WO2019187998A1 - 高炉の原料装入方法 - Google Patents

高炉の原料装入方法 Download PDF

Info

Publication number
WO2019187998A1
WO2019187998A1 PCT/JP2019/008262 JP2019008262W WO2019187998A1 WO 2019187998 A1 WO2019187998 A1 WO 2019187998A1 JP 2019008262 W JP2019008262 W JP 2019008262W WO 2019187998 A1 WO2019187998 A1 WO 2019187998A1
Authority
WO
WIPO (PCT)
Prior art keywords
ore
furnace
low
charged
charging
Prior art date
Application number
PCT/JP2019/008262
Other languages
English (en)
French (fr)
Inventor
和平 市川
泰志 小笠原
佐藤 健
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US17/041,538 priority Critical patent/US12098437B2/en
Priority to JP2019526011A priority patent/JP6558518B1/ja
Priority to EP19776828.6A priority patent/EP3751010B1/en
Priority to CN201980023480.4A priority patent/CN111971400B/zh
Priority to EP21209225.8A priority patent/EP3992308B1/en
Priority to BR112020019449-2A priority patent/BR112020019449B1/pt
Priority to RU2020131569A priority patent/RU2759939C1/ru
Priority to KR1020207027973A priority patent/KR102455111B1/ko
Publication of WO2019187998A1 publication Critical patent/WO2019187998A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/18Bell-and-hopper arrangements
    • C21B7/20Bell-and-hopper arrangements with appliances for distributing the burden
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/20Arrangements of devices for charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/0033Charging; Discharging; Manipulation of charge charging of particulate material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/10Charging directly from hoppers or shoots
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a raw material charging method for a blast furnace having a bell-less charging device.
  • Patent Document 2 discloses a raw material charging method into a blast furnace in which a plurality of raw materials are simultaneously charged from a plurality of main hoppers.
  • Patent Document 1 needs to use highly reactive coke having a strength lower than that of ordinary coke and cannot be applied to blast furnace operation using only ordinary coke. That is, Patent Document 1 discloses an example in which only a JIS-reducing 55% ore is used as an ore, and this low-reactive ore is mixed with coke partially substituted with highly reactive coke. If only ordinary coke is used, the reducibility of the low-reactivity ore cannot be secured sufficiently.
  • Patent Document 2 presents a raw material charging method to a blast furnace in which a plurality of raw materials are simultaneously charged from a plurality of main hoppers.
  • a time for pressure equalizing to be replaced with the atmosphere in the blast furnace is required. It becomes.
  • the object of the present invention is to solve the problems of the prior art as described above, and in a blast furnace having a bell-less charging device, even when ordinary coke is used, a low-reactive ore can be reduced efficiently. It is to provide a raw material charging method.
  • a raw material charging method for a blast furnace comprising a bellless charging device having a plurality of main hoppers and a sub hopper having a smaller capacity than the main hopper at the top of the furnace, wherein one of the plurality of main hoppers
  • RI JIS reduction rate
  • the ore (x) After starting the charging of at least until the charging of 45 mass% of the total amount of the ore (x) charged in one batch is completed, only the ore (x) is charged from the swivel chute, From any time thereafter, discharge of low-reactive ore (y) with a JIS reduction rate (RI) of 55% or less started into the auxiliary hopper is started, and from the turning chute for an arbitrary period thereafter
  • the low-reactivity ore together with the ore (x) Is charged with
  • the low-reactive ore (y) for a plurality of charges is charged into the sub-hopper, and the low-reactive ore (y) for one charge is divided and charged into each batch from the sub-hopper.
  • a raw material charging method for a blast furnace comprising a bellless charging device having a plurality of main hoppers and a sub hopper having a smaller capacity than the main hopper at the top of the furnace, wherein one of the plurality of main hoppers
  • a bellless charging device having a plurality of main hoppers and a sub hopper having a smaller capacity than the main hopper at the top of the furnace, wherein one of the plurality of main hoppers
  • RI JIS reduction rate
  • the discharge of the low-reactive ore (y) having a JIS reduction rate (RI) of 55% or less started at the same time as the start of charging or at any time after the start of charging,
  • the low-reactivity ore (y) is charged together with the ore (x) from a turning chute, and at least 56 mass% of the total amount of the ore (x) charged in one batch is completed.
