WO2019188105A1 - 転写基板ならびにこれを用いた実装方法および画像表示装置の製造方法 - Google Patents

転写基板ならびにこれを用いた実装方法および画像表示装置の製造方法 Download PDF

Info

Publication number
WO2019188105A1
WO2019188105A1 PCT/JP2019/009222 JP2019009222W WO2019188105A1 WO 2019188105 A1 WO2019188105 A1 WO 2019188105A1 JP 2019009222 W JP2019009222 W JP 2019009222W WO 2019188105 A1 WO2019188105 A1 WO 2019188105A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
transfer substrate
chip component
transfer
chip
Prior art date
Application number
PCT/JP2019/009222
Other languages
English (en)
French (fr)
Inventor
靖典 橋本
昇 朝日
Original Assignee
東レエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レエンジニアリング株式会社 filed Critical 東レエンジニアリング株式会社
Publication of WO2019188105A1 publication Critical patent/WO2019188105A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Definitions

  • the present invention relates to a transfer substrate for transferring a chip component, and a mounting method for mounting the chip component on a wiring substrate using the transfer substrate.
  • the chip parts C that are densely formed and diced on the wafer substrate W are rearranged on the wiring board S at a predetermined interval, and are mounted with high speed and high precision (FIG. 8 ( c))
  • FIG. 8 ( c) There are uses.
  • the manufacture of a micro LED display that is attracting attention as an image display device, it is necessary to mount millions of LED chips at predetermined positions on a TFT substrate with a gap therebetween.
  • FIGS. 9A and 9B are enlarged views of FIG. 8B showing a cross section of the wafer substrate W and FIG. 8D showing a cross section of the wiring substrate S.
  • an accuracy of an error of about several ⁇ m is required.
  • the chip components C formed densely on the wafer substrate W as shown in FIG. 8A are spaced apart from the wiring substrate S as shown in FIG. 8C (FIG. 8C).
  • Various processes for mounting with high accuracy have been studied.
  • FIG. 10 shows an example in which the chip component C is transferred from the wafer substrate W to the wiring substrate S by the LLO method.
  • FIG. 10A shows a state in which the leftmost chip component C is irradiated with laser light L and transferred to the wiring board S.
  • the leftmost chip component C is aligned with a predetermined position above the wiring board S.
  • the wavelength of the laser beam L in FIG. 10A is selected from a range suitable for peeling the chip component C from the wafer W. For example, if the wavelength absorbed by the material of the chip component C is used, the chip component C is peeled off from the wafer substrate W by the gas generated by the decomposition of the material as the temperature rises.
  • FIG. 10B shows a state where the leftmost chip component C peeled off from the wafer substrate W by the irradiation of the laser beam L is transferred to the wiring substrate S.
  • the chip component C at the left end is transferred directly below, it is disposed at a predetermined position on the wiring board S. Note that if the moving distance d of the chip component directly under the transfer is made larger than the total height of the chip component C and the bump B, the wafer substrate W can be obtained even if the chip component C is transferred to the wiring substrate S. Can be moved horizontally.
  • FIG. 10C shows a state in which the laser beam L is irradiated after the predetermined positions of the chip component C and the wiring board S to be transferred next are arranged immediately below the laser beam L.
  • the next chip component C is transferred and arranged at a predetermined position on the wiring board S with a space from the previously transferred chip component C.
  • the chip component C to be transferred directly below the laser beam L and the predetermined position (position where the chip component C is to be mounted) of the wiring board S are arranged as needed, and the chip component C is transferred to transfer the chip component C as shown in FIG.
  • the transfer arrangement of the chip component C onto the wiring board S as shown in c) can be performed.
  • the first transfer substrate 1 is brought into close contact with the chip component C of the wafer substrate W, and the chip component C is peeled off by laser light or the like. 1 Transfer to the transfer substrate 1.
  • the first transfer substrate 1 has adhesiveness on the side where the chip component C is held.
  • the chip component C is transferred while being in close contact with the first transfer substrate, the chip component C is transferred to the first transfer substrate 1 without being accelerated.
  • the bump B of the chip component C is in close contact with the first transfer substrate 1, even if the chip component C is transferred from this state to the wiring substrate S, the bump B remains. It cannot be brought into contact with the electrode of the wiring board S. Therefore, the chip component C of the first transfer substrate 1 is transferred again to the second transfer substrate 2 as shown in FIG.
  • the second transfer substrate 2 has adhesiveness on the side that holds the chip component C.
  • the second transfer substrate 2 holds the side opposite to the bump B of the chip component C as shown in FIG.
  • the transfer substrate 2 holding the chip component C as shown in FIG.
  • the impact of the chip component C during transfer can be reduced.
  • the laser beam L is used to surely peel all the chip components from the second transfer substrate 2. It is necessary to set the intensity. For this reason, it is extremely difficult to transfer all the chip components C from the second transfer substrate 2 to the wiring substrate S without damaging them. If the laser light L is intended to have an adhesive force that can be peeled even when the intensity is low, there is a concern that the chip component C may be naturally peeled from the second transfer substrate 2 or may be misaligned during transfer.
  • the present invention has been made in view of the above problems, and when mounting chip components arranged in a dense state on a wiring board at a predetermined interval, the chip components are not damaged without being damaged.
  • the present invention provides a transfer substrate used for securely mounting at a position, a transfer substrate, a mounting method using the transfer substrate, and a method for manufacturing an image display device.
  • the invention according to claim 1 is configured such that a plurality of chip parts having bump electrodes are held from the opposite side of the surface on which the bump electrodes are formed and connected to the bump electrodes.
