WO2019189361A1 - 発泡成形品の製造方法及び発泡成形品 - Google Patents

発泡成形品の製造方法及び発泡成形品 Download PDF

Info

Publication number
WO2019189361A1
WO2019189361A1 PCT/JP2019/013193 JP2019013193W WO2019189361A1 WO 2019189361 A1 WO2019189361 A1 WO 2019189361A1 JP 2019013193 W JP2019013193 W JP 2019013193W WO 2019189361 A1 WO2019189361 A1 WO 2019189361A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
supercritical fluid
molded product
temperature
Prior art date
Application number
PCT/JP2019/013193
Other languages
English (en)
French (fr)
Inventor
一弘 小森
雄介 愛敬
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018098222A external-priority patent/JP7063721B2/ja
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to US16/982,648 priority Critical patent/US11753515B2/en
Priority to EP19774658.9A priority patent/EP3778740B1/en
Priority to CN201980021819.7A priority patent/CN111918911B/zh
Publication of WO2019189361A1 publication Critical patent/WO2019189361A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent

Definitions

  • the present invention relates to a method for producing a liquid crystal polyester foam molded article and a foam molded article.
  • This application claims priority based on Japanese Patent Application No. 2018-064240 filed in Japan on March 29, 2018 and Japanese Patent Application No. 2018-098222 filed in Japan on May 22, 2018. And the contents thereof are incorporated herein.
  • liquid crystal polyester is known as an excellent material having heat resistance, high mechanical properties, and high fluidity.
  • the liquid crystal polyester may be referred to as “LCP”.
  • LCP liquid crystal polyester resin composition
  • liquid crystal polyester resin composition For the purpose of reducing the weight of a molded product while taking advantage of these various properties of LCP, foam molding of a resin composition containing LCP has been studied.
  • the resin composition containing LCP is referred to as “liquid crystal polyester resin composition”.
  • Patent Document 1 describes a method for producing a foam molded product of a liquid crystal polyester resin composition using a supercritical fluid as a foam material, a liquid crystal polyester resin composition, and a foam molded product thereof.
  • Patent Document 2 describes a foam molded product of a liquid crystal polyester resin composition using a supercritical fluid as a foaming material. In Patent Document 2, a result obtained by measuring and averaging the bubble diameters of 500 arbitrary bubbles inside the molded article is described.
  • the foam molded products using these liquid crystal polyester resin compositions are characterized by excellent heat insulating properties, sink marks and warpage in addition to the mechanical properties inherent to the liquid crystal polyester.
  • Non-Patent Document 1 describes a relationship between the density of a gas component dissolved in a molten resin as a foaming material (hereinafter referred to as source gas) in the molten resin and the number of cell nuclei. It is suggested that the bubble nucleus increases as the amount of the raw material gas dissolved in the molten resin is increased to increase the density of the raw material gas in the molten resin. That is, it can be inferred that foaming is promoted by increasing the cell nuclei and a molded product having a large number of cells can be produced. From these findings, it can be inferred that a molded article having a large number of bubbles can be produced by increasing the amount of supercritical fluid introduced into the molten resin.
  • Patent Document 1 has a problem that there is a liquid crystal polyester that cannot be foam-molded.
  • patent document 2 although the bubble diameter is used as a parameter
  • the foamed state of a foamed molded product tends to deteriorate particularly near the flow end of the resin. For this reason, bubbles often coalesce to form non-uniform and huge cavities, and it can be determined whether the foamed state of the entire molded product is uniform or not by simply evaluating the bubble diameter at the local site inside the molded product. There is a problem that you can not.
  • the weight of the foam molded product may not be stable and the weight variation may increase, and the foamed state inside the molded product may become uneven.
  • the present invention has been made in view of such circumstances, and is capable of uniformly foaming a resin composition containing LCP and suppressing the variation in the weight of the foam molded product, and a foam molded product manufacturing method and foam It is an object to provide a molded product.
  • the present inventor continuously operates to form a foam molded product by introducing and kneading a specific amount of supercritical fluid into a resin composition containing a liquid crystalline polyester exhibiting a melt tension within a specific range. Repeatedly, the foamed state inside the molded product was made uniform.
  • the present invention provides the following [1] to [9].
  • [1] A method for producing a foam molded product for continuously molding a foam molded product, the step 1 of melting a resin composition containing liquid crystal polyester, and 0.1 part by mass with respect to 100 parts by mass of the liquid crystal polyester
  • Step 2 of introducing and melting and kneading a foam material made of a supercritical fluid that is non-reactive with the liquid crystalline polyester in a supercritical state of 0.3 parts by mass or less and is a gas under normal temperature and normal pressure using an introduction device
  • step 3 for injecting the melt-kneaded resin composition into the mold, and step 4 for foaming by lowering at least one of the pressure and temperature of the foam material below the critical point of the foam material.
  • Step 1, Step 2, Step 3, and Step 4 are continuously repeated in this order, and the liquid crystalline polyester has a melt tension of 5 mN to 100 mN at a temperature 20 ° C. higher than the flow start temperature.
  • the liquid crystalline polyester has a repeating unit represented by the following general formulas (1), (2), and (3).
  • Ar 1 is a phenylene group, a naphthylene group or a biphenylylene group
  • Ar 2 and Ar 3 are each independently a phenylene group, a naphthylene group, a biphenylylene group or a group represented by the following general formula (4): Yes
  • X and Y are each independently an oxygen atom or imino group
  • one or more hydrogen atoms in Ar 1 , Ar 2 and Ar 3 are each independently substituted with a halogen atom, an alkyl group or an aryl group May be.
  • Ar 4 and Ar 5 are each independently a phenylene group or a naphthylene group
  • Z is an oxygen atom, a sulfur atom, a carbonyl group, a sulfon
  • a method for producing a foamed molded product for continuously molding a foamed molded product includes: Including continuously repeating the following step 1, step 2, step 3, and step 4 in this order; Step 1 includes melting a resin composition containing liquid crystal polyester; In the step 2, a supercritical fluid that is non-reactive with the liquid crystalline polyester in a supercritical state and is a gas under normal temperature and normal pressure is 0.1 parts by mass or more and 0.3 parts by mass with respect to 100 parts by mass of the liquid crystalline polyester.
  • the step 3 includes injecting a resin composition containing the supercritical fluid after melt-kneading into a mold
  • the step 4 includes producing a foamed molded article by foaming by lowering at least one of the pressure and temperature of the supercritical fluid contained in the resin composition below a critical point of the supercritical fluid;
  • the liquid crystalline polyester has a melt tension of 5 mN or more and 100 mN or less at a temperature 20 ° C. higher than the flow start temperature.
  • the liquid crystalline polyester has a repeating unit represented by the following general formula (1), a repeating unit represented by (2), and a repeating unit represented by (3) in [1 ′].
  • the manufacturing method of the foaming molded article of description (1) —O—Ar 1 —CO— (2) —CO—Ar 2 —CO— (3) —X—Ar 3 —Y—
  • Ar 1 is a phenylene group, a naphthylene group or a biphenylylene group
  • Ar 2 and Ar 3 are each independently a phenylene group, a naphthylene group, a biphenylylene group or a group represented by the following general formula (4): Yes; X and Y are each independently an oxygen atom or an imino group; at least one hydrogen atom in Ar 1 , Ar 2 and Ar 3 is each independently substituted with a halogen atom, an alkyl group or an aryl group May be.
  • the method includes any one of [1 ′] to [3 ′], further including measuring the introduction amount of the supercritical fluid and feedback controlling the introduction amount of the supercritical fluid based on the measurement result.
  • [5 ′] The process for producing a foam molded article according to any one of [1 ′] to [4 ′], wherein the supercritical fluid is nitrogen.
  • the resin composition contains an inorganic filler more than 0 parts by mass and 100 parts by mass or less with respect to 100 parts by mass of the liquid crystalline polyester.
  • the manufacturing method of the foaming molded article of description [7 ′] The foam according to any one of [1 ′] to [6 ′], wherein the viscosity of the resin composition at a temperature 20 ° C. higher than the flow start temperature is 200 Pa ⁇ s or more and 5000 Pa ⁇ s or less. Manufacturing method of molded products.
  • the content of the inorganic filler is more than 0 parts by mass and 100 parts by mass or less with respect to 100 parts by mass of the liquid crystalline polyester.
  • the viscosity of the resin composition at a temperature 20 ° C. higher than the flow start temperature of the resin composition is 200 Pa ⁇ s to 5000 Pa ⁇ s, and the liquid crystal polyester is 20 ° C. higher than the flow start temperature of the liquid crystal polyester.
  • the melt tension at a high temperature is 5 mN or more and 100 mN or less.
  • Ar 1 is a phenylene group, a naphthylene group or a biphenylylene group
  • Ar 2 and Ar 3 are each independently a phenylene group, a naphthylene group, a biphenylylene group or a group represented by the following general formula (4): Yes
  • X and Y are each independently an oxygen atom or an imino group
  • at least one hydrogen atom in Ar 1 , Ar 2 and Ar 3 is each independently substituted with a halogen atom, an alkyl group or an aryl group May be.
  • Ar 4 and Ar 5 are each independently a phenylene group or a naphthylene group
  • Z is an oxygen atom, a sulfur atom, a carbonyl group, a sulfon
  • the present invention it is possible to provide a foamed molded product manufacturing method and a foamed molded product that can uniformly foam a resin composition containing LCP and suppress the weight variation of the foamed molded product.
  • the present embodiment is a method for manufacturing a foam molded product in which the foam molded product is continuously molded.
  • the method for producing a foam-molded article of the present embodiment includes a step 1 of melting a resin composition containing liquid crystal polyester, and a supercritical fluid that is non-reactive with the liquid crystal polyester in a supercritical state and is a gas at normal temperature and pressure.
  • Step 1 Introducing into the resin composition with an introduction device at an introduction amount of 0.1 to 0.3 parts by mass with respect to 100 parts by mass of the liquid crystalline polyester, and melt-kneading step 2, and after the melt-kneading Step 3 of injecting a resin composition containing a supercritical fluid into a mold, and reducing at least one of the pressure and temperature of the supercritical fluid contained in the resin composition to be below the critical point of the supercritical fluid.
  • Step 4 including producing a foamed molded product by foaming. Further, step 1, step 2, step 3, and step 4 are continuously repeated in this order.
  • continuous means that a series of molding operations from Step 1 to Step 4 is repeated twice or more. In this embodiment, it is preferable to repeat 10 times or more, more preferably 20 times or more, and particularly preferably 30 times or more.
  • the number of repetitions of the molding operation exceeds 10
  • the dispersion state of the supercritical fluid contained in the molten resin (resin composition containing molten liquid crystal polyester) in the cylinder 111 becomes uniform, and foam molding in a uniform foam state Product can be manufactured.
  • uniform means a state where the molten resin and the supercritical fluid are in a single phase.
  • the introduction of the supercritical fluid is not performed every time following the step 1 and becomes intermittent, it is not included in the continuous meaning. In other words, in the series of molding operations from step 1 to step 4, the case where only step 2 is omitted once or twice is excluded from the continuous meaning. .
  • FIG. 1 is a schematic view of an injection molding machine for producing a foamed molded product of the present embodiment.
  • the injection molding machine 1 is a machine for producing a foam molded body having a predetermined shape using a resin composition and a supercritical fluid described later.
  • a main body 11, a mold 12, and a supercritical fluid are introduced into the main body 11.
  • a supercritical fluid introducing device 21 for the purpose.
  • the introduction device 21 includes a gas cylinder 211 filled with the above-described supercritical fluid source gas, a booster 212 that boosts the source gas from the gas cylinder 211 to a critical pressure, and a source gas (supercritical pressure) that has been boosted to a critical pressure. And a control valve 213 for controlling the amount of fluid introduced into the cylinder 111.
  • the temperature of the raw material gas is increased by adiabatically compressing the raw material gas in the booster 212. However, if the temperature reached by this temperature increase is less than the critical temperature, the raw material gas from the gas cylinder 211 is made critical if necessary. Use a heater that raises the temperature.
  • Step 1 is a step including melting a resin composition containing liquid crystal polyester.
  • the above resin composition is charged into the cylinder 111 from the hopper 113 and heated and kneaded in the cylinder 111 to melt (plasticize) the resin composition.
  • plasticizing metering means an operation of keeping the amount filled in the next injection in the cylinder while melting (plasticizing) the resin composition pellets in a short time by rotating the screw. .
  • Step 2 uses a supercritical fluid which is non-reactive with the liquid crystalline polyester in a supercritical state and is a gas under normal temperature and normal pressure (25 ° C., 1013 hPa) as a foaming material, and the foaming material is used with respect to 100 parts by mass of the liquid crystalline polyester.
  • a supercritical fluid which is non-reactive with the liquid crystalline polyester in a supercritical state and is a gas under normal temperature and normal pressure (25 ° C., 1013 hPa) as a foaming material, and the foaming material is used with respect to 100 parts by mass of the liquid crystalline polyester.
  • step 2 first, the gas cylinder 211 is opened, and the raw material gas is boosted to a critical point or higher by the booster 212 and heated to a supercritical fluid.
  • the resulting supercritical fluid is introduced into the cylinder 111 by opening the control valve 213 and impregnated in the molten resin composition.
  • a supercritical fluid of 0.1 parts by mass or more and 0.3 parts by mass or less with respect to 100 parts by mass of the liquid crystalline polyester is made into a molten resin composition by the introduction device 21. Introduce and melt knead.
  • the introduction device 21 preferably includes feedback means that can measure the introduction amount of the supercritical fluid and perform feedback control based on the measurement result (for example, T-100J manufactured by Trexel is cited as an introduction device for the supercritical fluid). ).
  • feedback control it is possible to suppress oversupply or undersupply of the supercritical fluid.
  • the introduction amount of the supercritical fluid is controlled by monitoring and controlling the introduction time and the differential pressure of the supercritical fluid. Thereby, the said specific amount of supercritical fluid can be introduce
  • the foaming of the resin proceeds sufficiently. Moreover, the foaming state inside a molded article becomes uniform as it is 0.3 mass part or less with respect to 100 mass parts of liquid crystalline polyester. If the amount of supercritical fluid introduced exceeds 0.3 parts by mass with respect to 100 parts by mass of the liquid crystalline polyester, the foamed state inside the molded product may become non-uniform. On the other hand, if the amount of supercritical fluid introduced is less than 0.1 parts by mass with respect to 100 parts by mass of the liquid crystalline polyester, foaming of the resin does not proceed sufficiently, and a foam molded product may not be obtained.
  • the foamed state inside the molded product may be non-uniform.
  • the introduction amount of the supercritical fluid is 0.1 parts by mass or more and 0.3 parts by mass or less with respect to 100 parts by mass of the liquid crystalline polyester, the plasticization measurement is performed only once in three times. If the specific amount of the supercritical fluid is not introduced, the foamed state inside the molded product may become uneven.
  • Step 3 is a step including injecting a resin composition containing a supercritical fluid after melt-kneading into a mold, and a molten resin containing molten super-kneaded fluid (melted) in the cylinder 111 by a screw 112. The resin composition) is moved and poured into the mold 12. At this time, until the injection of the molten resin containing the supercritical fluid into the mold 12 is completed, the mold 12 is clamped in order to keep the molten resin impregnated with the supercritical fluid. Counter pressure may be applied.
  • Step 4 is a step including foaming by lowering at least one of the pressure and temperature of the supercritical fluid contained in the resin composition after the melt-kneading until it falls below the critical point of the supercritical fluid.
  • the injection molding method using the mold 12 may be any of a short shot method, a full shot method, and a core back method.
  • the core back method is preferred from the viewpoint of positive foaming by expanding the mold volume after filling with the molten resin.
  • the core back method is, for example, to expand a cavity volume after filling a molten resin using a mold having a variable cavity volume, which uses the operation of a slide core of the mold and a molding machine. Including the movement of the movable platen.
  • the temperature of the molten resin containing the supercritical fluid in the cylinder 111 is lowered in a process of being injected and held from the cylinder 111 by the screw 112 into the mold 12 adjusted to a desired temperature by a heater or the like.
  • the pressure that is equal to or higher than the critical pressure approaches normal pressure, and the solubility of the supercritical fluid contained in the molten resin is lowered to change to a gaseous state.
  • the supercritical fluid contained in the molten resin is changed to a gas and the volume is expanded, and a foamed molded product is obtained.
  • the molded product is taken out from the mold 12 after a predetermined cooling time has elapsed.
  • steps 1 to 4 are repeated in this order.
  • step 2 By performing step 2 and setting the introduction amount of the supercritical fluid to a specific amount each time, the foaming of the resin can be made uniform. Thereby, the dispersion
  • weight variation of a molded product means variation among individual products.
  • the foamed material according to the present embodiment is a supercritical fluid that is non-reactive with liquid crystal polyester in a supercritical state and is a gas at normal temperature and pressure.
  • supercritical fluid is a term indicating a state of a substance that is not a gas, a liquid, or a solid, which is exhibited by the substance under conditions of a specific temperature and pressure (critical point) or higher.
  • the critical point which is a specific temperature and pressure, is determined by the type of material.
  • the supercritical fluid has a higher penetrating power (solubility) to the molten resin than the substance in a gas state or a liquid state, and can be uniformly dispersed in the molten resin.
  • the supercritical fluid for example, an inert gas such as carbon dioxide, nitrogen, helium, air, or the like is preferable.
  • carbon dioxide and nitrogen are more preferable.
  • nitrogen has a critical point of temperature: ⁇ 147 ° C. and pressure: 3.4 MPa, normal temperature (25 ° C.) is higher than the critical temperature. Therefore, since it is possible to adjust the supercritical fluid only by controlling the pressure, it is easy to handle and is particularly preferable.
  • the resin composition containing liquid crystal polyester includes liquid crystal polyester and an arbitrary inorganic filler.
  • the liquid crystal polyertel has a melt tension of 5 mN or more and 100 mN or less at a temperature 20 ° C. higher than the flow start temperature.
  • the flow start temperature is also referred to as a flow temperature or a flow temperature, and is a measure of the molding temperature at the time of liquid crystal polyester injection molding. Generally, at the time of injection molding, molding is performed at a temperature higher than the flow start temperature.
  • the flow start temperature is a heat-melting of the liquid crystalline polyester using a capillary rheometer having a nozzle having an inner diameter of 1 mm and a length of 10 mm and a heating rate of 4 ° C./min under a load of 9.8 MPa (100 kg / cm 2 ). It represents the temperature at which the melt viscosity is 4,800 Pa ⁇ s (48,000 poise) when the body is pushed out of the nozzle.
