WO2019189386A1 - 超音波診断装置および超音波診断装置の制御方法 - Google Patents

超音波診断装置および超音波診断装置の制御方法 Download PDF

Info

Publication number
WO2019189386A1
WO2019189386A1 PCT/JP2019/013237 JP2019013237W WO2019189386A1 WO 2019189386 A1 WO2019189386 A1 WO 2019189386A1 JP 2019013237 W JP2019013237 W JP 2019013237W WO 2019189386 A1 WO2019189386 A1 WO 2019189386A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
ultrasonic
bubble
unit
acquired
Prior art date
Application number
PCT/JP2019/013237
Other languages
English (en)
French (fr)
Inventor
雅史 野口
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020509206A priority Critical patent/JP6963677B2/ja
Priority to EP19774254.7A priority patent/EP3777699A4/en
Publication of WO2019189386A1 publication Critical patent/WO2019189386A1/ja
Priority to US17/013,051 priority patent/US11969296B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/481Diagnostic techniques involving the use of contrast agent, e.g. microbubbles introduced into the bloodstream
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8959Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using coded signals for correlation purposes
    • G01S15/8963Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using coded signals for correlation purposes using pulse inversion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52038Details of receivers using analysis of echo signal for target characterisation involving non-linear properties of the propagation medium or of the reflective target
    • G01S7/52039Details of receivers using analysis of echo signal for target characterisation involving non-linear properties of the propagation medium or of the reflective target exploiting the non-linear response of a contrast enhancer, e.g. a contrast agent
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52071Multicolour displays; using colour coding; Optimising colour or information content in displays, e.g. parametric imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52085Details related to the ultrasound signal acquisition, e.g. scan sequences
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/024Mixtures
    • G01N2291/02475Tissue characterisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus and an ultrasonic diagnostic apparatus control method, and more particularly to an ultrasonic diagnostic apparatus that generates an ultrasonic image by a harmonic imaging method and an ultrasonic diagnostic apparatus control method.
  • the harmonic imaging method as a method for extracting a nonlinear component from an ultrasonic echo, for example, a first ultrasonic pulse and a second ultrasonic pulse whose phases are mutually inverted are sequentially transmitted on the same scanning line.
  • a pulse inversion method in which a reception signal based on one ultrasonic pulse and a reception signal based on a second ultrasonic pulse are added.
  • the fundamental wave signal having the fundamental wave band forming the first ultrasonic pulse and the second ultrasonic pulse is removed from the received signal based on the ultrasonic echo, and the contrast agent bubble is removed. It is possible to extract a non-linear signal resulting from.
  • the signal resulting from the ultrasonic echo from the tissue boundary or the like often remains to the same extent as the nonlinear signal resulting from the contrast agent bubble.
  • the signal and the contrast agent caused by the ultrasound echo from the boundary of the tissue, etc. It often distinguishes from nonlinear signals due to bubbles, and it took time and effort to determine which of the acquired signals were nonlinear signals due to contrast agent bubbles. .
  • the present invention has been made to solve such a conventional problem, and can easily distinguish a signal caused by a tissue of a subject and a signal caused by a contrast agent bubble in a short time.
  • An object of the present invention is to provide an ultrasonic diagnostic apparatus and a method for controlling the ultrasonic diagnostic apparatus.
  • an ultrasonic diagnostic apparatus includes a transducer array, a first ultrasonic pulse and a second ultrasonic pulse whose phases are reversed from each other into the subject from the transducer array.
  • a transmission unit that transmits a set at least N times on the same scanning line, a reception unit that obtains a reception signal by a signal output from a transducer array that has received an ultrasonic echo generated in the subject, and
  • An IQ signal sequence corresponding to the first ultrasonic pulse and an IQ signal sequence corresponding to the second ultrasonic pulse are acquired by performing quadrature detection on the reception signal acquired by the receiving unit in a predetermined band.
  • the fundamental wave component is obtained by adding the IQ signal corresponding to the first ultrasonic pulse and the IQ signal corresponding to the second ultrasonic pulse.
  • a pulse inversion adder for obtaining an image signal A bubble signal likelihood calculator that calculates bubble signal likelihood based on the IQ signal sequence acquired by the quadrature detector, and a bubble signal likelihood calculated by the bubble signal likelihood and image signal acquired by the pulse inversion adder
  • an image generation unit that generates an ultrasonic image based on the above.
  • the bubble signal likelihood calculation unit can calculate the autocorrelation from the IQ signal sequence acquired by the quadrature detection unit, and can calculate the bubble signal likelihood based on the calculated autocorrelation.
  • the bubble signal likelihood calculation unit can calculate a dispersion value of the phase difference from the IQ signal sequence acquired by the quadrature detection unit, and can also calculate the likelihood of the bubble signal using the calculated dispersion value of the phase difference.
  • the bubble signal likelihood calculation unit can calculate the variance value of the amplitude from the IQ signal sequence acquired by the quadrature detection unit, and can calculate the bubble signal likelihood using the calculated variance value of the amplitude.
  • a nonlinear signal information calculation unit that calculates at least one of the power and speed of the nonlinear signal from the image signal acquired by the pulse inversion adding unit can be further provided.
  • the image generation unit can generate an ultrasonic image based on at least one of the power and speed of the nonlinear signal calculated by the nonlinear signal information calculation unit.
  • the image generation unit generates an ultrasonic image by a color map based on at least one of the power and speed of the nonlinear signal calculated by the nonlinear signal information calculation unit and the bubble signal likelihood calculated by the bubble signal likelihood calculation unit. You can also Moreover, the display part which displays an ultrasonic image can be further provided.
  • a set of the first ultrasonic pulse and the second ultrasonic pulse whose phases are reversed from each other from the transducer array into the subject is at least twice on the same scanning line. Transmitting N times as described above, obtaining a reception signal from a signal output from the transducer array that has received an ultrasonic echo generated in the subject, and performing quadrature detection in a band determined for the acquired reception signal By performing, an IQ signal sequence corresponding to the first ultrasonic pulse and an IQ signal sequence corresponding to the second ultrasonic pulse are acquired, and the acquired IQ signal sequence is used to correspond to the first ultrasonic pulse.
  • the image signal from which the fundamental wave component is removed is obtained by adding the IQ signal and the IQ signal corresponding to the second ultrasonic pulse, and the bubble signal likelihood is calculated based on the acquired IQ signal sequence.
  • Bubble Wherein the No. ness generating an ultrasound image based on the obtained image signal.
  • the bubble signal likelihood calculation unit that calculates the index indicating the randomness of the IQ signal sequence acquired by the quadrature detection unit as the bubble signal likelihood is provided, the signal caused by the tissue of the subject and the contrast agent Signals caused by bubbles can be easily distinguished in a short time.
  • FIG. 1 is a block diagram showing a configuration of an ultrasonic diagnostic apparatus according to an embodiment of the present invention. It is a block diagram which shows the internal structure of the receiving part in embodiment of this invention. It is a figure which shows the example of the zone
  • FIG. 1 shows a configuration of an ultrasonic diagnostic apparatus 1 according to an embodiment of the present invention.
  • the ultrasonic diagnostic apparatus 1 includes a transducer array 2, and a transmitter 3 and a receiver 4 are connected to the transducer array 2.
  • a quadrature detection unit 5 is connected to the reception unit 4, and a bubble signal likelihood calculation unit 6 and a pulse inversion addition unit 7 are connected to the quadrature detection unit 5.
  • a nonlinear signal information calculation unit 8, an image generation unit 9, a display control unit 10, and a display unit 11 are sequentially connected to the pulse inversion addition unit 7.
  • the bubble signal likelihood calculation unit 6 is connected to the image generation unit 9.
  • the transmission unit 3, the reception unit 4, the quadrature detection unit 5, the bubble signal likelihood calculation unit 6, the pulse inversion addition unit 7, the non-linear signal information calculation unit 8, the image generation unit 9, and the display control unit 10 include a device control unit. 12 is connected, and a storage unit 13 and an operation unit 14 are connected to the apparatus control unit 12. The device control unit 12 and the storage unit 13 are connected to each other so that bidirectional information can be exchanged.
  • the processor 15 is configured by the apparatus control unit 12.
  • the transducer array 2 of the ultrasonic diagnostic apparatus 1 shown in FIG. 1 has a plurality of transducers arranged one-dimensionally or two-dimensionally. Each of these transducers transmits an ultrasonic wave according to the drive signal supplied from the transmission unit 3, receives an ultrasonic echo from the subject, and outputs a signal based on the ultrasonic echo.
  • Each vibrator is, for example, a piezoelectric ceramic represented by PZT (Lead Zirconate Titanate), a polymer piezoelectric element represented by PVDF (Poly Vinylidene Di Fluoride) and PMN-PT (polyvinylidene fluoride).
  • It is configured by forming electrodes on both ends of a piezoelectric body made of a piezoelectric single crystal represented by Lead Magnesium Niobate-Lead Titanate: lead magnesium niobate-lead titanate solid solution).
  • the transmission unit 3 of the processor 15 includes, for example, a plurality of pulse generators, and a plurality of transducers of the transducer array 2 based on a transmission delay pattern selected according to a control signal from the device control unit 12.
  • Each of the drive voltages is supplied to a plurality of transducers with the delay amount adjusted so that the ultrasonic waves transmitted from the laser beam form an ultrasonic beam.
  • a pulsed drive voltage is applied to the electrodes of the plurality of transducers of the transducer array 2
  • the piezoelectric body expands and contracts, and pulsed ultrasonic waves are generated from the respective transducers. From the synthesized wave of ultrasonic waves, a pulsed ultrasonic beam, that is, an ultrasonic pulse is formed.
  • the transmission unit 3 sequentially generates the first ultrasonic pulse and the second ultrasonic pulse whose phases are reversed from each other from the transducer array 2, and the first ultrasonic pulse and the second ultrasonic pulse are transmitted via the transducer array 2 to the first ultrasonic pulse.
  • a set of the ultrasonic pulse and the second ultrasonic pulse is transmitted to the subject a plurality of times along the same scanning line.
  • the first ultrasonic pulse and the second ultrasonic pulse transmitted into the subject are reflected by a target such as a part of the subject, for example, and are sent to the transducer array 2 as so-called ultrasonic echoes.
  • the ultrasonic echoes propagating toward the transducer array 2 in this way are received by each transducer constituting the transducer array 2.
  • each transducer constituting the transducer array 2 expands and contracts by receiving propagating ultrasonic echoes to generate electrical signals, and outputs these electrical signals to the receiving unit 4.
  • the receiving unit 4 of the processor 15 processes a signal output from the transducer array 2 in accordance with a control signal from the device control unit 12. As shown in FIG. 2, the receiving unit 4 has a configuration in which an amplifying unit 16, an AD (Analog / Digital) converting unit 17, and a beam former 18 are connected in series.
  • an amplifying unit 16 an AD (Analog / Digital) converting unit 17
  • a beam former 18 are connected in series.
  • the amplifying unit 16 of the receiving unit 4 amplifies signals input from the respective transducers constituting the transducer array 2 and transmits the amplified signals to the AD converting unit 17.
  • the AD conversion unit 17 converts the signal transmitted from the amplification unit 16 into digital data, and transmits these data to the beam former 18.
  • the beamformer 18 performs each of the data converted by the AD conversion unit 17 according to the sound speed or the sound speed distribution set based on the reception delay pattern selected according to the control signal from the device control unit 12.