  • a transfer substrate used for transferring and mounting on a wiring substrate having an electrode comprising: a base substrate; and an adhesive layer that is formed on the base substrate and holds the chip component.
  • the Young's modulus is 1 GPa or more
  • the softening temperature is 200 ° C. or more
  • the thermal conductivity is 1 W / m.
  • the adhesive layer has a melting point of 200 ° C. or more.
  • the transfer substrate is 50% or more and 90% or less.
  • the invention described in claim 2 is the transfer substrate according to claim 1, wherein the adhesive layer uses a silicone resin or an acrylic resin.
  • a chip component having a diced bump electrode is transferred to a first transfer substrate holding the bump electrode side and transferred to a second transfer substrate holding the opposite side of the bump electrode. Then, a mounting method of transferring and mounting on a wiring board having an electrode connected to the bump electrode, wherein the chip is used by using the transfer board according to claim 1 or 2 as the second transfer board.
  • the step of transferring the component from the first transfer substrate to the second transfer substrate the interval between the chip components is changed to the mounting interval on the wiring substrate, and the surface of the second transfer substrate holding the chip components
  • the mounting method is such that the transfer substrate is peeled off from the chip component after being heated while being pressurized from the opposite side.
  • Invention of Claim 4 manufactures an image display apparatus which manufactures an image display apparatus using the mounting method of Claim 3 using an LED chip as said chip component, and a TFT substrate as said wiring board. Is the method.
  • a high-quality image display device can be obtained by mounting the LED chip on the TFT substrate.
  • FIG. 5A is a diagram illustrating a process of transferring a chip component from a wafer substrate to a first transfer substrate
  • FIG. 5B is a diagram illustrating a state in which the chip component is transferred to the first transfer substrate according to the embodiment of the present invention. is there (A) It is a figure which shows the process of peeling a chip
  • FIG. 4 is a diagram illustrating a process of peeling the next chip component from the first transfer substrate, and (d) a diagram illustrating a state in which the next chip component is transferred to the second transfer substrate.
  • FIG. 4 is a diagram showing a state in which (a) a second transfer substrate holding a chip component is arranged on a wiring substrate according to an embodiment of the present invention, and (b) a chip component held by the second transfer substrate on the wiring substrate. It is a figure which shows the state which carries out thermocompression bonding. (C) It is a figure which shows the state after the thermocompression bonding of the chip component to the wiring board is completed, and (d) the second transfer substrate is peeled from the chip component, and the mounting is completed.
  • thermocompression bonding head is placed on the wiring board while holding the second transfer board, and (b) the chip component on the wiring board wiring board. It is a figure which shows the state after thermocompression bonding is completed.
  • thermocompression bonding is completed.
  • FIG. 6 is a diagram showing a step of peeling the next chip component from (d) a state in which the next chip component is transferred to the wiring board.
  • FIG. 10 is a diagram illustrating transfer of a chip component using a transfer substrate, and is a diagram illustrating a process of transferring the chip component from the wafer substrate to the first transfer substrate, and (b) a state in which the chip component is transferred to the first transfer substrate.
  • C) is a diagram showing a process of transferring a chip component from the first transfer substrate to the second transfer substrate, and (d) is a diagram showing a state where the chip component is transferred to the second transfer substrate. .
  • FIG. 1 shows a second transfer substrate 2 which is a transfer substrate according to an embodiment of the present invention, and shows a state in which a chip component C is held.
  • the second transfer substrate 2 has a structure in which an adhesive layer 21 is laminated on a base substrate 20 and the adhesive layer 21 holds a surface opposite to the bump B of the chip component C.
  • the base substrate 20 dominates the mechanical and thermal characteristics of the second transfer substrate 2, and is preferably excellent in dimensional stability, heat resistance and high thermal conductivity. Specifically, it is desirable that the softening temperature is 200 ° C. or higher, the Young's modulus is 1 GPa or higher, and the thermal conductivity is 1 W / m ⁇ K or higher. Any glass, metal, ceramic, or resin may be used as long as this condition is satisfied, and translucency is not required.
  • the adhesive layer 21 holds the chip component C, but a material that is more flexible than the base substrate 20 is used to reduce the impact in the process of transferring the chip component C from the first transfer substrate 1 (details will be described later). .
  • the Reeve hardness obtained by a repulsive hardness tester is 50% or more and 90% or less of the base substrate 20.
  • the melting point is desirably 200 ° C. or higher.
  • a specific main component can be selected from silicone resin and acrylic resin.
  • FIGS. 2A and 2B illustrate the process of transferring the chip component C on the wafer substrate W to the first transfer substrate 1, but FIGS. 12A and 12B. It is not different from the conventional technology shown in.
  • the chip component C is diced to a size of 1 mm or less per side.
  • a GaN-based LED chip is assumed, but a semiconductor integrated circuit chip (IC chip) made of a material such as Si may be used.
  • an LED chip is formed on a GaN layer stacked on a sapphire substrate. For this reason, by irradiating light energy with a laser from the side where the chip component C of the wafer substrate W is not formed, the overheated GaN layer that absorbs light is decomposed to generate nitrogen gas, and the sapphire substrate The GaN layer peels at the interface. At this time, since the first transfer substrate 1 and the chip component C are in close contact with each other, no impact force is applied to the chip component C if the first transfer substrate 1 is fixed.
  • FIG. 7A A top view when the chip component C is transferred from the wafer substrate W to the first transfer substrate 1 is shown in FIG. 7A, and the space between the chip components C is not changed and the dense state is maintained.