  • the melt tension can be measured by the following method. Using a capillary rheometer, the piston ( ⁇ 10 mm) is lowered at a speed of 10 mm / min at a temperature 20 ° C. higher than the flow start temperature of the liquid crystal polyester contained in the resin composition, and the liquid crystal polyester is 1 mm in inner diameter ⁇ 10 mm in length. Extrude from the nozzle. The melt tension at this time is measured.
  • the melt tension of the liquid crystalline polyester is 5 mN or more, preferably 10 mN or more, and more preferably 20 mN or more. Moreover, 90 mN or less is preferable, 80 mN or less is more preferable, and 75 mN or less is especially preferable.
  • the melt tension of the liquid crystal polyester is less than 5 mN, when the resin composition (molten resin) containing a supercritical fluid is foamed by reducing the pressure in the mold, the bubbles are easily united and the foamed state is not uniform. It may be a foam molded product.
  • the melt tension of the liquid crystalline polyester exceeds 100 mN, the injection pressure may increase too much during injection molding, and molding may not be possible.
  • the melt tension of the liquid crystal polyester according to the present invention is preferably 5 mN to 90 mN, more preferably 10 mN to 80 mN, and particularly preferably 20 mN to 75 mN.
  • the melt tension of the liquid crystalline polyester according to the present invention may be 5 mN or more and 71 mN or less, or 14 mN or more and 71 mN or less.
  • the melt tension may be adjusted by increasing the molecular weight of the liquid crystal polyether, or may be controlled by adjusting the amount of inorganic filler added.
  • the liquid crystal polyester according to this embodiment has a repeating unit represented by the following general formulas (1), (2), and (3).
  • Ar 1 is a phenylene group, a naphthylene group or a biphenylylene group
  • Ar 2 and Ar 3 are each independently a phenylene group, a naphthylene group, a biphenylylene group or a group represented by the following general formula (4): Yes;
  • X and Y are each independently an oxygen atom or an imino group; at least one hydrogen atom in Ar 1 , Ar 2 and Ar 3 is each independently substituted with a halogen atom, an alkyl group or an aryl group May be.
  • Ar 4 and Ar 5 are each independently a phenylene group or a naphthylene group
  • the halogen atom that can be substituted for at least one hydrogen atom in the group represented by Ar 1 , Ar 2 or Ar 3 includes a fluorine atom, a chlorine atom, bromine An atom and an iodine atom are mentioned.
  • the alkyl group capable of substituting at least one hydrogen atom in the group represented by Ar 1 , Ar 2 or Ar 3 is an alkyl having 1 to 10 carbon atoms.
  • Group for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-hexyl group, n-heptyl group, 2 -Ethylhexyl group, n-octyl group, n-nonyl group, n-decyl group and the like.
  • the aryl group that can be substituted with at least one hydrogen atom in the group represented by Ar 1 , Ar 2 or Ar 3 is aryl having 6 to 20 carbon atoms.
  • Group for example, monocyclic aromatic group such as phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, etc., condensed ring type such as 1-naphthyl group and 2-naphthyl group, etc.
  • An aromatic group is mentioned.
  • the alkylidene group is preferably an alkylidene group having 1 to 10 carbon atoms, such as a methylene group, an ethylidene group, an isopropylidene group, an n-butylidene group, and a 2-ethylhexylidene group. Can be mentioned.
  • Ar 1 is a 1,4-phenylene group (for example, a repeating unit derived from p-hydroxybenzoic acid), and Ar 1 is 2,6-naphthylene.
  • a group for example, a repeating unit derived from 6-hydroxy-2-naphthoic acid
  • a group in which Ar 1 is a 4,4′-biphenylylene group is preferable.
  • Examples of the monomer that forms the repeating unit represented by the general formula (1) include 6-hydroxy-2-naphthoic acid, p-hydroxybenzoic acid or 4- (4-hydroxyphenyl) benzoic acid. And a monomer in which the hydrogen atom of the benzene ring or naphthalene ring is substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms or an aryl group. Further, it may be used as an ester-forming derivative described later.
  • Ar 2 is a 1,4-phenylene group (for example, a repeating unit derived from terephthalic acid), and Ar 2 is a 1,3-phenylene group.
  • Ar 2 is a 2,6-naphthylene group (for example, repeating units derived from 2,6-naphthalenedicarboxylic acid), and Ar 2 is diphenyl ether-4,4 Preferred are those having a '-diyl group (for example, a repeating unit derived from diphenyl ether-4,4'-dicarboxylic acid), wherein Ar 2 is a 1,4-phenylene group, and Ar 2 is 1,3-phenylene. More preferred are those in which Ar 2 is a 2,6-naphthylene group.
  • Examples of the monomer that forms the repeating unit represented by the general formula (2) include 2,6-naphthalenedicarboxylic acid, terephthalic acid, isophthalic acid, or biphenyl-4,4′-dicarboxylic acid, and these benzenes. Mention may also be made of monomers in which the hydrogen atom of the ring or naphthalene ring is substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms or an aryl group. Further, it may be used as an ester-forming derivative described later.
  • Ar 3 is a 1,4-phenylene group (for example, a repeating unit derived from hydroquinone, a repeating unit derived from p-aminophenol, or p-phenylenediamine. And a repeating unit derived from 4-amino-4′-hydroxybiphenyl, wherein Ar 3 is a 4,4′-biphenylylene group (eg, a repeating unit derived from 4,4′-dihydroxybiphenyl) Units or repeating units derived from 4,4′-diaminobiphenyl) are preferred.
  • 1,4-phenylene group for example, a repeating unit derived from hydroquinone, a repeating unit derived from p-aminophenol, or p-phenylenediamine.
  • a repeating unit derived from 4-amino-4′-hydroxybiphenyl wherein Ar 3 is a 4,4′-biphenylylene group (eg, a repeating unit derived from 4,4
  • Examples of the monomer that forms the repeating unit represented by the general formula (3) include 2,6-naphthol, hydroquinone, resorcin, and 4,4′-dihydroxybiphenyl, and further, hydrogen of these benzene rings or naphthalene rings. Mention may also be made of monomers in which the atom is substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms or an aryl group. Further, it may be used as an ester-forming derivative described later.
  • the monomer that forms the repeating unit represented by the formula (1), the repeating unit represented by (2), or the repeating unit represented by (3) facilitates polymerization in the process of producing a polyester, and thus forms an ester. It is preferable to use a functional derivative.
  • This ester-forming derivative refers to a monomer having a group that promotes an ester formation reaction. Specifically, the ester-forming derivative is obtained by converting a carboxylic acid group in a monomer molecule into an acid halide or an acid anhydride. Examples thereof include highly reactive derivatives such as derivatives and ester-forming derivatives in which a hydroxyl group (hydroxyl group) in a monomer molecule is a lower carboxylic acid ester group.
  • the content of the repeating unit (1) of the liquid crystal polyester is preferably 30 mol% or more when the total content of the repeating unit (1), the repeating unit (2) and the repeating unit (3) is 100 mol%. More preferably, they are 30 mol% or more and 80 mol% or less, More preferably, they are 40 mol% or more and 70 mol% or less, Especially preferably, they are 45 mol% or more and 65 mol% or less.
  • the content of the repeating unit (2) of the liquid crystal polyester is preferably 35 mol% or less, when the total content of the repeating unit (1), the repeating unit (2) and the repeating unit (3) is 100 mol%. More preferably, they are 10 mol% or more and 35 mol% or less, More preferably, they are 15 mol% or more and 30 mol% or less, Especially preferably, they are 17.5 mol% or more and 27.5 mol% or less.
  • the content of the repeating unit (3) of the liquid crystal polyester is preferably 35 mol% or less, when the total content of the repeating unit (1), the repeating unit (2) and the repeating unit (3) is 100 mol%. More preferably, they are 10 mol% or more and 35 mol% or less, More preferably, they are 15 mol% or more and 30 mol% or less, Especially preferably, they are 17.5 mol% or more and 27.5 mol% or less.
  • the content of the repeating unit (1) is 30 mol% or more and 80 It is preferable that the content of the repeating unit (2) is 10 mol% or more and 35 mol% or less, and the content of the repeating unit (3) is 10 mol% or more and 35 mol% or less.
  • the liquid crystalline polyester can easily improve the melt fluidity, heat resistance, strength and rigidity.
  • the liquid crystal polyester may have one or more repeating units (1) to (3) independently, or two or more.
  • the liquid crystalline polyester may have one or more repeating units other than the repeating units (1) to (3), and the content thereof is 100 mol% of the total content of all repeating units. Is preferably 0 mol% or more and 10 mol% or less, more preferably 0 mol% or more and 5 mol% or less.
  • the liquid crystalline polyester has a repeating unit (3) in which X and Y are each an oxygen atom, that is, having a repeating unit derived from a predetermined aromatic diol, the melt viscosity tends to be low. It is more preferable that the repeating unit (3) has only those in which X and Y are each an oxygen atom.
  • the liquid crystalline polyester is preferably produced by melt polymerization of raw material monomers corresponding to the repeating units constituting the liquid crystalline polyester, and solid-phase polymerization of the obtained polymer (prepolymer). Thereby, high molecular weight liquid crystal polyester having high heat resistance, strength and rigidity can be produced with good operability.
  • Melt polymerization may be performed in the presence of a catalyst.
  • the catalyst include magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, antimony trioxide, and other metal compounds, Examples thereof include nitrogen-containing heterocyclic compounds such as N, N-dimethylaminopyridine and 1-methylimidazole, and nitrogen-containing heterocyclic compounds are preferred.
  • the flow start temperature of the liquid crystalline polyester is preferably 270 ° C. or higher, more preferably 270 ° C. or higher and 400 ° C. or lower, and further preferably 280 ° C. or higher and 380 ° C. or lower.
  • the higher the flow start temperature the higher the heat resistance, strength, rigidity, and impact resistance of the liquid crystalline polyester, but if it is too high, it requires a high temperature to melt, and is likely to be thermally deteriorated during molding, Viscosity at the time of melting increases and fluidity decreases.
  • the flow start temperature of the liquid crystalline polyester is within the above range, the resulting molded product has improved heat resistance, strength, rigidity, and impact resistance, and is less susceptible to thermal degradation during molding, It has moderate viscosity and fluidity.
  • the said liquid crystalline polyester may be used individually by 1 type, and may use 2 or more types together.
  • the content of the liquid crystal polyester according to the present invention is preferably more than 30% by mass and 100% by mass or less, and 40% by mass to 90% by mass with respect to the total mass of the resin composition. More preferably, 50 mass% or more and 80 mass% or less are especially preferable.
  • inorganic fillers examples include glass fibers, silica fibers, alumina fibers, silica fibers such as silica fibers, metal fibers such as stainless fibers, talc, mica, scaly graphite, wollastonite, barium sulfate, and calcium carbonate. It is done.
  • glass fiber examples include those produced by various methods such as chopped glass fiber and milled glass fiber. Mica may be muscovite, phlogopite, fluorine phlogopite, or tetrasilicon mica.
  • the scaly graphite may be natural scaly graphite or artificial scaly graphite.
  • the inorganic filler is preferably a glass fiber.
  • the number average fiber length of the glass fibers after melt-kneading is preferably 50 ⁇ m or more and 500 ⁇ m or less. Moreover, it is preferable that the number average fiber diameter after the melt kneading of the glass fiber is 6 ⁇ m or more and 18 ⁇ m or less. In the present specification, the number average fiber diameter and the number average fiber length of the glass fiber after melt-kneading can be measured by observation with an electron microscope.
  • the glass fibers may be used alone or in combination of two or more.
  • the compounding amount of the inorganic filler is preferably from 0 to 100 parts by mass with respect to 100 parts by mass of the liquid crystalline polyester, preferably 10 parts by mass or more and 90 parts by mass or less. More preferred is 20 to 80 parts by mass.
  • the resin composition according to the present embodiment may further contain other components that do not correspond to either the liquid crystal polyester or the inorganic filler within a range not impairing the effects of the present embodiment.
  • the other components include fillers other than inorganic fillers (hereinafter sometimes referred to as “other fillers”), additives, and resins other than liquid crystal polyester (hereinafter referred to as “other resins”). And the like.
  • the other components may be used alone or in combination of two or more.
  • content of the said other filler is more than 0 mass part and 100 mass parts or less with respect to 100 mass parts of said liquid crystalline polyester. It is preferable.
  • the additive examples include an antioxidant, a heat stabilizer, an ultraviolet absorber, an antistatic material, a surfactant, a flame retardant, and a coloring material.
  • the content of the additive is more than 0 parts by mass and less than 5 parts by mass with respect to 100 parts by mass in total of the liquid crystal polyester and the inorganic filler. It is preferable that
  • thermoplastic resins such as polyethersulfone, polyetherimide, polysulfone, polyarylate, polyamide, polyester, polyphenylene sulfide, polyether ketone, and modified polyphenylene ether. A combination of the above may also be used.
  • the content of the other resin is more than 0 parts by mass and less than 100 parts by mass with respect to 100 parts by mass of the liquid crystal polyester. Is preferred.
  • the resin composition according to the present embodiment preferably has a viscosity of 200 Pa ⁇ s or more and 5000 Pa ⁇ s or less at a temperature 20 ° C. higher than the flow start temperature.
  • the viscosity of the resin composition is within the above range, the foamed state inside the molded product becomes uniform.
  • the viscosity at a temperature 20 ° C. higher than the flow start temperature of the resin composition is lower than 200 Pa ⁇ s, bubbles are generated when the molten resin obtained by melting and kneading the resin composition containing the supercritical fluid is foamed by reducing the pressure in the mold. May become easy to unite, and a foamed molded product having a non-uniform foamed state may be obtained.
  • the viscosity at a temperature 20 ° C. higher than the flow start temperature of the resin composition exceeds 5000 Pa ⁇ s, the viscosity of the resin composition is too high, so that the foam cannot be obtained without foaming the resin.
  • the viscosity at a temperature 20 ° C. higher than the flow start temperature of the resin composition may be 230 Pa ⁇ s or more and 4000 Pa ⁇ s or less, or 1600 Pa ⁇ s or more and 4000 Pa ⁇ s or less.
  • the resin composition can be produced by mixing the liquid crystalline polyester, the inorganic filler, and optionally other components at once or in an appropriate order.
  • the resin composition is preferably pelletized by melt-kneading a liquid crystal polyester, an inorganic filler, and other components as required with an extruder.
  • the extruder preferably has a cylinder, one or more screws arranged in the cylinder, and one or more supply ports provided in the cylinder, and further, one or more vent parts in the cylinder. Those provided with are more preferable.
  • This embodiment is a foam-molded article that is foam-molded from a foam material and a resin composition, and the resin composition is a repeating unit represented by the following general formula (1), a repeating unit represented by (2) And a liquid crystal polyester having a repeating unit represented by (3) and an inorganic filler, and the content of the inorganic filler is more than 0 parts by mass and 100 parts by mass or less with respect to 100 parts by mass of the liquid crystal polyester.
  • the melt tension at a high temperature is 5 mN or more and 100 mN or less.
  • Ar 1 is a phenylene group, a naphthylene group or a biphenylylene group
  • Ar 2 and Ar 3 are each independently a phenylene group, a naphthylene group, a biphenylylene group or a group represented by the following general formula (4): Yes
  • X and Y are each independently an oxygen atom or an imino group
  • at least one hydrogen atom in Ar 1 , Ar 2 and Ar 3 is each independently substituted with a halogen atom, an alkyl group or an aryl group May be.
  • Ar 4 and Ar 5 are each independently a phenylene group or a naphthylene group
  • Z is an oxygen atom, a sulfur atom, a carbonyl group, a sulfon
  • the foamed molded product of the present embodiment preferably has a thin portion of 4.0 mm or less.
  • the foam molded article of this embodiment preferably has a thickness of 4.0 mm or less, more preferably 3.5 mm or less, and particularly preferably 3.0 mm or less.
  • Examples of the lower limit of the thickness include 0.1 mm or more, preferably 0.3 mm or more, and particularly preferably 0.5 mm or more.
  • the foamed molded product of the present embodiment may be a foamed molded product having a thin-walled portion of 4.0 mm or less and a thick-walled portion exceeding 4.0 mm, with the thickest portion being 4.0 mm or less. It may be a molded product.
  • the “thickness” of the foam molded product can be measured with a micrometer.
  • the “thin wall portion” means a portion where the thickness of the foam molded product is 0.1 mm or more and 4 mm or less.
  • the “thick part” means a part where the thickness of the foam molded product is more than 4 mm and not more than 30 mm.
  • the “thickest part” means a part having the maximum thickness in the foam molded product.
  • the foam molded product of this embodiment is particularly excellent in strength when the thickness is reduced.
  • the thinner the foam-molded product the higher the average bending strength of the foam-molded product.
  • the rate is improved.
  • the strength of the skin layer itself affects the strength of the entire solid molded product because the molecular orientation of the skin layer is higher than the molecular orientation of the core layer.
  • the foam molded product made of liquid crystal polyester it is estimated that the thinner the molded product, the stronger the strength of the skin layer affects the strength of the entire foam molded product than the solid molded product.
  • components formed of the foam molded product of this embodiment include bobbins such as an optical pickup bobbin and a transformer bobbin; relay components such as a relay case, a relay base, a relay sprue, and a relay armature; RIMM, DDR, CPU socket , S / O, DIMM, Board to Board connector, FPC connector, card connector, etc .; Lamp reflector, LED reflector, etc .; Lamp holder, heater holder, etc .; Speaker diaphragm, etc.
  • bobbins such as an optical pickup bobbin and a transformer bobbin
  • relay components such as a relay case, a relay base, a relay sprue, and a relay armature
  • Lamp reflector, LED reflector, etc . Lamp holder, heater holder, etc .
  • Speaker diaphragm etc.
  • Separation claws, separation claws for printers, etc . camera module parts; switch parts; motor parts; sensor parts; hard disk drive parts; tableware such as ovenware; vehicle parts (instrumental panels, door trims, lugs Off, aero parts, including other structural members, etc.); aircraft parts; and sealing member for a semiconductor device, and a sealing member of the sealing member such as a coil.
  • a method for producing a foam molded product for continuously molding the foam molded product of the present embodiment is as follows: Including repeating step 1, step 2, step 3, and step 4 in this order more than once; Step 1 includes melting a resin composition containing liquid crystal polyester; The step 2 is supercritical which is non-reactive with the liquid crystal polyester in a supercritical state of 0.1 parts by mass or more and 0.3 parts by mass or less with respect to 100 parts by mass of the liquid crystal polyester and is a gas at normal temperature and pressure.
  • the step 3 includes injecting a resin composition containing the supercritical fluid after melt-kneading into a mold
  • the step 4 includes producing a foamed molded article by foaming by lowering at least one of the pressure and temperature of the supercritical fluid contained in the resin composition below a critical point of the supercritical fluid;
  • the liquid crystalline polyester comprises a repeating unit (1) wherein Ar 1 is a 2,6-naphthylene group, a repeating unit (2) wherein Ar 2 is a 2,6-naphthylene group, and the Ar 2 is 1,4.
  • a liquid crystalline polyester comprising a repeating unit (2) which is a -phenylene group and a repeating unit (3) wherein the Ar 3 is a 1,4-phenylene group, or a repeating unit wherein the Ar 1 is a 1,4-phenylene group ( 1), a repeating unit (2) in which Ar 2 is a 1,4-phenylene group, a repeating unit (2) in which Ar 2 is a 1,3-phenylene group, and Ar 3 is 4,4 ′.
  • the content of the repeating unit (2) is 10 mol% or more and 35 mol% or less
  • the content of the repeating unit (3) is 10 mol% or more and 35 mol% or less
  • the liquid crystalline polyester has a melt tension of 5 mN to 100 mN (preferably 5 mN to 71 mN, more preferably 14 mN to 71 mN) at a temperature 20 ° C higher than the flow start temperature