  • the Blast furnace for stopping charging of the low-reactivity ore (y) Raw material charging method [4]
  • the low-reactive ore (y) for a plurality of charges is charged into the sub-hopper, and the low-reactive ore (y) for one charge is divided into batches and discharged from the sub-hopper.
  • the sub hopper has a hopper main body and a discharge port, and the sub hopper is provided at a position where a central axis of the hopper main body and the discharge port coincides with a furnace central axis of the blast furnace.
  • the low-reactive ore (hard-reducing ore) can be charged only in a portion where the reduction load is small in the radial direction of the blast furnace, so even when ordinary coke is used, the low-reactive ore can be efficiently used. Can be reduced.
  • FIG. 1 is a perspective view of a bell-less charging apparatus 1a in a state where an upper portion of a furnace body is cut away.
  • 2 is a cross-sectional view taken along the line II-II in FIG.
  • FIG. 3 is a perspective view of the bell-less charging device 1b in a state where the upper portion of the furnace body is cut away.
  • 4 is a cross-sectional view taken along the line IV-IV in FIG.
  • FIG. 5 is a graph showing the radial distribution of standard ore layer thickness.
  • FIG. 6 is a graph showing the raw material charging range by the turning chute 4 in relation to the dimensionless radius and the charging ratio.
  • FIG. 7 is a longitudinal section of the uppermost part of the raw material charging layer in the furnace.
  • FIG. 1 is a perspective view of a bell-less charging apparatus 1a in a state where an upper portion of a furnace body is cut away.
  • 2 is a cross-sectional view taken along the line II-II in FIG.
  • FIG. 8 is a graph showing the raw material charging range and charging center position in relation to the dimensionless radius and the charging ratio.
  • FIG. 9 is a schematic diagram of the model test apparatus used in the examples.
  • FIG. 10 is a diagram for explaining a method for dividing and recovering the discharged raw material discharged from the model testing apparatus.
  • FIG. 11 is a graph showing the relationship between the ratio of low-reactive ore (y) and the charging ratio when raw materials are sequentially charged from the furnace center side toward the furnace wall side.
  • FIG. 12 is a graph showing the relationship between the ratio of low-reactive ore (y) and the charging ratio when raw materials are sequentially charged from the furnace wall side toward the furnace center side.
  • a bellless charging device having a plurality of main hoppers at the top of the furnace and a sub hopper having a smaller capacity than the main hopper is used.
  • the ore (x) with a JIS reduction rate (RI) of over 55% is introduced, and the low-reactivity ore (y) with a JIS reduction rate (RI) for multiple charges of 55% or less is introduced into the secondary hopper.
  • the ore (x) and the low-reactivity ore (y) for one charge are respectively divided into a plurality of batches from the main hopper and the sub hopper and charged into the furnace.
  • the mixing ratio of the low-reactive ore (y) can be changed by adjusting the amount of raw material cut out from the main hopper and sub-hopper, so the low-reactive ore (y) It can be easily controlled to a preferred mixed form.
  • ores used as main raw materials in blast furnaces have a JIS reduction rate (RI) of more than 55% (usually about 80% or less), and ores with a JIS reduction rate (RI) of 55% or less have low reactivity. Can be considered.
  • an ore having a JIS reduction rate (RI) of 55% or less is defined as a low-reactivity ore (y).
  • RI JIS reduction ratio
  • ores having a JIS reduction ratio (RI) of 40% or less are particularly difficult to reduce, and the present invention is particularly useful when such ores are used.
  • the JIS reduction rate (RI) can be measured by a reduction test method defined by JIS (Japanese Industrial Standards) M8713.
  • ores ores (x), low-reactive ores (y)
  • ores mean one or more of sintered iron, lump ore, pellets, and the like, which are iron sources.
  • an auxiliary material for example, limestone, silica stone, serpentinite, etc.
  • the ore contains the auxiliary material.
  • the coke used in the present invention may be so-called ordinary coke, that is, coke having a JIS reactivity (JIS reactivity measured by the reactivity test method of JIS (Japanese Industrial Standard) K2151: 2004)) of 30% or less.