  • a so-called reception focus process is performed by adding a delay. By this reception focus processing, each data converted by the AD conversion unit 17 is phased and added, and a reception signal in which the focus of the ultrasonic echo is narrowed down is acquired.
  • the ultrasonic echo propagating in the subject is caused by the fundamental wave component having the fundamental band forming the first ultrasonic pulse and the second ultrasonic pulse, and the movement of the tissue of the subject.
  • a reception signal based on an ultrasonic pulse having a positive phase is shown, and the fundamental wave signal E1 has a positive value.
  • a received signal based on an ultrasonic pulse having a negative phase is shown, and the fundamental wave signal E4 has a negative value.
  • the quadrature detection unit 5 of the processor 15 mixes the reception signal acquired by the reception unit 4 with a carrier signal having a reference frequency, thereby orthogonally detecting the received signal and converting it into an IQ signal that is complex data. An IQ signal sequence corresponding to the ultrasonic pulse and an IQ signal sequence corresponding to the second ultrasonic pulse are acquired. At this time, in order to improve the detection accuracy of the contrast agent introduced into the subject, the quadrature detection unit 5, as shown in FIGS. 3 and 4, the signal intensity of the fundamental wave signal E 1 and the second harmonic signal.
  • the quadrature detection band FB is desirable to set so as to include a frequency at which the signal intensity of the bubble signal E3, which is a non-linear signal caused by the contrast agent bubble, becomes relatively larger than the signal intensity of E2. . Further, as shown in FIGS. 3 and 4, the signal intensity of the fundamental wave signal E1 and the signal intensity of the nonlinear signal including the second harmonic signal E2 and the bubble signal E3 are relatively close to each other.
  • the quadrature detection band FB is preferably set so as to include a part of the frequency band of the fundamental signal E1 or E4 in addition to the frequency at which the bubble signal E3 becomes relatively large.
  • the bubble signal likelihood calculation unit 6 of the processor 15 converts the index using the autocorrelation or dispersion value calculated based on the IQ signal sequence acquired by the orthogonal detection unit 5 into the bubble of the contrast agent introduced into the subject. Calculated as the likelihood of a bubble signal based on it. The calculation of the bubble signal likelihood by the bubble signal likelihood calculation unit 6 will be described in detail later.
  • the pulse inversion adding unit 7 of the processor 15 uses the IQ signal sequence acquired by the quadrature detection unit 5 and an IQ signal corresponding to the first ultrasonic pulse and an IQ signal corresponding to the second ultrasonic pulse. Are added to obtain the addition signal from which the fundamental wave signals E1 and E4 are removed as shown in FIGS.
  • the nonlinear signal information calculation unit 8 of the processor 15 converts the second harmonic signal E2 caused by the tissue of the subject and the contrast agent bubble introduced into the subject from the addition signal acquired by the pulse inversion addition unit 7. At least one of the power and speed of the nonlinear signal including the resulting bubble signal E3 is calculated as nonlinear signal information.
  • the image generation unit 9 of the processor 15 performs an ultrasonic image based on at least one of the power and speed of the nonlinear signal calculated by the nonlinear signal information calculation unit 8 and the bubble signal likelihood calculated by the bubble signal likelihood calculation unit 6. Is generated.
  • the display control unit 10 of the processor 15 performs predetermined processing on the ultrasonic image generated by the image generation unit 9 under the control of the device control unit 12 and causes the display unit 11 to display the ultrasonic image or the like.
  • the display unit 11 of the ultrasonic diagnostic apparatus 1 displays an image or the like under the control of the display control unit 10 and includes, for example, a display device such as an LCD (Liquid Crystal Display).
  • the operation unit 14 of the ultrasonic diagnostic apparatus 1 is for a user to perform an input operation, and can be configured to include a keyboard, a mouse, a trackball, a touch pad, a touch panel, and the like.
  • the storage unit 13 stores an operation program and the like of the ultrasonic diagnostic apparatus 1, and includes a flash memory, an HDD (Hard Disk Drive), an SSD (Solid State Drive), and an FD (Flexible Disk: flexible).
  • Disc Magnetic-Optical disc: magneto-optical disc
  • MT Magnetic Tape: magnetic tape
  • RAM Random Access Memory: random access memory
  • CD Compact Disc: compact disc
  • DVD Digital Versatile Disc
  • SD card Secure Digital card
  • USB memory Universal Serial Bus memory
  • the processor 15 includes a CPU (Central Processing Unit) and a control program for causing the CPU to perform various processes.
  • An FPGA Field Programmable Gate Array: feed programmable gate array
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • GPU Graphics Processing Unit
  • other IC Integrated Circuit Composed It may be.
  • the unit 12 may be configured to be partly or wholly integrated into one CPU or the like.
  • the ultrasonic diagnostic apparatus 1 sequentially transmits a first ultrasonic pulse and a second ultrasonic pulse whose phases are reversed to each other on the same scanning line, and a reception signal by the first ultrasonic pulse. And an ultrasonic image is generated using a pulse inversion method in which the received signals of the second ultrasonic pulses are added.
  • step S1 the transmission unit 3 transmits the first ultrasonic pulse and the second ultrasonic pulse whose phases are reversed to each other a plurality of times on the same scanning line via the transducer array 2.
  • the transmission unit 3 transmits a set of the first ultrasonic pulse and the second ultrasonic pulse N times on the same scanning line, and then transmits the first ultrasonic pulse and the second ultrasonic pulse on the next scanning line.
  • a set of ultrasonic pulses is transmitted N times.
  • N is an integer of 2 or more.
  • the transmission unit 3 alternately performs the first ultrasonic pulse FP and the second ultrasonic pulse SP four times on each scanning line L1, L2, L3, L4, and L5. Sending one by one.
  • the time interval PRT1 between the first ultrasonic pulses FP adjacent in time series and the time interval PRT1 between the second ultrasonic pulses SP adjacent in time series are the same. It is.
  • step S2 the receiving unit 4 receives the ultrasonic echo generated in the subject based on the first ultrasonic pulse FP and the second ultrasonic pulse SP transmitted in the subject in step S1.
  • a received signal is obtained from a signal output from the child array 2.
  • the quadrature detection unit 5 performs quadrature detection in the band FB determined on the reception signal acquired in step S2, thereby performing the IQ signal sequence corresponding to the first ultrasonic pulse FP and the first signal sequence.
  • An IQ signal sequence corresponding to two ultrasonic pulses is acquired.
  • the quadrature detection unit 5 is caused by contrast agent bubbles as compared with the signal intensity of the fundamental wave signal E1 and the second harmonic signal E2, as shown in FIGS. 3 and 4, for example.
  • the signal intensity of the bubble signal E3 composed of a nonlinear signal is relatively increased, and the signal intensity of the fundamental wave signal E1 and the signal intensity of the nonlinear signal including the second harmonic signal E2 and the bubble signal E3 are A band FB for quadrature detection is set so as to have values close to each other, and quadrature detection is performed in this band FB.
  • the IQ signal sequence corresponding to the first ultrasonic pulse FP and the IQ signal sequence corresponding to the second ultrasonic pulse SP have phases having different polarities.
  • the first ultrasonic pulse FP IQ signal sequence C1 including IQ signals P1, P3, P5, P7, P9, P11 corresponding to, has a positive phase
  • the IQ signal sequence C2 has a negative phase.
  • the bubble signal likelihood calculation unit 6 calculates an index representing the bubble signal likelihood using the IQ signal sequences C1 and C2 acquired in step S3. For example, the bubble signal likelihood calculation unit 6 calculates the autocorrelation VT as shown in the following formula (1) from the IQ signal obtained in step S3, and calculates the power PT of the IQ signal as shown in the following formula (2). Then, using the calculated autocorrelation VT and power PT, the variance value VS is calculated as the bubble signal likelihood as shown in the following equation (3).
  • PT ( ⁇
  • n in the formulas (1) and (2) is a natural number.
  • the autocorrelation of the IQ signal is calculated by the product of the IQ signal that is later in the time series and the complex conjugate of the previous IQ signal in the time series, out of two IQ signals that are different in time series. .
  • the index value of the likelihood of bubble signal is a standardized value that does not depend on the magnitude of the signal.
  • the standardization method is not particularly limited, but the simplest method here is to divide
  • the influence of the nonlinear signal including the second harmonic signal E2 as shown in FIGS. 3 and 4 and the bubble signal E3 caused by the contrast agent bubble is compared.
  • the IQ signal sequences C1 and C2 are composed of IQ signals as shown in FIG. 8, for example.
  • FIG. 8 shows an IQ signal when there is no influence of the contrast agent bubble in the ultrasonic echo and the component due to the tissue of the subject is dominant.
  • FIG. Two IQ signals P1, P2, P3 are shown.
  • the IQ signals P1 and P3 are signals having different magnitudes and phases, but for the sake of explanation, it is assumed that the IQ signals P1 and P3 are equal to each other.
  • IQ signals P1 and P3 are, for example, fundamental wave vector G1 corresponding to fundamental wave signal E1 and higher harmonic signals such as second harmonic signal E2 caused by the tissue of the subject.
  • the IQ signal P2 is represented by the sum of the fundamental signal vector G2 corresponding to the fundamental signal E4 and the nonlinear signal vector H2 corresponding to the higher order harmonic signal.
  • the signal strength of the higher-order harmonic signal is very small, such as having an order of 1/10 or less of the signal strength of the fundamental wave signal E1, and the magnitudes of the nonlinear signal vectors H1 and H2. Is very small compared to the magnitudes of the fundamental vectors G1 and G2.
  • the IQ signals P1 and P3 are approximately equal to the fundamental vector G1, and the IQ signal P2 is approximately equal to the fundamental vector G2.
  • the fundamental wave signals E1 and E4 are dominant in the IQ signal sequences C1 and C2 acquired in step S3, the randomness of the IQ signal sequences C1 and C2 is low.
  • IQ signals P1 and P3, a phase difference DA 1 obtained by subtracting the phase of the IQ signal P1 from the phase of the IQ signal P2, the phase difference DA in which the phase of the IQ signal P3 obtained by subtracting the phase of the IQ signal P2 2 is approximately 180 degrees.
  • the autocorrelation vector VT j is As shown in FIG. 4, the vector extends in approximately one direction.
  • the autocorrelation vector VT 1 calculated based on IQ signals P1 and P2
  • the autocorrelation vector VT 2 is shown which is calculated based on the IQ signal P2 and P3
  • autocorrelation Vectors VT 1 and VT 2 have phases DA 1 and DA 2 near 180 degrees, respectively.
  • Equation (3) The variance VS shown is a value near zero.
  • the IQ signal sequences C1 and C2 are: For example, it is configured by an IQ signal as shown in FIG.
  • the band FB as shown in FIGS. 3 and 4 is used.
  • IQ signals P1, P2, and P3 are shown in FIG. As in FIG. 8, the IQ signals P1 and P3 are actually signals having different magnitudes and phases, but for the sake of explanation, it is assumed that the IQ signals P1 and P3 are equal to each other.
  • the IQ signals P1 and P3 include, for example, a fundamental signal vector G1 corresponding to the fundamental signal E1, and a nonlinear signal vector H1 corresponding to a nonlinear signal including the second harmonic signal E2 and the bubble signal E3.
  • the IQ signal P2 is represented by the sum of a fundamental wave vector G2 corresponding to the fundamental wave signal E4 and a nonlinear signal vector H2 corresponding to a nonlinear signal including the second harmonic signal E2 and the bubble signal E3.
  • the ratio between the magnitude of the fundamental wave vector G1 and the magnitude of the nonlinear signal vector H1 and the ratio between the magnitude of the fundamental wave vector G2 and the magnitude of the nonlinear signal vector H2 are approximately equal to 1.
  • the IQ signals P1 and P3 are signals greatly deviated from the fundamental wave vector G1
  • the IQ signal P2 is a signal greatly deviated from the fundamental wave vector G2.
  • the phase difference DA 2 obtained by subtracting the phase of the IQ signal P1 from the phase of the IQ signal P3 is, for example, 90 degrees It is a value away from 180 degrees, such as a nearby value or a value near 270 degrees.