  • FIG. 7B is a top view showing the difference in the arrangement of the chip components C on the first transfer substrate 1 and the second transfer substrate.
  • the interval of the chip component C to the second transfer substrate 2 is the same as that of the wiring substrate S.
  • FIG. 3A shows a state where the surface of the first transfer substrate 1 on which the chip component C is arranged and the adhesive layer 21 of the second transfer substrate 2 are opposed to each other with a gap from the leftmost chip component C.
  • a state in which laser light is irradiated and transferred to the second transfer substrate 2 is shown.
  • the distance between the chip component C (non-bump surface thereof) on the first transfer substrate 1 and the adhesive layer 21 needs to be larger than the height of the chip component C including the bump B. This is because the distance between the chip components C is changed between the first transfer substrate 1 and the second transfer substrate 2, and the relative position is changed in the plane direction with the first transfer substrate 1 and the second transfer substrate 2 facing each other. It is necessary to do.
  • the laser light L is emitted from the second transfer substrate 2 by heating the bump surface side of the chip component C, and the wavelength absorbed by GaN constituting the chip component C is preferable.
  • the wavelength of the laser light may be selected according to the material of the adhesive layer.
  • FIG. 3B shows a state in which the chip component C irradiated with the laser light L is emitted from the first transfer substrate 1 and held on the second transfer substrate 2.
  • the chip component C is slightly spaced, the space between the first transfer substrate 1 and the second transfer substrate 2 is accelerated and arrives at the second transfer substrate 2.
  • the adhesive layer 21 needs to reduce the impact when the chip component C arrives. Therefore, as a result of searching for a condition that the chip component C does not break when it arrives at the second transfer substrate 2, the Reeve hardness obtained by the repulsive hardness tester is 50% or more and 90% or less of the base substrate 20 as described above. I found the condition that If this value exceeds 90%, the chip component may be damaged. On the other hand, if it is less than 50%, the chip component will not be damaged, but inconvenience may occur due to viscosity or the like when heating in the subsequent process.
  • FIG. 3C shows the first transfer substrate so that the chip component C to be transferred next and the predetermined position of the second transfer substrate 2 (predetermined distance from the previously transferred chip component C) are arranged immediately below the laser beam.
  • a state in which the laser beam L is irradiated after adjusting the relative position between the first transfer substrate 2 and the second transfer substrate 2 is shown.
  • the next chip component C is transferred and arranged on the second transfer substrate 2 at a predetermined interval from the chip component C transferred and arranged previously (FIG. 3D).
  • the chip component C to be transferred directly below the laser beam L and the predetermined position (on the second transfer substrate 2) are arranged at any time, and the chip component C is transferred as shown in FIG.
  • the chip component C can be obtained on the second transfer substrate 2 on which C is transferred.
  • FIG. 4A shows a state in which the second transfer substrate 2 is disposed in a state where the chip mounting position on the wiring substrate S disposed on the stage 3 and the chip component C are aligned.
  • the chip component arrangement on the second transfer substrate 2 and the chip component mounting position of the wiring substrate S are as shown in the top view in FIG. 7C, and all the chips arranged on the second transfer substrate 2 are shown.
  • the components can be aligned with the mounting position of the wiring board S at the same time.
  • thermocompression bonding head 4 is approached from the base substrate 20 side of the second transfer substrate 2 and thermocompression bonding is performed as shown in FIG. It can also be bonded and mounted mechanically. If a thermosetting adhesive is previously disposed between the chip component C and the wiring board S, the resin sealing of the chip component C can be performed at the same time.
  • the stage 3 may have a heating function.
  • the base substrate 20 constituting the second transfer substrate 2 is required to have a softening temperature of 200 ° C. or higher, a Young's modulus of 1 GPa or higher, and a thermal conductivity of 1 W / m ⁇ K or higher.
  • the adhesive layer 21 is required to have a melting point of 200 ° C. or higher because it is necessary to avoid fusing at the time of thermocompression bonding.
  • FIG. 5C shows a state after the thermocompression bonding of FIG. 4B is completed, in which the thermocompression bonding head 4 is lifted, and then the second transfer substrate is peeled from the chip component C. The state is shown in FIG.
  • FIG. 6 shows an example in which the pressure-bonding head 4 holds the second transfer substrate 2 by suction.
  • FIG. 6A shows a state where the thermocompression bonding head 4 is holding the second transfer substrate 2 by suction and is aligned with the wiring board S.
  • FIG. 6B shows a state after completion of the thermocompression bonding. It shows that the second transfer substrate 2 can be peeled off simultaneously from the chip component C by raising the thermocompression bonding head 4.
  • the transfer of the chip component C from the second transfer substrate 2 to the wiring substrate S is not performed by the LLO method, but the transfer and mounting are simultaneously performed by thermocompression bonding. For this reason, when the chip component C is copied from the second transfer substrate 2 to the wiring substrate S, the chip component C is not shocked. Therefore, even if the material and electrodes of the wiring substrate S are hard, the chip component C can be prevented from being damaged.
  • the LLO method is used for transferring the chip component C from the first transfer substrate 1 to the second transfer substrate 2, but by appropriately selecting the adhesive layer constituting the second transfer substrate 2, The impact at the time of transfer to the transfer substrate 2 can be alleviated to prevent the chip component C from being damaged.
  • the present invention is suitable as a manufacturing method of an image display device using a TFT substrate as a wiring substrate and an LED chip as a chip component, and a manufacturing method of a high quality image display device using millions of LEDs. Is very suitable. *