  • JIS reactivity JIS reactivity measured by the reactivity test method of JIS (Japanese Industrial Standard) K2151: 2004)
  • raw materials are charged so that an ore layer and a coke layer are alternately formed in the blast furnace.
  • the ore used to form one ore layer is an ore for one charge, and the ore for one charge is divided into a plurality of batches and charged into a blast furnace.
  • the raw material charging method for a blast furnace according to the present invention is directed to a charging method for ores (ores (x) and low-reactive ores (y)) charged in one batch.
  • the gas flow in the furnace may become unstable. For this reason, it is preferable that the lowering of the raw material in the auxiliary hopper becomes a mass flow, and the raw materials charged in the auxiliary hopper are discharged from the auxiliary hopper in the order of charging.
  • the diameter of the discharge port of the sub hopper is d1 and the diameter of the hopper body of the sub hopper is d2
  • the diameter d2 of the hopper body satisfies d1 ⁇ d2 ⁇ 1.5 ⁇ d1.
  • FIG. 1 is a perspective view of a bell-less charging apparatus 1a in a state where an upper portion of a furnace body is cut away.
  • 2 is a cross-sectional view taken along the line II-II in FIG.
  • the bell-less charging device 1a includes three main hoppers 2 each having a hopper center axis on one virtual circle centered on the furnace body center axis, and one sub-row arranged outside the plurality of main hoppers 2.
  • a hopper 3 is provided.
  • FIG. 3 and 4 are schematic views showing another embodiment of a blast furnace bell-less charging apparatus used in the present invention.
  • FIG. 3 is a perspective view of the bell-less charging device 1b in a state where the upper portion of the furnace body is cut away.
  • 4 is a cross-sectional view taken along the line IV-IV in FIG. Similar to the embodiment of FIGS. 1 and 2, this bell-less charging device 1b is also provided with three main hoppers 2 having a hopper center axis on one virtual circle centered on the furnace body center axis and one sub hopper. 3.
  • the auxiliary hopper 3 is provided at the center of the three main hoppers 2, and the central axes of the hopper body 3a and the discharge port 3b of the auxiliary hopper 3 coincide with the central axis of the blast furnace body. Is provided.
  • the ore (x) discharged from the main hopper 2 and the low-reactive ore (y) discharged from the auxiliary hopper 3 pass through the collecting hopper 5. Then, it is inserted into the furnace from the turning chute 4.
  • 1 and 3 6 is a blast furnace main body, and 7 is a charging belt conveyor.
  • a flow rate adjusting valve (not shown) is provided at the discharge port of the auxiliary hopper 3 so that the discharge rate of the low-reactive ore (y) can be controlled.
  • FIG. 5 is a graph showing the radial distribution of standard ore layer thickness.
  • the vertical axis in FIG. 5 is “ore layer thickness / total layer thickness (ore layer thickness + coke layer thickness)” at the top of the charging layer, and the horizontal axis is the dimensionless radius.
  • the dimensionless radius means the dimensionless radius of the blast furnace with the furnace center as the start point (0) and the furnace wall as the end point (1.0).
  • the ore layer thickness decreases on the furnace wall side having a dimensionless radius of 0.6 or more and on the furnace center side having a dimensionless radius of 0.4 or less. Since the region where the ore layer thickness is thin is a region where the gas flow is large and the reduction load is low, it is preferable that the low-reactive ore (y) is charged into such a region where the reduction load is low.
  • the low-reactive ore (y) when the low-reactive ore (y) is charged to the furnace center side where the dimensionless radius is 0.4 or less, due to the cohesive zone sagging caused by the reaction delay of the low-reactive ore (y), The gas flow at the blast furnace center side is suppressed, and there is a risk of inducing deterioration in air permeability and an increase in heat loss. Therefore, it is desirable to charge the low-reactive ore (y) in a region having a dimensionless radius of 0.6 or more.
  • FIG. 6 is a graph showing the raw material charging range by the turning chute 4 in relation to the dimensionless radius and the charging ratio.
  • the charging range shown in FIG. 6 is obtained by the 1/20 scale model test apparatus shown in FIG.
  • FIG. 6A shows the charging range when the raw materials are sequentially charged from the furnace center side toward the furnace wall side.