  • the autocorrelation vector VT j shown in Equation (4) is a vector that extends in the substantially opposite direction, as shown in FIG. 11, for example.
  • the autocorrelation vector VT 2 is shown which is calculated based on the IQ signal P2 and P3
  • autocorrelation Vector VT 1 has a phase near 90 degrees
  • VT 2 has a phase near 270 degrees.
  • the autocorrelation VT is obtained by the product of one of the IQ signal pairs temporally adjacent to each other and the other complex conjugate.
  • the signal intensity of the bubble signal E3 included in these IQ signals is the fundamental signal. If the E1 and second harmonic signals E2 are equal to or higher than the signal of the second harmonic signal E2, the ultrasonic echo from the first ultrasonic pulse FP, which is a complex conjugate, is calculated in such a product calculation.
  • the calculated phase difference DA j is alternately separated from 180 degrees. The property of having a different value is obtained.
  • the pulse inversion adding unit 7 uses the IQ signal sequences C1 and C2 acquired in step S3 to generate the first super By adding the IQ signal corresponding to the sound wave pulse FP and the IQ signal corresponding to the second ultrasonic pulse SP, an addition signal from which the fundamental wave signals E1 and E4 are removed is obtained.
  • the pulse inversion adding unit 7 adds IQ signals that are adjacent to each other in time series and have different polarities, thereby adding signals a 1 , a 2 , a 3 , a 4 , a 5, a 6 and b 1, b 2, b 3 , b 4, b 5 is calculated.
  • the pulse inversion adding unit 7 calculates the addition signals a 1 , a 2 , a 3 , a 4 , a 5 , a 6 using, for example, the following formula (5), and the following formula (6) Are used to calculate the addition signals b 1 , b 2 , b 3 , b 4 , b 5 .
  • the non-linear signal information calculation unit 8 by using the sum signal a m and b q calculated in step S5, it was introduced into the second harmonic signal E2 and the subject due to the subject tissue At least one of the power and velocity vector of the nonlinear signal including the bubble signal E3 including the nonlinear signal caused by the contrast agent bubble is calculated.
  • the nonlinear signal information calculation unit 8 can calculate the power PB of the bubble signal E3 using the following equation (7), and can calculate the velocity VB of the bubble signal E3 using the following equation (8).
  • PB [ ⁇
  • VB [ ⁇ ( ar + 1 ⁇ a * r ) + ⁇ ( bt + 1 ⁇ b * t )] / (2n ⁇ 3)
  • the image generation unit 9 generates an ultrasonic image based on at least one of the power PB and the velocity VB of the nonlinear signal calculated in step S6 and the bubble signal likelihood calculated in step S4.
  • the generated ultrasonic image is displayed on the display unit 11.
  • the image generation unit 9 represents the value of the power PB of the nonlinear signal calculated in step S ⁇ b> 6 by a change in brightness, and represents an index value of the bubble signal likelihood by a change in saturation of the color B.
  • An ultrasonic image can be generated by a so-called color map, and the generated ultrasonic image can be displayed on the display unit 11.
  • the lightness increases as the value of the power PB increases, and the saturation of the color B increases as the index value of the bubble signal likelihood increases. In this way, the operation of the ultrasonic diagnostic apparatus 1 according to the embodiment of the present invention is completed.
  • the bubble signal likelihood calculation unit 6 uses the autocorrelation VT obtained from the IQ signal sequences C1 and C2 acquired by the quadrature detection unit 5. Since the likelihood of the bubble signal is calculated based on the signal, the signal caused by the tissue of the subject and the signal caused by the contrast agent bubble introduced into the subject can be easily distinguished in a short time. Further, an ultrasonic image is generated based on the calculated index value of the likelihood of the bubble signal and one of the power PB and the velocity VB of the nonlinear signal, and the user displays the ultrasonic image on the display unit 11. Therefore, it is possible to easily grasp a signal caused by a contrast agent bubble introduced into the subject.
  • the bubble signal likelihood calculation unit 6 calculates the variance VS shown in Equation (3) as an index value of bubble signal likelihood, but the autocorrelation VT calculated based on the IQ signal sequence is calculated. If it is the index value used, it will not be limited to this.
  • the bubble signal likelihood calculation unit 6 calculates the dispersion value VX using
  • the variance value VX approaches 1 it can be determined that the IQ signal sequences C1 and C2 acquired by the quadrature detection unit 5 seem to be signals originating from the tissue of the subject, and the variance value VX is zero. It can be determined that the IQ signal sequences C1 and C2 are likely to be signals caused by contrast agent bubbles as the value approaches.
  • VX
  • the bubble signal likelihood calculation unit 6 calculates, as the bubble signal likelihood, the phase difference variance value of IQ signals adjacent to each other in time series in the IQ signal sequences C1 and C2 acquired by the quadrature detection unit 5. You can also. For example, as shown in the following equation (10), when the real part of the IQ signal P k is X k and the imaginary part is Y k , the phase difference DA j of the IQ signals adjacent to each other in time series is expressed by the following equation (11) ).
  • i in the following formula (10) represents an imaginary unit.
  • the bubble signal likelihood calculation unit 6 can calculate the variance value VS1 of the phase difference DA j calculated by the equation (11) as an index value of the bubble signal likelihood as shown in the following equation (12).
  • E (DA j ) in the following formula (12) is an arithmetic average of the phase difference DA j .
  • FIG. 9 when the influence of the bubble signal E3 consisting of nonlinear signal is small, each of the DA j Since approximately equal to each other, VS1 approaches zero.
  • DA j and DA j + 1 are values separated from each other, so that VS1 is significantly larger than zero. .
  • the IQ signal sequences C1 and C2 acquired by the quadrature detection unit 5 are likely to be signals resulting from the contrast agent bubble as the variance value VS1 approaches 1, and the variance value VS1 approaches zero.
  • the IQ signal sequences C1 and C2 are likely to be signals resulting from the tissue of the subject.
  • the same result can be obtained even with a phase difference calculated from P j + 3 and P j, P j + 5 and P j and the like.
  • the bubble signal likelihood calculating unit 6 can also calculate the variance value VX1 appearing in the equation (12) as the bubble signal likelihood as shown in the following equation (13).
  • the bubble signal likelihood calculation unit 6 uses the amplitude variance value VS2 of the IQ signal sequences C1 and C2 even acquired by the quadrature detection unit 5 as an index value of the bubble signal likelihood, as shown in the following equation (14).
  • ) in the following equation (14) is an absolute value of the IQ signal P k , that is, an arithmetic average of the amplitude.
  • P k when the influence of the bubble signal E3 composed of a non-linear signal is small, each
  • FIG. 8 when the influence of the bubble signal E3 composed of a non-linear signal is small, each
  • the bubble signal likelihood calculation unit 6 can also calculate the variance value VX2 appearing in the equation (14) as an index value of the bubble signal likelihood as shown in the following equation (15).
  • VX2 [E (
  • 2 / (2n ⁇ 1) ⁇ ] (k 1, 2,..., 2n)
  • an ultrasonic image based on the value of the power PB of the bubble signal E3 and the bubble signal likelihood as shown in FIG. 13 is shown.
  • the ultrasonic image generated by the image generation unit 9 is not limited to this.
  • the image generation unit 9 displays only the part where the bubble signal likelihood index value is larger than a certain value using the color B, and the bubble signal likelihood index value is For a portion smaller than a certain value, the display using the color B is not performed, and the value of the power PB can be displayed in gray scale.
  • the image generation unit 9 includes a second harmonic signal E ⁇ b> 2 caused by the tissue of the subject and a bubble composed of a nonlinear signal caused by the bubble of the contrast agent introduced into the subject.
  • One of the color B1 and the color B2 is selected according to the phase polarity of the velocity VB of the nonlinear signal including the signal E3, the value of the power PB is represented by a change in brightness, and the index value of the bubble signal is represented by the color B1 and the color B2.
  • An ultrasonic image represented by a change in saturation can be generated, and the generated ultrasonic image can be displayed on the display unit 11. In the example shown in FIG.
  • the lightness increases as the value of the power PB increases, and in the region where the phase of the speed VB is positive, the saturation of the color B1 increases as the index value of the bubble signal likelihood increases, and the speed VB In the region where the phase is negative, the saturation of the color B2 increases as the index value of the bubble signal likelihood increases.
  • the image generation unit 9 generates an ultrasonic image based on, for example, the phase value of the velocity VB of the nonlinear signal and the index value of the bubble signal likelihood, and displays the generated ultrasonic image on the display unit 11. You can also. For example, at this time, as in the example shown in FIG. 14, the image generation unit 9 selects one of the color B1 and the color B2 according to the polarity of the phase of the speed VB, and sets the absolute value of the phase of the speed VB to the brightness. It is possible to generate an ultrasonic image that is expressed by a change and that indicates an index value of the bubble signal likelihood by a change in the saturation of the colors B1 and B2.
  • the image generation unit 9 can also generate an ultrasonic image based on at least one of the power PB and the velocity VB of the nonlinear signal, and can display the generated ultrasonic image on the display unit 11. For example, although not shown, the image generation unit 9 can generate an ultrasonic image with a gray scale in which the brightness increases as the power PB increases.
  • the image generation unit 9 when generating an ultrasonic image based on at least one of the power PB and the velocity VB of the nonlinear signal, the image generation unit 9 superimposes or arranges the index value of the bubble signal likelihood on the ultrasonic image. It can be displayed on the display unit 11. At this time, for example, the image generation unit 9 displays, on the display unit 11, an index value indicating the likelihood of a bubble signal corresponding to the position on the ultrasonic image designated by the user via the operation unit 14 (not shown). be able to. At this time, for example, a cursor that can be operated by the user via the operation unit 14 is displayed on the display unit 11, and the position of the user on the ultrasonic image is displayed via the operation unit 14 by this cursor. Can be specified. Note that a display different from the display unit 11 may be provided in the ultrasound diagnostic apparatus 1, and an index value indicating the likelihood of a bubble signal may be displayed on the display.
  • the power PB and the velocity VB of the nonlinear signal on the B-mode image representing the tomographic image of the subject can be imaged and superimposed on the display unit 11.
  • the power PB and velocity VB of the non-linear signal and the likelihood of a bubble signal can be imaged and displayed on the display unit 11 in a B-mode image representing a tomographic image of the subject.
  • the pulse inversion adding unit 7 adds the IQ signal corresponding to the first ultrasonic pulse FP adjacent in time series and the IQ signal corresponding to the second ultrasonic pulse SP.
  • the IQ signal corresponding to the first ultrasonic pulse FP and the IQ signal corresponding to the second ultrasonic pulse SP can be added by any combination that is not adjacent in time series.
  • the IQ signal corresponding to the first ultrasonic pulse FP adjacent in time series and the IQ signal corresponding to the second ultrasonic pulse SP are less affected by the movement of the tissue of the subject. ,preferable.
  • the pulse inversion adding unit 7 calculates a sum signal a m using equation (5), but calculates the sum signal b q using Equation (6), the addition signal a m and b q Of these, only one can be calculated.
  • SYMBOLS 1 Ultrasonic diagnostic apparatus 2 Transducer array, 3 Transmitter part, 4 Receiving part, 5 Quadrature detection part, 6 Bubble signal likelihood calculation part, 7 Pulse inversion addition part, 8 Non-linear signal information calculation part, 9 Image generation part, DESCRIPTION OF SYMBOLS 10 Display control part, 11 Display part, 12 Device control part, 13 Storage part, 14 Operation part, 15 Processor, 16 Amplification part, 17 AD conversion part, 18 Beamformer, a1, a2, a3, a4, a5, a6 b1, b2, b3, b4, b5 addition signal, B, B1, B2 colors, C1, C2 IQ signal sequence, DA 1, DA 2 phase difference, E1, E4 fundamental signal, E2 2 harmonic signals, E3 bubble signal, FB band, FP first ultrasonic pulse, G1, G2 fundamental vectors, H1, H2 nonlinear signal vector, VT 1, VT 2 autocorrelation vector, L1, L2, L3, L4