  • the resin composition has a viscosity of 200 Pa ⁇ s or more and 5000 Pa ⁇ s or less (preferably 230 Pa ⁇ s or more and 4000 Pa ⁇ s or less, more preferably, at a temperature 20 ° C. higher than the flow start temperature of the resin composition. Is 1600 Pa ⁇ s or more and 4000 Pa ⁇ s or less); A method for producing a foam molded article.
  • the liquid crystal polyester is lowered by lowering the piston ( ⁇ 10 mm) at a speed of 10 mm / min using a capillary rheometer at a temperature 20 ° C. higher than the flow start temperature of the liquid crystal polyester.
  • the melt tension was measured by extruding from a nozzle having an inner diameter of 1 mm and a length of 10 mm (unit: mN).
  • melt viscosity of resin composition Using a parallel plate rheometer, the resin composition was melted at a temperature 80 ° C. higher than the flow start temperature of the resin composition, and then the temperature was decreased at a rate of 5 ° C. per minute by a temperature drop method. The melt viscosity of the resin composition was measured, and the melt viscosity at a temperature 20 ° C. higher than the flow start temperature of the resin composition was measured (unit: Pa ⁇ s).
  • the void is a cavity having a size of 0.1 mm 3 or more inside the foam molded product.
  • the void ratio is a ratio (volume fraction) of the total volume of the voids in the foam molded product to the volume of the foam molded product, and a foam molded product having a thickness of 150 mm ⁇ 150 mm ⁇ 2.4 mm is used. Then, the void ratio inside the molded product was measured using a three-dimensional X-ray CT system (TOSCANER 32300 ⁇ FD, manufactured by Toshiba Corporation), and the void ratio was calculated using analysis software VGSTUDIO MAX. In addition, since the shape of the molded product is constant as described above, the weight of the molded product obtained is reduced as the average weight of the obtained molded product is reduced.
  • the foamed state inside the molded product was determined according to the following criteria.
  • D When the void ratio is 1.5% or more
  • the average weight was calculated by measuring the weight of 30 sheets of foamed molded products each having a thickness of 150 mm ⁇ 150 mm ⁇ 2.4 mm or 250 mm ⁇ 360 mm ⁇ 3 mm.
  • n total number of data x i : weight of individual molded product x ⁇ : average weight of molded product
  • the variation in the weight of the molded product was determined according to the following criteria.
  • a non-foamed molded product manufactured by a manufacturing method in which a supercritical fluid is not injected and foamed at the time of molding is defined as a solid molded product.
  • the average bending strength of the solid molded products described in Examples 10 to 17 is 150 mm ⁇ 150 mm ⁇ 3 mm thick, or 150 mm ⁇ 150 mm ⁇ 4 mm thick from the center of the solid molded product (hereinafter referred to as MD direction).
  • the test piece (MD direction: 140 mm ⁇ TD direction: 10 mm) cut into 10 mm along the direction perpendicular to the flow direction (hereinafter referred to as the TD direction) is used. The average value was obtained.
  • the average bending strength of the solid molded product described in Comparative Example 6 is an ISO 3167 dumbbell specimen A type (parallel portion shape: 80 mm ⁇ 10 mm ⁇ 4 mm thickness).
  • the average value was obtained.
  • the average bending strength of the foam molded products described in Examples 18 to 25 and Comparative Examples 7 to 8 is 150 mm ⁇ 150 mm ⁇ 3 mm thick, or 150 mm ⁇ 150 mm ⁇ 4 mm thick from the center of the foam molded product, 140 mm in the MD direction.
  • X Using a test piece cut into a shape of 10 mm in the TD direction, the number of n was set to 3, and measurement was performed according to ISO 178 to obtain an average value.
  • Molded product specific gravity (weight of test piece) / (volume of test piece)
  • the weight reduction rate of the foam molded product was calculated from the following formula from the specific gravity of the foam molded product and the specific gravity of the solid molded product.
  • Weight reduction ratio of foam molded product (specific gravity of solid molded product-specific gravity of foam molded product) / (specific gravity of solid molded product) x 100
  • the strength retention of the average bending strength of the foam molded product was calculated from the average bending strength of the solid molded product and the average bending strength of the foam molded product by the following formula.
  • ratio A Ratio of strength retention ratio of average bending strength to weight reduction ratio of foam molded product
  • Ratio A (100 ⁇ Strength retention ratio of average bending strength of foam molded product (%)) / (Light weight ratio of foam molded product (%))
  • the magnitude of the difference in the ratio A was determined according to the following criteria.
  • the obtained solid was pulverized with a pulverizer to a particle size of about 0.1 to 1 mm to obtain a powdery prepolymer.
  • the prepolymer was heated from room temperature to 250 ° C. over 1 hour in a nitrogen atmosphere, heated from 250 ° C. to 310 ° C. over 10 hours, and held at 300 ° C. for 6 hours to obtain a solid phase.
  • Polymerization was performed. After solid state polymerization, the mixture was cooled to obtain a powdery liquid crystal polyester.
  • the liquid crystal polyester had a flow start temperature of 303 ° C.
  • the liquid crystal polyester thus obtained is designated as LCP1.
  • the total amount of all repeating units constituting LCP1 is 100 mol%
  • Ar 1 is 55 mol% of a repeating unit (2) having a 2,6-naphthylene group
  • the obtained solid was pulverized with a pulverizer to a particle size of about 0.1 to 1 mm to obtain a powdery prepolymer.
  • the prepolymer was heated from room temperature to 250 ° C. over 1 hour in a nitrogen atmosphere, heated from 250 ° C. to 310 ° C. over 10 hours, and held at 310 ° C. for 6 hours to obtain a solid phase. Polymerization was performed. After solid state polymerization, the mixture was cooled to obtain a powdery liquid crystal polyester.
  • the liquid crystal polyester had a flow initiation temperature of 324 ° C.
  • the liquid crystal polyester thus obtained is designated as LCP2.
  • LCP2 has a total amount of all repeating units constituting LCP2 of 100 mol%, Ar 1 is 55 mol% of repeating unit (1) having a 2,6-naphthylene group, and Ar 2 is 2,6-naphthylene group. 17.5 mol% of a certain repeating unit (2), 5 mol% of a repeating unit (2) in which Ar 2 is a 1,4-phenylene group, and a repeating unit ( 3 in which Ar 3 is a 1,4-phenylene group) ) was 22.5 mol%.
  • the obtained solid was pulverized with a pulverizer to a particle size of about 0.1 to 1 mm to obtain a powdery prepolymer.
  • the prepolymer was heated from room temperature to 250 ° C. over 1 hour in a nitrogen atmosphere, heated from 250 ° C. to 310 ° C. over 10 hours, and held at 310 ° C. for 10 hours to obtain a solid phase.
  • Polymerization was performed. After solid state polymerization, the mixture was cooled to obtain a powdery liquid crystal polyester.
  • the liquid crystal polyester had a flow start temperature of 334 ° C.
  • the liquid crystal polyester thus obtained is designated as LCP3.
  • the total amount of all repeating units constituting LCP3 is 100 mol%
  • Ar 1 is 55 mol% of repeating units (2) having a 2,6-naphthylene group
  • the obtained solid was pulverized with a pulverizer to a particle size of about 0.1 to 1 mm to obtain a powdery prepolymer.
  • the prepolymer was heated from room temperature to 250 ° C. over 1 hour in a nitrogen gas atmosphere, heated from 250 ° C. to 285 ° C. over 5 hours, and held at 285 ° C. for 3 hours, After solid phase polymerization, the mixture was cooled to obtain a powdery liquid crystal polyester.
  • the liquid crystal polyester had a flow initiation temperature of 327 ° C.
  • the liquid crystal polyester thus obtained is designated as LCP4.
  • the total amount of all repeating units constituting LCP4 is 100 mol%, the repeating unit (1) in which Ar 1 is a 1,4-phenylene group is 60 mol%, and Ar 2 is a 1,4-phenylene group.
  • the mixture was stirred for 1 hour while maintaining the same temperature. Then, the temperature was raised over 2 hours and 50 minutes while distilling off by-product acetic acid and unreacted acetic anhydride, and the temperature was maintained at 320 ° C. until an increase in torque was observed, and then the contents were taken out from the reactor. This was cooled to room temperature.
  • the obtained solid was pulverized with a pulverizer to a particle size of about 0.1 to 1 mm to obtain a powdery prepolymer.
  • the prepolymer was heated from room temperature to 250 ° C. over 1 hour in a nitrogen atmosphere, heated from 250 ° C. to 285 ° C. over 5 hours, and held at 285 ° C. for 3 hours, thereby solidifying the prepolymer.
  • the mixture was cooled to obtain a powdery liquid crystal polyester.
  • the liquid crystal polyester had a flow initiation temperature of 327 ° C.
  • the liquid crystal polyester thus obtained is designated as LCP5.
  • the total amount of all repeating units constituting LCP5 is 100 mol%
  • the repeating unit (1) in which Ar 1 is a 1,4-phenylene group is 60 mol%
  • Ar 2 is 1,4-phenylene group.
  • the obtained solid was pulverized with a pulverizer to a particle size of about 0.1 to 1 mm to obtain a powdery prepolymer.
  • the prepolymer was then heated from room temperature to 250 ° C. over 1 hour in a nitrogen atmosphere, heated from 250 ° C. to 300 ° C. over 5 hours, held at 300 ° C. for 3 hours, and polymerized in a solid layer.
  • the reaction proceeded.
  • the flow starting temperature of the obtained polyester was 361 ° C.
  • the liquid crystal polyester thus obtained is designated as LCP3.
  • the total amount of all repeating units constituting LCP6 is 100 mol%
  • the repeating unit (1) in which Ar 1 is a 1,4-phenylene group is 60 mol%
  • Ar 2 is 1,4-phenylene group.
  • the LCP2, LCP4 or LCP5 was mixed under the conditions shown in Table 1. Specifically, the cylinder temperature was set to 340 ° C. using a twin screw extruder (Ikegai Iron Works “PCM-30HS”) and a water ring vacuum pump (Shinko Seiki “SW-25”). The resin component was fed from a feeder and melt kneaded while degassing with a vacuum vent with a screw having a kneading block inserted therein. The discharged strand was cut to obtain a resin composition in the form of pellets.
  • PCM-30HS twin screw extruder
  • SW-25 water ring vacuum pump
  • the pellets produced by the above-mentioned method are all electric molding machine “J110AD-180H” manufactured by Nippon Steel Works, Ltd., and supercritical fluid production unit “SCF SYSTEM T- having a feedback control function of supercritical fluid introduction amount”.
  • 100J manufactured by TREXEL, described as device B in Table 1
  • supercritical nitrogen was introduced under the conditions shown in Table 1 when the resin composition was heated and measured in a cylinder at a set temperature of 360 ° C. did.
  • the molten resin in which the supercritical fluid is dissolved is injected into a mold having a cavity shape of 150 mm x 150 mm x 1.2 mm at a set temperature of 120 ° C, and a flat plate (150 mm x 150 mm x 2.4 mm thick) is formed by the core back method.
  • An expanded molded article was obtained.
  • the LCP5 was mixed under the conditions shown in Table 1. Specifically, the cylinder temperature was set to 340 ° C. using a twin screw extruder (Ikegai Iron Works “PCM-30HS”) and a water ring vacuum pump (Shinko Seiki “SW-25”). The resin component was fed from a feeder and melt kneaded while degassing with a vacuum vent with a screw having a kneading block inserted therein. The discharged strand was cut to obtain a resin composition in the form of pellets.
  • PCM-30HS twin screw extruder
  • SW-25 water ring vacuum pump
  • the pellets produced by the above-mentioned method are all electric molding machine “J450AD” manufactured by Nippon Steel Works, Ltd., and supercritical fluid production unit “SCF SYSTEM SII which does not have a feedback control function of supercritical fluid introduction amount” TRJ-30-A (manufactured by TREXEL, described as device A in Table 1) ”, when the resin composition is heated and measured in a cylinder at a set temperature of 360 ° C., nitrogen in a supercritical state (supercritical fluid) ) was introduced under the conditions shown in Table 1.
  • a molten resin in which a supercritical fluid is dissolved is injected into a mold having a cavity shape of 250 mm ⁇ 360 mm ⁇ 3 mm thickness at a set temperature of 120 ° C., and a flat molded product (250 mm ⁇ 360 mm ⁇ 6 mm thickness) by a core back method.
  • the amount of supercritical fluid introduced was not stable, the resin pressure at the time of melt kneading with a molding machine varied, the supercritical fluid could not be stably introduced as set, and gold Even if the mold was core-backed, there was a part that did not foam as designed, and a foam molded product could not be obtained.
  • the LCP1 was mixed under the conditions shown in Table 1. Specifically, the cylinder temperature was set to 320 ° C. using a twin screw extruder (Ikegai Iron Works “PCM-30HS”) and a water ring vacuum pump (Shinko Seiki “SW-25”). The resin component was fed from a feeder and melt kneaded while degassing with a vacuum vent with a screw having a kneading block inserted therein. The discharged strand was cut to obtain a resin composition in the form of pellets.
  • PCM-30HS twin screw extruder
  • SW-25 water ring vacuum pump
  • the pellets produced by the above-mentioned method are all electric molding machine “J110AD-180H” manufactured by Nippon Steel Works, Ltd., and supercritical fluid manufacturing unit “SCF SYSTEM T- having a feedback control function of supercritical fluid introduction amount”.
  • 100J TREXEL, described as device B in Table 1
  • supercritical nitrogen supercritical fluid was measured when the resin composition was heated and measured in a cylinder having a set temperature of 330 ° C. Introduced under the conditions shown in.
  • the molten resin in which the supercritical fluid is dissolved is injected into a mold having a cavity shape of 150 mm x 150 mm x 1.2 mm at a set temperature of 120 ° C, and a flat plate (150 mm x 150 mm x 2.4 mm thick) is formed by the core back method.
  • An expanded molded article was obtained.
  • Example 3 As the liquid crystalline resin, the LCP6 was mixed under the conditions shown in Table 1. Specifically, resin components are fed from a feeder using a twin-screw extruder (Ikegai Iron Works Co., Ltd. “PCM-30HS”) and a water-sealed vacuum pump (Shinko Seiki Co., Ltd. “SW-25”). Then, the temperature of the cylinder was set to 370 ° C., and the mixture was melt-kneaded while degassing with a vacuum vent using a screw having a kneading block inserted therein. The discharged strand was cut to obtain a resin composition in the form of pellets.
  • PCM-30HS twin-screw extruder
  • SW-25 water-sealed vacuum pump
  • the pellets produced by the above-mentioned method are all electric molding machine “J110AD-180H” manufactured by Nippon Steel Works, Ltd., and supercritical fluid manufacturing unit “SCF SYSTEM T- having a feedback control function of supercritical fluid introduction amount”.
  • 100J TREXEL, described as “device B” in Table 1
  • supercritical nitrogen supercritical fluid was measured when the resin composition was heated and measured in a cylinder at a set temperature of 380 ° C. Introduced under the conditions shown in.
  • the molten resin in which the supercritical fluid is dissolved is injected into a mold having a cavity shape of 150 mm x 150 mm x 1.2 mm at a set temperature of 120 ° C, and a flat plate (150 mm x 150 mm x 2.4 mm thick) is formed by the core back method.
  • An expanded molded article was obtained.
  • the pellets produced by the above-mentioned method are all electric molding machine “J110AD-180H” manufactured by Nippon Steel Works, Ltd., and supercritical fluid production unit “SCF SYSTEM T- having a feedback control function of supercritical fluid introduction amount” 100J (TREXEL, described as “device B” in Table 1) ”, supercritical nitrogen (supercritical fluid) was measured when the resin composition was heated and measured in a cylinder at a set temperature of 360 ° C.
  • the molten resin in which the supercritical fluid is dissolved is injected into a mold having a cavity shape of 150 mm ⁇ 150 mm ⁇ 1.2 mm thickness at a set temperature of 120 ° C., and a flat plate (150 mm ⁇ 150 mm) by the core back method.
  • a foam molded article having a shape of ⁇ 2.4 mm thickness was obtained.
  • Comparative Example 5 As the liquid crystalline resin, the LCP2 or LCP5 and glass fiber were mixed under the conditions shown in Table 1. Specifically, using a twin screw extruder (Ikegai Iron Works Co., Ltd. “PCM-30HS”) and a water-sealed vacuum pump (Shinko Seiki Co., Ltd. “SW-25”), resin components and inorganic substances are fed from the feeder. The filler was fed, the cylinder temperature was 350 ° C., and the mixture was melt-kneaded while degassing with a vacuum vent using a screw with a kneading block inserted. The discharged strand was cut to obtain a resin composition in the form of pellets.
  • PCM-30HS twin screw extruder
  • SW-25 water-sealed vacuum pump
  • the pellets produced by the above-mentioned method are all electric molding machine “J110AD-180H” manufactured by Nippon Steel Works, Ltd., and supercritical fluid production unit “SCF SYSTEM T- having a feedback control function of supercritical fluid introduction amount” 100J (TREXEL, described as “device B” in Table 1) ”, supercritical nitrogen (supercritical fluid) was measured when the resin composition was heated and measured in a cylinder at a set temperature of 360 ° C.
  • the molten resin in which the supercritical fluid is dissolved is injected into a mold having a cavity shape of 150 mm ⁇ 150 mm ⁇ 1.2 mm thickness at a set temperature of 120 ° C., and a flat plate (150 mm ⁇ 150 mm) by the core back method.
  • a foam molded article having a shape of ⁇ 2.4 mm thickness was obtained.
  • the amount of supercritical fluid introduced is in the range of 0.1 parts by mass or more and 0.3 parts by mass or less, one of the three plasticization measurements is performed. Since the above-mentioned specific amount of supercritical fluid was introduced only frequently (the supercritical fluid was introduced once every three shots), the dispersion state of the supercritical fluid impregnated with the molten resin in the molding machine cylinder Became non-uniform and the foamed state inside the molded product deteriorated.
  • Examples 1 to 9 to which the present invention is applied can produce a foamed molded article in which the foamed state inside the molded article is good and the weight of the molded article is small. did it.
  • Comparative Examples 1 to 5 to which the present invention is not applied were not all good because not only the foamed state inside the molded product was bad, but also the weight of the molded product became large.
  • Solid pellets were produced from the pellets produced by the above-described method using an all-electric molding machine “J110AD-180H” manufactured by Nippon Steel Works.
  • the supercritical fluid is not injected at the time of obtaining the solid molded product.
  • a molten resin obtained by heating, weighing and melting the resin composition in a cylinder at a set temperature of 360 ° C. is injected into a mold having a cavity shape of 150 mm ⁇ 150 mm ⁇ 3 mm thickness or 150 mm ⁇ 150 mm ⁇ 4 mm thickness at a set temperature of 80 ° C.
  • a flat solid molded body was obtained.
  • the pellets produced by the above-mentioned method are all electric molding machine “J110AD-180H” manufactured by Nippon Steel Works, Ltd., and supercritical fluid production unit “SCF SYSTEM T- having a feedback control function of supercritical fluid introduction amount” 100J (manufactured by TREXEL, described as device B in Table 2) ", supercritical nitrogen was introduced under the conditions shown in Table 2 when the resin composition was heated and measured in a cylinder at a set temperature of 360 ° C. did. The molten resin in which the supercritical fluid is dissolved is injected at a set temperature of 80 ° C.
  • a foamed molded product having a shape of 150 mm ⁇ 150 mm ⁇ 3 mm or 150 mm ⁇ 150 mm ⁇ 4 mm was obtained.
  • a polyamide 66 (hereinafter sometimes abbreviated as PA66) resin composition (Ultramid A3WG6 (30% by mass glass fiber blended product)) was molded under the conditions shown in Table 2.
  • PA66 polyamide 66
  • Table 2 a polyamide 66 resin composition
  • PNX40-5A manufactured by Nissei Plastic Industry Co., Ltd.
  • the resin composition is heated and weighed in a cylinder with a set temperature of 280 ° C., and the melted molten resin is cavityd at the set temperature of 80 ° C.
  • a solid molded product was obtained by injecting into a mold having a shape of ISO 3167 dumbbell specimen A type (parallel portion shape: 80 mm ⁇ 10 mm ⁇ 4 mm thickness).
  • a PA66 resin composition (Ultramid A3WG6 (30% by mass glass fiber blended product)) was molded under the conditions shown in Table 3. All-electric molding machine “J110AD-180H” manufactured by Nippon Steel Co., Ltd., and supercritical fluid production unit “SCF SYSTEM T-100J (TREXEL, device B in Table 3) having a feedback control function of supercritical fluid introduction amount.
  • SCF SYSTEM T-100J TREXEL, device B in Table 3
  • the molten resin in which the supercritical fluid is dissolved is injected at a set temperature of 80 ° C. into a mold having a cavity shape of 150 mm ⁇ 150 mm ⁇ 1.5 mm thickness or 150 mm ⁇ 150 mm ⁇ 2 mm thickness before core back.
  • a foamed molded product having a shape of 150 mm ⁇ 150 mm ⁇ 3 mm or 150 mm ⁇ 150 mm ⁇ 4 mm was obtained.
  • the present invention can provide a foamed molded product manufacturing method and a foamed molded product capable of uniformly foaming a resin composition containing LCP and suppressing weight variation of the foamed molded product. Useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