  • FIG. 6B shows the raw material charging range when the raw materials are sequentially charged from the furnace wall side toward the furnace center side.
  • the charging range means a charging (deposition) range in the furnace radial direction of the raw material piles that are charged from the turning chute 4 into the blast furnace and accumulated on the charging base surface.
  • the deposition surface of the raw material at the top of the blast furnace is in the shape of a mortar where the center of the furnace is the lowest, and the position where the raw material has dropped from the swivel chute 4 on the slope is the charging center position.
  • a range in which the raw material spreads and accumulates from the charging center position in the furnace center direction and the furnace wall direction is defined as a charging range.
  • the “charging ratio” on the horizontal axis in FIG. 6 indicates that the raw material for one batch is sequentially charged from the furnace center side to the furnace wall side or from the furnace wall side to the furnace center side by the turning chute 4. This means the ratio of ore (x) that has been charged at each charging position in the furnace radial direction out of the total amount of ore (x) charged in one batch. For example, a charging ratio of 0.1 indicates that 10% by mass of the ore (x) charged in one batch is completed at the charging position.
  • FIG. 7 is a longitudinal section of the uppermost part of the raw material charging layer in the furnace.
  • FIG. 7 schematically shows the “charging range” and the “charging center position” that is the center thereof.
  • the region having a dimensionless radius of 0.6 or more corresponds to a charging ratio of 0.45 or more. It turns out that it is an area.
  • the region having a dimensionless radius of 0.6 or more corresponds to a charging ratio of 0.56 or less. It turns out that it is an area.
  • the present invention when ore (x) charged into one main hopper 2 is discharged and charged sequentially from the furnace center side to the furnace wall side by the turning chute 4 (first raw material of the present invention).
  • the ore from the swivel chute 4 (X) is charged, and the discharge of the low-reactivity ore (y) charged into the auxiliary hopper 3 is started from an arbitrary time point thereafter, and the ore ( A low-reactive ore (y) is charged together with x).
  • the timing of starting the discharge of the low-reactive ore (y) may be when the charging of 45% by mass of the total amount of the ore (x) to be charged is completed, or the ore (x) to be charged It may be after a certain period of time has elapsed after the charging of 45% by mass of the total amount has been completed.
  • the discharge of the low-reactivity ore (y) may be performed until the charging of the entire amount of ore (x) is completed, or may be stopped before the charging of the entire amount of ore (x) is completed. What is necessary is just to determine the timing which starts discharge
  • the ore (x) charged into one main hopper 2 is discharged and sequentially charged from the furnace wall side toward the furnace center side by the turning chute 4 (second raw material charging method of the present invention).
  • the discharge of the low-reactive ore (y) charged into the auxiliary hopper 3 is started simultaneously with the start of the charging of the ore (x) or at any time after the start of the charging, and the ore (x ) And the low-reactive ore (y), and at least the discharge of the low-reactive ore (y) is completed by the time when charging of 56% by mass of the total amount of ore (x) charged in one batch is completed.
  • the timing for starting the discharge of the low-reactivity ore (y) and the period for discharging the low-reactivity ore (y) are determined according to the required mixing form of the low-reactivity ore (y). That's fine.
  • FIG. 8 is a graph showing the raw material charging range and charging center position in relation to the dimensionless radius and the charging ratio. As shown in FIG. 8, the region having a dimensionless radius of 0.4 to 0.6 corresponds to the region having a charging ratio of 0.27 to 0.46, based on the “charging center position”.
  • the low-reactive ore (y) has a low reduction load. Can be charged into the area. Thereby, even when normal coke is used, the low-reactivity ore (y) can be reduced efficiently. In addition, deterioration of air permeability caused by charging low-reactive ore (y) into the furnace center is suppressed, gas flow and ore reduction state can be stabilized effectively, and the ratio of reducing material in blast furnace operation is reduced. it can.
  • the low-reactive ore (y) for a plurality of charges is charged into the auxiliary hopper 3, and the low-reactive ore (y) for one charge is divided into a plurality of batches from the auxiliary hopper 3 and charged into the blast furnace.
  • the uniform discharge pressure time at the time of discharging the raw material can be reduced, so that the production amount of the blast furnace can be maintained even when a small amount of raw material is charged into the blast furnace using an independent auxiliary hopper.
