WO2019188980A1 - トリコデルマ・リーセイ変異株およびタンパク質の製造方法 - Google Patents

トリコデルマ・リーセイ変異株およびタンパク質の製造方法 Download PDF

Info

Publication number
WO2019188980A1
WO2019188980A1 PCT/JP2019/012505 JP2019012505W WO2019188980A1 WO 2019188980 A1 WO2019188980 A1 WO 2019188980A1 JP 2019012505 W JP2019012505 W JP 2019012505W WO 2019188980 A1 WO2019188980 A1 WO 2019188980A1
Authority
WO
WIPO (PCT)
Prior art keywords
trichoderma reesei
amino acid
seq
protein
acid sequence
Prior art date
Application number
PCT/JP2019/012505
Other languages
English (en)
French (fr)
Inventor
雄介 加川
悠香 齋藤
紳吾 平松
山田 勝成
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP19776489.7A priority Critical patent/EP3778864A4/en
Priority to JP2019521840A priority patent/JP7334620B2/ja
Priority to BR112020019479-4A priority patent/BR112020019479A2/pt
Priority to AU2019242425A priority patent/AU2019242425A1/en
Priority to RU2020131513A priority patent/RU2020131513A/ru
Priority to US17/040,593 priority patent/US11492603B2/en
Priority to CA3094606A priority patent/CA3094606A1/en
Priority to CN201980022267.1A priority patent/CN111918959A/zh
Publication of WO2019188980A1 publication Critical patent/WO2019188980A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/885Trichoderma
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01004Cellulase (3.2.1.4), i.e. endo-1,4-beta-glucanase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a mutant strain of Trichoderma reesei with improved protein production ability and a protein production method using the mutant strain.
  • Trichoderma reesei is known to have a high protein production ability, and so far, production of proteins using the same filamentous fungus has been studied. Trichoderma reesei has an excellent ability to produce cellulases classified as saccharifying enzymes among proteins. For example, in order to further improve cellulase production, overexpression and deletion of factors that control cellulase production are performed. Yes.
  • Non-Patent Document 1 among factors that control the production of Trichoderma reesei cellulase, a mutant strain of Trichoderma reesei having high cellulase production ability by reducing the function of Cre1, which is a transcription factor that inhibits the production of cellulase. has been acquired.
  • a transcription factor that is one of the factors controlling Trichoderma reesei protein production has been elucidated, but this is considered to be only a part of the control mechanism. Therefore, in the present invention, a novel factor for controlling protein production of Trichoderma reesei is searched, a mutant strain of Trichoderma reesei with enhanced protein production ability, and a protein production method using the Trichoderma reesei mutant strain It is an issue to provide.
  • the present inventor believes that the production amount of the protein of Trichoderma reesei can be further improved if the control factor of protein production, which has not been known so far, can be further improved. It has been found that protein productivity can be improved by culturing a mutant strain of Trichoderma reesei in which the function of a polypeptide comprising an amino acid sequence is reduced, and the present invention has been completed.
  • the present invention includes the following (1) to (5).
  • (1) A mutant strain of Trichoderma reesei in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is reduced.
  • (2) The Trichoderma reesei mutant strain according to (1), wherein the two amino acid residues at 347 and 348 in the amino acid sequence represented by SEQ ID NO: 2 are deleted.
  • (3) A method for producing a protein comprising culturing a mutant strain of Trichoderma reesei according to (1) or (2).
  • (4) A method for producing cellulase, comprising a step of culturing the mutant strain of Trichoderma reesei according to (1) or (2).
  • a method for producing sugar from cellulose-containing biomass comprising the following steps: Step a: Step of culturing a mutant strain of Trichoderma reesei in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is reduced to produce cellulase Step b: Using the cellulase obtained in step a And the manufacturing method of saccharide
  • Trichoderma reesei in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is reduced has improved protein production ability compared to Trichoderma reesei in which the function of the polypeptide is not reduced. Further, by using the Trichoderma reesei of the present invention, it becomes possible to produce a protein at a high rate. Further, when the protein to be produced is cellulase, an unexpected effect of improving various specific activities of cellulase can be obtained.
  • the present invention is characterized in that the protein production ability is further enhanced by introducing a mutation into the parent strain of Trichoderma reesei, which is a microorganism originally excellent in protein production ability. Therefore, the parent strain of Trichoderma reesei used in the present invention is not limited to the wild strain, and a mutant strain of Trichoderma reesei improved so as to increase the protein production ability can be preferably used as the parent strain.
  • Trichoderma reesei In the mutant strain a mutant strain that has been subjected to a mutation treatment with a mutation agent or ultraviolet irradiation to improve protein productivity can be used as the parent strain.
  • mutant strain used as the parent strain are known mutant strains derived from Trichoderma reesei, such as QM6a strain (NBRC31326), QM9414 strain (NBRC31329), PC-3-7 strain (ATCC66589), QM9123 strain (NBRC31327) , RutC-30 strain (ATCC56765), CL-847 strain (Enzyme. Microbiol. Technol. 10, 341-346 (1988)), MCG77 strain (Biotechnol. Bioeng. Symp. 8, 89 (1978)), MCG80 strain ( Biotechnol.Bioeng.12,451-459 (1982)) and derivatives thereof.
  • the QM6a strain, the QM9414 strain, and the QM9123 strain can be obtained from NBRC (NITE Biological Resource Center), and the PC-3-7 strain and the RutC-30 strain can be obtained from ATCC (American Type Culture Collection).
  • the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is a polypeptide possessed by Trichoderma reesei, and is registered as predicted protein (EGR50654) possessed by Trichoderma reesei QM6a strain in National Center for Biotechnology Information.
  • the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is a polypeptide whose function is unknown, but according to the Centered Domain Architecture Retrieval Tool of National Center for Biotechnology Information, the 95th to 277th amino acid residues from the N-terminal side remain.
  • the group is “Middle domain of eukaryotic initiation factor 4G domain (may be described as MIF4G domain in this specification), and the 380th to 485th amino acid residues from the N-terminal side are disclosed to have MA-3 domain. Both MIF4G and MA-3 domains have the function of binding to DNA or RNA. (Biochem. 44, 12265-12272 (2005), Mol. Cell. Biol. 1, 147-156 (2007)) According to these descriptions, a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2 is It is presumed to have at least a function of binding to DNA and / or RNA.
  • the decrease in the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is caused by the mutation of the base sequence encoding the amino acid sequence represented by SEQ ID NO: 2, resulting in a decrease in the function of the polypeptide. Or a state in which the function is lost.
  • a base sequence other than the base sequence encoding the amino acid sequence represented by SEQ ID NO: 2 is mutated to cause a decrease in the expression level or loss of expression of the polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2.
  • the case is also included in the decrease in the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2.
  • the base sequence mutation is caused by base substitution, deletion, insertion, duplication or the like.
  • a specific example of a gene encoding a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is the base sequence represented by SEQ ID NO: 1.
  • Specific methods for reducing the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 include all deletion of the MIF4G domain and / or MA-3 domain, part of the MIF4G domain and / or MA-3 domain Examples thereof include a method for introducing a deletion, a change in the steric relationship between the MIF4G domain and the MA-3 domain, or a mutation that completely deletes the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2.
  • the deletion of the MIF4G domain and / or the MA-3 domain means that the domain is completely lost, part thereof is lost, all is changed to a different amino acid, part is changed to a different amino acid, or a combination thereof. More specifically, in the amino acid sequence represented by SEQ ID NO: 2, the sequence identity with the amino acid sequence of the MIF4G domain or MA-3 domain shown above is 80% or less, preferably 50% or less. More preferably 20% or less, further preferably 10% or less, further preferably 5% or less, further preferably 3% or less, further preferably 1% or less, and most preferably 0%.
  • the change in the configurational relationship between the MIF4G domain and the MA-3 domain is caused by a mutation that causes deletion, substitution, or addition of an amino acid in the amino acid sequence located between the MIF4G domain and the MA-3 domain.
  • the MIF4G domain and the MA-3 domain are called protein domains.
  • the protein domain is part of the protein sequence structure and has a function. When there are multiple domains, the three-dimensional structure of multiple domains constitutes part of the three-dimensional structure of the protein, so when the configuration of the domains changes, the three-dimensional structure of the protein changes and the function of the protein decreases. To do.
  • streptokinase possessed by the genus Streptococcus has three types of domains, an ⁇ domain, a ⁇ domain, and a ⁇ domain.
  • the ⁇ domain and the ⁇ domain are linked by 12 amino acid residues
  • the ⁇ domain and the ⁇ domain are Each of which is linked by 15 amino acid residues
  • mutations such as substitution, addition, deletion of amino acid residues occur in the amino acid sequence located between the ⁇ domain and ⁇ domain, and between the ⁇ domain and ⁇ domain, It has been shown that the activity of streptokinase decreases or disappears.
  • substitution of amino acid sequences between domains see Table. 1 and Table. 2.
  • For deletion and addition of amino acid sequences between domains see Table. 5 and Table. 6 respectively.
  • the amino acid sequence located between the two domains is deleted, substituted, or It is known that the function of a protein is reduced by a mutation such as addition.
  • the amino sequence located between the MIF4G domain and the MA-3 domain refers to a region between the 278th to 379th amino acid residues from the N-terminal side in the amino acid sequence of SEQ ID NO: 2.
  • the base sequence encoding the amino sequence located between the MIF4G domain and the MA-3 domain refers to the region of the 832st to 1137th base sequence in the base sequence shown in SEQ ID NO: 1.
  • the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is caused by mutation such as deletion, substitution, or addition in the amino acid sequence located between the MIF4G domain and the MA-3 domain.
  • Specific examples of the decrease include a mutation in which any one of the bases from the 1039th to the 1044th is deleted in the base sequence represented by SEQ ID NO: 1.
  • the base deletion is a deletion of 2 amino acid residues at the 347th and 348th amino acids in the amino acid sequence located between the MIF4G domain and the MA-3 domain of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2. is there. It is speculated that this mutation shortens the amino acid sequence connecting the MIF4G domain and the MA-3 domain, and changes the steric arrangement relationship between the MIF4G domain and the MA-3 domain.
  • the 347th and 348th two amino acid residues in the amino acid sequence represented by SEQ ID NO: 2 are Examples include mutants of Trichoderma reesei that have been deleted.
  • “the two amino acid residues at 347 and 348 are deleted” means that at least the two amino acid residues are deleted in the amino acid sequence represented by SEQ ID NO: 2.
  • an embodiment in which the 347th and 348th two amino acids are deleted in addition to the deletion of the two amino acids, a total deletion of the MIF4G domain and / or MA-3 domain, the MIF4G domain and This is a mode in which the MA-3 domain is partially deleted.
  • the decrease in the expression level or loss of expression of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is carried out by mutation of the promoter or terminator region of the gene encoding the amino acid sequence represented by SEQ ID NO: 2.
  • a promoter and terminator region correspond to a region of several hundred bases before and after a gene involved in transcription, and a base comprising a promoter and terminator involved in transcription of a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2.
  • a specific example of the sequence is the base sequence represented by SEQ ID NO: 7.
  • the mutant strain of Trichoderma reesei of the present invention has improved protein production ability as compared to Trichoderma reesei in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is not reduced.
  • the protein concentration is increased as compared to the Trichoderma reesei culture solution in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is not reduced.
  • the protein is an enzyme
  • the specific activity of the enzyme increases.
  • the increase rate of the protein concentration and the increase rate of the specific activity of the enzyme are not particularly limited as long as they increase, but are preferably 20% or more.
  • the present invention also relates to a method for producing a protein comprising a step of culturing Trichoderma reesei in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is reduced.
  • the culture medium composition in the culturing step is not particularly limited as long as Trichoderma reesei can produce a protein, and a well-known medium composition of Trichoderma filamentous fungi can be employed.
  • a nitrogen source for example, polypeptone, gravy, CSL, soybean meal and the like can be used.
  • the culture method is not particularly limited.
  • the culture can be performed by liquid culture using a centrifuge tube, flask, jar fermenter, tank, or solid culture using a plate.
  • Trichoderma reesei is preferably cultured under aerobic conditions.