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Led Device Packages (AREA)

Abstract

密な状態に配置されたチップ部品を、所定の間隔を空けて配線基板上に実装するのに際して、チップ部品が破損することなく所定の位置に確実に実装するために用いる転写基板を提供すること。具体的には、バンプ電極を有する複数のチップ部品を、前記バンプ電極が形成された面の反対側から保持して、前記バンプ電極と接続する電極を有する配線基板に転写して実装するのに用いる転写基板であって、ベース基板と、ベース基板上に形成され前記チップ部品を保持する接着層とを備え、前記ベース基板に用いる材料は、ヤング率1GPa以上、軟化温度200℃以上、熱伝導率1W/mの条件を満たし、前記接着層は融点が200℃以上で、反発式硬度計によって測定したリーブ硬さがベース基板のリーブ硬さの50%以上90%以下である転写基板を提供する。

Description

転写基板ならびにこれを用いた実装方法および画像表示装置の製造方法
 本発明は、チップ部品を転写するための転写基板、ならびにこの転写基板を用いてチップ部品を配線基板に実装する実装方法に関する。
 微細加工技術の進歩による半導体チップの微小化や、LEDの発光効率向上によるLEDチップの小型化が進んでいる。このため、半導体チップやLEDチップ等のチップ部品を、1枚のウェハ基板に、密に多数形成できるようになってきている。
 近年、図8(a)にようにウェハ基盤Wに密に形成されダイシングされたチップ部品Cを、所定の間隔を開けて配線基板Sに再配列し、高速高精度に実装する(図8(c))用途がある。例えば、画像表示装置として注目されているマイクロLEDディスプレイ製造においては、数百万個のLEDチップを、間隔を開けTFT基板の所定位置に実装する必要がある。
 なお、ウェハ基板Wの断面を示す図8(b)および配線基板Sの断面を示す図8(d)の拡大図を図9(a)および図9(b)に示すが、チップ部品Cのバンプ電極Bを配線基板Sの電極(図示せず)が確実に接合するために、誤差数μm程度の精度が必要となる。
 そこで、図8(a)のようにウェハ基板W上に密に形成されたチップ部品Cを、図8(c)のように配線基板Sに所定の間隔を空け(図8(c))、高精度に実装するプロセスが種々検討されている。
 なかでも、レーザーリフトオフ法(以後LLO法と記す)については多くの検討がなされている(例えば特許文献1)。
 図10ではLLO法によりウェハ基板Wから配線基板Sにチップ部品Cを転写配置する例を示している。図10(a)は左端のチップ部品Cにレーザー光Lを照射して、配線基板Sに転写する状態を示している。ここで、左端のチップ部品Cは配線基板Sの所定位置上部に位置合わせされている。また、図10(a)におけるレーザー光Lの波長はチップ部品CをウェハWから剥離するのに適した範囲から選ばれる。例えば、チップ部品Cの素材に吸収される波長を用いれば、温度上昇に伴い素材が分解して生じたガスによりウェハ基板Wからチップ部品Cは剥離される。
 図10(b)は、レーザー光Lの照射によりウェハ基板Wから剥離した左端のチップ部品Cが配線基板Sに転写された状態を示している。ここで、左端のチップ部品Cは直下に転写されるため、配線基板Sの所定位置に配置される。なお、転写に伴うチップ部品の直下への移動距離dを、チップ部品CとバンプBの高さの合計より大きくしておけば、配線基板Sにチップ部品Cが転写されていてもウェハ基板Wを水平方向に移動させることは可能である。
 図10(c)は、レーザー光Lの直下に、次に転写すべきチップ部品Cと配線基板Sの所定位置を配置してから、レーザー光Lを照射している状態を示している。このレーザー照射により、先に転写配置したチップ部品Cと間隔を空けて、次のチップ部品Cが配線基板Sの所定位置に転写配置される。
 以降も、レーザー光Lの直下に転写すべきチップ部品Cと配線基板Sの所定位置(チップ部品Cを実装すべき位置)を随時配置して、チップ部品Cを転写することにより、図8(c)に示したような配線基板Sへのチップ部品Cの転写配置を行なうことが出来る。
 ところが、図10(a)から図10(b)に示したように、チップ部品Cをウェハ基板Wから剥離するためには、チップ部品Cにはレーザー光Lによる大きなエネルギーが加わる。このため、図10(b)に示した移動距離dの間にもチップ部品Cは加速された状態で配線基板Sに達する。一方、配線基板Sの電極部分は金属であり、加速されたチップ部品Cのバンプ電極Bが金属電極に接する際の衝撃により、図11のようにチップ部品Cが破損することもある。このような衝撃を緩和するために、(封止に用いる未硬化の)熱硬化性接着剤をチップ部品Cのバンプあるいは配線基板Cの電極に被覆しておくことも考えられるが、被覆厚みは5μm以下であり衝撃を緩和するには不充分である。
 以上のように、ウェハ基板Wから配線基板Sへの直接転写ではチップ部品Cに加わる衝撃が大きいことから、別に転写基板を用いる転写方式が一般化している。
特開2010-161221号公報
 転写基板を用いる転写方式では、まず、図12(a)に示すように、ウェハ基板Wのチップ部品Cに第1転写基板1を密着させて、レーザー光等によりチップ部品Cを剥離して第1転写基板1に転写する。なお、第1転写基板1はチップ部品Cを保持する側に接着性を有している。ここで、チップ部品Cは第1転写基板と密着した状態で転写するため、加速されることなく、第1転写基板1に転写される。
 ところで、図12(b)に示すように、第1転写基板1ではチップ部品CのバンプBが密着しているため、この状態から配線基板Sにチップ部品Cを転写しても、バンプBを配線基板Sの電極と接触させることはできない。そこで、図12(c)のように、第1転写基板1のチップ部品Cを第2転写基板2に再度転写している。なお、第2転写基板2はチップ部品Cを保持する側に接着性を有している。
 以上の工程を経て、図12(d)のように、第2転写基板2がチップ部品CのバンプBと反対側を保持することになる。ここで、第2転写基板2とチップ部品Cの接着性を調整することで、図12(d)のようにチップ部品Cを保持した転写基板2を図10のウェハ基板Wの代わりとすることで、転写時のチップ部品Cの衝撃が緩和できる。
 しかし、全てのチップ部品Cと第2転写基板2の接着力を一定に管理することは困難であり、一方で、全てのチップ部品を確実に第2転写基板2から剥離するようにレーザー光Lの強度を設定する必要がある。このため、全てのチップ部品Cを破損することなく第2転写基板2から配線基板Sに転写することは極めて困難である。仮に、レーザー光Lが低強度でも剥離可能な接着力にしようとした場合においては、第2転写基板2からチップ部品Cが自然剥離することや、転写時に位置ズレを生じる懸念がある。
 本発明は、上記問題を鑑みてなされたものであり、密な状態に配置されたチップ部品を、所定の間隔を空けて配線基板上に実装するのに際して、チップ部品が破損することなく所定の位置に確実に実装するために用いる転写基板ならびに転写基板ならびにこれを用いた実装方法および画像表示装置の製造方法を提供するものである。