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Acoustics & Sound (AREA)
  • Hematology (AREA)
  • Signal Processing (AREA)
  • Nonlinear Science (AREA)
  • Gynecology & Obstetrics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

超音波診断装置1は、振動子アレイ2と、振動子アレイ2から被検体内に互いに位相を反転させた第1の超音波パルスFPと第2の超音波パルスSPの組を同一の走査線上に少なくとも2回以上のN回送信させる送信部3と、超音波エコーを受けた振動子アレイ2から出力される信号により受信信号を取得する受信部4と、取得された受信信号に対して定められた帯域で直交検波を行うことにより第1の超音波パルスFPに対応するIQ信号列と第2の超音波パルスSPに対応するIQ信号列を取得する直交検波部5と、直交検波部5により取得されたIQ信号列に基づいてバブル信号らしさを算出するバブル信号らしさ算出部6とを備える。

Description

超音波診断装置および超音波診断装置の制御方法
 本発明は、超音波診断装置および超音波診断装置の制御方法に係り、特に、ハーモニックイメージング法により超音波画像の生成を行う超音波診断装置および超音波診断装置の制御方法に関する。
 医用超音波診断装置において、被検体に造影剤を導入して診断を行なう場合等には、特許文献1および2に開示されるように、造影剤の非線形性を利用し、振動子アレイにより受信した超音波エコーから非線形成分を抽出して画像化を行う、いわゆるハーモニックイメージング法が知られている。ハーモニックイメージング法を用いることにより、被検体の組織と造影剤のバブルとのコントラストが高い画像を生成することができる。
 ハーモニックイメージング法において、超音波エコーから非線形成分を抽出する方法として、例えば、同一の走査線上に、互いに位相を反転させた第1の超音波パルスと第2の超音波パルスを順次送信し、第1の超音波パルスによる受信信号と第2の超音波パルスによる受信信号を加算するパルスインバージョン法がある。このパルスインバージョン法により、超音波エコーに基づく受信信号から、第1の超音波パルスおよび第2の超音波パルスを形成する基本波の帯域を有する基本波信号を除去して、造影剤のバブルに起因する非線形信号を抽出することができる。
特開2002-301068号公報 特開2003-2302559号公報
 しかしながら、通常、パルスインバージョン法を用いたとしても、組織の境界等からの超音波エコーに起因する信号は、造影剤のバブルに起因する非線形信号と同程度に残存することが多く、非線形信号との区別をすることが難しいという問題があった。従来の技術では、造影剤のバブルが血管内を移動することに伴って生じる、信号の輝度の時間変化を観察することにより、組織の境界等からの超音波エコーに起因する信号と造影剤のバブルに起因する非線形信号とを区別することが多く、取得された信号のうち、どの信号が造影剤のバブルに起因する非線形信号であるかを判断するために、時間と手間を要していた。
 また、被検体内において拍動等の組織の動きがある場合には、パルスインバージョン法により相殺されずに残存する基本波信号が多くなり、基本波信号と造影剤のバブルに起因する非線形信号を区別することが難しいことがあるという問題があった。
 本発明は、このような従来の問題点を解消するためになされたものであり、被検体の組織に起因する信号と造影剤のバブルに起因する信号を容易に且つ短時間に区別することができる超音波診断装置および超音波診断装置の制御方法を提供することを目的とする。
 上記目的を達成するために、本発明の超音波診断装置は、振動子アレイと、振動子アレイから被検体内に互いに位相を反転させた第1の超音波パルスと第2の超音波パルスの組を同一の走査線上に少なくとも2回以上のN回送信させる送信部と、被検体内において発生した超音波エコーを受けた振動子アレイから出力される信号により受信信号を取得する受信部と、受信部により取得された受信信号に対して定められた帯域で直交検波を行うことにより第1の超音波パルスに対応するIQ信号列と第2の超音波パルスに対応するIQ信号列を取得する直交検波部と、直交検波部により取得されたIQ信号列を用いて、第1の超音波パルスに対応するIQ信号と第2の超音波パルスに対応するIQ信号を加算することにより基本波成分が除去された画像信号を取得するパルスインバージョン加算部と、
 直交検波部により取得されたIQ信号列に基づいてバブル信号らしさを算出するバブル信号らしさ算出部と、バブル信号らしさ算出部により算出されたバブル信号らしさとパルスインバージョン加算部により取得された画像信号とに基づいて超音波画像を生成する画像生成部とを備えたことを特徴とする。
 バブル信号らしさ算出部は、直交検波部により取得されたIQ信号列から自己相関を求め、求められた前記自己相関に基づいてバブル信号らしさを算出することができる。
 もしくは、バブル信号らしさ算出部は、直交検波部により取得されたIQ信号列から位相差の分散値を算出し、算出された位相差の分散値を用いてバブル信号らしさを算出することもできる。
 もしくは、バブル信号らしさ算出部は、直交検波部により取得されたIQ信号列から振幅の分散値を算出し、算出された振幅の分散値を用いてバブル信号らしさを算出することができる。
 パルスインバージョン加算部により取得された画像信号から非線形信号のパワーおよび速度の少なくとも一方を算出する非線形信号情報算出部をさらに備えることができる。
 この際に、画像生成部は、非線形信号情報算出部により算出された非線形信号のパワーおよび速度の少なくとも一方に基づいて超音波画像を生成することができる。
 さらに、画像生成部は、非線形信号情報算出部により算出された非線形信号のパワーおよび速度の少なくとも一方とバブル信号らしさ算出部により算出されたバブル信号らしさとに基づいたカラーマップにより超音波画像を生成することもできる。
 また、超音波画像を表示する表示部をさらに備えることができる。
 本発明の超音波診断装置の制御方法は、振動子アレイから被検体内に互いに位相を反転させた第1の超音波パルスと第2の超音波パルスの組を同一の走査線上に少なくとも2回以上のN回送信させ、被検体内において発生した超音波エコーを受けた振動子アレイから出力される信号により受信信号を取得し、取得された受信信号に対して定められた帯域で直交検波を行うことにより第1の超音波パルスに対応するIQ信号列と第2の超音波パルスに対応するIQ信号列を取得し、取得されたIQ信号列を用いて第1の超音波パルスに対応するIQ信号と第2の超音波パルスに対応するIQ信号を加算することにより基本波成分が除去された画像信号を取得し、取得されたIQ信号列に基づいてバブル信号らしさを算出し、算出されたバブル信号らしさと、取得された画像信号とに基づいて超音波画像を生成することを特徴とする。
 本発明によれば、直交検波部により取得されたIQ信号列のランダム性を表す指標をバブル信号らしさとして算出するバブル信号らしさ算出部を備えるため、被検体の組織に起因する信号と造影剤のバブルに起因する信号を容易に且つ短時間に区別することができる。
本発明の実施の形態に係る超音波診断装置の構成を示すブロック図である。 本発明の実施の形態における受信部の内部構成を示すブロック図である。 第1の超音波パルスに対応する直交検波の帯域の例を示す図である。 第2の超音波パルスに対応する直交検波の帯域の例を示す図である。 本発明の実施の形態に係る超音波診断装置の動作を表すフローチャートである。 超音波パルスの送信タイミングを模式的に示す図である。 第1の超音波パルスおよび第2の超音波パルスに対応するIQ信号列を模式的に示す図である。 非線形成分の寄与が比較的小さい場合のIQ信号の例を模式的に示す図である。 非線形成分の寄与が比較的小さい場合の速度ベクトルの例を模式的に示す例である。 非線形成分の寄与が比較的大きい場合のIQ信号の例を模式的に示す図である。 非線形成分の寄与が比較的大きい場合の速度ベクトルの例を模式的に示す図である。 第1の超音波パルスに対応するIQ信号列と第2の超音波パルスに対応するIQ信号列を加算して加算信号を算出する様子を模式的に示す図である。 本発明の実施の形態に係る超音波診断装置により得られたパワーとバブル信号らしさの表示例を模式的に示す図である。 本発明の実施の形態に係る超音波診断装置により得られたパワー、速度、バブル信号らしさの表示例を模式的に示す図である。
 以下、この発明の実施の形態を添付図面に基づいて説明する。また、以下においては、被検体に造影剤が導入されているものとする。
実施の形態
 図1に、本発明の実施の形態に係る超音波診断装置1の構成を示す。図1に示すように、超音波診断装置1は、振動子アレイ2を備えており、振動子アレイ2に送信部3および受信部4がそれぞれ接続されている。受信部4には、直交検波部5が接続され、直交検波部5に、バブル信号らしさ算出部6およびパルスインバージョン加算部7が接続されている。また、パルスインバージョン加算部7には、非線形信号情報算出部8、画像生成部9、表示制御部10および表示部11が順次接続されている。さらに、バブル信号らしさ算出部6は、画像生成部9に接続されている。
 さらに、送信部3、受信部4、直交検波部5、バブル信号らしさ算出部6、パルスインバージョン加算部7、非線形信号情報算出部8、画像生成部9および表示制御部10に、装置制御部12が接続されており、装置制御部12に、格納部13および操作部14が接続されている。装置制御部12と格納部13は、互いに双方向の情報の受け渡しが可能に接続されている。
 また、送信部3、受信部4、直交検波部5、バブル信号らしさ算出部6、位相補正部7、パルスインバージョン加算部7、非線形信号情報算出部8、画像生成部9、表示制御部10および装置制御部12により、プロセッサ15が構成されている。
 図1に示す超音波診断装置1の振動子アレイ2は、1次元または2次元に配列された複数の振動子を有している。これらの振動子は、それぞれ送信部3から供給される駆動信号に従って超音波を送信すると共に、被検体からの超音波エコーを受信して、超音波エコーに基づく信号を出力する。各振動子は、例えば、PZT(Lead Zirconate Titanate:チタン酸ジルコン酸鉛)に代表される圧電セラミック、PVDF(Poly Vinylidene Di Fluoride:ポリフッ化ビニリデン)に代表される高分子圧電素子およびPMN-PT(Lead Magnesium Niobate-Lead Titanate:マグネシウムニオブ酸鉛-チタン酸鉛固溶体)に代表される圧電単結晶等からなる圧電体の両端に電極を形成することにより構成される。