  • jar fermenter and deep culture where aeration and agitation are carried out in the tank are particularly preferable.
  • the air flow rate is preferably about 0.1 vvm to 2.0 vvm, more preferably 0.3 vvm to 1.5 vvm, and particularly preferably 0.5 vvm to 1.0 vvm.
  • the culture temperature is preferably about 25 ° C to 35 ° C, more preferably 25 ° C to 31 ° C.
  • the pH condition in the culture is preferably pH 3.0 to 7.0, more preferably pH 4.0 to 6.0.
  • the culture time is performed under the conditions for producing the protein until a recoverable amount of protein is accumulated. Usually, it is about 24 to 240 hours, more preferably 36 to 192 hours.
  • the protein produced in the present invention is not particularly limited, but it can efficiently produce a protein that is secreted outside the cell body.
  • an enzyme is preferable, and a cellulase, amylase, invertase, chitinase, pectinase is more preferable. Saccharifying enzymes such as cellulase.
  • the cellulase produced in the present invention includes various hydrolases, including enzymes having a degrading activity for xylan, cellulose, hemicellulose, and the like.
  • specific examples include cellobiohydrase (EC 3.2.1.91) that produces cellobiose by hydrolysis of cellulose chains, and endoglucanase (EC 3.2.1.4) that hydrolyzes from the central part of cellulose chains.
  • ⁇ -glucosidase that hydrolyzes cellooligosaccharide and cellobiose
  • xylanase EC 3.2.1.8
  • xylooligosaccharide characterized by acting on hemicellulose and especially xylan And ⁇ -xylosidase EC 3.2.1.37
  • the confirmation of the improvement in the specific activity of cellulase for confirming the improvement in the protein production ability of the Trichoderma reesei mutant of the present invention is that any one of these hydrolases is improved. Confirm by.
  • ⁇ -glucosidase specific activity is measured by the following method. First, 10 ⁇ L of enzyme dilution solution is added to 90 ⁇ L of 50 mM acetate buffer containing 1 mM p-nitrophenyl- ⁇ -glucopyranoside (Sigma Aldrich Japan), and reacted at 30 ° C. for 10 minutes. Next, 10 ⁇ L of 2M sodium carbonate is added and mixed well to stop the reaction, and the increase in absorbance at 405 nm is measured. Finally, the activity to release 1 ⁇ mol of p-nitrophenol per minute is defined as 1 U, and the specific activity is calculated by dividing this by the amount of protein.
  • ⁇ -xylosidase specific activity is measured by the following method. First, 10 ⁇ L of enzyme diluted solution is added to 90 ⁇ L of 50 mM acetate buffer containing 1 mM p-nitrophenyl- ⁇ -xylopyranoside (manufactured by Sigma-Aldrich Japan) and reacted at 30 ° C. for 30 minutes. Next, 10 ⁇ L of 2M sodium carbonate is added and mixed well to stop the reaction, and the increase in absorbance at 405 nm is measured. Finally, the activity to release 1 ⁇ mol of p-nitrophenol per minute is defined as 1 U, and the specific activity is calculated by dividing this by the amount of protein.
  • the cellobiohydrolase specific activity is measured by the following method. First, 10 ⁇ L of enzyme dilution is added to 90 ⁇ L of 50 mM acetate buffer containing 1 mM p-nitrophenyl- ⁇ -lactopyranoside (manufactured by Sigma-Aldrich Japan), and reacted at 30 ° C. for 60 minutes. Next, 10 ⁇ L of 2M sodium carbonate is added and mixed well to stop the reaction, and the increase in absorbance at 405 nm is measured. Finally, the activity to release 1 ⁇ mol of p-nitrophenol per minute is defined as 1 U, and the specific activity is calculated by dividing this by the amount of protein.
  • cellulose and / or xylan can be added to the medium as an inducer.
  • biomass containing cellulose or xylan may be added as an inducer.
  • biomass containing cellulose or xylan in addition to plants such as seed plants, fern plants, moss plants, algae and aquatic plants, waste building materials and the like can also be used.
  • Seed plants are classified into gymnosperms and angiosperms, and both can be preferably used.
  • Angiosperms are further classified into monocotyledonous plants and dicotyledonous plants.
  • monocotyledonous plants include bagasse, switchgrass, napiergrass, eliansus, corn stover, corn cob, rice straw, and straw.
  • dicotyledonous plants beet pulp, eucalyptus, oak, birch and the like are preferably used.
  • a pretreated one may be used as the inducer containing cellulose and / or xylan.
  • the pretreatment method is not particularly limited, and known methods such as acid treatment, sulfuric acid treatment, dilute sulfuric acid treatment, alkali treatment, hydrothermal treatment, subcritical treatment, fine pulverization treatment, and steaming treatment can be used. Pulp may be used as the biomass containing cellulose and / or xylan that has been subjected to such pretreatment.
  • the method for recovering the protein contained in the culture solution in which the Trichoderma reesei mutant is cultured is not particularly limited, but the Trichoderma reesei cells can be removed from the culture solution to recover the protein.
  • the method for removing the cells include a centrifugal separation method, a membrane separation method, and a filter press method.
  • Trichoderma reesei mutants When using Trichoderma reesei mutants as a protein lysate without removing the cells from the culture medium in which the Trichoderma reesei mutant is cultured, treat the Trichoderma reesei cells so that they cannot grow. It is preferable. Examples of the method for treating cells so that they cannot grow include heat treatment, chemical treatment, acid / alkali treatment, and UV treatment.
  • the culture solution treated so that the cells are not removed or grown as described above can be used as an enzyme solution as it is.
  • sugar can be produced by saccharifying cellulose-containing biomass using the cellulase.
  • the same biomass as the biomass containing cellulose described as the inducer or a pretreated biomass can be used.
  • a cellulase obtained by culturing a mutant strain of Trichoderma reesei of the present invention is obtained by culturing a mutant strain of Trichoderma reesei in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 of the present invention is reduced.
  • the cellulase obtained in this way has a higher specific activity, such as ⁇ -glucosidase, than cellulase obtained by culturing Trichoderma reesei in which the function of the polypeptide is not reduced.
  • the conditions for the saccharification reaction are not particularly limited, but the temperature for the saccharification reaction is preferably in the range of 25 to 60 ° C, more preferably in the range of 30 to 55 ° C.
  • the saccharification reaction time is preferably in the range of 2 hours to 200 hours.
  • the pH of the saccharification reaction is preferably in the range of pH 3.0 to 7.0, more preferably in the range of pH 4.0 to 6.0. In the case of Trichoderma-derived cellulase, the optimum pH for the reaction is 5.0. Furthermore, since a change in pH occurs during the hydrolysis, it is preferable to add a buffer solution to the reaction solution or to maintain a constant pH using an acid or alkali.
  • the saccharified liquid When separating and recovering the enzyme from the saccharified liquid, the saccharified liquid can be filtered through an ultrafiltration membrane or the like and recovered to the non-permeate side. It may be removed. The recovered enzyme can be used again for the saccharification reaction.
  • the saccharification reaction is performed for 30 hours at a temperature condition of 50 ° C., and the supernatant obtained by centrifuging the saccharified product is recovered as a saccharified solution. Then, 1N NaOH solution corresponding to one-tenth of the recovered saccharified solution is added to perform the enzyme reaction. Stopped. The glucose concentration in the saccharified solution after the reaction was stopped was measured by UPLC shown below.
  • Glucose was quantitatively analyzed using the ACQUITY UPLC system (Waters) under the following conditions. Quantitative analysis was performed based on a calibration curve prepared with a glucose preparation.
  • Trichoderma reesei QM9414 mutant I in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 was reduced The function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 was reduced
  • the Trichoderma reesei mutant is a DNA fragment comprising a gene encoding a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is reduced.
  • a DNA fragment comprising the gene sequence represented by No. 3 was prepared, and the DNA fragment was prepared by transformation into Trichoderma reesei QM9414 strain.
  • a reesei mutant is obtained.
  • Acetamide and an acetamidase (AmdS) gene (amdS) capable of degrading acetamide were used as selection markers for DNA fragment introduction.
  • AmdS acetamidase
  • amdS acetamidase
  • a DNA fragment obtained by treating the synthesized DNA fragment represented by SEQ ID NO: 4 with restriction enzymes AflII and KpnI was used as an upstream DNA fragment.
  • PCR was performed using genomic DNA extracted from Trichoderma reesei QM9414 strain according to a conventional method and oligo DNAs represented by SEQ ID NOs: 5 and 6, and the resulting amplified fragment was treated with restriction enzymes MluI and SpeI.
  • a downstream DNA fragment was used, and the upstream and downstream DNA fragments were introduced into a plasmid into which amdS had been inserted using restriction enzymes AflII and KpnI, and MluI and SpeI, respectively, thereby constructing a mutation-introducing plasmid.
  • Trichoderma reesei QM9414 strain (NBRC # 31329) was transformed with the obtained DNA fragment represented by SEQ ID NO: 3.
  • Molecular biological techniques were performed as described in Molecular cloning, laboratory manual, 1st, 2nd, 3rd (1989). Further, transformation was performed using a standard method, protoplast-PEG method, specifically as described in Gene, 61, 165-176 (1987). The obtained Trichoderma reesei mutant was designated as QM9414 mutant I for the following experiment.
  • Example 2 Protein production test using QM9414 mutant I (flask culture)
  • the spores of QM9414 variant I prepared in Example 1 were diluted with physiological saline so as to be 1.0 ⁇ 10 7 / mL, and 0.1 mL of the diluted spore solution was transferred to a 50 mL baffled flask shown in Table 1.
  • the inoculated 10 mL flask medium was inoculated and cultured in a shaking incubator at 28 ° C. and 120 rpm for 120 hours.
  • Example 3 Preparation of Trichoderma reesei QM9414 variant II in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 was reduced The function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 was lost A mutant strain of Trichoderma reesei was prepared by preparing a DNA fragment consisting of the gene sequence represented by SEQ ID NO: 8, and transforming the DNA fragment into Trichoderma reesei QM9414 strain. According to this method, a mutant strain of Trichoderma reesei in which amdS is inserted between positions 1206 and 1207 in SEQ ID NO: 1 and the function of SEQ ID NO: 2 is reduced is obtained.
  • PCR was performed using genomic DNA extracted from Trichoderma reesei QM9414 strain according to a conventional method and oligo DNAs represented by SEQ ID NOs: 9 and 10, and the obtained amplified fragments were treated with restriction enzymes AflII and KpnI. The DNA fragment was used as the upstream fragment. Further, PCR was performed using genomic DNA and oligo DNAs represented by SEQ ID NOs: 11 and 12, and the resulting amplified fragment was treated with restriction enzymes MluI and SpeI as downstream DNA fragments, and upstream and downstream DNA fragments.
  • Trichoderma reesei QM9414 strain was transformed as described in Example 1 with the obtained DNA represented by SEQ ID NO: 8.
  • the obtained Trichoderma reesei mutant was used as QM9414 mutant II in the following experiment.
  • Example 4 Protein Production Test Using QM9414 Mutant II Culture was performed under the same procedures and conditions as in Example 2 except that QM9414 Mutant II was used instead of QM9414 Mutant I prepared in Example 1. The protein concentration contained in the culture solution and various specific activities of cellulase were measured. The results are shown in Table 2.
  • Example 4 and Comparative Example 1 when the protein concentration contained in the culture solution obtained by culturing Trichoderma reesei QM9414 strain is 1, relative protein concentration contained in the culture solution of QM9414 mutant I The value was 1.5, and the relative value of the protein concentration contained in the culture solution of Trichoderma reesei mutant II was 1.4. From these results, when Trichoderma reesei with reduced function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is cultured, the amount of protein produced can be improved as compared with the case where the function of the polypeptide is not reduced. I understood.
  • ⁇ -glucosidase specific activity is as follows: QM9414 mutant I: 1.3, QM9414 mutant II
  • the ⁇ -xylosidase specific activity is Trichoderma reesei mutant I: 1.5, QM9414 mutant II: 1.5, and the cellobiohydrolase specific activity is QM9414 mutant I: 1.4.
  • QM9414 mutant II 1.3.
  • Example 5 Saccharification reaction test using cellulase of QM9414 mutant II According to the method described in Reference Example 3, using the culture solution at 120 hours from the start of cultivation of QM9414 mutant II obtained in Example 4. A saccharification reaction test of cellulose-containing biomass was conducted. Arbocel (registered trademark) B800 or powdered bagasse was used as the cellulose-containing biomass. The results are shown in Table 3.
  • Example 5 From the results of Example 5 and Comparative Example 2, when the glucose concentration contained in the saccharified solution when the cellulase of Trichoderma reesei QM9414 strain was used in the saccharification reaction of Arbocel (registered trademark) B800, the QM9414 mutant strain When the cellulase II was used, the relative value of the glucose concentration of the saccharified solution was 1.8. Further, in the saccharification reaction of bagasse, when the glucose concentration contained in the saccharified solution when Trichoderma reesei QM9414 cellulase is used is 1, the glucose concentration of the saccharified solution when cellulase of QM9414 mutant II is used. The relative value of was 1.4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Mycology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Botany (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)