 上記の課題を解決するために、請求項1に記載の発明は、バンプ電極を有する複数のチップ部品を、前記バンプ電極が形成された面の反対側から保持して、前記バンプ電極と接続する電極を有する配線基板に転写して実装するのに用いる転写基板であって、ベース基板と、ベース基板上に形成され前記チップ部品を保持する接着層とを備え、前記ベース基板に用いる材料は、ヤング率1GPa以上、軟化温度200℃以上、熱伝導率1W/mの条件を満たし、前記接着層は融点が200℃以上で、反発式硬度計によって測定したリーブ硬さがベース基板のリーブ硬さの50%以上90%以下である転写基板である。
 請求項2に記載の発明は、請求項1に記載の転写基板であって、前記接着層としてシリコーン樹脂またはアクリル樹脂を用いる転写基板である。
 請求項3に記載の発明は、ダイシングされたバンプ電極を有するチップ部品を、前記バンプ電極側を保持する第1転写基板に転写し、前記バンプ電極の反対側を保持する第2転写基板に転写してから、前記バンプ電極と接続する電極を有する配線基板に転写して実装する実装方法であって、前記第2転写基板として請求項1または請求項2に記載の転写基板を用い、前記チップ部品を前記第1転写基板から前記第2転写基板に転写する段階で、前記チップ部品の間隔を、前記配線基板への実装間隔に変更し、前記第2転写基板の前記チップ部品を保持した面と反対側から加圧しながら加熱してから、前記転写基板を前記チップ部品から剥離する実装方法である。
 請求項4に記載の発明は、前記チップ部品としてLEDチップを、前記配線基板としてTFT基板を用いて、請求項3に記載の実装方法を用いて画像表示装置を製造する、画像表示装置の製造方法である。
 本発明の転写基板を用いた実装を行なうことにより、密な状態に配置されたチップ部品を、所定の間隔を空けて配線基板上に確実に実装することが出来、この転写基板ならびに実装方法でLEDチップをTFT基板に実装することにより高品質な画像表示装置が得られる。
本発明の実施形態に係る転写基板(第2転写基板)がチップ部品を保持している状態を示す図である。 本発明の実施形態に係り、(a)ウェハ基板からチップ部品を第1転写基板に転写する工程を示す図であり、(b)チップ部品が第1転写基板に転写された状態を示す図である 本発明の実施形態に係り、(a)第1転写基板からチップ部品を剥離する工程を示す図であり、(b)転写基板2にチップ部品が転写された状態を示す図であり、(c)第1転写基板から次のチップ部品剥離する工程を示す図であり、(d)第2転写基板に次のチップ部品が転写された状態を示す図である。 本発明の実施形態に係り、(a)チップ部品を保持した第2転写基板を配線基板上に配置した状態を示す図であり、(b)第2転写基板が保持したチップ部品を配線基板に熱圧着する状態を示す図である。 本発明の実施形態に係り、(c)配線基板へのチップ部品の熱圧着が完了した後の状態を示す図であり、(d)チップ部品から第2転写基板を剥離した、実装が完了した状態を示す図である。 本発明の実施形態の変形例であり、(a)熱圧着ヘッドが第2転写基板を保持した状態で配線基板上に配置された状態であり、(b)配線基板配線基板へのチップ部品の熱圧着が完了した後の状態を示す図である。 本発明の実施形態に係り、(a)ウェハ基板から第1転写基板へのチップ部品の転写、(b)第1転写基板から第2転写基板へのチップ部品の転写、(c)第2転写基板を用いた配線基板へのチップ部品の実装、を示す上面図である。 (a)ウェハ基板とチップ部品を示す上面図、(b)断面図であり、(c)配線基板とチップ部品を示す上面図、(d)断面図である。 (a)ウェハ基板とチップ部品の断面の拡大図であり、(b)配線基板にチップ部品を実装した断面の拡大図である。 ウェハ基板から配線基板にチップ部品を直接転写する工程を説明するもので、(a)ウェハ基板からチップ部品を剥離する工程、(b)配線基板にチップ部品が転写された状態(c)ウェハ基板から次のチップ部品を剥離する工程、(d)配線基板に次のチップ部品が転写された状態、を示す図である。 ウェハ基板から剥離されたチップ部品が配線基板との衝突による衝撃で破損する様子を説明する図である。 転写基板を用いるチップ部品の転写を説明するもので、ウェハ基板からチップ部品を第1転写基板に転写する工程を示す図であり、(b)チップ部品が第1転写基板に転写された状態を示す図であり、(c)第1転写基板からチップ部品を第2転写基板に転写する工程を示す図であり、(d)チップ部品が第2転写基板に転写された状態を示す図である。
 本発明の実施形態について図面を用いて説明する。図1は本発明の実施形態に係る転写基板である第2転写基板2であり、チップ部品Cを保持した状態を示している。
 図1に示すように第2転写基板2はベース基板20に接着層21が積層され、接着層21がチップ部品CのバンプBとは反対の面を保持する構成となっている。
 ベース基板20は第2転写基板2の機械的、熱的な特性を支配するものであり、寸法安定性に優れ、耐熱性を有しつつ熱伝導率の高いものが望ましい。具体的には、軟化温度が200℃以上で、ヤング率が1GPa以上かつ熱伝導率1W/m・K以上の条件を満たすものが望ましい。この条件を満たすものであれば、ガラス、金属、セラミック、あるいは樹脂であってもよく、透光性は必要としない。
 接着層21はチップ部品Cを保持するものであるが、第1転写基板1からチップ部品Cを転写される工程(詳しくは後述)の衝撃を緩和するためにベース基板20より柔軟な材質を用いる。柔軟性の指標としては、反発式硬度計によって求めたリーブ硬さが、ベース基板20の50%以上90%以下であることが好ましい。また、融点が200℃以上であることが望ましい。具体的な主成分としては、シリコーン樹脂やアクリル樹脂から選ぶことが出来る。
 以下、ウェハ基板W上のチップ部品を、配線基板Sに所定の間隔を空けて実装するまでの工程に、図1に示す構成の第2転写基板2を用いた実施形態を図2から図5を用いて説明する。
 図2(a)および図2(b)は、ウェハ基板W上のチップ部品Cを第1転写基板1に転写する工程を説明するものであるが、図12(a)および図12(b)に示した従来技術と変わらない。ここで、チップ部品Cは、1辺1mm以下の大きさにダイシングされたものである。本実施形態の説明においては、GaN系のLEDチップを想定しているがSi等の材質からなる半導体集積回路チップ(ICチップ)であってもよい。
 GaN系のLEDにおいては、サファイヤ基板上に積層されたGaN層にLEDチップが形成されている。このため、ウェハ基板Wのチップ部品Cが形成されていない側からレーザーで光エネルギーを照射することにより、光を吸収して過熱したGaN層が分解して窒素ガスを発生して、サファイヤ基板との界面でGaN層が剥離する。この際、第1転写基板1とチップ部品Cは密着しているため、第1転写基板1を固定しておけばチップ部品Cに衝撃力が加わることはない。