 プロセッサ15の送信部3は、例えば、複数のパルス発生器を含んでおり、装置制御部12からの制御信号に応じて選択された送信遅延パターンに基づいて、振動子アレイ2の複数の振動子から送信される超音波が超音波ビームを形成するように、それぞれの駆動電圧を、遅延量を調節して複数の振動子に供給する。このように、振動子アレイ2の複数の振動子の電極にパルス状の駆動電圧が印加されると、圧電体が伸縮し、それぞれの振動子からパルス状の超音波が発生して、それらの超音波の合成波から、パルス状の超音波ビームすなわち超音波パルスが形成される。送信部3は、このようにして、互いに位相を反転させた第1の超音波パルスおよび第2の超音波パルスを振動子アレイ2から順次発生させ、振動子アレイ2を介して、第1の超音波パルスと第2の超音波パルスの組を同一の走査線に沿って被検体内に複数回送信する。
 被検体内に送信された第1の超音波パルスおよび第2の超音波パルスは、例えば、被検体の部位等の対象において反射され、いわゆる超音波エコーとして振動子アレイ2に向かって被検体内を伝搬する。このように振動子アレイ2に向かって伝搬する超音波エコーは、振動子アレイ2を構成するそれぞれの振動子により受信される。この際に、振動子アレイ2を構成するそれぞれの振動子は、伝搬する超音波エコーを受信することにより伸縮して電気信号を発生させ、これらの電気信号を受信部4に出力する。
 プロセッサ15の受信部4は、装置制御部12からの制御信号に従って、振動子アレイ2から出力される信号の処理を行う。図2に示すように、受信部4は、増幅部16、AD(Analog Digital)変換部17およびビームフォーマ18が直列接続された構成を有している。
 受信部4の増幅部16は、振動子アレイ2を構成するそれぞれの振動子から入力された信号を増幅し、増幅した信号をAD変換部17に送信する。AD変換部17は、増幅部16から送信された信号をデジタルデータに変換し、これらのデータをビームフォーマ18に送信する。ビームフォーマ18は、装置制御部12からの制御信号に応じて選択された受信遅延パターンに基づいて設定される音速または音速の分布に従い、AD変換部17により変換された各データに対してそれぞれの遅延を与えて加算することにより、いわゆる受信フォーカス処理を行う。この受信フォーカス処理により、AD変換部17により変換された各データが整相加算され且つ超音波エコーの焦点が絞り込まれた受信信号が取得される。
 ここで、被検体内を伝搬する超音波エコーには、第1の超音波パルスおよび第2の超音波パルスを形成する基本波の帯域を有する基本波成分と、被検体の組織の動きに起因する2次高調波成分と、被検体に導入された造影剤のバブルの微小な振動に起因する非線形成分が含まれている。そのため、受信部4により取得された受信信号には、例えば図3および図4に示すように、超音波エコーの基本波成分に基づく基本波信号E1またはE4、2次高調波成分に基づく2次高調波信号E2および造影剤のバブルによる非線形成分に基づくバブル信号E3を含んでいる。図3に示す例では、正の位相を有する超音波パルスに基づく受信信号が示されており、基本波信号E1は、正の値を有している。一方、図4に示す例では、負の位相を有する超音波パルスに基づく受信信号が示されており、基本波信号E4は、負の値を有している。
 プロセッサ15の直交検波部5は、受信部4により取得された受信信号に参照周波数のキャリア信号を混合することにより、受信信号を直交検波して複素データであるIQ信号に変換し、第1の超音波パルスに対応するIQ信号列と第2の超音波パルスに対応するIQ信号列を取得する。この際に、直交検波部5は、被検体に導入されている造影剤の検出精度を向上させるため、図3および図4に示すように、基本波信号E1の信号強度および2次高調波信号E2の信号強度と比較して、造影剤のバブルに起因する非線形な信号からなるバブル信号E3の信号強度が相対的に大きくなる周波数を含むように、直交検波の帯域FBを設定することが望ましい。さらに、基本波信号E1の信号強度と、2次高調波信号E2およびバブル信号E3を含む非線形信号の信号強度とが、互いに比較的近い値を有するように、図3および図4に示すように、バブル信号E3が相対的に大きくなる周波数に加えて、基本波信号E1またはE4の周波数帯域の一部を含むように、直交検波の帯域FBを設定することが好ましい。
 プロセッサ15のバブル信号らしさ算出部6は、直交検波部5により取得されたIQ信号列に基づいて算出された自己相関または分散値を用いた指標を、被検体に導入された造影剤のバブルに基づくバブル信号らしさとして算出する。バブル信号らしさ算出部6によるバブル信号らしさの算出については、後に詳しく説明する。
 プロセッサ15のパルスインバージョン加算部7は、直交検波部5により取得されたIQ信号列を用いて、第1の超音波パルスに対応するIQ信号と、第2の超音波パルスに対応するIQ信号とを加算することにより、図3および図4に示すような基本波信号E1およびE4が除去された加算信号を取得する。
 プロセッサ15の非線形信号情報算出部8は、パルスインバージョン加算部7により取得された加算信号から、被検体の組織に起因する2次高調波信号E2および被検体に導入された造影剤のバブルに起因するバブル信号E3を含む非線形信号のパワーおよび速度の少なくとも一方を非線形信号情報として算出する。
 プロセッサ15の画像生成部9は、非線形信号情報算出部8により算出された非線形信号のパワーおよび速度の少なくとも一方と、バブル信号らしさ算出部6により算出されたバブル信号らしさとに基づいて超音波画像を生成する。
 プロセッサ15の表示制御部10は、装置制御部12の制御の下、画像生成部9により生成された超音波画像等に所定の処理を施して、表示部11に超音波画像等を表示させる。
 超音波診断装置1の表示部11は、表示制御部10の制御の下、画像等を表示するものであり、例えば、LCD(Liquid Crystal Display:液晶ディスプレイ)等のディスプレイ装置を含む。
 超音波診断装置1の操作部14は、ユーザが入力操作を行うためのものであり、キーボード、マウス、トラックボール、タッチパッドおよびタッチパネル等を備えて構成することができる。
 格納部13は、超音波診断装置1の動作プログラム等を格納するもので、フラッシュメモリ、HDD(Hard Disc Drive:ハードディスクドライブ)、SSD(Solid State Drive:ソリッドステートドライブ)、FD(Flexible Disc:フレキシブルディスク)、MOディスク(Magneto-Optical disc:光磁気ディスク)、MT(Magnetic Tape:磁気テープ)、RAM(Random Access Memory:ランダムアクセスメモリ)、CD(Compact Disc:コンパクトディスク)、DVD(Digital Versatile Disc:デジタルバーサタイルディスク)、SDカード(Secure Digital card:セキュアデジタルカード)、USBメモリ(Universal Serial Bus memory:ユニバーサルシリアルバスメモリ)等の記録メディア、またはサーバ等を用いることができる。
 なお、送信部3、受信部4、直交検波部5、バブル信号らしさ算出部6、パルスインバージョン加算部7、非線形信号情報算出部8、画像生成部9、表示制御部10および装置制御部12を有するプロセッサ15は、CPU(Central Processing Unit:中央処理装置)、および、CPUに各種の処理を行わせるための制御プログラムから構成されるが、FPGA(Field Programmable Gate Array:フィードプログラマブルゲートアレイ)、DSP(Digital Signal Processor:デジタルシグナルプロセッサ)、ASIC(Application Specific Integrated Circuit:アプリケーションスペシフィックインテグレイテッドサーキット)、GPU(Graphics Processing Unit:グラフィックスプロセッシングユニット)、その他のIC(Integrated Circuit:集積回路)を用いて構成されてもよい。また、これらの送信部3、受信部4、直交検波部5、バブル信号らしさ算出部6、パルスインバージョン加算部7、非線形信号情報算出部8、画像生成部9、表示制御部10および装置制御部12を部分的にあるいは全体的に1つのCPU等に統合させて構成することもできる。
 次に、図5に示すフローチャートを用いて、実施の形態における超音波診断装置1の動作を詳細に説明する。実施の形態において、超音波診断装置1は、同一の走査線上に互いに位相を反転させた第1の超音波パルスと第2の超音波パルスを順次送信し、第1の超音波パルスによる受信信号と第2の超音波パルスによる受信信号を加算するパルスインバージョン法を用いて、超音波画像を生成する。
 まず、ステップS1において、送信部3は、互いに位相を反転させた第1の超音波パルスと第2の超音波パルスを、振動子アレイ2を介して同一の走査線上に複数回送信する。この際に、送信部3は、第1の超音波パルスと第2の超音波パルスの組を同一の走査線上にN回送信した後に、次の走査線上に第1の超音波パルスと第2の超音波パルスの組をN回送信する。ここで、Nは2以上の整数である。例えば、送信部3は、図6に示すように、各走査線L1、L2、L3、L4、L5上において、第1の超音波パルスFPと第2の超音波パルスSPを、交互に4回ずつ送信している。また、図6に示す例においては、時系列に隣り合う第1の超音波パルスFP同士の時間間隔PRT1と、時系列に隣り合う第2の超音波パルスSP同士の時間間隔PRT1は、互いに同一である。
 ステップS2において、受信部4は、ステップS1で被検体内に送信された第1の超音波パルスFPと第2の超音波パルスSPに基づいて被検体内で発生した超音波エコーを受信した振動子アレイ2から出力される信号により、受信信号を取得する。
 続くステップS3において、直交検波部5は、ステップS2で取得された受信信号に対して定められた帯域FBで直交検波を行うことにより、第1の超音波パルスFPに対応するIQ信号列と第2の超音波パルスに対応するIQ信号列を取得する。この際に、直交検波部5は、例えば、図3および図4に示すように、基本波信号E1の信号強度および2次高調信号E2の信号強度と比較して、造影剤のバブルに起因する非線形な信号からなるバブル信号E3の信号強度が相対的に大きくなるように、且つ、基本波信号E1の信号強度と、2次高調波信号E2およびバブル信号E3を含む非線形信号の信号強度とが互いに近い値を有するように、直交検波の帯域FBを設定し、この帯域FBにおいて直交検波を実行する。
 また、第1の超音波パルスFPに対応するIQ信号列と第2の超音波パルスSPに対応するIQ信号列は、互いに極性の異なる位相を有している。例えば、第1の超音波パルスFPが正の位相を有し、第2の超音波パルスSPが負の位相を有している場合に、図7に示すように、第1の超音波パルスFPに対応するIQ信号P1、P3、P5、P7、P9、P11を含むIQ信号列C1は、正の位相を有し、第2の超音波パルスSPに対応するIQ信号P2、P4、P6、P8、P10、P12を含むIQ信号列C2は、負の位相を有する。