Abstract

本発明は、配列番号2で表されるアミノ酸配列からなるポリペプチドの機能が低下しているトリコデルマ・リーセイの変異株および当該変異株を用いてタンパク質を高生産する方法である。

Description

トリコデルマ・リーセイ変異株およびタンパク質の製造方法
 本発明は、タンパク質製造能が向上したトリコデルマ・リーセイの変異株および当該変異株を用いたタンパク質の製造方法に関する。
 トリコデルマ・リーセイは、高いタンパク質製造能を有していることが知られており、これまで同糸状菌を用いたタンパク質の製造の検討が行われてきた。トリコデルマ・リーセイは、タンパク質の中でも特に糖化酵素に分類されるセルラーゼを製造する能力に優れており、例えばセルラーゼ製造量をさらに向上させるため、セルラーゼ製造を制御する因子の過剰発現や欠損が行われている。非特許文献1では、トリコデルマ・リーセイのセルラーゼの製造を制御する因子の中でも、セルラーゼの製造を抑制する転写因子であるCre1の機能を低下させることにより高いセルラーゼ製造能を有するトリコデルマ・リーセイの変異株が取得されている。
Juliano P,Single nucleotide polymorphism analysis of a Trichoderma reesei hyper-cellulolytic mutant developed in Japan,Bioscience, Biotechnology, and Biochemistry, Volume 77, 2013, Issue 3, P534-543
 上記のとおり、トリコデルマ・リーセイのタンパク質製造を制御する因子の一つである転写因子が解明されているが、これは、制御機構の一部にすぎないと考える。そこで本発明では、トリコデルマ・リーセイのタンパク質製造を制御する新規因子を探索し、タンパク質製造能が強化されたトリコデルマ・リーセイの変異株の取得および当該トリコデルマ・リーセイの変異株を用いたタンパク質の製造方法を提供することを課題とする。
 本発明者は、これまで知られていなかったタンパク質製造の制御因子を解明できれば、トリコデルマ・リーセイのタンパク質の製造量をさらに向上させることができると考え、鋭意検討した結果、配列番号2で表されるアミノ酸配列からなるポリペプチドの機能を低下させたトリコデルマ・リーセイの変異株を培養することにより、タンパク質製造性を向上させることができることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の(1)~(5)で構成される。
(1)配列番号2で表されるアミノ酸配列からなるポリペプチドの機能が低下している、トリコデルマ・リーセイの変異株。
(2)配列番号2で表されるアミノ酸配列における347番目と348番目の2アミノ酸残基が欠失している、(1)に記載のトリコデルマ・リーセイの変異株。
(3)(1)または(2)に記載のトリコデルマ・リーセイの変異株を培養する工程を含む、タンパク質の製造方法。
(4)(1)または(2)に記載のトリコデルマ・リーセイの変異株を培養する工程を含む、セルラーゼの製造方法。
(5)セルロース含有バイオマスから糖を製造する方法であって、以下の工程:
 工程a:配列番号2で表されるアミノ酸配列からなるポリペプチドの機能が低下しているトリコデルマ・リーセイの変異株を培養し、セルラーゼを製造する工程
 工程b:工程aで得られたセルラーゼを用いて、前記バイオマスを糖化する工程
を含む、糖の製造方法。
 配列番号2で表されるアミノ酸配列からなるポリペプチドの機能が低下したトリコデルマ・リーセイは、当該ポリペプチドの機能が低下していないトリコデルマ・リーセイと比較してタンパク質の製造能が向上する。また、本発明のトリコデルマ・リーセイを用いることにより、タンパク質を高生産することが可能となる。さらに、製造されるタンパク質がセルラーゼの場合には、セルラーゼの各種比活性も向上するという予想外の効果も得られる。
 本発明は、もともとタンパク質の製造能に優れる微生物であるトリコデルマ・リーセイの親株に変異を導入することによって、さらにタンパク質製造能を高めることを特徴としている。従って、本発明で用いるトリコデルマ・リーセイの親株は野生株には制限されず、タンパク質製造能が高まるように改良されたトリコデルマ・リーセイの変異株も親株として好ましく用いることができ、例えば、トリコデルマ・リーセイの変異株には、変異剤や紫外線照射などで変異処理を施し、タンパク質の製造性が向上した変異株を上記親株として利用することができる。上記親株として用いる変異株の具体例は、トリコデルマ・リーセイに由来する公知の変異株であるQM6a株(NBRC31326)、QM9414株(NBRC31329)、PC-3-7株(ATCC66589)、QM9123株(NBRC31327)、RutC-30株(ATCC56765)、CL-847株(Enzyme.Microbiol.Technol.10,341-346(1988))、MCG77株(Biotechnol.Bioeng.Symp.8, 89(1978))、MCG80株(Biotechnol.Bioeng.12,451-459(1982))及びこれらの派生株などが挙げられる。なお、QM6a株、QM9414株、QM9123株はNBRC(NITE Biological Resource Center)より、PC-3-7株、RutC-30株はATCC(American Type Culture Collection)より入手することができる。
 配列番号2で表されるアミノ酸配列からなるポリペプチドは、トリコデルマ・リーセイが有するポリペプチドであり、National Center for Biotechnology Infomationでは、Trichoderma reesei QM6a株が持つpredicted protein(EGR50654)としても登録されている。配列番号2で表されるアミノ酸配列からなるポリペプチドは機能未知のポリペプチドであるが、National Center for Biotechnology InfomationのCenserved Domain Architecture Retrieval Toolによれば、N末端側から95番目~277番目のアミノ酸残基は「Middle domain of eukaryotic initiation factor 4Gドメイン(本明細書中ではMIF4Gドメインと記載する場合もある。)、N末端側から380番目~485番目のアミノ酸残基はMA-3ドメインを有すると開示されている。MIF4GおよびMA-3の両ドメインは、DNAまたはRNAに結合する機能を有することが知られている(Biochem.44,12265-12272(2005)、Mol.Cell.Biol.1,147-156(2007))。これらの記載により配列番号2で表されるアミノ酸配列からなるポリペプチドは、少なくともDNAおよび/またはRNAに結合する機能を有すると推定される。
 本発明において、配列番号2で表されるアミノ酸配列からなるポリペプチドの機能の低下は、配列番号2で表されるアミノ酸配列をコードする塩基配列が変異して、当該ポリペプチオドの機能が低下したり、機能が欠失したりする状態を表す。また、配列番号2で表されるアミノ酸配列をコードする塩基配列以外の塩基配列が変異して、配列番号2で表されるアミノ酸配列からなるポリペプチドの発現量の低下または発現の消失が引き起こされる場合も、配列番号2で表されるアミノ酸配列からなるポリペプチドの機能の低下に含まれる。塩基配列の変異は、塩基の置換、欠失、挿入、重複等によって起こる。
 配列番号2で表されるアミノ酸配列からなるポリペプチドをコードする遺伝子の具体例として、配列番号1で表される塩基配列が挙げられる。
 配列番号2で表されるアミノ酸配列からなるポリペプチドの機能を低下させる具体的な方法としては、MIF4Gドメインおよび/またはMA-3ドメインの全欠損、MIF4Gドメインおよび/またはMA-3ドメインの一部欠損、MIF4GドメインとMA-3ドメインとの立体配置関係の変化、または配列番号2で表されるアミノ酸配列からなるポリペプチドを全欠損させるような変異を導入する方法が挙げられる。
 MIF4Gドメインおよび/またはMA-3ドメインの欠損とは、そのドメインが全てなくなる、一部が無くなる、全てが異なるアミノ酸に変わる、一部が異なるアミノ酸に変わる、またはそれらの組み合わせのことを指す。さらに具体的には配列番号2で表されるアミノ酸配列において、上記に示したMIF4GドメインまたはMA-3ドメインのアミノ酸配列と配列同一性が80%以下になることを指し、好ましくは50%以下であり、さらに好ましくは20%以下であり、さらに好ましくは10%以下であり、さらに好ましくは5%以下であり、さらに好ましくは3%以下であり、さらに好ましくは1%以下であり、最も好ましくは0%である。
