端子を前記上面電極の上に配置した回路基板に電気的に接続する請求項2から7のいずれか一項に記載の電力変換装置。 The power converter according to claim 2, wherein the first semiconductor element has a control terminal, and the control terminal is electrically connected to a circuit board disposed on the upper surface electrode. 前記第1半導体素子が制御端子を有し、前記ヒートスプレッダの前記第1半導体素子に対向する面に配線パターンを有し、前記制御端子と前記配線パターンを電気的に接続する請求項2から8のいずれか一項に記載の電力変換装置。 The said 1st semiconductor element has a control terminal, it has a wiring pattern in the surface facing the said 1st semiconductor element of the said heat spreader, The said control terminal and the said wiring pattern are electrically connected. The power converter device as described in any one. 前記第1半導体素子主面電極側構造体及び前記第2半導体素子主面電極側構造体は、それぞれが前記第1半導体素子と前記第2半導体素子の何れか一方或いは両方を有すると共に、前記第1半導体素子と前記第2半導体素子が対向しないように積層配置され、
前記第1半導体素子及び前記第2半導体素子は、隣接配置されて電気的に異なった動作をする請求項2から9のいずれか一項に記載の電力変換装置。
Each of the first semiconductor element main surface electrode side structure and the second semiconductor element main surface electrode side structure has either or both of the first semiconductor element and the second semiconductor element, and 1 semiconductor element and the second semiconductor element are stacked so as not to face each other,
10. The power conversion device according to claim 2, wherein the first semiconductor element and the second semiconductor element are arranged adjacent to each other and operate differently electrically.
前記上面電極は絶縁物材料と金属配線板を有する請求項1から10のいずれか一項に記載の電力変換装置。 The power converter according to claim 1, wherein the upper surface electrode includes an insulating material and a metal wiring board . 前記上面電極と前記ヒートスプレッダを、電気伝導性及び熱伝導性を有する接着材料により接合する請求項1から11のいずれか一項に記載の電力変換装置。 The power converter according to any one of claims 1 to 11, wherein the upper surface electrode and the heat spreader are joined by an adhesive material having electrical conductivity and thermal conductivity. 前記第1半導体素子が絶縁ゲート型バイポーラトランジスタ(IGBT)又は金属酸化シリコン電界効果トランスミッタ(MOSFET)であり、前記第2半導体素子がダイオードであり、インバータ回路を成すスイッチ回路を構成する請求項2から12のいずれか一項に記載の電力変換装置。 The first semiconductor element is an insulated gate bipolar transistor (IGBT) or a metal silicon oxide field effect transmitter (MOSFET), and the second semiconductor element is a diode, and constitutes a switch circuit forming an inverter circuit. The power conversion device according to any one of 12. 請求項1から13のいずれか一項に記載の半導体素子主面電極側構造体を形成する第1の工程と、
前記半導体素子主面電極側構造体を基板に実装する第2の工程と、
前記半導体素子主面電極側構造体をヒートスプレッダに接合する第3の工程とを有し、
前記第1の工程の後に、前記第2の工程と前記第3の工程を行なう電力変換装置の製造方法。
A first step of forming the semiconductor element main surface electrode-side structure according to any one of claims 1 to 13;
A second step of mounting the semiconductor element main surface electrode side structure on a substrate;
A third step of bonding the semiconductor element main surface electrode side structure to a heat spreader,
The manufacturing method of the power converter device which performs the said 2nd process and said 3rd process after the said 1st process.
前記基板の主面に突起部材を突設し、前記半導体素子と前記上面電極を接合固定する絶縁物領域の裏面側と前記基板の間にスペーサを配置し、
前記絶縁物領域を前記突起部材に接触させると共に前記スペーサを介して前記半導体素子主面電極側構造体を前記基板にハンダ付け実装する請求項14に記載の電力変換装置の製造方法。
Protruding members project from the main surface of the substrate, and a spacer is disposed between the back surface side of the insulator region for bonding and fixing the semiconductor element and the upper surface electrode, and the substrate,
The method for manufacturing a power conversion device according to claim 14, wherein the insulator region is brought into contact with the protruding member and the semiconductor element main surface electrode side structure is soldered and mounted on the substrate via the spacer.
JP2008006853A 2008-01-16 2008-01-16 Power converter and manufacturing method thereof Active JP5217015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008006853A JP5217015B2 (en) 2008-01-16 2008-01-16 Power converter and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008006853A JP5217015B2 (en) 2008-01-16 2008-01-16 Power converter and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009170645A JP2009170645A (en) 2009-07-30
JP5217015B2 true JP5217015B2 (en) 2013-06-19

Family

ID=40971501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008006853A Active JP5217015B2 (en) 2008-01-16 2008-01-16 Power converter and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5217015B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5125530B2 (en) * 2008-01-16 2013-01-23 日産自動車株式会社 Power converter
JP5582070B2 (en) * 2011-03-04 2014-09-03 三菱電機株式会社 Power semiconductor device and method for manufacturing power semiconductor device
JP2013065620A (en) * 2011-09-15 2013-04-11 Sumitomo Electric Ind Ltd Electrode terminal with wiring sheet, wiring structure, semiconductor device, and manufacturing method of semiconductor device
JP2013073945A (en) * 2011-09-26 2013-04-22 Sumitomo Electric Ind Ltd Electrode terminal with wiring sheet, wiring structure, semiconductor device, and manufacturing method of semiconductor device
JP2023114355A (en) * 2022-02-04 2023-08-17 株式会社デンソー Semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4019989B2 (en) * 2003-03-26 2007-12-12 株式会社デンソー Semiconductor device
JP2006066464A (en) * 2004-08-24 2006-03-09 Toyota Industries Corp Semiconductor device

Also Published As

Publication number Publication date
JP2009170645A (en) 2009-07-30

Similar Documents

Publication Publication Date Title
JP7204770B2 (en) Double-sided cooling power module and manufacturing method thereof
JP4613077B2 (en) Semiconductor device, electrode member, and method for manufacturing electrode member
JP4973059B2 (en) Semiconductor device and power conversion device
US8610263B2 (en) Semiconductor device module
JP2007173680A (en) Semiconductor device
JP2007184525A (en) Electronic apparatus
JP2007234690A (en) Power semiconductor module
WO2013088864A1 (en) Semiconductor device
JP5217015B2 (en) Power converter and manufacturing method thereof
JP2005348529A (en) Inverter device
JP2019079905A (en) Semiconductor device and semiconductor device manufacturing method
JP2017017109A (en) Semiconductor device
US11201099B2 (en) Semiconductor device and method of manufacturing the same
JP4935783B2 (en) Semiconductor device and composite semiconductor device
JP6218856B2 (en) Power converter
JP2011023748A (en) Electronic apparatus
JP5840102B2 (en) Power semiconductor device
JP2019212809A (en) Semiconductor device
JP2005150596A (en) Semiconductor device and its manufacturing method
JP5125530B2 (en) Power converter
CN111668165B (en) Semiconductor module and semiconductor device provided with same
CN111354709B (en) Semiconductor device and method for manufacturing the same
JP2019083292A (en) Semiconductor device
JP2015018946A (en) Structure and manufacturing method of plated circuit
JP7147186B2 (en) semiconductor equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111209

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5217015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150