 続くステップS4において、バブル信号らしさ算出部6は、ステップS3で取得されたIQ信号列C1およびC2を用いて、バブル信号らしさを表す指標を算出する。例えば、バブル信号らしさ算出部6は、ステップS3で得られたIQ信号により下記式(1)に示すように自己相関VTを算出し、下記式(2)に示すようにIQ信号のパワーPTを算出し、さらに、算出された自己相関VTおよびパワーPTを用いて下記式(3)に示すように、バブル信号らしさとして、分散値VSを算出する。
  VT=[Σ(Pj+1・P )]/(2n-1)  (j=1,2,・・・,2n-1)・・・(1)
  PT=(Σ|P)/(2n)  (k=1,2,・・・,2n)・・・(2)
  VS=1-(|VT|/PT)  ・・・(3)
 ここで、数式(1)および(2)におけるnは自然数である。また、IQ信号の自己相関とは、時系列に異なる2つのIQ信号のうち、時系列において後のIQ信号と、時系列において前のIQ信号の複素共役との積により計算されるものである。
 また、バブル信号らしさの指標値は、信号の大小によらない規格化された値であることが望ましい。規格化の方法については特に限定しないが、ここでは最も単純な方法として、PTで|VT|を除し、バブル信号らしさの指標値が0から1の範囲に値を有するように、指標値を規格化している。後述する他の指標値の例についても、同様の考えに基づき規格化を行っている。
 このようにして算出された分散値VSが、バブル信号らしさを表す指標値として用いられることができる理由について説明する。
 まず、ステップS3で得られたIQ信号列C1およびC2において、図3および図4に示すような2次高調波信号E2と造影剤のバブルに起因するバブル信号E3を含む非線形信号の影響が比較的小さく、基本波信号E1およびE4が支配的である場合には、IQ信号列C1およびC2は、例えば、図8に示すようなIQ信号により構成される。ここで、図8には、超音波エコーにおいて造影剤のバブルの影響が無く、被検体の組織に起因する成分が支配的な場合のIQ信号が示されており、IQ信号の例として、3つのIQ信号P1、P2、P3が示されている。また、実際には、IQ信号P1とP3は互いに異なる大きさおよび位相を有する信号であるが、説明のために、IQ信号P1およびP3は互いに等しいとする。
 図8に示すように、IQ信号P1およびP3は、例えば、基本波信号E1に対応する基本波ベクトルG1と、被検体の組織に起因する2次高調波信号E2等の高次の高調波信号に対応する非線形信号ベクトルH1の和で表され、IQ信号P2は、基本波信号E4に対応する基本波ベクトルG2と高次の高調波信号に対応する非線形信号ベクトルH2との和で表される。ここで、高次の高調波信号の信号強度は、基本波信号E1の信号強度に対して、例えば10分の1以下のオーダーを有する等、非常に小さく、非線形信号ベクトルH1およびH2の大きさは、基本波ベクトルG1およびG2の大きさと比較して非常に小さい。
 そのため、IQ信号P1およびP3は、概ね基本波ベクトルG1に等しく、IQ信号P2は、概ね基本波ベクトルG2に等しい。このように、ステップS3で取得されたIQ信号列C1およびC2において基本波信号E1およびE4が支配的である場合には、IQ信号列C1およびC2のランダム性が低い。また、この際に、IQ信号P1およびP3は、IQ信号P2の位相からIQ信号P1の位相を減じた位相差DAと、IQ信号P3の位相からIQ信号P2の位相を減じた位相差DAは、概ね180度近傍の値となる。
 そのため、例えば、下記式(4)に示すように、数式(1)中に現れる時系列に隣り合うIQ信号同士の自己相関を自己相関ベクトルVTとすると、自己相関ベクトルVTは、図9に示すように、概ね1方向に向かって延びるベクトルとなる。ここで、図9においては、IQ信号P1およびP2に基づいて算出された自己相関ベクトルVTと、IQ信号P2およびP3に基づいて算出された自己相関ベクトルVTが示されており、自己相関ベクトルVTおよびVTは、それぞれ180度近傍の位相DAおよびDAを有している。
  VT=Pj+1・P   (j=1,2,・・・,2n-1)・・・(4)
 このような場合には、数式(1)に示される自己相関VTの絶対値と数式(2)に示されるパワーPTの絶対値との比が、概ね1に等しくなるため、数式(3)に示される分散VSは、ゼロの近傍の値となる。
 次に、ステップS3で得られたIQ信号列C1およびC2において、造影剤のバブルに起因する非線形な信号からなるバブル信号E3の影響が比較的大きい場合には、IQ信号列C1およびC2は、例えば、図10に示すようなIQ信号により構成される。ここで、造影剤のバブルに起因するバブル信号E3の信号強度は、組織に起因する2次高調波信号E2の信号強度と比べて比較的強いため、図3および図4に示すような帯域FBにおいて直交検波がなされることにより、例えば、基本波信号E1および2次高調波信号E2の信号強度に対して同程度もしくはそれ以上の信号強度を有するバブル信号E3を含む、IQ信号が得られる。このようなIQ信号の例として、図10には、IQ信号P1、P2、P3が示されている。図8と同様に、実際には、IQ信号P1とP3は互いに異なる大きさおよび位相を有する信号であるが、説明のために、IQ信号P1およびP3は互いに等しいとする。
 図10に示すように、IQ信号P1およびP3は、例えば、基本波信号E1に対応する基本波ベクトルG1と、2次高調波信号E2およびバブル信号E3を含む非線形信号に対応する非線形信号ベクトルH1の和で表され、IQ信号P2は、基本波信号E4に対応する基本波ベクトルG2と2次高調波信号E2およびバブル信号E3を含む非線形信号に対応する非線形信号ベクトルH2との和で表される。図10に示す例では、基本波ベクトルG1の大きさと非線形信号ベクトルH1の大きさとの比、および、基本波ベクトルG2の大きさと非線形信号ベクトルH2の大きさとの比は、概ね1に等しい。
 このような場合には、IQ信号P1およびP3は、基本波ベクトルG1から大きくずれた信号であり、IQ信号P2は、基本波ベクトルG2から大きくずれた信号である。このように、ステップS3で取得されたIQ信号列C1およびC2において基本波信号E1およびE4が支配的ではなく、非線形信号が比較的大きい場合には、IQ信号のランダム性が高い。また、この際に、IQ信号P2の位相からIQ信号P1の位相を減じた位相差DAと、IQ信号P3の位相からIQ信号P1の位相を減じた位相差DAは、例えば、90度近傍の値または270度近傍の値等の、180度から離れた値となる。
 そのため、数式(4)に示す自己相関ベクトルVTは、例えば図11に示すように、概ね反対方向に向かって延びるベクトルとなる。ここで、図11においては、IQ信号P1およびP2に基づいて算出された自己相関ベクトルVTと、IQ信号P2およびP3に基づいて算出された自己相関ベクトルVTが示されており、自己相関ベクトルVTは、90度近傍の位相を有しており、VTは、270度近傍の位相を有している。
 このような場合には、数式(1)に示される自己相関VTの計算において、数式(4)に示される自己相関ベクトルVTが概ね相殺されるため、数式(3)に示される分散VSは、1の近傍の値となる。
 したがって、分散VSの値が1に近づくほど、ステップS3で取得されたIQ信号列C1およびC2のランダム性が高くなり、すなわち、IQ信号列C1およびC2において造影剤のバブルに起因するバブル信号E3の影響が大きくなるため、IQ信号列C1およびC2が造影剤のバブルに起因する信号らしいことがわかる。また、分散VSの値がゼロに近づくほど、IQ信号列C1およびC2のランダム性が低くなり、すなわち、IQ信号列C1およびC2において造影剤のバブルに起因するバブル信号E3の影響が小さくなり、基本波信号E1およびE4の影響が大きくなるため、IQ信号列C1およびC2が被検体の組織に起因する信号らしいことがわかる。
 ここで、自己相関VTは、時間的に互いに隣接するIQ信号対の一方と、他方の複素共役との積により求められるが、これらのIQ信号に含まれるバブル信号E3の信号強度が基本波信号E1および2次高調波信号E2の信号に対して同程度もしくはそれ以上である場合には、このような積の計算において、複素共役となる、第1の超音波パルスFPからの超音波エコーに対応する第1のIQ信号と第2の超音波パルスSPからの超音波エコーに対応する第2のIQ信号とが交互に入れ替わることにより、算出される位相差DAが180度から交互に離れた値を有するという性質が得られている。このような場合には、つまり、自己相関VTを算出する際に、積が計算される第1のIQ信号と第2のIQ信号の順番が周期的に入れ替われば同様の性質が得られるため、IQ信号Pj+3とPおよびPj+5とP等から算出される自己相関でも、同様の結果を得ることができる。
 このようにして、ステップS4でバブル信号らしさが算出されると、続くステップS5において、パルスインバージョン加算部7は、ステップS3で取得されたIQ信号列C1およびC2を用いて、第1の超音波パルスFPに対応するIQ信号と第2の超音波パルスSPに対応するIQ信号を加算することにより基本波信号E1およびE4が除去された加算信号を取得する。
 例えば、パルスインバージョン加算部7は、図12に示すように、互いに時系列に隣り合い且つ互いに極性の異なるIQ信号を加算することにより、加算信号a,a,a,a,a,aおよびb,b,b,b,bを算出する。この際に、パルスインバージョン加算部7は、例えば、下記式(5)を用いて加算信号a,a,a,a,a,aを算出し、下記式(6)を用いて加算信号b,b,b,b,bを算出する。
  a=P2m-1+P2m  (m=1,2,・・・,n)・・・(5)
  b=P2q+P2q+1  (q=1,2,・・・,n-1)・・・(6)
 続くステップS6において、非線形信号情報算出部8は、ステップS5で算出された加算信号aおよびbを用いて、被検体の組織に起因する2次高調波信号E2および被検体に導入された造影剤のバブルに起因する非線形な信号からなるバブル信号E3を含む非線形信号のパワーおよび速度ベクトルの少なくとも一方を算出する。例えば、非線形信号情報算出部8は、下記式(7)を用いてバブル信号E3のパワーPBを算出し、下記式(8)を用いてバブル信号E3の速度VBを算出することができる。
  PB=[Σ|a+Σ|b]/(2n-1)
   (m=1,2,・・・,n、 q=1,2,・・・,n-1)・・・(7)
  VB=[Σ(ar+1・a )+Σ(bt+1・b )]/(2n-3)
   (r=1,2,・・・,n-2、 t=1,2,・・・,n-3)・・・(8)
 続くステップS7において、画像生成部9は、ステップS6で算出された非線形信号のパワーPBおよび速度VBのうち少なくとも一方と、ステップS4で算出されたバブル信号らしさに基づいて超音波画像を生成し、生成した超音波画像を表示部11に表示する。例えば、画像生成部9は、図13に示すように、ステップS6で算出された非線形信号のパワーPBの値を明度変化により表し、バブル信号らしさの指標値を色Bの彩度変化により表す、いわゆるカラーマップにより超音波画像を生成し、生成した超音波画像を表示部11に表示することができる。図13に示す例では、パワーPBの値が大きくなるほど明度が大きくなり、バブル信号らしさの指標値が大きくなるほど色Bの彩度が高くなっている。