 MIF4GドメインとMA-3ドメインとの立体配置関係の変化とは、MIF4GドメインとMA-3ドメインとの間に位置するアミノ酸配列において、アミノ酸の欠失、置換または付加が起こる変異によって行われる。MIF4GドメインやMA-3ドメインは、タンパク質ドメインと呼ばれるが、タンパク質ドメインは、タンパク質の配列構造の一部を構成し、機能を持った存在である。ドメインが複数ある場合には、複数のドメインからなる立体構造がタンパク質の立体構造の一部を構成するため、ドメイン同士の立体配置が変化すると、タンパク質の立体構造が変化し、タンパク質の機能が低下する。例えば、ストレプトコッカス属が有するストレプトキナーゼは、αドメイン、βドメイン、γドメインの計3種のドメインを有しており、αドメインとβドメインは12アミノ酸残基により連結され、βドメインとγドメインは15アミノ酸残基によりそれぞれ連結されているが、Biochem.Biophys.Acta.9,1730-1737(2010)には、αドメインとβドメイン、βドメインとγドメインの間に位置するアミノ酸配列に対してアミノ酸残基の置換、付加、欠失などの変異が起きることにより、ストレプトキナーゼの活性が低下したり消失したりすることが示されている。ドメイン間のアミノ酸配列の置換については、同文献のTable.1とTable.2に、ドメイン間のアミノ酸配列の欠失や付加についてはTable.5とTable.6にそれぞれ記載されている。
 以上のように、ドメインを構成するアミノ酸配列自体にアミノ酸の欠失、置換、または付加などの変異が起こらない場合でも、2つのドメインの間に位置するアミノ酸配列にアミノ酸の欠失、置換、または付加などの変異が起こることによって、タンパク質の機能が低下することが知られている。本発明において、MIF4GドメインとMA-3ドメインの間に位置するアミノ配列とは、配列番号2のアミノ酸配列において、N末端側から278番目~379番目のアミノ酸残基間での領域を指す。また、本発明において、MIF4GドメインとMA-3ドメインの間に位置するアミノ配列をコードする塩基配列は、配列番号1に示す塩基配列において、832番目~1137番目の塩基配列の領域を指す。
 本発明において、MIF4GドメインとMA-3ドメインの間に位置するアミノ酸配列に欠失、置換、または付加などの変異がおこることによって、配列番号2で表されるアミノ酸配列からなるポリペプチドの機能が低下する具体例としては、配列番号1で表される塩基配列において、1039番目から1044番目のいずれかの塩基が欠失する変異が挙げられる。当該塩基欠失は、配列番号2で表されるアミノ酸配列からなるポリペプチドのMIF4GドメインとMA-3ドメインの間に位置するアミノ酸配列において、347番目と348番目の2アミノ酸残基の欠失である。当該変異により、MIF4GドメインとMA-3ドメイン連結するアミノ酸配列が短くなり、MIF4GドメインとMA-3ドメインの立体的な配置関係が変化すると推測される。
 従って、配列番号2で表されるアミノ酸配列からなるポリペプチドの機能が低下したトリコデルマ・リーセイの好ましい態様としては、配列番号2で表されるアミノ酸配列における347番目と348番目の2アミノ酸残基が欠失しているトリコデルマ・リーセイの変異株が挙げられる。なお、本明細書において「347番目と348番目の2アミノ酸残基が欠失している」とは、配列番号2で表されるアミノ酸配列において少なくとも当該2アミノ酸残基が欠失していることを意味するが、好ましい態様としては、347番目と348番目の2アミノ酸の欠失した態様、当該2アミノ酸の欠失に加えて、MIF4Gドメインおよび/またはMA-3ドメインの全欠損、MIF4Gドメインおよび/またはMA-3ドメインの一部欠損した態様である。
 配列番号2で表されるアミノ酸配列における347番目と348番目の2アミノ酸残基の欠失、MIF4Gドメインおよび/またはMA-3ドメインの全欠損、MIF4Gドメインおよび/またはMA-3ドメインの一部欠損、配列番号2で表されるアミノ酸配列からなるポリペプチドの全欠損は、配列番号2で表されるアミノ酸配列からなるポリペプチドをコードする遺伝子配列に対して、塩基の欠失、挿入、置換などによるフレームシフトやストップコドン変異により行われる。
 また、配列番号2で表されるアミノ酸配列からなるポリペプチドの発現量の低下または発現の消失は、配列番号2で表されるアミノ酸配列をコードする遺伝子のプロモーターやターミネーター領域の変異により行われる。一般的に、プロモーターとターミネーター領域は、転写に関与する遺伝子の前後数百塩基の領域に相当し、配列番号2で表されるアミノ酸配列からなるポリペプチドの転写に関与するプロモーターとターミネーターを含む塩基配列の具体例としては、配列番号7で表される塩基配列が挙げられる。
 上記の遺伝子の変異導入は、当業者にとって公知の変異剤または紫外線照射などによる変異処理、選択マーカーを用いた相同組換えなどの遺伝子組換え、あるいはトランスポゾンによる変異など、既存の遺伝子変異方法を用いることができる。
 本発明のトリコデルマ・リーセイの変異株は、配列番号2で表されるアミノ酸配列からなるポリペプチドの機能が低下していないトリコデルマ・リーセイと比較してタンパク質の製造能が向上する。本発明のトリコデルマ・リーセイの変異株を培養すると、配列番号2で表されるアミノ酸配列からなるポリペプチドの機能が低下していないトリコデルマ・リーセイの培養液と比較して、タンパク質濃度が増加する。また、タンパク質が酵素の場合には、酵素の比活性が増加する。ここで、タンパク質濃度の増加率や酵素の比活性の増加率は、増加していれば特に限定はされないが、20%以上であることが好ましい。
 また、本発明は前記配列番号2で表されるアミノ酸配列からなるポリペプチドの機能が低下しているトリコデルマ・リーセイを培養する工程を含むタンパク質の製造方法に関する。
 培養工程の培地組成は、トリコデルマ・リーセイがタンパク質を製造できるような培地組成となっていれば特に制限はなく、トリコデルマ属糸状菌の周知の培地組成を採用することができる。窒素源としては、例えば、ポリペプトン、肉汁、CSL、大豆かすなどを用いることができる。また、培地には、タンパク質を製造させるための誘導物質を添加してもよい。
 培養方法は特に限定されず、例えば遠沈管、フラスコ、ジャーファーメンター、タンクなどを用いた液体培養や、プレートなどを用いた固体培養などで培養することができる。トリコデルマ・リーセイは、好気的条件で培養することが好ましく、これらの培養方法の中でも、特にジャーファーメンターや、タンク内に通気や撹拌を行いながら培養する深部培養が好ましい。通気量は、0.1vvm~2.0vvm程度が好ましく、0.3vvm~1.5vvmがより好ましく0.5vvm~1.0vvmが特に好ましい。培養温度は、25℃~35℃程度が好ましく、25℃~31℃がより好ましい。培養におけるpHの条件は、pH3.0~7.0が好ましく、pH4.0~6.0がより好ましい。培養時間は、タンパク質が生産される条件で、回収可能な量のタンパク質が蓄積されるまで行う。通常、24時間~240時間程度であり、36時間~192時間がより好ましい。
 本発明で製造するタンパク質は特に制限はないが、菌体外に分泌されるタンパク質を効率的に製造することができ、中でも好ましくは酵素であり、より好ましくはセルラーゼ、アミラーゼ、インベルターゼ、キチナーゼ、ペクチナーゼ等の糖化酵素であり、さらに好ましくはセルラーゼである。
 本発明で製造されるセルラーゼには、様々な加水分解酵素が含まれており、キシラン、セルロース、ヘミセルロースに対する分解活性を持つ酵素などが含まれている。具体例としては、セルロース鎖の加水分解によりセロビオースを製造するセロビオハイドラーゼ(EC 3.2.1.91)、セルロース鎖の中央部分から加水分解するエンドグルカナーゼ(EC 3.2.1.4)、セロオリゴ糖およびセロビオースを加水分解するβ-グルコシダーゼ(EC 3.2.1.21)、ヘミセルロースや特にキシランに作用することを特徴とするキシラナーゼ(EC 3.2.1.8)、キシロオリゴ糖を加水分解するβ-キシロシダーゼ(EC 3.2.1.37)などが挙げられる。前述の通り、本発明のトリコデルマ・リーセイ変異株のタンパク質製造能の向上を確認するためのセルラーゼの比活性の向上の確認は、これらの加水分解酵素の比活性のいずれかが向上していることにより確認する。
 β-グルコシダーゼ比活性は、以下の方法で測定する。まず、1mMp-ニトロフェニル-β-グルコピラノシド(シグマアルドリッチジャパン社製)を含有する50mM酢酸バッファー90μLに酵素希釈液10μLを添加して30℃で10分間反応させる。次に2M炭酸ナトリウム10μLを加えてよく混合して反応を停止し、405nmの吸光度の増加を測定する。最後に1分間あたり1μmolのp-ニトロフェノールを遊離する活性を1Uとし、これをタンパク質の量で割ることで比活性を算出する。
 β-キシロシダーゼ比活性は以下の方法で測定する。まず、1mMp-ニトロフェニル-β-キシロピラノシド(シグマアルドリッチジャパン社製)を含有する50mM酢酸バッファー90μLに酵素希釈液10μLを添加し30℃で30分間反応させる。次に、2M炭酸ナトリウム10μLを加えてよく混合して反応を停止し、405nmの吸光度の増加を測定する。最後に1分間あたり1μmolのp-ニトロフェノールを遊離する活性を1Uとし、これをタンパク質の量で割ることで比活性を算出する。