発泡成形品を連続的に成形する発泡成形品の製造方法であって、この製造方法は、下記工程1、工程2、工程3、及び工程4をこの順で連続的に繰り返すことを含み;工程1は、液晶ポリエステルを含む樹脂組成物を溶融することを含み;工程2は、超臨界状態においてこの液晶ポリエステルと非反応であり、かつ常温常圧下で気体である超臨界流体を、この液晶ポリエステル100質量部に対して0.1質量部以上0.3質量部以下の導入量で、導入装置により、この樹脂組成物に導入し、溶融混練することを含み、工程3は、溶融混練後のこの超臨界流体を含む樹脂組成物を金型内に射出することを含み、工程4は、この樹脂組成物に含まれる超臨界流体の圧力及び温度の少なくとも一方を、この超臨界流体の臨界点を下回るまで下げて発泡させて発泡成形品を製造することを含み;この液晶ポリエステルは、流動開始温度より20℃高い温度における溶融張力が5mN以上100mN以下である、発泡成形品の製造方法。

Description

発泡成形品の製造方法及び発泡成形品
 本発明は液晶ポリエステル発泡成形品の製造方法及び発泡成形品に関する。
 本願は、2018年3月29日に、日本に出願された特願2018-064240号、及び2018年5月22日に、日本に出願された特願2018-098222号、に基づき優先権を主張し、その内容をここに援用する。
 近年、自動車や航空機を含む輸送機器の分野において、燃費向上を目的として部材の軽量化が進められている。成形品の軽量化のため、金属を樹脂に置き換える試みや樹脂発泡成形品の適用が検討されている。
 樹脂の中でも、液晶ポリエステルは耐熱性、高い機械物性及び高流動性を備える優れた材料として知られている。以下、液晶ポリエステルを「LCP」と記載する場合がある。LCPが有するこれらの諸特性を活かしつつ、成形品を軽量化する事を目的として、LCPを含む樹脂組成物の発泡成形が検討されている。以下、LCPを含む樹脂組成物を「液晶ポリエステル樹脂組成物」と記載する。
 このような問題を解決するため、液晶ポリエステル樹脂組成物の発泡成形には、発泡材として物理発泡材である超臨界流体が好適に用いられる。
 例えば、特許文献1には、発泡材として超臨界流体を用いた液晶ポリエステル樹脂組成物の発泡成形品の製造方法、液晶ポリエステル樹脂組成物、及びその発泡成形品が記載されている。
 また、特許文献2には、発泡材として超臨界流体を使用した液晶ポリエステル樹脂組成物の発泡成形品が記載されている。特許文献2においては、成形品内部の任意の気泡500個の気泡径を測定して平均した結果が記載されている。
 これらの液晶ポリエステル樹脂組成物を用いた発泡成形品は、液晶ポリエステルが本来有する機械特性に加えて、断熱性やヒケや反りに優れるという特徴がある。
 非特許文献1には、発泡材として溶融樹脂に溶解させたガス成分(以下、原料ガスと記載する)の溶融樹脂における密度と気泡核数との関係について記載されている。溶融樹脂への原料ガスの溶解量を増加させて溶融樹脂における原料ガスの密度を増加させるほど、気泡核が増加する事が示唆されている。つまり、気泡核が増加することで発泡が促進され、気泡数の多い成形品を製造できることが類推される。これらの知見より、溶融樹脂への超臨界流体の導入量を増加させることで、気泡数の多い成形品を製造できる事が類推される。
特許第6025241号公報 特開2003-138054号公報
J. Colton and N.P Suh, Polymer Engineering & Science, 27, 485 (1987)
 しかしながら、特許文献1に記載の発明は、発泡成形する事ができない液晶ポリエステルがあるという課題がある。
 また、特許文献2では、気泡径が発泡状態を示す指標として用いられているが、発泡成形品全体の発泡状態は不明である。一般的に、発泡成形品の発泡状態は、樹脂の流動末端付近で特に悪化する傾向がある。このため、気泡が合一して不均一で巨大な空洞を形成する場合が多く、成形品内部の局所的な部位の気泡径の評価だけでは、成形品全体の発泡状態が均一かどうかは判別できないという問題がある。
 さらに、連続的に発泡成形した際に発泡成形品の重量が安定せず重量バラつきが大きくなる場合があり、かつ成形品内部の発泡状態が不均一になる場合があるという問題がある。
 本発明は、このような事情に鑑みてなされたものであり、LCPを含む樹脂組成物を均一に発泡させることができ、かつ発泡成形品の重量バラつきを抑制できる発泡成形品の製造方法及び発泡成形品を提供することを課題とする。
 本発明者らはLCP発泡成形品を連続的に成形する場合に超臨界流体の導入量を多くすると、製造される成形品の発泡状態が不均一になるだけでなく、成形品重量のバラつきが大きくなることを見出した。
 さらに、超臨界流体を溶融樹脂に導入する度に、前記導入量が特定の範囲外であると、製造される発泡成形品の発泡状態が不均一になるということを見出した。また、液晶ポリエステルの溶融張力が特定の範囲外では、製造される成形品の発泡状態が不均一になるだけでなく、成形品重量のバラつきが大きくなるということを見出した。
 上記知見をもとに、本発明者は、特定範囲内の溶融張力を示す液晶ポリエステルを含む樹脂組成物に、特定量の超臨界流体を導入・混練して発泡成形品を成形する動作を連続的に繰り返すことで、成形品内部の発泡状態を均一なものとすることを実現した。
 すなわち、本発明は以下の[1]~[9]を提供する。
[1]発泡成形品を連続的に成形する発泡成形品の製造方法であって、液晶ポリエステルを含む樹脂組成物を溶融する工程1と、前記液晶ポリエステル100質量部に対して0.1質量部以上0.3質量部以下の超臨界状態において前記液晶ポリエステルと非反応であり、常温常圧下で気体である超臨界流体からなる発泡材を、導入装置を用いて導入して溶融混練する工程2と、溶融混練後の樹脂組成物を金型内に射出する工程3と、前記発泡材の圧力及び温度の少なくとも一方を前記発泡材の臨界点を下回るまで下げて発泡させる工程4と、を備え、工程1、工程2、工程3、工程4をこの順で連続的に繰り返し、前記液晶ポリエステルは、流動開始温度より20℃高い温度における溶融張力が5mN以上100mN以下であることを特徴とする、発泡成形品の製造方法。
[2]前記液晶ポリエステルは、下記一般式(1)、(2)及び(3)で表される繰返し単位を有する、[1]に記載の発泡成形品の製造方法。
(1)-O-Ar-CO-
(2)-CO-Ar-CO-
(3)-X-Ar-Y-
(式中、Arは、フェニレン基、ナフチレン基又はビフェニリレン基であり;Ar及びArは、それぞれ独立にフェニレン基、ナフチレン基、ビフェニリレン基又は下記一般式(4)で表される基であり;X及びYは、それぞれ独立に酸素原子又はイミノ基であり;前記Ar、Ar及びAr中の一つ以上の水素原子は、それぞれ独立にハロゲン原子、アルキル基又はアリール基で置換されていてもよい。)
(4)-Ar-Z-Ar
(式中、Ar及びArは、それぞれ独立にフェニレン基又はナフチレン基であり;Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基又はアルキリデン基である。)
[3]前記溶融混練した樹脂組成物を金型内に射出した後に、コアバック法により前記樹脂組成物を発泡させる、[1]又は[2]に記載の発泡成形品の製造方法。
[4]前記導入装置が、前記超臨界流体の導入量を測定し、測定結果に基づいてフィードバック制御できるフィードバック手段を備える、[1]~[3]のいずれか1つに記載の発泡成形品の製造方法。
[5]前記超臨界流体が窒素であることを特徴とする[1]~[4]のいずれか1つに記載の発泡成形品の製造方法。
[6]前記樹脂組成物が、前記液晶ポリエステル100質量部に対し、無機充填材を0質量部を超え100質量部以下含有する、[1]~[5]のいずれか1つに記載の発泡成形品の製造方法。
[7]流動開始温度より20℃高い温度における前記樹脂組成物の粘度が、200Pa・s以上5000Pa・s以下である、[1]~[6]のいずれか1つに記載の発泡成形品の製造方法。
[8]下記一般式(1)、(2)及び(3)で表される繰返し単位を有する液晶ポリエステルを含有し、前記液晶ポリエステル100質量部に対し、無機充填材を0質量部を超え100質量部以下含有し、流動開始温度より20℃高い温度における粘度が、200Pa・s以上5000Pa・s以下であり、流動開始温度より20℃高い温度における溶融張力が5mN以上100mN以下である樹脂組成物を用いた発泡成形品。
(1)-O-Ar-CO-
(2)-CO-Ar-CO-
(3)-X-Ar-Y-
(式中、Arは、フェニレン基、ナフチレン基又はビフェニリレン基であり;Ar及びArは、それぞれ独立にフェニレン基、ナフチレン基、ビフェニリレン基又は下記一般式(4)で表される基であり;X及びYは、それぞれ独立に酸素原子又はイミノ基であり;前記Ar、Ar及びAr中の一つ以上の水素原子は、それぞれ独立にハロゲン原子、アルキル基又はアリール基で置換されていてもよい。)
(4)-Ar-Z-Ar
(式中、Ar及びArは、それぞれ独立にフェニレン基又はナフチレン基であり;Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基又はアルキリデン基である。)
[9]厚みが4.0mm以下の薄肉部を有する[8]に記載の発泡成形品。
 すなわち、本発明は以下の態様を含む。
[1’] 発泡成形品を連続的に成形する発泡成形品の製造方法であって、
 前記製造方法は、
 下記工程1、工程2、工程3、及び工程4をこの順で連続的に繰り返すことを含み;
 前記工程1は、液晶ポリエステルを含む樹脂組成物を溶融することを含み;、
 前記工程2は、超臨界状態において前記液晶ポリエステルと非反応であり、かつ常温常圧下で気体である超臨界流体を、前記液晶ポリエステル100質量部に対して0.1質量部以上0.3質量部以下の導入量で、導入装置により、前記樹脂組成物に導入し、溶融混練することを含み、
 前記工程3は、溶融混練後の前記超臨界流体を含む樹脂組成物を金型内に射出することを含み、
 前記工程4は、前記樹脂組成物に含まれる超臨界流体の圧力及び温度の少なくとも一方を、前記超臨界流体の臨界点を下回るまで下げて発泡させて発泡成形体を製造することを含み;
 前記液晶ポリエステルは、流動開始温度より20℃高い温度における溶融張力が5mN以上100mN以下である、
 発泡成形品の製造方法。
[2’] 前記液晶ポリエステルは、下記一般式(1)で表される繰返し単位、(2)で表される繰返し単位、及び(3)で表される繰返し単位を有する、[1’]に記載の発泡成形品の製造方法。
(1)-O-Ar-CO-
(2)-CO-Ar-CO-
(3)-X-Ar-Y-
(式中、Arは、フェニレン基、ナフチレン基又はビフェニリレン基であり;Ar及びArは、それぞれ独立にフェニレン基、ナフチレン基、ビフェニリレン基又は下記一般式(4)で表される基であり;X及びYは、それぞれ独立に酸素原子又はイミノ基であり;前記Ar、Ar及びAr中の少なくとも一つの水素原子は、それぞれ独立にハロゲン原子、アルキル基又はアリール基で置換されていてもよい。)
(4)-Ar-Z-Ar
(式中、Ar及びArは、それぞれ独立にフェニレン基又はナフチレン基であり;Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基又はアルキリデン基である。)
[3’] 前記溶融混練した前記超臨界流体を含む樹脂組成物を金型内に射出した後に、コアバック法により前記超臨界流体を含む樹脂組成物を発泡させることを含む、[1’]または[2’]に記載の発泡成形品の製造方法。
[4’] 更に、前記超臨界流体の導入量を測定し、測定結果に基づいて前記超臨界流体の導入量をフィードバック制御することを含む、[1’]~[3’]のいずれか1つに記載の発泡成形品の製造方法。
[5’] 前記超臨界流体が窒素である[1’]~[4’]のいずれか1つに記載の発泡成形品の製造方法。
[6’] 前記樹脂組成物が、前記液晶ポリエステル100質量部に対し、無機充填材を0質量部を超え100質量部以下含有する、[1’]~[5’]のいずれか1つに記載の発泡成形品の製造方法。
[7’] 流動開始温度より20℃高い温度における前記樹脂組成物の粘度が、200Pa・s以上5000Pa・s以下である、[1’]~[6’]のいずれか1つに記載の発泡成形品の製造方法。
[8’] 発泡材と樹脂組成物から発泡成形される発泡成形品であって、
 前記樹脂組成物は、下記一般式(1)で表される繰返し単位、(2)で表される繰返し単位及び(3)で表される繰返し単位を含む液晶ポリエステルと、無機充填材と、を含み、
 前記無機充填材の含有量は、前記液晶ポリエステル100質量部に対し、0質量部超、100質量部以下であり、
 前記樹脂組成物は、前記樹脂組成物の流動開始温度より20℃高い温度における粘度が、200Pa・s以上5000Pa・s以下であり、かつ
 前記液晶ポリエステルは、前記液晶ポリエステルの流動開始温度より20℃高い温度における溶融張力が5mN以上100mN以下である。
(1)-O-Ar-CO-
(2)-CO-Ar-CO-
(3)-X-Ar-Y-
(式中、Arは、フェニレン基、ナフチレン基又はビフェニリレン基であり;Ar及びArは、それぞれ独立にフェニレン基、ナフチレン基、ビフェニリレン基又は下記一般式(4)で表される基であり;X及びYは、それぞれ独立に酸素原子又はイミノ基であり;前記Ar、Ar及びAr中の少なくとも一つの水素原子は、それぞれ独立にハロゲン原子、アルキル基又はアリール基で置換されていてもよい。)
(4)-Ar-Z-Ar
(式中、Ar及びArは、それぞれ独立にフェニレン基又はナフチレン基であり;Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基又はアルキリデン基である。)
[9’] 厚みが4.0mm以下の薄肉部を有する[8’]に記載の発泡成形品。
 本発明によれば、LCPを含む樹脂組成物を均一に発泡させることができ、かつ発泡成形品の重量バラつきを抑制できる発泡成形品の製造方法及び発泡成形品を提供することができる。
本実施形態の発泡成形品の製造に用いられる射出成形機の模式図である。
<発泡成形品の製造方法>
 本実施形態は、発泡成形品を連続的に成形する発泡成形品の製造方法である。
 本実施形態の発泡成形品の製造方法は、液晶ポリエステルを含む樹脂組成物を溶融する工程1と、超臨界状態において前記液晶ポリエステルと非反応であり、常温常圧下で気体である超臨界流体を、前記液晶ポリエステル100質量部に対して0.1質量部以上0.3質量部以下の導入量で、導入装置によって前記樹脂組成物に導入し、溶融混練する工程2と、溶融混練後の前記超臨界流体を含む樹脂組成物を金型内に射出する工程3と、前記樹脂組成物に含まれる前記超臨界流体の圧力及び温度の少なくとも一方を前記超臨界流体の臨界点を下回るまで下げて発泡させて発泡成形品を製造することを含む工程4とを備える。さらに、工程1、工程2、工程3、工程4をこの順で連続的に繰り返す。
 ここで、「連続的」とは工程1から工程4までの一連の成形動作を2回以上繰り返し行う事を意味する。本実施形態においては、10回以上繰り返し行うことが好ましく、20回以上繰り返し行うことがより好ましく、30回以上繰り返し行うことが特に好ましい。
 前記成形動作の繰り返し回数が10回を超えると、シリンダー111内の溶融樹脂(溶融した液晶ポリエステルを含む樹脂組成物)に含まれる超臨界流体の分散状態が均一となり、均一な発泡状態の発泡成形品を製造できる。
 なお、ここでいう「均一」とは、溶融樹脂と超臨界流体が単一相である状態を意味する。
 一方、超臨界流体の導入が工程1に続いて毎回に実施されずに間欠的になる場合には、連続的の意味には含まれないものとする。つまり、工程1から工程4までの一連の成形動作の内、工程2のみを2回に1回省く場合、又は3回に2回省く場合などは、連続的の意味には含まないものとする。
 図1は本実施形態の発泡成形体を製造するための射出成形機の模式図である。
 この射出成形機1は、後述する樹脂組成物と超臨界流体を用いて所定形状の発泡成形体を製造する機械であり、本体11と、金型12と、超臨界流体を本体11内に導入するための超臨界流体の導入装置21と、を有している。
 導入装置21は、上述した超臨界流体の原料ガスが充填されているガスボンベ211と、ガスボンベ211からの原料ガスを臨界圧力まで昇圧する昇圧機212と、臨界圧力まで昇圧された原料ガス(超臨界流体)のシリンダー111内への導入量を制御する制御バルブ213とを備える。昇圧機212において原料ガスを断熱圧縮することにより原料ガスの温度は上昇するが、この昇温による到達温度が臨界温度に満たない場合には、必要に応じて、ガスボンベ211からの原料ガスを臨界温度まで昇温する昇温機を用いる。
 次に、この射出成形機1による発泡体の製造方法について説明する。
[工程1]
 工程1は、液晶ポリエステルを含む樹脂組成物を溶融することを含む工程である。
 まず、上述の樹脂組成物をホッパー113からシリンダー111内に投入し、シリンダー111内で加熱混練することで樹脂組成物を溶融(可塑化)させる。本実施形態において、「可塑化計量」とは、スクリュー回転により樹脂組成物のペレットを短時間で溶融(可塑化)しつつ、次の射出で充填する量を、シリンダー内に留める操作を意味する。
[工程2]
 工程2は超臨界状態において前記液晶ポリエステルと非反応であり、かつ常温常圧下(25℃、1013hPa)で気体である超臨界流体を発泡材とし、前記発泡材を前記液晶ポリエステル100質量部に対して0.1質量部以上0.3質量部以下の導入量で、導入装置により、前記溶融された樹脂組成物に導入し、溶融混練することを含む工程である。
 工程2ではまず、ガスボンベ211を開き、原料ガスを昇圧機212で臨界点以上に昇圧、昇温することにより超臨界流体とする。得られる超臨界流体を、制御バルブ213を開くことにより、シリンダー111内に導入し、溶融された樹脂組成物に含浸する。本実施形態においては、可塑化計量ごとに、液晶ポリエステル100質量部に対して0.1質量部以上0.3質量部以下の超臨界流体を、導入装置21により、溶融された樹脂組成物に導入して溶融混練する。
 導入装置21は、超臨界流体の導入量を測定し、測定結果に基づいてフィードバック制御できるフィードバック手段を備えることが好ましい(超臨界流体の導入装置として、例えば、Trexel社製T―100Jなどが挙げられる)。フィードバック制御により、超臨界流体の過剰供給・又は過少供給を抑制できる。具体的には、超臨界流体の導入時間や差圧等を監視し、制御することで超臨界流体の導入量を制御している。これにより、可塑化計量ごとに上記特定量の超臨界流体を毎回導入できる。
 超臨界流体の導入量が、液晶ポリエステル100質量部に対して0.1質量部以上であることにより樹脂の発泡が十分に進行する。また、液晶ポリエステル100質量部に対して0.3質量部以下であると、成形品内部の発泡状態が均一になる。超臨界流体の導入量が、液晶ポリエステル100質量部に対して0.3質量部を超えると成形品内部の発泡状態が不均一になる場合がある。
 また、超臨界流体の導入量が、液晶ポリエステル100質量部に対して0.1質量部を下回ると樹脂の発泡が十分に進行せず、発泡成形品を得られない場合がある。