 なお、ウェハ基板Wから第1転写基板1へのチップ部品Cする際の上面図を図7(a)に示すが、チップ部品Cの間隔は変わらずに密な状態を維持している。
 この後、第1転写基板1から第2転写基板2にチップ部品Cを転写する工程を、図3を用いて説明する。ところで、図12(c)に示した例と異なり、本発明の特徴は、第1転写基板1から第2転写基板2へ転写する段階で、チップ部品Cの間隔を広げ、配線基板Sに実装するときと同じにすることである。この、第1転写基板1と第2転写基板へのチップ部品Cの配置の違いを上面図で示すと図7(b)のようになる。ここで、第2転写基板2へのチップ部品Cの間隔は配線基板Sと同じであり、第2転写基板2のチップ部品Cを配線基板Sの電極側と対向させると全てのチップ部品を同時に配線基板Sの所定位置に位置合わせすることが出来る。
 図3(a)は、第1転写基板1のチップ部品Cが配置された面と、第2転写基板2の接着層21を、間隔を空けて対向させた状態から、左端のチップ部品Cにレーザー光を照射して、第2転写基板2に転写する状態を示している。ここで、第1転写基板1上のチップ部品C(の非バンプ面)と接着層21の間隔は、バンプBを含むチップ部品Cの高さより大きくしておく必要がある。これは、第1転写基板1と第2転写基板2でチップ部品Cの間隔を変更するため、第1転写基板1と第2転写基板2を対向配置した状態で、面方向に相対位置を変更する必要があるためである。
 図3(a)において、レーザー光Lは、チップ部品Cのバンプ面側を加熱して第2転写基板2から放出させるものであり、チップ部品Cを構成するGaNに吸収される波長が好ましい。ただし、第1転写基板1のチップ部品Cとの接着層として、光を吸収してガスを放出する材質が使用できるのであれば、レーザー光の波長を接着層の素材に応じて選んでもよい。
 図3(b)は、レーザー光Lを照射されたチップ部品Cが、第1転写基板1から放出され第2転写基板2に保持された状態を示している。ここで、チップ部品Cは、僅かな間隔ではあるが、第1転写基板1と第2転写基板2の空間を加速されて、第2転写基板2に到着するこのため、第2転写基板2の接着層21はチップ部品Cが到着した際の衝撃を緩和する必要がある。そこで、チップ部品Cが第2転写基板2に到着した際に破損しない条件を探索した結果、前述のとおり、反発式硬度計によって求めたリーブ硬さが、ベース基板20の50%以上90%以下であるという条件を見出した。この値が90%を超える場合は、チップ部品が破損することがある。一方、50%未満についてはチップ部品が破損することはないが、後工程で加熱する際に粘性等により不都合を生じることがある。
 図3(c)は、レーザー光の直下に次に転写すべきチップ部品Cと第2転写基板2の所定位置(先に転写したチップ部品Cと所定間隔)を配置するよう、第1転写基板1と第2転写基板2の相対位置を調整してから、レーザー光Lを照射している状態を示している。このレーザー照射により、先に転写配置したチップ部品Cと所定間隔を空けて、次のチップ部品Cが第2転写基板2に転写配置される(図3(d))。
 以降も、レーザー光Lの直下に転写すべきチップ部品Cと第2転写基板2の所定位置(を随時配置して、チップ部品Cを転写することにより、図1に示したような、チップ部品Cを転写配置した第2転写基板2にチップ部品Cを得ることが出来る。
 この第2転写基板2を用いて、配線基板Sにチップ部品Cを実装する様子を図4および図5を用いて説明する。
 図4(a)はステージ3上に配置した配線基板S上のチップ実装位置と、チップ部品Cを位置合わせした状態で第2転写基板2を配置した状態を示している。ここで、第2転写基板2でのチップ部品配置と配線基板Sのチップ部品実装位置は、図7(c)に上面図を示すとおりであり、第2転写基板2に配置された全てのチップ部品を同時に、配線基板Sの実装位置と位置合わせすることができる。
 この状態から、第2転写基板2のベース基板20側から熱圧着ヘッド4を接近させ、図4(b)のように加熱圧着することにより、チップ部品Cを配線基板Sの電極と電気的にも機械的にも接合して実装することができる。また、チップ部品Cと配線基板Sの間に予め熱硬化性接着剤を配置しておけば、チップ部品Cの樹脂封止も同時に行なうことができる。
 なお、加熱圧着はステージ3と熱圧着ヘッド4の間に挟みこんで行なうため、ステージ3が加熱機能を有していてもよい。
 また、加熱圧着において、第2転写基板2が熱変形するとチップ部品Cの実装精度を低下させる。このため、第2転写基板2を構成するベース基板20には、軟化温度が200℃以上で、ヤング率が1GPa以上かつ熱伝導率1W/m・K以上という条件が求められている。また、接着層21については、加熱圧着時に融着することは避けなければならないため、融点200℃以上という条件が求められている。
 図5(c)は、図4(b)の加熱圧着が完了した後の状態であり、熱圧着ヘッド4を上昇させたものであり、この後、チップ部品Cから第2転写基板を剥離した状態を示したのが図5(d)である。
 図4および図5においては、配線基板S上に第2転写基板2を配置してから、熱圧着ヘッド4を降下させて加熱圧着する例について説明したが、本実施形態の変形例として、熱圧着ヘッド4が第2転写基板2を吸着保持する例を示したのが図6である。図6(a)は熱圧着ヘッド4が第2転写基板2を吸着保持した状態で、配線基板Sとの位置合わせを行っている状態を示しており、図6(b)では熱圧着完了後に熱圧着ヘッド4を上昇することで、チップ部品Cから第2転写基板2の剥離も同時に行なえることを示している。
 以上のように、本発明においては、第2転写基板2から配線基板Sへのチップ部品Cの転写をLLO法で行なうのではなく、加熱圧着により転写と実装を同時に行なうものである。このため、第2転写基板2からチップ部品Cを配線基板Sに写すのに際して、チップ部品Cに衝撃を与えることがない、このため配線基板Sの素材や電極が硬いものであってもチップ部品Cが破損することが防げる。また、第1転写基板1から第2転写基板2へのチップ部品Cの転写にはLLO法を用いているが、第2転写基板2を構成する接着層を適切に選定することにより、第2転写基板2への転写時の衝撃を緩和してチップ部品Cの破損を防ぐことができる。
 このため、多数のチップ部品を、間隔を空けて実装するような用途において、工程内のチップ破損率を極めて低く抑えることができ、リペアに要するコストも大幅に低減することができる。したがって、配線基板としてTFT基板を用い、チップ部品としてLEDチップを用いるような画像表示装置の製造方法として本発明は好適であり、数百万個のLEDを用いる高品質の画像表示装置の製造方法として極めて適したものである。 
   1   第1転写基板
   2   第2転写基板
   3   ステージ
   4   熱圧着ヘッド
  20   ベース基板
  21   接着層
   B   バンプ
   C   チップ部品
   L   レーザー光
   S   配線基板
   W   ウェハ基板  