 セロビオハイドロラーゼ比活性は、以下の方法で測定する。まず、1mMp-ニトロフェニル-β-ラクトピラノシド(シグマアルドリッチジャパン社製)を含有する50mM酢酸バッファー90μLに酵素希釈液10μLを添加し30℃で60分間反応させる。次にその後、2M炭酸ナトリウム10μLを加えてよく混合して反応を停止し、405nmの吸光度の増加を測定する。最後に、1分間あたり1μmolのp-ニトロフェノールを遊離する活性を1Uとし、これをタンパク質の量で割ることで比活性を算出する。
 本発明によりセルラーゼを製造する場合には、培地にセルロースおよび/またはキシランを誘導物質として添加することができる。また、セルロースやキシランを含むバイオマスを誘導物質として添加してもよい。セルロールやキシランを含有するバイオマスの具体例としては、種子植物、シダ植物、コケ植物、藻類、水草などの植物の他、廃建材なども用いることができる。種子植物は、裸子植物と被子植物に分類されるが、どちらも好ましく用いることができる。被子植物はさらに単子葉植物と双子葉植物に分類されるが、単子葉植物の具体例としては、バガス、スイッチグラス、ネピアグラス、エリアンサス、コーンストーバー、コーンコブ、稲わら、麦わらなどが挙げられ、双子葉植物の具体例としては、ビートパルプ、ユーカリ、ナラ、シラカバなどが好ましく用いられる。
 また、セルロースおよび/またはキシランを含む誘導物質は、前処理されたものを用いてもよい。前処理方法は特に限定されないが、例えば、酸処理、硫酸処理、希硫酸処理、アルカリ処理、水熱処理、亜臨界処理、微粉砕処理、蒸煮処理、など公知の手法を用いることができる。このような前処理をされたセルロールおよび/またはキシランを含むバイオマスとして、パルプを用いてもよい。
 トリコデルマ・リーセイの変異体を培養した培養液に含まれるタンパク質を回収する方法は特に限定されないが、トリコデルマ・リーセイの菌体を培養液から除去し、タンパク質を回収することができる。菌体の除去方法としては、遠心分離法、膜分離法、フィルタープレス法などが例として挙げられる。
 また、トリコデルマ・リーセイの変異体を培養した培養液から菌体を除去せずに、タンパク質の溶解液として利用する場合には、培養液中でトリコデルマ・リーセイの菌体が生育できないように処理することが好ましい。菌体が生育できないように処理する方法としては、熱処理、薬剤処理、酸・アルカリ処理、UV処理などが挙げられる。
 タンパク質が酵素の場合には、上記のように菌体を除去又は生育していないように処理した培養液を、そのまま酵素液として利用することができる。
 また、タンパク質がセルラーゼの場合には、当該セルラーゼを用いて、セルロース含有バイオマスを糖化して、糖を製造することができる。
 本発明で用いるセルロース含有バイオマスには、上記の誘導剤として記載したセルロースを含むバイオマスと同様のバイオマスや、前処理されたバイオマスを用いることができる。
 本発明のトリコデルマ・リーセイの変異株を培養して得られるセルラーゼは、本発明の配列番号2で表されるアミノ酸配列からなるポリペプチドの機能が低下しているトリコデルマ・リーセイの変異株を培養して得られたセルラーゼは、当該ポリペプチドの機能が低下していないトリコデルマ・リーセイを培養して得られるセルラーゼと比べて、特にβ-グルコシダーゼ等の比活性が高いため、効率的にセルロース含有バイオマスを分解して、グルコース濃度の高い糖化液を得ることができ、より多くの糖を得ることができる。
 糖化反応の条件は、特に限定されないが、糖化反応の温度は、25~60℃の範囲であることが好ましく、特に30~55℃の範囲であることがより好ましい。糖化反応の時間は、2時間~200時間の範囲であることが好ましい。糖化反応のpHは、pH3.0~7.0の範囲が好ましく、pH4.0~6.0の範囲であることがさらに好ましい。トリコデルマ属由来セルラーゼの場合、その反応最適pHは5.0である。さらに、加水分解の過程でpHの変化が起きるため、反応液に緩衝液を添加する、あるいは酸やアルカリを用いて一定pHを保持しながら実施することが好ましい。
 糖化液から酵素を分離回収する場合には、糖化液を限外ろ過膜などでろ過し、非透過側に回収することができる、必要に応じてろ過の前工程として、糖化液から固形分を取り除いておいてもよい。回収した酵素は、再び糖化反応に用いることができる。
 以下に実施例を挙げて本発明を具体的に説明する。
 <参考例1>タンパク質濃度測定方法
 タンパク質濃度測定試薬(Quick Start Bradfordプロテインアッセイ、Bio-Rad製)を使用した。室温に戻したタンパク質濃度測定試薬250μLに希釈した糸状菌の培養液を5μL添加し、室温で5分間静置後の595nmにおける吸光度をマイクロプレートリーダーで測定した。標準品としてBSAを使用し、検量線に照らし合わせてタンパク質濃度を算出した。
 <参考例2>セルラーゼの比活性の測定方法
 (β-グルコシダーゼ比活性測定方法)
 1mMp-ニトロフェニル-β-グルコピラノシド(シグマアルドリッチジャパン社製)を含有する50mM酢酸バッファー90μLに酵素希釈液10μLを添加して30℃で10分間反応させた。その後2M炭酸ナトリウム10μLを加えてよく混合して反応を停止し、405nmの吸光度の増加を測定した。1分間あたり1μmolのp-ニトロフェノールを遊離する活性を1Uと定義し、これをタンパク質の量で割ることで比活性を算出した。
 (β-キシロシダーゼ比活性測定方法)
 1mMp-ニトロフェニル-β-キシロピラノシド(シグマアルドリッチジャパン社製)を含有する50mM酢酸バッファー90μLに酵素希釈液10μLを添加し30℃で30分間反応させた。その後、2M炭酸ナトリウム10μLを加えてよく混合して反応を停止し、405nmの吸光度の増加を測定した。1分間あたり1μmolのp-ニトロフェノールを遊離する活性を1Uと定義し、これをタンパク質の量で割ることで比活性を算出した。
 (セロビオハイドロラーゼ比活性測定方法)
 1mMp-ニトロフェニル-β-ラクトピラノシド(シグマアルドリッチジャパン社製)を含有する50mM酢酸バッファー90μLに酵素希釈液10μLを添加し30℃で60分間反応させた。その後、2M炭酸ナトリウム10μLを加えてよく混合して反応を停止し、405nmの吸光度の増加を測定した。1分間あたり1μmolのp-ニトロフェノールを遊離する活性を1Uと定義し、これをタンパク質の量で割ることで比活性を算出した。
 <参考例3>セルロース含有バイオマスの糖化試験
 セルロース含有バイオマスとして、Arbocel(登録商標)B800(レッテンマイヤー社製)または平均粒径100μmに粉末化したバガスを用いた。酵素液としては、トリコデルマ・リーセイまたはトリコデルマ・リーセイの変異株の培養液を1ml採取して遠心分離し、菌体を除去した上清を回収し、さらに0.22μmのフィルターでろ過したろ液を用いた。
 (糖化反応)
 糖化反応の緩衝液として1M 酢酸ナトリウムバッファー100μL、雑菌の繁殖防止として50g/L エリスロマイシン溶液2μL、糖化対象物として、Arbocel(登録商標)B800(レッテンマイヤー株式会社製)または平均粒径100μmに粉末化したバガスをそれぞれ0.1g添加し、セルロース含有バイオマスとして、Arbocel(登録商標)B800を用いた際には、酵素液を450μL、セルロース含有バイオマスとして、バガスを用いた際には、400μLそれぞれ添加し、計1mLになるよう滅菌水でメスアップしたものを2mLチューブに入れた。50℃の温度条件で30時間糖化反応を行い、糖化物を遠心分離した上清を糖化液として回収し、回収した糖化液の10分の1量の1N NaOH溶液を添加して、酵素反応を停止させた。反応停止後の糖化液中のグルコース濃度を下記に示すUPLCで測定した。
 (グルコース濃度の測定)
 グルコースは、ACQUITY UPLC システム(Waters)を用いて、以下の条件で定量分析した。グルコースの標品で作製した検量線をもとに、定量分析した。
カラム:AQUITY UPLC BEH Amide1.7μm 2.1×100mm Column
分離法:HILIC
移動相:移動相A:80%アセトニトリル、0.2%TEA水溶液、移動相B:30%アセトニトリル、0.2%TEA水溶液とし、下記グラジエントに従った。グラジエントは下記の時間に対応する混合比に到達する直線的なグラジエントとした。
開始条件:(A99.90%、B0.10%)、開始2分後:(A96.70%、B3.30%)、開始3.5分後:(A95.00%、B5.00%)、開始3.55分後:(A99.90%、B0.10%)、開始6分後:(A99.90%、B0.10%)。
検出方法:ELSD(蒸発光散乱検出器)
流速:0.3mL/min
温度:55℃。
 <実施例1>配列番号2で表されるアミノ酸配列からなるポリペプチドの機能が低下したトリコデルマ・リーセイQM9414変異株Iの作製