 さらに、可塑化計量ごとに上記特定量の超臨界流体を毎回導入することにより、成形品それぞれの質量ばらつき(成形品重量の標準偏差)を抑制できる。一方、可塑化計量ごとに上記特定量の超臨界流体を導入しない場合、成形品内部の発泡状態が不均一になる場合がある。例えば、超臨界流体の導入量が液晶ポリエステル100質量部に対して0.1質量部以上0.3質量部以下であっても、可塑化計量が3回行われる内の1回の頻度でしか上記特定量の超臨界流体を導入しない場合には、成形品内部の発泡状態が不均一になる場合がある。
[工程3]
 工程3は、溶融混練後の超臨界流体を含む樹脂組成物を金型内に射出することを含む工程である
 スクリュー112により、シリンダー111内の溶融混練後の超臨界流体を含む溶融樹脂(溶融した樹脂組成物)を移動させ、金型12に注入する。この際、超臨界流体を含む溶融樹脂の金型12内への注入が終了するまでは、溶融樹脂に超臨界流体を含侵させた状態を維持するため、金型12を型締し、またカウンタープレッシャーをかけておいてもよい。
[工程4]
 工程4は、前記溶融混練後の樹脂組成物中に含まれる超臨界流体の圧力及び温度の少なくとも一方を、前記超臨界流体の臨界点を下回るまで下げて発泡させることを含む工程である。
 本実施形態においては、金型12を用いた射出成形方法として、ショートショット法、フルショット法、コアバック法のいずれであってもよい。溶融樹脂を充填した後、金型容積を拡大することで積極的に発泡させることができる観点から、コアバック法が好ましい。
 コアバック法は、例えば、キャビティ容積が可変である金型を用いて、溶融樹脂を充填した後、キャビティ容積を拡大することであり、金型のスライドコアの動作を利用するもの及び成形機の可動プラテンの動作によるものを含む。
 シリンダー111内の、超臨界流体を含む溶融樹脂は、スクリュー112によりシリンダー111内から、加熱ヒーター等で所望温度に調温された金型12内に注入・保持される工程で、温度が低下する。さらに、臨界圧力以上であった圧力が常圧に近づき、溶融樹脂に含まれる超臨界流体の溶解度が低下して気体状態に変遷する。溶融樹脂中に含まれる超臨界流体が、気体に変化して体積が膨張し、発泡成形体が得られる。そして、金型12内の樹脂を冷却し固化させた後、所定の冷却時間が経過後に金型12から成形品を取り出す。以上の操作により、射出成形による発泡成形品を得ることができる。
 本実施形態においては、工程1~4をこの順で繰り返し行う。工程2を実施し、超臨界流体の導入量を毎回特定量とすることで、樹脂の発泡を均一なものとすることができる。
 これにより、成形品の重量のばらつきを抑制できる。
 本明細書において「成形品の重量ばらつき」とは、個々の製品間のばらつきを意味する。
(超臨界流体)
 本実施形態に係る発泡材は、超臨界状態において液晶ポリエステルと非反応であり常温常圧下で気体である超臨界流体である。
 ここで「超臨界流体」とは、特定の温度及び圧力(臨界点)以上の条件下において物質が示す、気体、液体及び固体のいずれでもない物質の状態を示す用語である。特定の温度及び圧力である臨界点は、物質の種類によって定まる。超臨界流体は、溶融した樹脂への浸透力(溶解度)が気体状態又は液体状態の前記物質に比べて高く、溶融樹脂に均一に分散させることができる。
 本実施形態においては、超臨界流体としては、例えば、二酸化炭素、窒素、ヘリウム等の不活性ガスや、空気等が好ましい。本実施形態においては二酸化炭素、窒素がより好ましい。さらに、窒素は、臨界点が温度:-147℃、圧力:3.4MPaであるため、常温(25℃)は臨界温度以上である。従って、圧力を制御するのみで超臨界流体を調整することが可能であるため取り扱いが容易であり、特に好ましい。
≪液晶ポリエステルを含む樹脂組成物≫
 本実施形態に係る液晶ポリエステルを含む樹脂組成物は、液晶ポリエステルと、任意の無機充填材とを含む。
(液晶ポリエステル)
 本実施形態に係る液晶ポリエルテルは、流動開始温度より20℃高い温度における溶融張力が5mN以上100mN以下である。
 ここで、流動開始温度は、フロー温度又は流動温度とも呼ばれ、液晶ポリエステルの射出成形時の成形温度の目安となる。一般的に、射出成形時には前記流動開始温度よりも高い温度で成形を行う。流動開始温度とは、内径1mm、長さ10mmのノズルを持つ毛細管レオメーターを用い、9.8MPa(100kg/cm)の荷重下において、4℃/分の昇温速度で液晶ポリエステルの加熱溶融体をノズルから押し出すときに、溶融粘度が4,800Pa・s(48,000ポイズ)を示す温度を表す。
 溶融張力は下記の方法により測定できる。
 キャピラリーレオメーターを用いて、樹脂組成物に含まれる液晶ポリエステルの流動開始温度よりも20℃高い温度において、10mm/分の速度でピストン(φ10mm)を降下させて液晶ポリエステルを内径1mm×長さ10mmのノズルから押し出す。この時の溶融張力を測定する。
 本実施形態において、液晶ポリエステルの溶融張力は5mN以上であり、10mN以上が好ましく、20mN以上がより好ましい。
 また、90mN以下が好ましく、80mN以下がより好ましく、75mN以下が特に好ましい。液晶ポリエステルの溶融張力が5mNを下回ると、超臨界流体を含む樹脂組成物(溶融樹脂)を金型内で減圧して発泡させる際に、気泡が合一し易くなり、発泡状態が不均一な発泡成形品となる場合がある。一方、液晶ポリエステルの溶融張力が100mNを超えると、射出成形時に射出圧力が上昇しすぎて成形できない場合がある。
 上記上限値及び下限値は任意に組み合わせることができる。
 1つの側面として、本発明に係る液晶ポリエステルの溶融張力は、5mN以上90mN以下が好ましく、10mN以上80mN以下がより好ましく、20mN以上75mN以下が特に好ましい。
 別の側面として、本発明に係る液晶ポリエステルの溶融張力は、5mN以上71mN以下であってもよく、14mN以上71mN以下であってもよい。
 溶融張力が上記の範囲であると、成形品内部の発泡状態がより均一になる。溶融張力は、液晶ポリエルテルの分子量を増加させることにより調整してもよく、無機充填材等の添加量を調整することにより制御してもよい。
 溶融張力が上記の範囲である液晶ポリエステルを用いると、溶融樹脂に含まれる超臨界流体が金型内で減圧されて発泡する際に、気泡が合一し難くなり、気泡が均一に微細化しやすくなるため、均一な発泡状態の発泡成形品を製造できる。
 本実施形態に係る液晶ポリエステルは、下記一般式(1)、(2)及び(3)で表される繰返し単位を有する。
(1)-O-Ar-CO-
(2)-CO-Ar-CO-
(3)-X-Ar-Y-
(式中、Arは、フェニレン基、ナフチレン基又はビフェニリレン基であり;Ar及びArは、それぞれ独立にフェニレン基、ナフチレン基、ビフェニリレン基又は下記一般式(4)で表される基であり;X及びYは、それぞれ独立に酸素原子又はイミノ基であり;前記Ar、Ar及びAr中の少なくとも一つの水素原子は、それぞれ独立にハロゲン原子、アルキル基又はアリール基で置換されていてもよい。)
(4)-Ar-Z-Ar
(式中、Ar及びArは、それぞれ独立にフェニレン基又はナフチレン基であり;Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基又はアルキリデン基である。)
 上記一般式(1)~(3)中、Ar、Ar又はArで表される前記基中の少なくとも1個の水素原子と置換可能なハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 上記一般式(1)~(3)中、Ar、Ar又はArで表される前記基中の少なくとも1個の水素原子と置換可能なアルキル基としては、炭素数1~10のアルキル基が好ましく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ヘキシル基、n-へプチル基、2-エチルヘキシル基、n-オクチル基、n-ノニル基及びn-デシル基等が挙げられる。
 上記一般式(1)~(3)中、Ar、Ar又はArで表される前記基中の少なくとも1個の水素原子と置換可能なアリール基としては、炭素数6~20のアリール基が好ましく、例えば、フェニル基、o-トリル基、m-トリル基、p-トリル基等のような単環式芳香族基、1-ナフチル基及び2-ナフチル基等のような縮環式芳香族基が挙げられる。
 上記一般式(1)~(3)中、Ar、Ar又はArで表される前記基中の少なくとも1個の水素原子がこれらの基で置換されている場合、その置換数は、Ar、Ar又はArで表される前記基毎に、それぞれ独立に、好ましくは1個又は2個であり、より好ましくは1個である。
 上記一般式(4)中、アルキリデン基としては、炭素数1~10のアルキリデン基が好ましく、例えば、メチレン基、エチリデン基、イソプロピリデン基、n-ブチリデン基及び2-エチルヘキシリデン基等が挙げられる。
 一般式(1)で表される繰返し単位としては、Arが1,4-フェニレン基であるもの(例えば、p-ヒドロキシ安息香酸に由来する繰返し単位)、及びArが2,6-ナフチレン基であるもの(例えば、6-ヒドロキシ-2-ナフトエ酸に由来する繰返し単位)、Arが4,4’-ビフェニリレン基であるものが好ましい。
 一般式(1)で表される繰返し単位を形成するモノマーとしては、6-ヒドロキシ-2-ナフトエ酸、p-ヒドロキシ安息香酸又は4-(4-ヒドロキシフェニル)安息香酸が挙げられ、さらに、これらのベンゼン環又はナフタレン環の水素原子が、ハロゲン原子、炭素数1~10のアルキル基又はアリール基で置換されているモノマーも挙げられる。さらに、後述のエステル形成性誘導体にして用いてもよい。
 一般式(2)で表される繰返し単位としては、Arが1,4-フェニレン基であるもの(例えば、テレフタル酸に由来する繰返し単位)、Arが1,3-フェニレン基であるもの(例えば、イソフタル酸に由来する繰返し単位)、Arが2,6-ナフチレン基であるもの(例えば、2,6-ナフタレンジカルボン酸に由来する繰返し単位)、及びArがジフェニルエーテル-4,4’-ジイル基であるもの(例えば、ジフェニルエーテル-4,4’-ジカルボン酸に由来する繰返し単位)が好ましく、Arが1,4-フェニレン基であるもの、及びArが1,3-フェニレン基であるもの、Arが2,6-ナフチレン基であるものがより好ましい。
 一般式(2)で表される繰返し単位を形成するモノマーとしては、2,6-ナフタレンジカルボン酸、テレフタル酸、イソフタル酸又はビフェニル-4,4’-ジカルボン酸が挙げられ、さらに、これらのベンゼン環又はナフタレン環の水素原子が、ハロゲン原子、炭素数1~10のアルキル基又はアリール基で置換されているモノマーも挙げられる。さらに、後述のエステル形成性誘導体にして用いてもよい。
 一般式(3)で表される繰返し単位としては、Arが1,4-フェニレン基であるもの(例えば、ヒドロキノンに由来する繰返し単位、p-アミノフェノールに由来する繰返し単位又はp-フェニレンジアミンに由来する繰返し単位)、及びArが4,4’-ビフェニリレン基であるもの(例えば、4,4’-ジヒドロキシビフェニルに由来する繰返し単位、4-アミノ-4’-ヒドロキシビフェニルに由来する繰返し単位又は4,4’-ジアミノビフェニルに由来する繰返し単位)が好ましい。
 一般式(3)で表される繰返し単位を形成するモノマーとしては、2,6-ナフトール、ハイドロキノン、レゾルシン又は4,4’-ジヒドロキシビフェニルが挙げられ、さらに、これらのベンゼン環又はナフタレン環の水素原子が、ハロゲン原子、炭素数1~10のアルキル基又はアリール基で置換されているモノマーも挙げられる。さらに、後述のエステル形成性誘導体にして用いてもよい。
 前記の式(1)で示される繰返し単位、(2)で示される繰返し単位又は(3)で示される繰返し単位を形成するモノマーは、ポリエステルを製造する過程で重合を容易にするため、エステル形成性誘導体を用いることが好ましい。このエステル形成性誘導体とは、エステル生成反応を促進するような基を有するモノマーを示し、具体的に例示すると、モノマー分子内のカルボン酸基を酸ハロゲン化物、酸無水物に転換したエステル形成性誘導体や、モノマー分子内のヒドロキシル基(水酸基)を低級カルボン酸エステル基にしたエステル形成性誘導体などの高反応性誘導体が挙げられる。
 前記液晶ポリエステルの繰返し単位(1)の含有量は、繰返し単位(1)、繰返し単位(2)及び繰返し単位(3)の合計含有量を100モル%としたとき、好ましくは30モル%以上、より好ましくは30モル%以上80モル%以下、さらに好ましくは40モル%以上70モル%以下、とりわけ好ましくは45モル%以上65モル%以下である。
 前記液晶ポリエステルの繰返し単位(2)の含有量は、繰返し単位(1)、繰返し単位(2)及び繰返し単位(3)の合計含有量を100モル%としたとき、好ましくは35モル%以下、より好ましくは10モル%以上35モル%以下、さらに好ましくは15モル%以上30モル%以下、とりわけ好ましくは17.5モル%以上27.5モル%以下である。
 前記液晶ポリエステルの繰返し単位(3)の含有量は、繰返し単位(1)、繰返し単位(2)及び繰返し単位(3)の合計含有量を100モル%としたとき、好ましくは35モル%以下、より好ましくは10モル%以上35モル%以下、さらに好ましくは15モル%以上30モル%以下、とりわけ好ましくは17.5モル%以上27.5モル%以下である。
 すなわち、前記液晶ポリエステルは、繰返し単位(1)、繰返し単位(2)及び繰返し単位(3)の合計含有量を100モル%としたとき、繰返し単位(1)の含有量が30モル%以上80モル%以下であり、繰返し単位(2)の含有量が10モル%以上35モル%以下であり、繰返し単位(3)の含有量が10モル%以上35モル%以下であることが好ましい。
 前記液晶ポリエステルは、繰返し単位(1)の含有量が上記の範囲であると、溶融流動性や耐熱性や強度・剛性が向上し易くなる。
 なお、前記液晶ポリエステルは、繰返し単位(1)~(3)を、それぞれ独立に、1種のみ有してもよいし、2種以上有してもよい。また、前記液晶ポリエステルは、繰返し単位(1)~(3)以外の繰返し単位を1種又は2種以上有してもよいが、その含有量は、全繰返し単位の合計含有量を100モル%としたとき、好ましくは0モル%以上10モル%以下、より好ましくは0モル%以上5モル%以下である。
 前記液晶ポリエステルは、繰返し単位(3)として、X及びYがそれぞれ酸素原子であるものを有すること、すなわち、所定の芳香族ジオールに由来する繰返し単位を有することが、溶融粘度が低くなり易いので好ましく、繰返し単位(3)として、X及びYがそれぞれ酸素原子であるもののみを有することが、より好ましい。
 前記液晶ポリエステルは、これを構成する繰返し単位に対応する原料モノマーを溶融重合させ、得られた重合物(プレポリマー)を固相重合させることにより、製造することが好ましい。これにより、耐熱性や強度・剛性が高い高分子量の液晶ポリエステルを操作性よく製造できる。溶融重合は触媒の存在下で行ってもよく、前記触媒の例としては、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、酢酸カリウム、三酸化アンチモン等の金属化合物や、N,N-ジメチルアミノピリジン、1-メチルイミダゾール等の含窒素複素環式化合物が挙げられ、含窒素複素環式化合物が好ましい。
 前記液晶ポリエステルの流動開始温度は、好ましくは270℃以上、より好ましくは270℃以上400℃以下、さらに好ましくは280℃以上380℃以下である。前記液晶ポリエステルは、流動開始温度が高いほど、耐熱性や強度・剛性・耐衝撃性が向上し易いが、あまり高いと、溶融させるために高温を要し、成形時に熱劣化し易くなったり、溶融時の粘度が高くなり、流動性が低下したりする。1つの側面として、前記液晶ポリエステルの流動開始温度が前記範囲内であると、得られる成形品の耐熱性や強度・剛性・耐衝撃性が向上し、かつ成形時には熱劣化しにくく、溶融時は適度な粘度と流動性を有する。
 前記液晶ポリエステルは、1種を単独で用いてもよいし、2種以上を併用してもよい。
 1つの側面として、本発明に係る液晶ポリエステルの含有量は、樹脂組成物の総質量に対して、30質量%を超え100質量%以下であることが好ましく、40質量%以上90質量%以下がより好ましく、50質量%以上80質量%以下が特に好ましい。
(無機充填材)
 無機充填材としては、ガラス繊維、シリカ繊維、アルミナ繊維、シリカアルミナ繊維等のセラミック繊維、ステンレス繊維等の金属繊維、タルク、マイカ、鱗片状グラファイト、ウォラストナイト、硫酸バリウム及び炭酸カルシウム等が挙げられる。前記ガラス繊維の例としては、チョップドガラス繊維、ミルドガラス繊維等、種々の方法で製造されたものが挙げられる。マイカは、白雲母であってもよいし、金雲母であってもよいし、フッ素金雲母であってもよいし、四ケイ素雲母であってもよい。前記鱗片状グラファイトは、天然鱗片状グラファイトであってもよいし、人造鱗片状グラファイトであってもよい。
 本実施形態において、前記無機充填材はガラス繊維であることが好ましい。
 前記ガラス繊維の溶融混練後の数平均繊維長は50μm以上500μm以下であることが好ましい。また、前記ガラス繊維の溶融混練後の数平均繊維径は、6μm以上18μm以下であることが好ましい。
 なお、本明細書において前記ガラス繊維の溶融混練後の数平均繊維径及び数平均繊維長は、電子顕微鏡観察により測定できる。
 前記ガラス繊維は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 本実施形態において、無機充填材の配合量は、前記液晶ポリエステル100質量部に対し、無機充填材を0質量部を超え100質量部以下であることが好ましく、10質量部以上90質量部以下がより好ましく、20質量部以上80質量部以下が特に好ましい。
(他の成分)
 本実施形態に係る樹脂組成物は、本実施形態の効果を損なわない範囲内において、液晶ポリエステル、無機充填材のいずれにも該当しない、他の成分をさらに含有してもよい。
 前記他の成分の例としては、無機充填材以外の充填材(以下、「その他の充填材」ということがある。)、添加材、液晶ポリエステル以外の樹脂(以下、「その他の樹脂」ということがある。)等が挙げられる。
 前記他の成分は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 本実施形態において樹脂組成物が、前記その他の充填材を含有する場合、前記その他の充填材の含有量は、前記液晶ポリエステル100質量部に対して、0質量部より多く100質量部以下であることが好ましい。
 前記添加材の例としては、酸化防止材、熱安定材、紫外線吸収材、帯電防止材、界面活性材、難燃材及び着色材が挙げられる。
 本実施形態において樹脂組成物が、前記添加材を含有する場合、前記添加材の含有量は、前記液晶ポリエステル及び無機充填材の合計100質量部に対して、0質量部より多く5質量部以下であることが好ましい。
 前記その他の樹脂の例としては、ポリエーテルスルホン、ポリエーテルイミド、ポリスルホン、ポリアリレート、ポリアミド、ポリエステル、ポリフェニレンスルフィド、ポリエーテルケトン、及び変性ポリフェニレンエーテル等の熱可塑性樹脂が挙げられ、これらを2種以上組み合わせて用いてもよい。