 このようにして、本発明の実施の形態に係る超音波診断装置1の動作が終了する。
 以上から、本発明の実施の形態1に係る超音波診断装置1によれば、バブル信号らしさ算出部6が、直交検波部5により取得されたIQ信号列C1およびC2から求めた自己相関VTに基づいてバブル信号らしさを算出するため、被検体の組織に起因する信号と、被検体に導入された造影剤のバブルに起因する信号とを容易に且つ短時間に区別することができる。
 さらに、算出されたバブル信号らしさの指標値と、非線形信号のパワーPBおよび速度VBのうち一方とに基づいて超音波画像を生成し、この超音波画像を表示部11に表示するため、ユーザが、被検体に導入された造影剤のバブルに起因する信号を容易に把握することができる。
 なお、実施の形態において、バブル信号らしさ算出部6は、数式(3)に示す分散VSをバブル信号らしさの指標値として算出しているが、IQ信号列に基づいて算出された自己相関VTを用いた指標値であれば、これに限定されない。例えば、バブル信号らしさ算出部6は、下記式(9)に示すように、数式(3)中に現れる|VT|/PTを用いて分散値VXを計算することにより、分散値VXをバブル信号らしさとして算出することができる。この場合には、分散値VXが1に近づくほど、直交検波部5により取得されたIQ信号列C1およびC2が被検体の組織に起因する信号らしいと判断することができ、分散値VXがゼロに近づくほど、IQ信号列C1およびC2が造影剤のバブルに起因する信号らしいと判断することができる。
  VX=|VT|/PT  ・・・(9)
 また、例えば、バブル信号らしさ算出部6は、直交検波部5により取得されたIQ信号列C1およびC2において、互いに時系列に隣り合うIQ信号の位相差の分散値を、バブル信号らしさとして算出することもできる。例えば、下記式(10)に示すように、IQ信号Pの実部をX、虚部をYとすると、互いに時系列に隣り合うIQ信号の位相差DAは、下記式(11)で表される。ここで、下記式(10)におけるiは、虚数単位を表す。
  P=X+iY  (k=1,2,・・・,2n)・・・(10)
  DA=tan-1[(Yj+1-Xj+1)/(Xj+1+Yj+1)]  (j=1,2,・・・,2n-1)・・・(11)
 さらに、バブル信号らしさ算出部6は、下記式(12)に示すように、数式(11)により算出された位相差DAの分散値VS1をバブル信号らしさの指標値として算出することができる。ここで、下記式(12)におけるE(DA)は、位相差DAの算術平均である。図9に示すように、非線形な信号からなるバブル信号E3の影響が小さい場合には、それぞれのDAは概ね互いに等しくなるため、VS1はゼロに近づく。一方、図11に示すように、非線形な信号からなるバブル信号E3の影響が大きい場合には、DAとDAj+1は互いに離れた値となるため、VS1はゼロよりも有意に大きな値となる。よって、分散値VS1が1に近づくほど、直交検波部5により取得されたIQ信号列C1およびC2が造影剤のバブルに起因する信号らしいと判断することができ、分散値VS1がゼロに近づくほど、IQ信号列C1およびC2が被検体の組織に起因する信号らしいと判断することができる。また、自己相関VTと同様の考え方により、Pj+3とPおよびPj+5とP等から算出される位相差でも同様の結果を得ることができる。
  VS1=1-[E(DA/{ΣDA /(2n-1)}]  (j=1,2,・・・、2n-1)・・・(12)
 また、例えば、バブル信号らしさ算出部6は、下記式(13)に示すように、数式(12)中に現れる分散値VX1を、バブル信号らしさとして算出することもできる。この場合には、分散値VX1が1に近づくほど、直交検波部5により取得されたIQ信号列C1およびC2が被検体の組織に起因する信号らしいと判断することができ、分散値VX1がゼロに近づくほど、造影剤のバブルに起因する信号らしいと判断することができる。
  VX1=[E(DA/{ΣDA /(2n-1)}]  (j=1,2,・・・、2n-1)・・・(13)
 また、例えば、バブル信号らしさ算出部6は、下記式(14)に示すように、直交検波部5により取得さえたIQ信号列C1およびC2の振幅の分散値VS2を、バブル信号らしさの指標値として算出することができる。ここで、下記式(14)におけるE(|P|)は、IQ信号Pの絶対値すなわち振幅の算術平均である。図8に示すように、非線形な信号からなるバブル信号E3の影響が小さい場合には、それぞれの|P|は概ね互いに等しくなるため、VS2はゼロに近づく。一方、図10に示すように、非線形な信号からなるバブル信号E3の影響が大きい場合には、|P|と|Pk+1|は互いに離れた値となるため、VS2はゼロよりも有意に大きな値となる。よって、分散値VS2が1に近づくほど、直交検波部5により取得されたIQ信号列C1およびC2が造影剤のバブルに起因する信号らしいと判断することができ、分散値VS2がゼロに近づくほど、IQ信号列C1およびC2が被検体の組織に起因する信号らしいと判断することができる。
  VS2=1-[E(|P|)/{Σ|P/(2n-1)}]  (k=1,2,・・・,2n)・・・(14)
 また、例えば、バブル信号らしさ算出部6は、下記式(15)に示すように、数式(14)中に現れる分散値VX2を、バブル信号らしさの指標値として算出することもできる。この場合には、分散値VX2が1に近づくほど、直交検波部5により取得されたIQ信号列C1およびC2が被検体の組織に起因する信号らしいと判断することができ、分散値VX2がゼロに近づくほど、造影剤のバブルに起因する信号らしいと判断することができる。
  VX2=[E(|P|)/{Σ|P/(2n-1)}]  (k=1,2,・・・,2n)・・・(15)
 また、実施の形態において画像生成部9により生成される超音波画像の表示例として、図13に示すような、バブル信号E3のパワーPBの値とバブル信号らしさとに基づく超音波画像を示しているが、画像生成部9により生成される超音波画像は、これに限定されない。例えば、画像生成部9は、図13に示す超音波画像の表示例において、バブル信号らしさの指標値が一定の値よりも大きい箇所のみ色Bを用いて表示し、バブル信号らしさの指標値が一定の値よりも小さい箇所については色Bを用いた表示を行わないで、パワーPBの値をグレースケールにより表示することができる。
 また、画像生成部9は、例えば、図14に示すように、被検体の組織に起因する2次高調波信号E2および被検体に導入された造影剤のバブルに起因する非線形な信号からなるバブル信号E3を含む非線形信号の速度VBの位相の極性に応じて色B1および色B2の一方を選択し、パワーPBの値を明度変化により表し、バブル信号らしさの指標値を色B1および色B2の彩度変化により表した超音波画像を生成し、生成した超音波画像を表示部11に表示することができる。図14に示す例では、パワーPBの値が大きくなるほど明度が大きくなり、速度VBの位相が正の領域においては、バブル信号らしさの指標値が大きくなるほど色B1の彩度が高くなり、速度VBの位相が負の領域においては、バブル信号らしさの指標値が大きくなるほど色B2の彩度が高くなっている。
 また、画像生成部9は、例えば、非線形信号の速度VBの位相の値とバブル信号らしさの指標値とに基づいて超音波画像を生成し、生成した超音波画像を表示部11に表示することもできる。例えば、この際に、画像生成部9は、図14に示す例と同様に、速度VBの位相の極性に応じて色B1および色B2の一方を選択し、速度VBの位相の絶対値を明度変化により表し、バブル信号らしさの指標値を色B1および色B2の彩度変化により表した超音波画像を生成することができる。
 また、画像生成部9は、非線形信号のパワーPBおよび速度VBのうち少なくとも一方に基づいて超音波画像を生成し、生成した超音波画像を表示部11に表示することもできる。例えば、画像生成部9は、図示しないが、パワーPBが大きいほど明度が大きくなるようなグレースケールにより超音波画像を生成することができる。
 また、画像生成部9は、非線形信号のパワーPBおよび速度VBのうち少なくとも一方に基づいて超音波画像を生成する場合に、バブル信号らしさの指標値を超音波画像に重畳して、または、並べて表示部11に表示することができる。この際に、例えば、画像生成部9は、図示しないが、操作部14を介してユーザにより指定された超音波画像上の位置に対応するバブル信号らしさの指標値を、表示部11に表示することができる。また、この際に、例えば、操作部14を介してユーザが操作することができるカーソルを表示部11に表示させておき、このカーソルにより、操作部14を介してユーザが超音波画像上の位置を指定することができる。
 なお、超音波診断装置1に表示部11とは異なるディスプレイを設け、このディスプレイにバブル信号らしさの指標値を表示することもできる。
 また、図示しないが、超音波画像装置1にBモード画像を生成するためのBモード処理部を設けることにより、被検体の断層画像を表すBモード画像上に、非線形信号のパワーPBおよび速度VB、ならびに、バブル信号らしさを画像化して表示部11に重畳表示させることができる。また、被検体の断層画像を表すBモード画像に並べて、非線形信号のパワーPBおよび速度VB、ならびに、バブル信号らしさを画像化して表示部11に表示させることもできる。
 また、実施の形態において、パルスインバージョン加算部7は、時系列に隣り合う第1の超音波パルスFPに対応するIQ信号と、第2の超音波パルスSPに対応するIQ信号を加算しているが、時系列に隣り合わない任意の組み合わせにより、第1の超音波パルスFPに対応するIQ信号と、第2の超音波パルスSPに対応するIQ信号とを加算することもできる。しかしながら、時系列に隣り合う第1の超音波パルスFPに対応するIQ信号と、第2の超音波パルスSPに対応するIQ信号を加算する方が、被検体の組織の動きの影響が少ないため、好ましい。
 また、パルスインバージョン加算部7は、数式(5)を用いて加算信号aを算出し、数式(6)を用いて加算信号bを算出しているが、加算信号aおよびbのうち、一方のみを算出することもできる。
1 超音波診断装置、2 振動子アレイ、3 送信部、4 受信部、5 直交検波部、6 バブル信号らしさ算出部、7 パルスインバージョン加算部、8 非線形信号情報算出部、9 画像生成部、10 表示制御部、11 表示部、12 装置制御部、13 格納部、14 操作部、15 プロセッサ、16 増幅部、17 AD変換部、18 ビームフォーマ、a1,a2,a3,a4,a5,a6,b1,b2,b3,b4,b5 加算信号、B,B1,B2 色、C1,C2 IQ信号列、DA,DA 位相差、E1,E4 基本波信号、E2 2次高調波信号、E3 バブル信号、FB 帯域、FP 第1の超音波パルス、G1,G2 基本波ベクトル、H1,H2 非線形信号ベクトル、VT,VT 自己相関ベクトル、L1,L2,L3,L4,L5 走査線、P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12 IQ信号、PRT1 時間間隔、SP 第2の超音波パルス。