 配列番号2で表されるアミノ酸配列からなるポリペプチドの機能が低下したトリコデルマ・リーセイの変異株は、配列番号2で表されるアミノ酸配列からなるポリペプチドの機能が低下した配列番号2で表されるアミノ酸配列からなるポリペプチドをコードする遺伝子を含むDNA断片として、配列番号3で表される遺伝子配列からなるDNA断片を作製し、当該DNA断片をトリコデルマ・リーセイQM9414株に形質転換することで作製した。この方法により、配列番号1において、1039番目から1044番目の塩基が欠失し、配列番号2において、347番目と348番目の2アミノ酸残基が欠失したアミノ酸配列からなるポリペプチドを有するトリコデルマ・リーセイの変異株が得られる。DNA断片導入のための選択マーカーとしてアセトアミドおよびアセトアミドを分解することができるアセトアミダーゼ(AmdS)遺伝子(amdS)を使用した。amdSを含むDNA配列の上流および下流に、上記の配列番号3で表される塩基配列からなるDNA断片を導入するために、トリコデルマ・リーセイQM9414株の遺伝子配列と相同的な部分を付加するように変異導入用プラスミドを作製した。
 具体的には、配列番号4で示す合成したDNA断片を制限酵素AflIIとKpnIで処理したDNA断片を上流DNA断片とした。また、トリコデルマ・リーセイ QM9414株から定法に従って抽出したゲノムDNAと配列番号5および6で表されるオリゴDNAを用いてPCRをし、得られた増幅断片を制限酵素MluIとSpeIで処理したDNA断片を下流DNA断片とし、上流及び下流DNA断片をAflIIとKpnI、MluIとSpeIの制限酵素をそれぞれ用いてamdSが挿入されたプラスミドへ導入し、変異導入用プラスミドを構築した。そして、変異導入用プラスミドを制限酵素PacIとSphIで処理し、配列番号3で示す得られたDNA断片でトリコデルマ・リーセイ QM9414株(NBRC#31329)を形質転換した。分子生物学的手法は、Molecular cloning,laboratory manual,1st,2nd,3rd(1989)の記載通りに行った。また、形質転換は、標準的な手法であるプロトプラスト-PEG法を用い、具体的にはGene,61,165-176(1987)の記載通りに行った。得られたトリコデルマ・リーセイ変異株をQM9414変異株Iとして以下の実験に用いた。
 <実施例2>QM9414変異株Iを用いたタンパク質の製造試験
 (フラスコ培養)
 実施例1で作製したQM9414変異株Iの胞子を1.0×10/mLになるように生理食塩水で希釈し、その希釈胞子溶液0.1mLを表1に示した50mLバッフル付フラスコへ入れた10mLのフラスコ培地へ接種させ、振盪培養機にて28℃、120rpmの条件にて120時間培養を行った。
Figure JPOXMLDOC01-appb-T000001
 (培養液の採取)
 培養開始120時間後に1mL培養液を採取した。培養液を15,000×g、4℃の条件下で10分間遠心分離を行い、上清を得た。その上清を0.22μmのフィルターでろ過し、そのろ液をセルラーゼ溶液として、以下の実験に用いた。
 (タンパク質濃度とセルラーゼの各種比活性の測定)
 参考例1で記載した手法を用い、培養開始120時間目の培養液におけるタンパク質濃度を測定し、続いて参考例2に記載の方法でセルラーゼの比活性を測定した。結果を表2に示す。
 <実施例3>配列番号2で表されるアミノ酸配列からなるポリペプチドの機能が低下したトリコデルマ・リーセイQM9414変異株IIの作製
 配列番号2で表されるアミノ酸配列からなるポリペプチドの機能が欠損したトリコデルマ・リーセイの変異株は、配列番号8で表される遺伝子配列からなるDNA断片を作製し、当該DNA断片をトリコデルマ・リーセイQM9414株に形質転換することで作製した。この方法により、配列番号1において、1206番目と1207番目の間にamdSが挿入され、配列番号2の機能が低下したトリコデルマ・リーセイの変異株が得られる。amdSを含むDNA配列の上流および下流に、上記の配列番号8で表される塩基配列からなるDNA断片を導入するために、トリコデルマ・リーセイQM9414株の遺伝子配列と相同的な部分を付加するように変異導入用プラスミドを作製した。
 具体的には、トリコデルマ・リーセイ QM9414株から定法に従って抽出したゲノムDNAと配列番号9および10で表されるオリゴDNAを用いてPCRをし、得られた増幅断片を制限酵素AflIIとKpnIで処理したDNA断片を上流断片とした。また、ゲノムDNAと配列番号11と12で表されるオリゴDNAを用いてPCRをし、得られた増幅断片を制限酵素MluIとSpeIで処理したDNA断片を下流DNA断片とし、上流及び下流DNA断片をAflIIとKpnI、MluIとSpeIの制限酵素をそれぞれ用いてamdSが挿入されたプラスミドへ導入し、変異導入用プラスミドを構築した。そして、変異導入用プラスミドを制限酵素AflIIとSpeIで処理し、配列番号8で示す得られたDNAでトリコデルマ・リーセイQM9414株を実施例1の記載通りに形質転換を行った。得られたトリコデルマ・リーセイ変異株をQM9414変異株IIとして以下の実験に用いた。
 <実施例4>QM9414変異株IIを用いたタンパク質の製造試験
 実施例1で作製したQM9414変異株Iの代わりにQM9414変異株IIを用いた以外は、実施例2と同様の操作・条件で培養を行い、培養液中に含まれるタンパク質濃度と、セルラーゼの各種比活性を測定した。結果を表2に示す。
 <比較例1>トリコデルマ・リーセイQM9414株を用いたタンパク質の製造試験
 実施例1で作製したQM9414変異株Iの代わりにトリコデルマ・リーセイQM9414株を用いた以外は、実施例2と同様の条件・操作で培養を行い、培養液中に含まれるタンパク質濃度とセルラーゼの各種比活性を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例2、実施例4および比較例1の結果から、トリコデルマ・リーセイQM9414株を培養した培養液に含まれるタンパク質濃度を1とした場合、QM9414変異株Iの培養液に含まれるタンパク質濃度の相対値は1.5、トリコデルマ・リーセイの変異株IIの培養液に含まれるタンパク質濃度の相対値は1.4であった。これらの結果から、配列番号2で表されるアミノ酸配列からなるポリペプチドの機能を低下させたトリコデルマ・リーセイを培養すると、当該ポリペプチドの機能を低下させない場合と比べてタンパク質の製造量を向上できることがわかった。
 セルラーゼの各種比活性については、トリコデルマ・リーセイQM9414株を培養した培養液のセルラーゼの各種比活性を1とした場合、β-グルコシダーゼ比活性は、QM9414変異株I:1.3、QM9414変異株II:1.4であり、β-キシロシダーゼ比活性は、トリコデルマ・リーセイ変異株I:1.5、QM9414変異株II:1.5、セロビオハイドロラーゼ比活性は、QM9414変異株I:1.4、QM9414変異株II:1.3であった。これらの結果から、配列番号2で表されるアミノ酸配列からなるポリペプチドの機能を低下させたトリコデルマ・リーセイ変異株を培養して得られたセルラーゼは、当該ポリペプチドの機能を低下させない場合と比べて、生産されるタンパク質の量が向上するだけでなく、セルラーゼの各種比活性も向上するという予想外の効果が得られることがわかった。
 <実施例5>QM9414変異株IIのセルラーゼを用いた糖化反応試験
 実施例4で得られたQM9414変異株IIの培養開始から120時間目の培養液を用いて、参考例3に記載の方法に従って、セルロース含有バイオマスの糖化反応試験を行った。セルロース含有バイオマスとして、Arbocel(登録商標)B800または粉末バガスを用いた。結果を表3に示す。
 <比較例2>トリコデルマ・リーセイQM9414株のセルラーゼを用いた糖化反応試験
 比較例1で得られたトリコデルマ・リーセイQM9414株の培養開始から120時間目の培養液を用いた以外は、実施例5と同様の操作・条件でセルロース含有バイオマスの糖化反応試験を行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
実施例5と比較例2の結果から、Arbocel(登録商標)B800の糖化反応において、トリコデルマ・リーセイQM9414株のセルラーゼを用いた場合の糖化液に含まれるグルコース濃度を1とした場合、QM9414変異株IIのセルラーゼを用いた場合の糖化液のグルコース濃度の相対値は1.8であった。また、バガスの糖化反応においては、トリコデルマ・リーセイQM9414株のセルラーゼを用いた場合の糖化液に含まれるグルコース濃度を1とした場合、QM9414変異株IIのセルラーゼを用いた場合の糖化液のグルコース濃度の相対値は1.4であった。これらの結果から、配列番号2で表されるアミノ酸配列からなるポリペプチドの機能を低下させたトリコデルマ・リーセイのセルラーゼを用いてセルロース含有バイオマスの糖化反応を行うと、当該ポリペプチドの機能が低下していないトリコデルマ・リーセイのセルラーゼを用いた場合に比べて、糖化液中のグルコース濃度が向上し、より多くの糖を製造できることがわかった。