 本実施形態において樹脂組成物が、前記その他の樹脂を含有する場合、前記その他の樹脂の含有量は、前記液晶ポリエステルの100質量部に対して、0質量部より多く100質量部以下であることが好ましい。
 本実施形態に係る樹脂組成物は、流動開始温度より20℃高い温度における粘度が、200Pa・s以上5000Pa・s以下であることが好ましい。樹脂組成物の粘度が上記の範囲であると、成形品内部の発泡状態が均一になる。樹脂組成物の流動開始温度より20℃高い温度における粘度が200Pa・sを下回ると、超臨界流体を含む樹脂組成物を溶融混練した溶融樹脂を金型内で減圧して発泡させる際に、気泡が合一し易くなり、発泡状態が不均一な発泡成形品となる場合がある。一方、樹脂組成物の流動開始温度より20℃高い温度における粘度が5000Pa・sを超えると、樹脂組成物の粘度が高すぎる事により樹脂を発泡させられずに発泡成形品を得る事ができない場合がある。
 1つの側面として、樹脂組成物の流動開始温度より20℃高い温度における粘度は230Pa・s以上4000Pa・s以下であってもよく、1600Pa・s以上4000Pa・s以下であってもよい。
 樹脂組成物は、前記液晶ポリエステル、無機充填材及び所望により他の成分を、一度に又は適当な順序で混合することにより製造できる。
 なお、樹脂組成物は、液晶ポリエステル、無機充填材及び所望により他の成分を、押出機により溶融混練することで、ペレット化したものが好ましい。
 前記押出機は、シリンダーと、シリンダー内に配置された1本以上のスクリューと、シリンダーに設けられた1箇所以上の供給口と、を有するものが好ましく、さらに、シリンダーに1箇所以上のベント部が設けられたものがより好ましい。
<樹脂組成物から成形された発泡成形品>
 本実施形態は、発泡材と樹脂組成物から発泡成形される発泡成形品であり、前記樹脂組成物は、下記一般式(1)で表される繰返し単位、(2)で表される繰返し単位及び(3)で表される繰返し単位を有する液晶ポリエステルと無機充填材とを含み、前記無機充填材の含有量は、前記液晶ポリエステル100質量部に対し、0質量部を超え100質量部以下であり、前記樹脂組成物は、前記樹脂組成物の流動開始温度より20℃高い温度における粘度が、200Pa・s以上5000Pa・s以下であり、前記液晶ポリエステルは、前記液晶ポリエステルの流動開始温度より20℃高い温度における溶融張力が5mN以上100mN以下である。
(1)-O-Ar-CO-
(2)-CO-Ar-CO-
(3)-X-Ar-Y-
(式中、Arは、フェニレン基、ナフチレン基又はビフェニリレン基であり;Ar及びArは、それぞれ独立にフェニレン基、ナフチレン基、ビフェニリレン基又は下記一般式(4)で表される基であり;X及びYは、それぞれ独立に酸素原子又はイミノ基であり;前記Ar、Ar及びAr中の少なくとも一つの水素原子は、それぞれ独立にハロゲン原子、アルキル基又はアリール基で置換されていてもよい。)
(4)-Ar-Z-Ar
(式中、Ar及びArは、それぞれ独立にフェニレン基又はナフチレン基であり;Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基又はアルキリデン基である。)
 本実施形態の発泡成形品は、4.0mm以下の薄肉部を有することが好ましい。 本実施形態の発泡成形品は、厚みが4.0mm以下であることが好ましく、3.5mm以下がより好ましく、3.0mm以下が特に好ましい。
 厚みの下限の例としては、0.1mm以上、好ましくは0.3mm以上、特に好ましくは0.5mm以上が挙げられる。厚みが上記下限以上であると、樹脂が金型によって冷却されて固化する前に成形品を発泡させやすくなる。これにより成形品を十分に軽量化する事ができる。
 本実施形態の発泡成形品は、4.0mm以下の薄肉部を有し、4.0mmを超える厚肉部を有する発泡成形品であってもよく、最厚部が4.0mm以下である発泡成形品であってもよい。
 本明細書において、発泡成形品の「厚み」は、マイクロメーターにより測定することができる。
 「薄肉部」とは、発泡成形品の厚さが0.1mm以上4mm以下の部位を意味する。
 「厚肉部」とは、発泡成形品の厚さがを4mm超30mm以下の部位を意味する。
 「最厚部」とは、発泡成形品における厚さが最大である部位を意味する。
 本発明者らが鋭意検討した結果、本実施形態の発泡成形品では、厚みを薄くした場合に特に強度が優れることを見出した。一例を挙げると、軽量化率がほぼ同一である液晶ポリエステルから成る発泡成形品同士を比較した場合、発泡成形品の厚みを薄くする程、薄肉化前後で発泡成形品の平均曲げ強度の強度保持率が向上する。液晶ポリエステルから成るソリッド成形品においては、スキン層の分子配向がコア層の分子配向よりも高くなるため、スキン層自体の強度がソリッド成形品全体の強度に影響する事が知られている。一方、液晶ポリエステルから成る発泡成形品においては、成形品の厚みを薄くする程、ソリッド成形品よりもスキン層の強度が発泡成形品全体の強度に更に強く影響すると推定される。
 本実施形態の発泡成形品で構成される部品の例としては、光ピックアップボビン、トランスボビン等のボビン;リレーケース、リレーベース、リレースプルー、リレーアーマチャー等のリレー部品;RIMM、DDR、CPUソケット、S/O、DIMM、Board to Boardコネクター、FPCコネクター、カードコネクター等のコネクター;ランプリフレクター、LEDリフレクター等のリフレクター;ランプホルダー、ヒーターホルダー等のホルダー;スピーカー振動板等の振動板;コピー機用分離爪、プリンター用分離爪等の分離爪;カメラモジュール部品;スイッチ部品;モーター部品;センサー部品;ハードディスクドライブ部品;オーブンウェア等の食器;車両部品(インストルメンタルパネル、ドアトリム、ルーフ、エアロパーツ、その他構造部材等を含む);航空機部品;及び半導体素子用封止部材、コイル用封止部材等の封止部材が挙げられる。
 1つの側面として、本実施形態の発泡成形品を連続的に成形する発泡成形品の製造方法は、
 下記工程1、工程2、工程3、及び工程4をこの順で2回以上に繰り返すことを含み;
 前記工程1は、液晶ポリエステルを含む樹脂組成物を溶融することを含み;、
 前記工程2は、前記液晶ポリエステル100質量部に対して0.1質量部以上0.3質量部以下の超臨界状態において前記液晶ポリエステルと非反応であり、かつ常温常圧下で気体である超臨界流体を、前記液晶ポリエステル100質量部に対して0.1質量部以上0.3質量部以下の導入量で、導入装置により、前記樹脂組成物に導入し、溶融混練することを含み、
 前記工程3は、溶融混練後の前記超臨界流体を含む樹脂組成物を金型内に射出することを含み、
 前記工程4は、前記樹脂組成物に含まれる超臨界流体の圧力及び温度の少なくとも一方を、前記超臨界流体の臨界点を下回るまで下げて発泡させて発泡成形品を製造することを含み;
 前記液晶ポリエステルは、上記Arが2,6-ナフチレン基である繰返し単位(1)と、上記Arが2,6-ナフチレン基である繰返し単位(2)と、上記Arが1,4-フェニレン基である繰返し単位(2)と、上記Arが1,4-フェニレン基である繰返し単位(3)からなる液晶ポリエステル、又は
 上記Arが1,4-フェニレン基である繰返し単位(1)と、上記Arが1,4-フェニレン基である繰返し単位(2)と、上記Arが1,3-フェニレン基である繰返し単位(2)と、上記Arが4,4’-ビフェニリレン基である繰返し単位(3)からなる液晶ポリエステルであり、
 前記繰返し単位(1)、前記繰返し単位(2)及び前記繰返し単位(3)の合計含有量を100モル%としたとき、前井伊繰返し単位(1)の含有量は30モル%以上80モル%以下、前記繰返し単位(2)の含有量が10モル%以上35モル%以下、前記繰返し単位(3)の含有量が10モル%以上35モル%以下であり;
 前記液晶ポリエステルは、流動開始温度より20℃高い温度における溶融張力が5mN以上100mN以下(好ましくは5mN以上71mN以下、より好ましくは14mN以上71mN以下)であり;
 前記樹脂組成物は、前記樹脂組成物の流動開始温度より20℃高い温度における前記樹脂組成物の粘度が、200Pa・s以上5000Pa・s以下(好ましくは230Pa・s以上4000Pa・s以下、より好ましくは1600Pa・s以上4000Pa・s以下)である;
 発泡成形品の製造方法。
 以下、実施例により本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(ニートLCPの溶融張力)
 樹脂組成物に含まれる液晶ポリエステルに関して、前記液晶ポリエステルの流動開始温度よりも20℃高い温度において、キャピラリーレオメーターを用いて、10mm/分の速度でピストン(φ10mm)を降下させて前記液晶ポリエステルを内径1mm×長さ10mmのノズルから押し出し、溶融張力を測定した(単位:mN)。
(樹脂組成物の溶融粘度)
 平行平板レオメーターを用いて、樹脂組成物の流動開始温度よりも80℃高い温度において樹脂組成物を溶融させた上で、降温法にて1分間に5℃の速度で温度を低下させながら、樹脂組成物の溶融粘度を測定し、樹脂組成物の流動開始温度よりも20℃高い温度における溶融粘度を測定した(単位:Pa・s)。
(ボイド)
 ボイドとは、発泡成形品の内部において、0.1mm以上の大きさの空洞であることとする。
(ボイド率)
 ボイド率とは、発泡成形品の内部における前記ボイドの体積の合計が発泡成形品の体積に対して占める割合(体積分率)とし、150mm×150mm×2.4mm厚である発泡成形品を用いて、3次元X線CTシステム(TOSCANER32300μFD、東芝株式会社製)を使用して成形品の内部におけるボイド率を測定し、解析ソフトVGSTUDIO MAXにてボイド率を算出した。なお、成形品の形状は上記の通り一定であるため、得られた成形品の平均重量が小さくなるほど発泡により軽量化していることを表す。
(成形品内部の発泡状態)
 成形品内部の発泡状態を以下の基準で判定した。  
A:ボイド率が0.5%未満である場合
B:ボイド率が0.5%以上1.0%未満である場合
C:ボイド率が1.0%以上1.5%未満である場合
D:ボイド率が1.5%以上である場合
(成形品の平均質量)
 150mm×150mm×2.4mm厚、又は250mm×360mm×3mm厚である発泡成形品の30枚の重量をそれぞれ測定して平均重量を算出した。
(成形品の標準偏差)
 上記成形品の平均重量を用いて、下記式により標準偏差を算出した。
Figure JPOXMLDOC01-appb-M000001
n:データの総数
:個々の成形品の重量
:成形品の平均重量
(成形品重量のバラつき判定)
 成形品重量のバラつきを以下の基準で判定した。
A:成形品重量の標準偏差が0.15%未満である場合
B:成形品重量の標準偏差が0.15%以上0.25%未満である場合
C:成形品重量の標準偏差が0.25%以上0.35%未満である場合
D:成形品重量の標準偏差が0.35%以上である場合
(非発泡成形品の呼称)
 発泡成形品に対し、成形時に超臨界流体を注入せず、且つ発泡させない製造方法により製造した非発泡成形品をソリッド成形品と定義する。
(成形品の平均曲げ強度)
 実施例10~17に記載のソリッド成形品の平均曲げ強度は、150mm×150mm×3mm厚、又は150mm×150mm×4mm厚であるソリッド成形品の中央部から樹脂の流動方向(以下、MD方向と記載)に沿って140mm、流動方向と垂直な方向(以下、TD方向と記載)に沿って10mmに切り出した試験片(MD方向140mm×TD方向10mm)を用い、n数を3として、ISO178準拠で測定し、平均値を求めた。
 比較例6に記載のソリッド成形品の平均曲げ強度は、ISO3167ダンベル試験片A形(平行部分の形状:80mm×10mm×4mm厚)であるソリッド成形品を用い、n数を3として、ISO178準拠で測定し、平均値を求めた。
 実施例18~25、及び比較例7~8に記載の発泡成形品の平均曲げ強度は、150mm×150mm×3mm厚、又は150mm×150mm×4mm厚である発泡成形品の中央部からMD方向140mm×TD方向10mm形状に切り出した試験片を用い、n数を3として、ISO178準拠で測定し、平均値を求めた。
(成形品の比重測定)
 ソリッド成形品及び発泡成形品の比重は、平均曲げ強度測定を行った試験片と同一形状の試験片を用いて、重量と体積をn数を3として測定し、重量と体積のそれぞれの平均値を求めた後に、下記式により算出した。
 成形品の比重=(試験片の重量)/(試験片の体積)
(発泡成形品の軽量化率)
 発泡成形品の軽量化率は、発泡成形品の比重とソリッド成形品の比重とから、下記式により算出した。
 発泡成形品の軽量化率=(ソリッド成形品の比重―発泡成形品の比重)/(ソリッド成形品の比重)×100
 (発泡成形品の平均曲げ強度の強度保持率)
 発泡成形品の平均曲げ強度の強度保持率は、ソリッド成形品の平均曲げ強度と発泡成形品の平均曲げ強度から下記式により算出した。
 発泡成形品の平均曲げ強度の強度保持率=(発泡成形品の平均曲げ強度)/(ソリッド成形品の平均曲げ強度)×100
 (発泡成形品の軽量化率に対する平均曲げ強度の強度保持率の割合(割合A))
 発泡成形品の軽量化率に対する平均曲げ強度の強度保持率の割合を、割合Aとする。割合Aは下記式により算出した。
 割合A=(100-発泡成形品の平均曲げ強度の強度保持率(%))/(発泡成形品の軽量化率(%))
(4mm厚の発泡成形品と3mm厚の発泡成形品の割合Aの差)
 4mm厚の発泡成形品と3mm厚の発泡成形品の割合Aの差は、下記式により算出した。
 4mm厚の発泡成形品と3mm厚の発泡成形品の割合Aの差=(4mm厚の発泡成形品の割合A)―(3mm厚の発泡成形品の割合A)
(4mm厚の発泡成形品と3mm厚の発泡成形品の割合Aの差の大きさ判定)
割合Aの差の大きさを以下の基準で判定した。
A:割合Aの差が0.02以上である場合
B:割合Aの差が0.00以上0.02未満である場合
C:割合Aの差が0.00未満である場合
<製造例1>
LCP1の製造方法
 攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、6-ヒドロキシ-2-ナフトエ酸(1034.99g、5.5モル)、2,6-ナフタレンジカルボン酸(378.33g、1.75モル)、テレフタル酸(83.07g、0.5モル)、ヒドロキノン(272.52g、2.475モル、2,6-ナフタレンジカルボン酸及びテレフタル酸の合計量に対して0.225モル過剰)、無水酢酸(1226.87g、12モル)、及び触媒として1-メチルイミダゾール(0.17g)を入れ、反応器内のガスを窒素ガスで置換した後、窒素ガス気流下、攪拌しながら、室温から145℃まで15分間かけて昇温し、145℃で1時間還流させた。次いで、副生酢酸及び未反応の無水酢酸を留去しながら、145℃から310℃まで3.5時間かけて昇温し、310℃で3時間保持した後、内容物を取り出し、これを室温まで冷却した。
 得られた固形物を、粉砕機で粒径約0.1~1mmに粉砕後、粉末状のプレポリマーを得た。次いで、このプレポリマーを、窒素雰囲気下、室温から250℃まで1時間かけて昇温し、250℃から310℃まで10時間かけて昇温し、300℃で6時間保持することにより、固相重合を行った。固相重合後、冷却して、粉末状の液晶ポリエステルを得た。この液晶ポリエステルの流動開始温度は303℃であった。このようにして得られた液晶ポリエステルをLCP1とする。
 LCP1は、LCP1を構成する全繰り返し単位の合計量を100モル%として、Arが2,6-ナフチレン基である繰返し単位(1)を55モル%、Arが2,6-ナフチレン基である繰返し単位(2)を17.5モル%、Arが1,4-フェニレン基である繰返し単位(2)を5モル%、及びArが1,4-フェニレン基である繰返し単位(3)を22.5モル%有していた。
<製造例2>
LCP2の製造方法
 攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、6-ヒドロキシ-2-ナフトエ酸(1034.99g、5.5モル)、2,6-ナフタレンジカルボン酸(378.33g、1.75モル)、テレフタル酸(83.07g、0.5モル)、ヒドロキノン(272.52g、2.475モル、2,6-ナフタレンジカルボン酸及びテレフタル酸の合計量に対して0.225モル過剰)、無水酢酸(1226.87g、12モル)、及び触媒として1-メチルイミダゾール(0.17g)を入れ、反応器内のガスを窒素ガスで置換した後、窒素ガス気流下、攪拌しながら、室温から145℃まで15分間かけて昇温し、145℃で1時間還流させた。次いで、副生酢酸及び未反応の無水酢酸を留去しながら、145℃から310℃まで3.5時間かけて昇温し、310℃で3時間保持した後、内容物を取り出し、これを室温まで冷却した。
 得られた固形物を、粉砕機で粒径約0.1~1mmに粉砕後、粉末状のプレポリマーを得た。次いで、このプレポリマーを、窒素雰囲気下、室温から250℃まで1時間かけて昇温し、250℃から310℃まで10時間かけて昇温し、310℃で6時間保持することにより、固相重合を行った。固相重合後、冷却して、粉末状の液晶ポリエステルを得た。この液晶ポリエステルの流動開始温度は324℃であった。このようにして得られた液晶ポリエステルをLCP2とする。
 LCP2は、LCP2を構成する全繰り返し単位の合計量を100モル%として、Arが2,6-ナフチレン基である繰返し単位(1)を55モル%、Arが2,6-ナフチレン基である繰返し単位(2)を17.5モル%、Arが1,4-フェニレン基である繰返し単位(2)を5モル%、及びArが1,4-フェニレン基である繰返し単位(3)を22.5モル%有していた。
<製造例3>
LCP3の製造方法
 攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、6-ヒドロキシ-2-ナフトエ酸(1034.99g、5.5モル)、2,6-ナフタレンジカルボン酸(378.33g、1.75モル)、テレフタル酸(83.07g、0.5モル)、ヒドロキノン(272.52g、2.475モル、2,6-ナフタレンジカルボン酸及びテレフタル酸の合計量に対して0.225モル過剰)、無水酢酸(1226.87g、12モル)、及び触媒として1-メチルイミダゾール(0.17g)を入れ、反応器内のガスを窒素ガスで置換した後、窒素ガス気流下、攪拌しながら、室温から145℃まで15分間かけて昇温し、145℃で1時間還流させた。次いで、副生酢酸及び未反応の無水酢酸を留去しながら、145℃から310℃まで3.5時間かけて昇温し、310℃で3時間保持した後、内容物を取り出し、これを室温まで冷却した。
 得られた固形物を、粉砕機で粒径約0.1~1mmに粉砕後、粉末状のプレポリマーを得た。次いで、このプレポリマーを、窒素雰囲気下、室温から250℃まで1時間かけて昇温し、250℃から310℃まで10時間かけて昇温し、310℃で10時間保持することにより、固相重合を行った。固相重合後、冷却して、粉末状の液晶ポリエステルを得た。この液晶ポリエステルの流動開始温度は334℃であった。このようにして得られた液晶ポリエステルをLCP3とする。