Claims (9)

  1.  振動子アレイと、
     前記振動子アレイから被検体内に互いに位相を反転させた第1の超音波パルスと第2の超音波パルスの組を同一の走査線上に少なくとも2回以上のN回送信させる送信部と、
     前記被検体内において発生した超音波エコーを受けた前記振動子アレイから出力される信号により受信信号を取得する受信部と、
     前記受信部により取得された前記受信信号に対して定められた帯域で直交検波を行うことにより前記第1の超音波パルスに対応するIQ信号列と前記第2の超音波パルスに対応するIQ信号列を取得する直交検波部と、
     前記直交検波部により取得された前記IQ信号列を用いて、前記第1の超音波パルスに対応するIQ信号と前記第2の超音波パルスに対応するIQ信号を加算することにより基本波成分が除去された画像信号を取得するパルスインバージョン加算部と、
     前記直交検波部により取得された前記IQ信号列に基づいてバブル信号らしさを算出するバブル信号らしさ算出部と、
     前記バブル信号らしさ算出部により算出された前記バブル信号らしさと前記パルスインバージョン加算部により取得された前記画像信号とに基づいて超音波画像を生成する画像生成部と
     を備えた超音波診断装置。
  2.  前記バブル信号らしさ算出部は、前記直交検波部により取得された前記IQ信号列から自己相関を求め、求められた前記自己相関に基づいて前記バブル信号らしさを算出する請求項1に記載の超音波診断装置。
  3.  前記バブル信号らしさ算出部は、前記直交検波部により取得された前記IQ信号列から位相差の分散値を算出し、算出された前記位相差の分散値を用いて前記バブル信号らしさを算出する請求項1に記載の超音波診断装置。
  4.  前記バブル信号らしさ算出部は、前記直交検波部により取得された前記IQ信号列から振幅の分散値を算出し、算出された前記振幅の分散値を用いて前記バブル信号らしさを算出する請求項1に記載の超音波診断装置。
  5.  前記パルスインバージョン加算部により取得された前記画像信号から非線形信号のパワーおよび速度の少なくとも一方を算出する非線形信号情報算出部をさらに備える請求項1~4のいずれか一項に記載の超音波診断装置。
  6.  前記画像生成部は、前記非線形信号情報算出部により算出された前記非線形信号のパワーおよび速度の少なくとも一方に基づいて前記超音波画像を生成する請求項5に記載の超音波診断装置。
  7.  前記画像生成部は、前記非線形信号情報算出部により算出された前記非線形信号のパワーおよび速度の少なくとも一方と前記バブル信号らしさ算出部により算出された前記バブル信号らしさとに基づいたカラーマップにより前記超音波画像を生成する請求項6に記載の超音波診断装置。
  8.  前記超音波画像を表示する表示部をさらに備える請求項1~7のいずれか一項に記載の超音波診断装置。
  9.  振動子アレイから被検体内に互いに位相を反転させた第1の超音波パルスと第2の超音波パルスの組を同一の走査線上に少なくとも2回以上のN回送信させ、
     前記被検体内において発生した超音波エコーを受けた前記振動子アレイから出力される信号により受信信号を取得し、
     取得された前記受信信号に対して定められた帯域で直交検波を行うことにより前記第1の超音波パルスに対応するIQ信号列と前記第2の超音波パルスに対応するIQ信号列を取得し、
     取得された前記IQ信号列を用いて前記第1の超音波パルスに対応するIQ信号と前記第2の超音波パルスに対応するIQ信号を加算することにより基本波成分が除去された画像信号を取得し、
     取得された前記IQ信号列に基づいてバブル信号らしさを算出し、
     算出された前記バブル信号らしさと、取得された前記画像信号とに基づいて超音波画像を生成する
     超音波診断装置の制御方法。
PCT/JP2019/013237 2018-03-30 2019-03-27 超音波診断装置および超音波診断装置の制御方法 WO2019189386A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020509206A JP6963677B2 (ja) 2018-03-30 2019-03-27 超音波診断装置および超音波診断装置の制御方法
EP19774254.7A EP3777699A4 (en) 2018-03-30 2019-03-27 ULTRASONIC DIAGNOSTIC DEVICE AND CONTROL METHOD FOR ULTRASONIC DIAGNOSTIC DEVICE
US17/013,051 US11969296B2 (en) 2018-03-30 2020-09-04 Ultrasound diagnostic apparatus using a harmonic imaging method and method of controlling ultrasound diagnostic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018067682 2018-03-30
JP2018-067682 2018-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/013,051 Continuation US11969296B2 (en) 2018-03-30 2020-09-04 Ultrasound diagnostic apparatus using a harmonic imaging method and method of controlling ultrasound diagnostic apparatus

Publications (1)

Publication Number Publication Date
WO2019189386A1 true WO2019189386A1 (ja) 2019-10-03

Family

ID=68062073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013237 WO2019189386A1 (ja) 2018-03-30 2019-03-27 超音波診断装置および超音波診断装置の制御方法

Country Status (4)

Country Link
US (1) US11969296B2 (ja)
EP (1) EP3777699A4 (ja)
JP (1) JP6963677B2 (ja)
WO (1) WO2019189386A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7470167B2 (ja) 2021-10-29 2024-04-17 スーパー ソニック イマジン 媒体の物理的特性を決定する方法及びシステム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022211809A1 (en) * 2021-03-31 2022-10-06 Exo Imaging, Inc. Processing circuitry, system and method to test pixels in an ultrasonic imaging device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258886A (ja) * 2000-03-22 2001-09-25 Ge Medical Systems Global Technology Co Llc 画像構成方法および装置並びに超音波撮影装置
JP2002301068A (ja) 2001-04-09 2002-10-15 Toshiba Corp 超音波診断装置
JP2003230559A (ja) 2002-02-08 2003-08-19 Toshiba Corp 超音波診断装置
JP2006326178A (ja) * 2005-05-30 2006-12-07 Toshiba Corp 超音波診断装置及び超音波診断プログラム
US20080275338A1 (en) * 2004-06-30 2008-11-06 Koninklijke Philips Electronics N.V. Nonlinear Ultrasonic Diagnostic Imaging Using Intermodulation Product Signals
JP2014171755A (ja) * 2013-03-11 2014-09-22 Toshiba Corp 超音波診断装置、画像処理装置及び画像処理プログラム

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0770352B1 (en) * 1995-10-10 2004-12-29 Advanced Technology Laboratories, Inc. Ultrasonic diagnostic imaging with contrast agents
US6537222B1 (en) * 1997-08-26 2003-03-25 Koninklijke Philips Electronics N.V. Methods for the detection of contrast agents in ultrasonic imaging
JP4567842B2 (ja) * 2000-04-10 2010-10-20 株式会社東芝 超音波診断装置
JP4945040B2 (ja) * 2001-09-28 2012-06-06 株式会社東芝 超音波診断装置
JP3959257B2 (ja) * 2001-11-08 2007-08-15 株式会社東芝 超音波診断装置
JP2005081073A (ja) * 2003-09-11 2005-03-31 Toshiba Corp 超音波診断装置
JP4583068B2 (ja) * 2004-05-11 2010-11-17 株式会社東芝 超音波診断装置
US8315693B2 (en) * 2006-02-28 2012-11-20 Physio-Control, Inc. Electrocardiogram monitoring
US10203274B2 (en) * 2006-10-06 2019-02-12 California Institute Of Technology Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded (TRUME) light
US20100056924A1 (en) * 2006-11-20 2010-03-04 Koninklijke Philips Electronics N.V. Control and display of ultrasonic microbubble cavitation
EP2091453B1 (en) * 2006-12-08 2010-05-05 Koninklijke Philips Electronics N.V. A system, method, computer-readable medium, and use for planning combined therapy
JP4928989B2 (ja) * 2007-03-07 2012-05-09 株式会社東芝 超音波診断装置および超音波診断装置の制御プログラム
US7713209B2 (en) * 2007-05-21 2010-05-11 Siemens Medical Solutions Usa, Inc. Targeted contrast agent imaging with medical diagnostic ultrasound
US20100298709A1 (en) * 2009-04-17 2010-11-25 Visualsonics Inc. Method for nonlinear imaging of ultrasound contrast agents at high frequencies
US9743909B1 (en) * 2013-05-15 2017-08-29 University Of Washington Through Its Center For Commercialization Imaging bubbles in a medium
EP3097538B1 (en) * 2014-01-23 2018-09-26 Koninklijke Philips N.V. Evaluation of carotid plaque using contrast enhanced ultrasonic imaging
US11058401B2 (en) * 2014-01-23 2021-07-13 Super Sonic Imagine Method for determining a physical characteristic on a punctual location inside a medium, a method for determining an image of a medium, and an apparatus implementing said methods
JP6547612B2 (ja) * 2015-12-14 2019-07-24 コニカミノルタ株式会社 画像処理装置、画像処理方法、および、画像処理装置を備える超音波診断装置
JP6677042B2 (ja) * 2016-03-25 2020-04-08 コニカミノルタ株式会社 画像処理装置、超音波診断装置及び画像処理プログラム
EP3621525A1 (en) * 2017-05-11 2020-03-18 Verathon, Inc. Probability map-based ultrasound scanning
US20190154821A1 (en) * 2017-11-21 2019-05-23 The Charles Stark Draper Laboratory, Inc. System and method for imaging and localization of contrast-enhanced features in the presence of accumulating contrast agent in a body
US11766243B2 (en) * 2018-03-13 2023-09-26 Trust Bio-Sonics, Inc. Composition and methods for sensitive molecular analysis

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258886A (ja) * 2000-03-22 2001-09-25 Ge Medical Systems Global Technology Co Llc 画像構成方法および装置並びに超音波撮影装置
JP2002301068A (ja) 2001-04-09 2002-10-15 Toshiba Corp 超音波診断装置
JP2003230559A (ja) 2002-02-08 2003-08-19 Toshiba Corp 超音波診断装置
US20080275338A1 (en) * 2004-06-30 2008-11-06 Koninklijke Philips Electronics N.V. Nonlinear Ultrasonic Diagnostic Imaging Using Intermodulation Product Signals
JP2006326178A (ja) * 2005-05-30 2006-12-07 Toshiba Corp 超音波診断装置及び超音波診断プログラム
JP2014171755A (ja) * 2013-03-11 2014-09-22 Toshiba Corp 超音波診断装置、画像処理装置及び画像処理プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3777699A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7470167B2 (ja) 2021-10-29 2024-04-17 スーパー ソニック イマジン 媒体の物理的特性を決定する方法及びシステム

Also Published As

Publication number Publication date
JP6963677B2 (ja) 2021-11-10
EP3777699A4 (en) 2021-05-26
EP3777699A1 (en) 2021-02-17
US11969296B2 (en) 2024-04-30
JPWO2019189386A1 (ja) 2021-02-18
US20200397412A1 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
JP3462584B2 (ja) 超音波診断装置
JP4567842B2 (ja) 超音波診断装置
US10617395B2 (en) Ultrasound diagnostic apparatus and doppler waveform image generating method
WO2019189386A1 (ja) 超音波診断装置および超音波診断装置の制御方法
JP5481334B2 (ja) 超音波診断装置
US11331080B2 (en) Ultrasound diagnostic apparatus that generates an ultrasound image using a harmonic imaging method and method of controlling ultrasound diagnostic apparatus that generates an ultrasound image using a harmonic imaging
JP5148194B2 (ja) 超音波診断装置
JP2009022462A (ja) 超音波診断装置および超音波診断装置の制御プログラム
JP5159480B2 (ja) 超音波診断装置および超音波診断装置の制御プログラム
JP5869411B2 (ja) 超音波診断装置および超音波画像生成方法
JP4912982B2 (ja) 超音波診断装置
JP2023006198A (ja) 超音波診断装置及びプログラム
JP6494784B2 (ja) 超音波診断装置および超音波診断装置の制御方法
JP2005278892A (ja) 超音波診断装置
WO2017122411A1 (ja) 超音波診断装置および音速定量化方法
JP2020081322A (ja) 超音波診断装置および超音波画像生成方法
JPWO2018181127A1 (ja) 超音波診断装置および超音波診断装置の制御方法
JP2015142608A (ja) 超音波診断装置及び超音波診断プログラム
JP7118280B2 (ja) 超音波診断装置および超音波診断装置の制御方法
JP7095177B2 (ja) 超音波診断装置、超音波診断装置の制御方法および超音波診断装置用プロセッサ
JP7455696B2 (ja) 超音波診断装置、学習装置、画像処理方法およびプログラム
JP6536357B2 (ja) 超音波画像診断装置
JP6364084B2 (ja) 音響波診断装置およびその制御方法
JP2021016723A (ja) 超音波画像生成装置およびその制御方法
JP2014028027A (ja) 超音波診断装置、スイッチング制御プログラムおよびスイッチング制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774254

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509206

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2019774254

Country of ref document: EP