Claims (5)

  1.  配列番号2で表されるアミノ酸配列からなるポリペプチドの機能が低下している、トリコデルマ・リーセイの変異株。
  2.  配列番号2で表されるアミノ酸配列における347番目と348番目の2アミノ酸残基が欠失している、請求項1に記載のトリコデルマ・リーセイの変異株。
  3.  請求項1または2に記載のトリコデルマ・リーセイの変異株を培養する工程を含む、タンパク質の製造方法。
  4.  請求項1または2に記載のトリコデルマ・リーセイの変異株を培養する工程を含む、セルラーゼの製造方法。
  5.  セルロース含有バイオマスから糖を製造する方法であって、以下の工程:
     工程a:配列番号2で表されるアミノ酸配列からなるポリペプチドの機能が低下しているトリコデルマ・リーセイの変異株を培養し、セルラーゼを製造する工程
     工程b:工程aで得られたセルラーゼ培養液を用いて、前記バイオマスを糖化する工程
    を含む、糖の製造方法。
PCT/JP2019/012505 2018-03-26 2019-03-25 トリコデルマ・リーセイ変異株およびタンパク質の製造方法 WO2019188980A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP19776489.7A EP3778864A4 (en) 2018-03-26 2019-03-25 TRICHODERMA REESEI MUTANT AND PROTEIN PRODUCTION PROCESS
JP2019521840A JP7334620B2 (ja) 2018-03-26 2019-03-25 トリコデルマ・リーセイ変異株およびタンパク質の製造方法
BR112020019479-4A BR112020019479A2 (pt) 2018-03-26 2019-03-25 Cepa mutante de trichoderma reesei, método de produção de uma proteína, método de produção de uma celulase e método de produção de um açúcar
AU2019242425A AU2019242425A1 (en) 2018-03-26 2019-03-25 Trichoderma reesei mutant and protein production method
RU2020131513A RU2020131513A (ru) 2018-03-26 2019-03-25 Мутант trichoderma reesei и способ продуцирования белков
US17/040,593 US11492603B2 (en) 2018-03-26 2019-03-25 Trichoderma reesei mutant and protein production method
CA3094606A CA3094606A1 (en) 2018-03-26 2019-03-25 Trichoderma reesei mutant and protein production method
CN201980022267.1A CN111918959A (zh) 2018-03-26 2019-03-25 里氏木霉突变株和蛋白质的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018057616 2018-03-26
JP2018-057616 2018-03-26