 LCP3は、LCP3を構成する全繰り返し単位の合計量を100モル%として、Arが2,6-ナフチレン基である繰返し単位(1)を55モル%、Arが2,6-ナフチレン基である繰返し単位(2)を17.5モル%、Arが1,4-フェニレン基である繰返し単位(2)を5モル%、及びArが1,4-フェニレン基である繰返し単位(3)を22.5モル%有していた。
<製造例4>
LCP4の製造方法 
 攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、p-ヒドロキシ安息香酸(994.5g、7.2モル)、テレフタル酸(299.1g、1.8モル)、イソフタル酸(99.7g、0.6モル)、4,4’-ジヒドロキシビフェニル(446.9g、2.4モル)、無水酢酸(1347.6g、13.2モル)及び1-メチルイミダゾール0.194gを入れ、窒素ガス気流下、攪拌しながら、室温から150℃まで30分間かけて昇温し、150℃で1時間還流させた。次いで、1-メチルイミダゾールを0.9g添加し、副生酢酸及び未反応の無水酢酸を留去しながら、320℃まで2時間50分かけて昇温し、トルクの上昇が認められるまで320℃で保持した後、反応器から内容物を取り出し、これを室温まで冷却した。
 得られた固形物を、粉砕機で粒径約0.1~1mmに粉砕後、粉末状のプレポリマーを得た。次いで、このプレポリマーを、窒素ガス雰囲気下、室温から250℃まで1時間かけて昇温し、250℃から285℃まで5時間かけて昇温して、285℃で3時間保持することにより、固相重合させた後、冷却して、粉末状の液晶ポリエステルを得た。この液晶ポリエステルの流動開始温度は327℃であった。このようにして得られた液晶ポリエステルをLCP4とする。
 LCP4は、LCP4を構成する全繰り返し単位の合計量を100モル%として、Arが1,4-フェニレン基である繰返し単位(1)を60モル%、Arが1,4-フェニレン基である繰返し単位(2)を15モル%、Arが1,3-フェニレン基である繰返し単位(2)を5モル%、及びArが4,4’-ビフェニリレン基である繰返し単位(3)を20モル%有していた。
<製造例5>
LCP5の製造方法
 攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、p-ヒドロキシ安息香酸(994.5g、7.2モル)、テレフタル酸(299.1g、1.8モル)、イソフタル酸(99.7g、0.6モル)、4,4’-ジヒドロキシビフェニル(446.9g、2.4モル)、無水酢酸(1347.6g、13.2モル)及び触媒として1-メチルイミダゾール0.194gを添加し、室温で15分間攪拌して反応器内を十分に窒素ガスで置換した後、攪拌しながら昇温した。内温が145℃となったところで、同温度を保持したまま1時間攪拌した。その後、留出する副生酢酸、未反応の無水酢酸を留去しながら2時間50分かけて昇温し、トルクの上昇が認められるまで320℃で保持した後、反応器から内容物を取り出し、これを室温まで冷却した。
 得られた固形物を、粉砕機で粒径約0.1~1mmに粉砕後、粉末状のプレポリマーを得た。次いで、このプレポリマーを、窒素雰囲気下、室温から250℃まで1時間かけて昇温し、250℃から285℃まで5時間かけて昇温して、285℃で3時間保持する事により、固相重合させた後、冷却して、粉末状の液晶ポリエステルを得た。この液晶ポリエステルの流動開始温度は327℃であった。このようにして得られた液晶ポリエステルをLCP5とする。
 LCP5は、LCP5を構成する全繰り返し単位の合計量を100モル%として、Arが1,4-フェニレン基である繰返し単位(1)を60モル%、Arが1,4-フェニレン基である繰返し単位(2)を15モル%、Arが1,3-フェニレン基である繰返し単位(2)を5モル%、及びArが4,4’-ビフェニリレン基である繰返し単位(3)を20モル%有していた。
<製造例6>
LCP6の製造方法
 攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、p-ヒドロキシ安息香酸(994.5g、7.2モル)、4,4’-ジヒドロキシビフェニル(446.9g、2.4モル)、テレフタル酸(358.8g、2.16モル)、イソフタル酸(39.9g、0.24モル)及び無水酢酸(1347.6g、13.2モル)及び触媒として1-メチルイミダゾール0.194gを添加し、室温で15分間攪拌して反応器内を十分に窒素ガスで置換した後、攪拌しながら昇温した。内温が145℃となったところで、同温度を保持したまま1時間攪拌した。その後、留出する副生酢酸、未反応の無水酢酸を留去しながら2時間50分かけて昇温し、トルクの上昇が認められるまで320℃で保持した後、反応器から内容物を取り出し、これを室温まで冷却した。
 得られた固形物を、粉砕機で粒径約0.1~1mmに粉砕後、粉末状のプレポリマーを得た。次いで、このプレポリマーを、窒素雰囲気下、室温から250℃まで1時間かけて昇温し、250℃から300℃まで5時間かけて昇温し、300℃で3時間保持し、固層で重合反応を進めた。得られたポリエステルの流動開始温度は361℃であった。このようにして得られた液晶ポリエステルをLCP3とする。
 LCP6は、LCP6を構成する全繰り返し単位の合計量を100モル%として、Arが1,4-フェニレン基である繰返し単位(1)を60モル%、Arが1,4-フェニレン基である繰返し単位(2)を18モル%、Arが1,3-フェニレン基である繰返し単位(2)を2モル%、及びArが4,4’-ビフェニリレン基である繰返し単位(3)を20モル%有していた。
<樹脂組成物の製造、実施例1~9、比較例1~5>
≪実施例1、2、4、5≫
 液晶性樹脂として、上記LCP2、LCP4又はLCP5を表1に示す条件で混合した。具体的には、2軸押出機(池貝鉄工(株)「PCM-30HS」)と水封式真空ポンプ(神港精機(株)「SW-25」)を用いて、シリンダー温度を340℃とし、フィーダーから樹脂成分をフィードし、ニーディングブロックを挿入したスクリューにて、真空ベントで脱気しながら溶融混練した。吐出されたストランドをカットし、樹脂組成物をペレット状で得た。
 上述の方法にて作製したペレットを、日本製鋼所(株)製の全電動成形機「J110AD-180H」、及び超臨界流体導入量のフィードバック制御機能を有する超臨界流体製造ユニット「SCF SYSTEM T-100J(TREXEL製、表1において装置Bと記載する)」を用いて、設定温度360℃のシリンダー内で樹脂組成物を加熱・計量する際に超臨界状態の窒素を表1に示す条件で導入した。超臨界流体が溶解した溶融樹脂を設定温度120℃でキャビティー形状が150mm×150mm×1.2mm厚である金型に射出し、コアバック法により平板(150mm×150mm×2.4mm厚)形状の発泡成形体を取得した。
≪比較例1≫
 液晶性樹脂として、上記LCP5を表1に示す条件で混合した。具体的には、2軸押出機(池貝鉄工(株)「PCM-30HS」)と水封式真空ポンプ(神港精機(株)「SW-25」)を用いて、シリンダー温度を340℃とし、フィーダーから樹脂成分をフィードし、ニーディングブロックを挿入したスクリューにて、真空ベントで脱気しながら溶融混練した。吐出されたストランドをカットし、樹脂組成物をペレット状で得た。
 上述の方法にて作成したペレットを、日本製鋼所(株)製の全電動成形機「J450AD」、及び超臨界流体導入量のフィードバック制御機能を有していない超臨界流体製造ユニット「SCF SYSTEM SII TRJ-30-A(TREXEL製、表1において装置Aと記載する)」を用いて、設定温度360℃のシリンダー内で樹脂組成物を加熱・計量する際に超臨界状態の窒素(超臨界流体)を表1に示す条件で導入した。超臨界流体が溶解した溶融樹脂を設定温度120℃でキャビティー形状が250mm×360mm×3mm厚である金型に射出し、コアバック法により平板(250mm×360mm×6mm厚)形状の発泡成形品の作製を試みたが、超臨界流体の導入量が安定せず、成形機で溶融混練する際の樹脂圧力がバラツキ、超臨界流体を設定値の通り安定して導入することができず、金型をコアバックさせても設計通りに発泡しない部位があり発泡成形品は取得できなかった。
≪比較例2≫
 液晶性樹脂として、上記LCP1を表1に示す条件で混合した。具体的には、2軸押出機(池貝鉄工(株)「PCM-30HS」)と水封式真空ポンプ(神港精機(株)「SW-25」)を用いて、シリンダー温度を320℃とし、フィーダーから樹脂成分をフィードし、ニーディングブロックを挿入したスクリューにて、真空ベントで脱気しながら溶融混練した。吐出されたストランドをカットし、樹脂組成物をペレット状で得た。
 上述の方法にて作成したペレットを、日本製鋼所(株)製の全電動成形機「J110AD-180H」、及び超臨界流体導入量のフィードバック制御機能を有する超臨界流体製造ユニット「SCF SYSTEM T-100J(TREXEL製、表1において装置Bと記載する)」を用いて、設定温度330℃のシリンダー内で樹脂組成物を加熱・計量する際に超臨界状態の窒素(超臨界流体)を表1に示す条件で導入した。超臨界流体が溶解した溶融樹脂を設定温度120℃でキャビティー形状が150mm×150mm×1.2mm厚である金型に射出し、コアバック法により平板(150mm×150mm×2.4mm厚)形状の発泡成形体を取得した。
 比較例2の発泡成形品は、LCPの溶融張力が低く、樹脂組成物の溶融粘度も低すぎるため、発泡時に気泡が合一して成形品内部の発泡状態が悪化しただけでなく、成形品重量のバラつきが大きくなった。
≪実施例3≫
 液晶性樹脂として、上記LCP6を表1に示す条件で混合した。具体的には、2軸押出機(池貝鉄工(株)「PCM-30HS」)と水封式真空ポンプ(神港精機(株)「SW-25」)を用いて、フィーダーから樹脂成分をフィードし、シリンダー温度を370℃とし、ニーディングブロックを挿入したスクリューにて、真空ベントで脱気しながら溶融混練した。吐出されたストランドをカットし、樹脂組成物をペレット状で得た。
 上述の方法にて作成したペレットを、日本製鋼所(株)製の全電動成形機「J110AD-180H」、及び超臨界流体導入量のフィードバック制御機能を有する超臨界流体製造ユニット「SCF SYSTEM T-100J(TREXEL製、表1において装置Bと記載する)」を用いて、設定温度380℃のシリンダー内で樹脂組成物を加熱・計量する際に超臨界状態の窒素(超臨界流体)を表1に示す条件で導入した。超臨界流体が溶解した溶融樹脂を設定温度120℃でキャビティー形状が150mm×150mm×1.2mm厚である金型に射出し、コアバック法により平板(150mm×150mm×2.4mm厚)形状の発泡成形体を取得した。
≪実施例6、7、比較例3、4≫
 液晶性樹脂として、上記LCP3を表1に示す条件で混合した。具体的には、2軸押出機(池貝鉄工(株)「PCM-30HS」)と水封式真空ポンプ(神港精機(株)「SW-25」)を用いて、フィーダーから樹脂成分をフィードし、シリンダー温度を350℃とし、ニーディングブロックを挿入したスクリューにて、真空ベントで脱気しながら溶融混練した。吐出されたストランドをカットし、樹脂組成物をペレット状で得た。上述の方法にて作成したペレットを、日本製鋼所(株)製の全電動成形機「J110AD-180H」、及び超臨界流体導入量のフィードバック制御機能を有する超臨界流体製造ユニット「SCF SYSTEM T-100J(TREXEL製、表1において装置Bと記載する)」を用いて、設定温度360℃のシリンダー内で樹脂組成物を加熱・計量する際に超臨界状態の窒素(超臨界流体)を表1に示す条件で導入し、超臨界流体が溶解した溶融樹脂を設定温度120℃でキャビティー形状が150mm×150mm×1.2mm厚である金型に射出し、コアバック法により平板(150mm×150mm×2.4mm厚)形状の発泡成形体を取得した。
 比較例3及び4の発泡成形品は、超臨界流体の導入量が多すぎたために、発泡時に気泡が合一して成形品内部の発泡状態が悪化しただけでなく、成形品重量のバラつきが大きくなった。
≪実施例8、9、比較例5≫
 液晶性樹脂として、上記LCP2又はLCP5、及びガラス繊維を表1に示す条件で混合した。具体的には、2軸押出機(池貝鉄工(株)「PCM-30HS」)と水封式真空ポンプ(神港精機(株)「SW-25」)を用いて、フィーダーから樹脂成分と無機充填材とをフィードし、シリンダー温度を350℃とし、ニーディングブロックを挿入したスクリューにて、真空ベントで脱気しながら溶融混練した。吐出されたストランドをカットし、樹脂組成物をペレット状で得た。上述の方法にて作成したペレットを、日本製鋼所(株)製の全電動成形機「J110AD-180H」、及び超臨界流体導入量のフィードバック制御機能を有する超臨界流体製造ユニット「SCF SYSTEM T-100J(TREXEL製、表1において装置Bと記載する)」を用いて、設定温度360℃のシリンダー内で樹脂組成物を加熱・計量する際に超臨界状態の窒素(超臨界流体)を表1に示す条件で導入し、超臨界流体が溶解した溶融樹脂を設定温度120℃でキャビティー形状が150mm×150mm×1.2mm厚である金型に射出し、コアバック法により平板(150mm×150mm×2.4mm厚)形状の発泡成形体を取得した。
 比較例5の発泡成形品の成形においては、超臨界流体の導入量が0.1質量部以上0.3質量部以下の範囲ではあるものの、可塑化計量が3回行われる内の1回の頻度でしか上記特定量の超臨界流体を導入しなかったため(3ショットに1回の頻度で超臨界流体を導入した)、成形機シリンダー内の溶融樹脂に含侵させた超臨界流体の分散状態が不均一となり、成形品内部の発泡状態が悪化した。
 実施例1~9及び比較例1~5について、成形条件、LCPの溶融張力、樹脂組成物の粘度、ボイド率、成形品内部の発泡状態、成形体の平均重量、成形品重量の標準偏差、成形品重量のバラつき判定を表1に示す。上記表1中、各記号は以下のものを意味する。
・cGF:チョップドガラス繊維CS3J-260S(日東紡績株式会社製)。
・mGF:ミルドガラス繊維EFH75-01(セントラルグラスファイバー株式会社製)。
Figure JPOXMLDOC01-appb-T000002
 上記表1に示した結果のとおり、本発明を適用した実施例1~9は、いずれも成形品内部の発泡状態が良好であり、成形品重量のバラつきが小さい発泡成形体を製造することができた。
 これに対し、本発明を適用しない比較例1~5は、いずれも成形品内部の発泡状態が悪いだけでなく、成形品重量のバラつきが大きくなる場合があり良好ではなかった。
<樹脂組成物の製造、実施例10~25、比較例6~8>
≪実施例10~25≫
 製造例2で製造したLCP2と、ガラス繊維とを表2~3に示す配合比で混合した。具体的には、2軸押出機(池貝鉄工(株)「PCM-30HS」)を用いて、シリンダー温度を340℃とし、フィーダーから樹脂成分をフィードし、ニーディングブロックを挿入したスクリューにて、溶融混練した。吐出されたストランドをカットし、樹脂組成物をペレット状で得た。
≪実施例10~17のソリッド成形品の作製≫
 上述の方法にて作製したペレットを、日本製鋼所(株)製の全電動成形機「J110AD-180H」、を用いてソリッド成形品を作製した。尚、ソリッド成形品の取得時には超臨界流体を注入していない。設定温度360℃のシリンダー内で樹脂組成物を加熱・計量し溶解した溶融樹脂を設定温度80℃でキャビティー形状が150mm×150mm×3mm厚又は150mm×150mm×4mm厚である金型に射出し、平板形状のソリッド成形体を取得した。
≪実施例18~25の発泡成形品の作製≫
 上述の方法にて作製したペレットを、日本製鋼所(株)製の全電動成形機「J110AD-180H」、及び超臨界流体導入量のフィードバック制御機能を有する超臨界流体製造ユニット「SCF SYSTEM T-100J(TREXEL製、表2において装置Bと記載する)」を用いて、設定温度360℃のシリンダー内で樹脂組成物を加熱・計量する際に超臨界状態の窒素を表2に示す条件で導入した。超臨界流体が溶解した溶融樹脂を設定温度80℃でコアバック前のキャビティー形状が150mm×150mm×1.5mm厚又は150mm×150mm×2mm厚である金型に射出し、コアバック法により平板(150mm×150mm×3mm厚又は150mm×150mm×4mm厚)形状の発泡成形体を取得した。
≪比較例6のソリッド成形品の作製≫
 ポリアミド樹脂として、ポリアミド66(以下、PA66と略すことがある)樹脂組成物(ウルトラミッドA3WG6(30質量% ガラス繊維配合品))を表2に示す条件で成形した。日精樹脂工業(株)製の全電動成形機「PNX40-5A」を用いて、設定温度280℃のシリンダー内で樹脂組成物を加熱・計量し、溶解した溶融樹脂を設定温度80℃でキャビティー形状がISO3167ダンベル試験片A形(平行部分の形状:80mm×10mm×4mm厚)である金型に射出しソリッド成形品を取得した。
≪比較例7~8の発泡成形品の作製≫
 ポリアミド樹脂として、PA66樹脂組成物(ウルトラミッドA3WG6(30質量% ガラス繊維配合品))を表3に示す条件で成形した。日本製鋼所(株)製の全電動成形機「J110AD-180H」、及び超臨界流体導入量のフィードバック制御機能を有する超臨界流体製造ユニット「SCF SYSTEM T-100J(TREXEL製、表3において装置Bと記載する)」を用いて、設定温度280℃のシリンダー内で樹脂組成物を加熱・計量する際に超臨界状態の窒素を表2に示す条件で導入した。超臨界流体が溶解した溶融樹脂を設定温度80℃でコアバック前のキャビティー形状が150mm×150mm×1.5mm厚又は150mm×150mm×2mm厚である金型に射出し、コアバック法により平板(150mm×150mm×3mm厚又は150mm×150mm×4mm厚)形状の発泡成形体を取得した。
 上記実施例10~25、比較例6~8について、成形条件、成形品の平均曲げ強度、発泡成形品の軽量化率、発泡成形品の平均曲げ強度の強度保持率、発泡成形品の軽量化率に対する平均曲げ強度の強度保持率の割合(割合A)、4mm厚の発泡成形品と3mm厚の発泡成形品の割合Aの差、4mm厚の発泡成形品と3mm厚の発泡成形品の割合Aの差の大きさ判定を表2~3に示す。表2~3中、各記号は以下のものを意味する。
・cGF:チョップドガラス繊維CS3J-260S(日東紡績株式会社製)。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 上記表2~3に示した結果のとおり、本発明を適用した実施例18~25は、いずれも発泡成形品の厚みを薄くする程、強度保持率が向上する傾向が見られた。
 これに対し、比較例7~8は、発泡成形品の厚みを薄くしても、強度保持率が向上する傾向は見られなかった。
 本発明は、LCPを含む樹脂組成物を均一に発泡させることができ、かつ発泡成形品の重量バラつきを抑制できる発泡成形品の製造方法及び発泡成形品を提供することができるので、産業上極めて有用である。
 1…射出成形機
11…本体
12…金型
21…導入装置
111…シリンダー
112…スクリュー
113…ホッパー
211…ガスボンベ
212…昇圧機
213…制御バルブ