Claims (4)

  1.  バンプ電極を有する複数のチップ部品を、前記バンプ電極が形成された面の反対側から保持して、前記バンプ電極と接続する電極を有する配線基板に転写して実装するのに用いる転写基板であって、
    ベース基板と、ベース基板上に形成され前記チップ部品を保持する接着層とを備え、
    前記ベース基板に用いる材料は、ヤング率1GPa以上、軟化温度200℃以上、熱伝導率1W/mの条件を満たし、
    前記接着層は融点が200℃以上で、反発式硬度計によって測定したリーブ硬さがベース基板のリーブ硬さの50%以上90%以下である転写基板。
  2.  請求項1に記載の転写基板であって、
    前記接着層としてシリコーン樹脂またはアクリル樹脂を用いる転写基板。
  3.  ダイシングされたバンプ電極を有するチップ部品を、前記バンプ電極側を保持する第1転写基板に転写し、前記バンプ電極の反対側を保持する第2転写基板に転写してから、前記バンプ電極と接続する電極を有する配線基板に転写して実装する実装方法であって、
    前記第2転写基板として請求項1または請求項2に記載の転写基板を用い、
    前記チップ部品を前記第1転写基板から前記第2転写基板に転写する段階で、前記チップ部品の間隔を、前記配線基板への実装間隔に変更し、
    前記第2転写基板の前記チップ部品を保持した面と反対側から加圧しながら加熱してから、前記転写基板を前記チップ部品から剥離する実装方法。
  4.  前記チップ部品としてLEDチップを、前記配線基板としてTFT基板を用いて、
    請求項3に記載の実装方法を用いて画像表示装置を製造する、画像表示装置の製造方法。
PCT/JP2019/009222 2018-03-28 2019-03-08 転写基板ならびにこれを用いた実装方法および画像表示装置の製造方法 WO2019188105A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-061743 2018-03-28
JP2018061743A JP6926018B2 (ja) 2018-03-28 2018-03-28 転写基板ならびにこれを用いた実装方法および画像表示装置の製造方法

Publications (1)