Publications (1)

Publication Number Publication Date
WO2019188980A1 true WO2019188980A1 (ja) 2019-10-03

Family

ID=68060023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012505 WO2019188980A1 (ja) 2018-03-26 2019-03-25 トリコデルマ・リーセイ変異株およびタンパク質の製造方法

Country Status (9)

Country Link
US (1) US11492603B2 (ja)
EP (1) EP3778864A4 (ja)
JP (1) JP7334620B2 (ja)
CN (1) CN111918959A (ja)
AU (1) AU2019242425A1 (ja)
BR (1) BR112020019479A2 (ja)
CA (1) CA3094606A1 (ja)
RU (1) RU2020131513A (ja)
WO (1) WO2019188980A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017029013A (ja) * 2015-07-29 2017-02-09 花王株式会社 糸状菌変異株及びその利用
JP2018019622A (ja) * 2016-08-02 2018-02-08 花王株式会社 糸状菌変異株及びその利用

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5137506B2 (ja) * 2007-07-31 2013-02-06 国立大学法人大阪大学 rRNA含量が増加した酵母
EP2397491A1 (en) * 2010-06-21 2011-12-21 Technische Universität Wien LeaA from Trichoderma reesei
JP2014508534A (ja) * 2011-03-15 2014-04-10 ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・カリフォルニア タンパク質分泌およびリグノセルロース分解のための変異体細胞
JP2012235767A (ja) * 2011-04-27 2012-12-06 Toyota Motor Corp 変異トリコデルマ属微生物及びこれを用いたタンパク質の製造方法
JP2014150745A (ja) * 2013-02-06 2014-08-25 Nagaoka Univ Of Technology トリコデルマ属に属する微生物の変異株および該変異株の使用
FR3018522B1 (fr) * 2014-03-17 2018-02-02 IFP Energies Nouvelles Souches mutantes de trichoderma reesei
JP2016106538A (ja) * 2014-12-03 2016-06-20 東レ株式会社 トリコデルマ・リーセイ変異株およびそれを用いたセロビオハイドラーゼの製造方法
JP7400468B2 (ja) * 2018-05-31 2023-12-19 東レ株式会社 トリコデルマ属糸状菌変異株およびタンパク質の製造方法
JP7459509B2 (ja) * 2018-07-30 2024-04-02 東レ株式会社 トリコデルマ属糸状菌の変異株およびタンパク質の製造方法
BR112021003459A2 (pt) * 2018-08-29 2021-05-11 Toray Industries, Inc. cepa mutante de trichoderma reesei e métodos para produzir uma proteína, para produzir uma celulase e para produzir um açúcar
EP3845631A4 (en) * 2018-08-29 2022-08-17 Toray Industries, Inc. MUTANT TRICHODERMA REESEI STRAIN AND METHOD OF PROTEIN PRODUCTION
JPWO2020075787A1 (ja) * 2018-10-11 2021-09-16 東レ株式会社 トリコデルマ・リーセイ変異株およびタンパク質の製造方法
JPWO2020075788A1 (ja) 2018-10-11 2021-09-02 東レ株式会社 トリコデルマ・リーセイの変異株およびタンパク質の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017029013A (ja) * 2015-07-29 2017-02-09 花王株式会社 糸状菌変異株及びその利用
JP2018019622A (ja) * 2016-08-02 2018-02-08 花王株式会社 糸状菌変異株及びその利用

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
"Molecular cloning, laboratory manual", 1989
BIOCHEM, vol. 44, 2005, pages 12265 - 12272
BIOCHEM. BIOPHYS. ACTA., vol. 9, 2010, pages 1730 - 1737
BIOTECHNOL. BIOENG. SYMP., vol. 8, pages 89
BIOTECHNOL. BIOENG., vol. 12, 1982, pages 451 - 459
DATABASE Protein [online] 25 July 2016 (2016-07-25), "predicted protein [Trichoderma reesei QM6a]", XP055639906, retrieved from ncbi Database accession no. EGR50654 *
ENZYME. MICROBIOL. TECHNOL., vol. 10, 1988, pages 341 - 346
GENE, vol. 61, 1987, pages 165 - 176
JULIANO P: "Single nucleotide polymorphism analysis of a Trichoderma reesei hyper-cellulolytic mutant developed", JAPAN, BIOSCIENCE, BIOTECHNOLOGY, AND BIOCHEMISTRY, vol. 77, 2013, pages 534 - 543
MOL. CELL. BIOL., vol. 1, 2007, pages 147 - 156

Also Published As

Publication number Publication date
CN111918959A (zh) 2020-11-10
EP3778864A4 (en) 2021-12-15
US11492603B2 (en) 2022-11-08
BR112020019479A2 (pt) 2021-01-12
AU2019242425A1 (en) 2020-10-15
JPWO2019188980A1 (ja) 2021-02-12
RU2020131513A (ru) 2022-04-26
US20210115487A1 (en) 2021-04-22
JP7334620B2 (ja) 2023-08-29
EP3778864A1 (en) 2021-02-17
CA3094606A1 (en) 2019-10-03

Similar Documents

Publication Publication Date Title
JP7007645B2 (ja) 変異型bxl1遺伝子を有するトリコデルマ属真菌及びそれを使用したキシロオリゴ糖とグルコースの製造方法
US20210222221A1 (en) Mutant of trichoderma filamentous fungus and method for producing protein
JP7388195B2 (ja) トリコデルマ・リーセイ変異株およびタンパク質の製造方法
JP7400468B2 (ja) トリコデルマ属糸状菌変異株およびタンパク質の製造方法
JP7388194B2 (ja) トリコデルマ・リーセイの変異株およびそれを用いたタンパク質の製造方法
JP7334620B2 (ja) トリコデルマ・リーセイ変異株およびタンパク質の製造方法
WO2020075787A1 (ja) トリコデルマ・リーセイ変異株およびタンパク質の製造方法
JP6518107B2 (ja) 転写因子変異株
JP6849749B2 (ja) 新規キシラナーゼ
WO2021153587A1 (ja) トリコデルマ属糸状菌変異株

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019521840

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776489

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3094606

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019242425

Country of ref document: AU

Date of ref document: 20190325

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020019479

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019776489

Country of ref document: EP

Effective date: 20201026

ENP Entry into the national phase

Ref document number: 112020019479

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200925