Claims (9)

  1.  発泡成形品を連続的に成形する発泡成形品の製造方法であって、
     前記製造方法は、
     下記工程1、工程2、工程3、及び工程4をこの順で連続的に繰り返すことを含み;
     前記工程1は、液晶ポリエステルを含む樹脂組成物を溶融することを含み;、
     前記工程2は、超臨界状態において前記液晶ポリエステルと非反応であり、かつ常温常圧下で気体である超臨界流体を、前記液晶ポリエステル100質量部に対して0.1質量部以上0.3質量部以下の導入量で、導入装置により、前記樹脂組成物に導入し、溶融混練することを含み、
     前記工程3は、溶融混練後の前記超臨界流体を含む樹脂組成物を金型内に射出することを含み、
     前記工程4は、前記樹脂組成物に含まれる超臨界流体の圧力及び温度の少なくとも一方を、前記超臨界流体の臨界点を下回るまで下げて発泡させることを含み;
     前記液晶ポリエステルは、流動開始温度より20℃高い温度における溶融張力が5mN以上100mN以下である、
     発泡成形品の製造方法。
  2.  前記液晶ポリエステルは、下記一般式(1)で表される繰返し単位、(2)で表される繰返し単位及び(3)で表される繰返し単位を有する、請求項1に記載の発泡成形品の製造方法。
    (1)-O-Ar-CO-
    (2)-CO-Ar-CO-
    (3)-X-Ar-Y-
    (式中、Arは、フェニレン基、ナフチレン基又はビフェニリレン基であり;Ar及びArは、それぞれ独立にフェニレン基、ナフチレン基、ビフェニリレン基又は下記一般式(4)で表される基であり;X及びYは、それぞれ独立に酸素原子又はイミノ基であり;前記Ar、Ar及びAr中の少なくとも一つの水素原子は、それぞれ独立にハロゲン原子、アルキル基又はアリール基で置換されていてもよい。)
    (4)-Ar-Z-Ar
    (式中、Ar及びArは、それぞれ独立にフェニレン基又はナフチレン基であり;Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基又はアルキリデン基である。)
  3.  前記溶融混練した前記超臨界流体を含む樹脂組成物を金型内に射出した後に、コアバック法により前記超臨界流体を含む樹脂組成物を発泡させることを含む、請求項1又は2に記載の発泡成形品の製造方法。
  4.  更に、前記超臨界流体の導入量を測定し、測定結果に基づいて前記超臨界流体の導入量をフィードバック制御することを含む、請求項1~3のいずれか1項に記載の発泡成形品の製造方法。
  5.  前記超臨界流体が窒素である請求項1~4のいずれか1項に記載の発泡成形品の製造方法。
  6.  前記樹脂組成物が、前記液晶ポリエステル100質量部に対し、無機充填材を0質量部を超え100質量部以下含有する、請求項1~5のいずれか1項に記載の発泡成形品の製造方法。
  7.  流動開始温度より20℃高い温度における前記樹脂組成物の粘度が、200Pa・s以上5000Pa・s以下である、請求項1~6のいずれか1項に記載の発泡成形品の製造方法。
  8.  発泡材と樹脂組成物から成形される発泡成品であって、
     前記樹脂組成物は、
     下記一般式(1)で表される繰返し単位、(2)で表される繰返し単位及び(3)で表される繰返し単位を含む液晶ポリエステルと、無機充填材と、を含み、
     前記無機充填材の含有量は、前記液晶ポリエステル100質量部に対し、0質量部超、100質量部以下であり、
     前記樹脂組成物は、前記樹脂組成物の流動開始温度より20℃高い温度における粘度が、200Pa・s以上5000Pa・s以下であり、かつ
     前記液晶ポリエステルは、前記液晶ポリエステルの流動開始温度より20℃高い温度における溶融張力が5mN以上100mN以下である。
    (1)-O-Ar-CO-
    (2)-CO-Ar-CO-
    (3)-X-Ar-Y-
    (式中、Arは、フェニレン基、ナフチレン基又はビフェニリレン基であり;Ar及びArは、それぞれ独立にフェニレン基、ナフチレン基、ビフェニリレン基又は下記一般式(4)で表される基であり;X及びYは、それぞれ独立に酸素原子又はイミノ基であり;前記Ar、Ar及びAr中の少なくとも一つの水素原子は、それぞれ独立にハロゲン原子、アルキル基又はアリール基で置換されていてもよい。)
    (4)-Ar-Z-Ar
    (式中、Ar及びArは、それぞれ独立にフェニレン基又はナフチレン基であり;Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基又はアルキリデン基である。)
  9.  厚みが4.0mm以下の薄肉部を有する請求項8に記載の発泡成形品。
PCT/JP2019/013193 2018-03-29 2019-03-27 発泡成形品の製造方法及び発泡成形品 WO2019189361A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/982,648 US11753515B2 (en) 2018-03-29 2019-03-27 Method for producing molded foam articles, and molded foam articles
EP19774658.9A EP3778740B1 (en) 2018-03-29 2019-03-27 Method for producing molded foam articles, and molded foam articles
CN201980021819.7A CN111918911B (zh) 2018-03-29 2019-03-27 发泡成型品的制造方法和发泡成型品

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018064240 2018-03-29
JP2018-064240 2018-03-29
JP2018098222A JP7063721B2 (ja) 2018-03-29 2018-05-22 発泡成形品の製造方法及び発泡成形品
JP2018-098222 2018-05-22

Publications (1)

Publication Number Publication Date
WO2019189361A1 true WO2019189361A1 (ja) 2019-10-03

Family

ID=68059150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013193 WO2019189361A1 (ja) 2018-03-29 2019-03-27 発泡成形品の製造方法及び発泡成形品

Country Status (1)

Country Link
WO (1) WO2019189361A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602524B2 (ja) 1980-03-17 1985-01-22 日立建機株式会社 アクチユエ−タの合流油圧回路
JPH05239247A (ja) * 1992-02-27 1993-09-17 Kanebo Ltd ポリアリレート樹脂発泡体及びその製造法
JPH06506724A (ja) * 1991-04-05 1994-07-28 マサチユーセツツ・インステイテユート・オブ・テクノロジー 超微孔質発泡材料
JP2001219523A (ja) * 1999-11-30 2001-08-14 Jsp Corp 熱成形用積層発泡体
JP2003103556A (ja) * 2001-09-27 2003-04-09 Polyplastics Co 発泡射出成形体
JP2003138054A (ja) 2001-11-05 2003-05-14 Toray Ind Inc 液晶ポリエステル樹脂発泡成形品
US20100140824A1 (en) * 2007-08-10 2010-06-10 Frank Jaarsma Fiber Reinforced Cellular Foam Product
US20130116354A1 (en) * 2011-11-07 2013-05-09 Battelle Memorial Institute High performance foam and composite foam structures and processes for making same
JP2017165906A (ja) * 2016-03-17 2017-09-21 バンドー化学株式会社 発泡用樹脂組成物及び発泡成形体
JP2018064240A (ja) 2016-10-14 2018-04-19 キヤノンファインテックニスカ株式会社 回動補助装置、画像読取装置及び画像形成装置
WO2018092838A1 (ja) * 2016-11-18 2018-05-24 住友化学株式会社 発泡成形体および発泡成形体の製造方法
WO2018092845A1 (ja) * 2016-11-18 2018-05-24 住友化学株式会社 発泡成形用液晶ポリマー組成物、発泡成形体の製造方法、および発泡成形体
JP2018098222A (ja) 2016-12-07 2018-06-21 株式会社リコー 電界効果型トランジスタの製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602524B2 (ja) 1980-03-17 1985-01-22 日立建機株式会社 アクチユエ−タの合流油圧回路
JPH06506724A (ja) * 1991-04-05 1994-07-28 マサチユーセツツ・インステイテユート・オブ・テクノロジー 超微孔質発泡材料
JPH05239247A (ja) * 1992-02-27 1993-09-17 Kanebo Ltd ポリアリレート樹脂発泡体及びその製造法
JP2001219523A (ja) * 1999-11-30 2001-08-14 Jsp Corp 熱成形用積層発泡体
JP2003103556A (ja) * 2001-09-27 2003-04-09 Polyplastics Co 発泡射出成形体
JP2003138054A (ja) 2001-11-05 2003-05-14 Toray Ind Inc 液晶ポリエステル樹脂発泡成形品
US20100140824A1 (en) * 2007-08-10 2010-06-10 Frank Jaarsma Fiber Reinforced Cellular Foam Product
US20130116354A1 (en) * 2011-11-07 2013-05-09 Battelle Memorial Institute High performance foam and composite foam structures and processes for making same
JP2017165906A (ja) * 2016-03-17 2017-09-21 バンドー化学株式会社 発泡用樹脂組成物及び発泡成形体
JP2018064240A (ja) 2016-10-14 2018-04-19 キヤノンファインテックニスカ株式会社 回動補助装置、画像読取装置及び画像形成装置
WO2018092838A1 (ja) * 2016-11-18 2018-05-24 住友化学株式会社 発泡成形体および発泡成形体の製造方法
WO2018092845A1 (ja) * 2016-11-18 2018-05-24 住友化学株式会社 発泡成形用液晶ポリマー組成物、発泡成形体の製造方法、および発泡成形体
JP2018098222A (ja) 2016-12-07 2018-06-21 株式会社リコー 電界効果型トランジスタの製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. COLTONN.P. SUH, POLYMER ENGINEERING & SCIENCE, vol. 27, 1987, pages 485
See also references of EP3778740A4 *

Similar Documents

Publication Publication Date Title
JP7063721B2 (ja) 発泡成形品の製造方法及び発泡成形品
JP5914935B2 (ja) 液晶ポリエステル組成物、液晶ポリエステル組成物の製造方法及び成形体
JP5633338B2 (ja) 液晶ポリエステル組成物
JP6025241B2 (ja) 発泡成形体の製造方法及び樹脂組成物
JP2016014137A (ja) 液晶ポリエステル樹脂組成物、コネクターおよび液晶ポリエステル樹脂組成物の製造方法
JP2018168320A (ja) 液晶ポリエステル組成物および成形体
WO2018012371A1 (ja) 液晶性樹脂組成物
KR101737036B1 (ko) 액정성 수지 조성물
JP5197553B2 (ja) 液晶性樹脂組成物及びその成形体
JP5872180B2 (ja) 液晶ポリエステル成形体の製造方法
JP6861497B2 (ja) 液晶ポリエステル樹脂組成物
WO2013069782A1 (ja) 熱可塑性樹脂組成物の製造方法及び成形体
TWI754049B (zh) 液晶聚酯組成物
WO2019189361A1 (ja) 発泡成形品の製造方法及び発泡成形品
TWI761500B (zh) 液晶聚酯組成物的製造方法及液晶聚酯組成物
JP2012136625A (ja) 液晶ポリエステル成形材料及びその成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019774658

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019774658

Country of ref document: EP

Effective date: 20201029