Publication Number Publication Date
WO2019188105A1 true WO2019188105A1 (ja) 2019-10-03

Family

ID=68059895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009222 WO2019188105A1 (ja) 2018-03-28 2019-03-08 転写基板ならびにこれを用いた実装方法および画像表示装置の製造方法

Country Status (3)

Country Link
JP (1) JP6926018B2 (ja)
TW (1) TWI758594B (ja)
WO (1) WO2019188105A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220238358A1 (en) * 2021-01-28 2022-07-28 Asti Global Inc., Taiwan Chip-transferring module, and device and method for transferring and bonding chips

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7463153B2 (ja) * 2020-03-23 2024-04-08 東レエンジニアリング株式会社 実装方法および実装装置
WO2021193135A1 (ja) * 2020-03-23 2021-09-30 東レエンジニアリング株式会社 実装方法、実装装置、および転写装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130861A (ja) * 2006-11-22 2008-06-05 Sony Corp シリコーンゴム層積層体及びその製造方法、突当て装置、実装用基板への物品の実装方法、並びに、発光ダイオード表示装置の製造方法
JP2016066765A (ja) * 2014-09-26 2016-04-28 日亜化学工業株式会社 素子の実装方法及び発光装置の製造方法
JP2016167544A (ja) * 2015-03-10 2016-09-15 ソニー株式会社 電子部品、電子部品実装基板及び電子部品の実装方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI590498B (zh) * 2013-06-03 2017-07-01 財團法人工業技術研究院 電子元件的轉移方法及電子元件陣列
TWI635591B (zh) * 2013-11-05 2018-09-11 千住金屬工業股份有限公司 焊料轉印薄片
JP2015130476A (ja) * 2013-12-04 2015-07-16 日東電工株式会社 光半導体装置用エポキシ樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、封止型光半導体素子ならびに光半導体装置
US10224311B2 (en) * 2014-12-05 2019-03-05 Hitachi Chemical Company, Ltd. Semiconductor adhesive, and semiconductor device and method for manufacturing same
US10669454B2 (en) * 2015-10-29 2020-06-02 Hitachi Chemical Company, Ltd. Method for manufacturing semiconductor device including heating and pressuring a laminate having an adhesive layer
KR20180104311A (ko) * 2016-02-08 2018-09-20 도레이 카부시키가이샤 수지 조성물, 수지층, 영구 접착제, 임시 점착 접착제, 적층 필름, 웨이퍼 가공체 및 전자 부품 또는 반도체 장치의 제조 방법
WO2017195517A1 (ja) * 2016-05-09 2017-11-16 日立化成株式会社 半導体装置の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130861A (ja) * 2006-11-22 2008-06-05 Sony Corp シリコーンゴム層積層体及びその製造方法、突当て装置、実装用基板への物品の実装方法、並びに、発光ダイオード表示装置の製造方法
JP2016066765A (ja) * 2014-09-26 2016-04-28 日亜化学工業株式会社 素子の実装方法及び発光装置の製造方法
JP2016167544A (ja) * 2015-03-10 2016-09-15 ソニー株式会社 電子部品、電子部品実装基板及び電子部品の実装方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220238358A1 (en) * 2021-01-28 2022-07-28 Asti Global Inc., Taiwan Chip-transferring module, and device and method for transferring and bonding chips

Also Published As

Publication number Publication date
TWI758594B (zh) 2022-03-21
TW202004933A (zh) 2020-01-16
JP2019175978A (ja) 2019-10-10
JP6926018B2 (ja) 2021-08-25

Similar Documents

Publication Publication Date Title
EP3823030B1 (en) Method for manufacturing a micro-led display
CN109103116B (zh) 用于倒装芯片的激光接合的设备以及方法
CN109103117B (zh) 结合半导体芯片的设备和结合半导体芯片的方法
WO2019188105A1 (ja) 転写基板ならびにこれを用いた実装方法および画像表示装置の製造方法
US6186392B1 (en) Method and system for forming contacts on a semiconductor component by aligning and attaching ferromagnetic balls
JP4745073B2 (ja) 表面実装型発光素子の製造方法
JP7257187B2 (ja) チップ転写板ならびにチップ転写方法、画像表示装置の製造方法および半導体装置の製造方法
KR20160108196A (ko) 반도체 장치의 제조 방법
JP2020167251A (ja) 転写基板ならびにこれを用いた実装方法および画像表示装置の製造方法
US9368675B2 (en) Method of manufacturing light-emitting device and wiring substrate for light-emitting element
JP2011199184A (ja) 基板実装装置及び基板実装方法
KR102221588B1 (ko) 반도체 칩 본딩 장치 및 반도체 칩 본딩 방법
KR20020015959A (ko) 배선 패턴 형성 방법 및 이에 이용되는 원판
JP2013171916A (ja) 半導体装置の製造方法
KR20220102412A (ko) 다이 본딩 방법
JP5013681B2 (ja) 半導体実装体、半導体実装体半製品及びその製造方法
WO2024085024A1 (ja) リフト方法及び受け取り基板
KR102575887B1 (ko) 본딩 방법
WO2024085025A1 (ja) 受け取り基板、受け取り基板の製造方法、リフト方法、保持方法、及び微小構造体の洗浄方法
US20230134799A1 (en) Method for manufacturing light-emitting device
JP4345464B2 (ja) 電子部品が接合された回路基板用部材の製造方法
JP4214127B2 (ja) フリップチップ実装方法
TW202433609A (zh) 雷射誘導正向轉移方法及接收基板
KR20200137247A (ko) 마이크로 엘이디 디스플레이 및 이의 제작 방법
TW202201715A (zh) 發光晶片承載結構及其製作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19775804

Country of ref document: EP

Kind code of ref document: A1