  • FIG. 9 is a schematic diagram of the model test apparatus used in the examples.
  • a flow rate adjustment valve (not shown) is provided at the discharge port of the sub hopper of the model test apparatus.
  • ore (sintered ore) with a JIS reduction rate (RI) of 65% is used as the ore (x), and an ore (bulk ore) with a JIS reduction rate (RI) of 50% is used as the low-reactivity ore (y).
  • Coke was ordinary coke.
  • ore (x) is charged into the main hopper, low-reactive ore (y) is charged into the secondary hopper, and the low reactivity from the secondary hopper during a part of the discharge period of the ore (x) from the primary hopper.
  • Ore (y) was discharged.
  • the ore (x) and the low-reactive ore (y) were put into the main hopper so as to be in a predetermined state, and these were discharged from the main hopper. .
  • FIG. 10 is a diagram for explaining a method for dividing and collecting the discharged raw material discharged from the model testing apparatus.
  • the swiveling chute is removed from the model testing apparatus as shown in FIG. 10, a plurality of sampling boxes are installed on the conveyor, and this sampling box is moved at a constant speed in synchronization with the material discharge.
  • the discharged raw material was collected in portions.
  • emission raw material the image analysis based on the color tone difference of an ore (x) and a low-reactivity ore (y) was performed, and the ratio of the low-reactivity ore (y) in discharge
  • FIG. 11 is a graph showing the relationship between the ratio of low-reactive ore (y) and the charging ratio when raw materials are sequentially charged from the furnace center side toward the furnace wall side.
  • the low-reactive ore (y) was able to be charged in the region where the charging ratio was 0.7 or more which satisfies the target charging ratio of 0.45 or more. .
  • Invention Example 2 it was possible to concentrate the low-reactive ore (y) in a concentration range of 0.8 or more.
  • Comparative Example 1 the low-reactive ore (y) is also charged in the region where the charging ratio is less than 0.45, and the low-reactive ore (only in the region where the charging ratio is 0.45 or more) y) could not be charged.
  • FIG. 12 is a graph showing the relationship between the ratio of low-reactive ore (y) and the charging ratio when raw materials are sequentially charged from the furnace wall side toward the furnace center side.
  • the low-reactive ore (y) was able to be charged in the region of the charging ratio of 0.2 or less that satisfies the target charging ratio of 0.56 or less.
  • the low-reactive ore (y) is charged also in the region where the charging ratio is higher than 0.56, and the low-reactive ore (only in the region where the charging ratio is 0.56 or less) y) could not be charged.
  • Table 1 summarizes the results of evaluating the operating conditions of each example and comparative example using a blast furnace operation prediction model.
  • Inventive Examples 1 to 3 were reduced in reducing material ratio and packed bed pressure loss compared to Comparative Examples 1 and 2.
  • the low-reactivity ore (y) can be charged into the region where the reduction load is low.
  • the reduction state of the ore can be stabilized, and the deterioration of the air permeability and the increase in heat loss due to the low-reactive ore (y) being charged at the blast furnace center side are also suppressed.
  • the reduction of the blast furnace It was confirmed that the material ratio could be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Abstract

ベルレス式装入装置を有する高炉において、普通コークスを用いた場合でも、低反応性鉱石を効率的に還元させることができ、炉内での鉱石の還元状態を効果的に安定化させることができる原料装入方法を提供する。 炉頂部に複数の主ホッパーと、主ホッパーよりも容量の小さい副ホッパーを有するベルレス装入装置を備えた高炉の原料装入方法であって、 複数の主ホッパーのうちの1つ以上に投入されたJIS還元率(RI)が55%超の鉱石(x)を排出して旋回シュートにより炉中心側から炉壁側に向かって順次装入する際に、鉱石(x)の装入を開始した後、少なくとも、1バッチで装入する鉱石(x)全量の45質量%の装入が完了するまでは、旋回シュートから鉱石(x)のみを装入し、それ以降の任意の時点から、副ホッパーに投入されたJIS還元率(RI)が55%以下の低反応性鉱石(y)の排出を開始し、それ以降の任意の期間、旋回シュートから鉱石(x)とともに低反応性鉱石(y)を装入する。

Description

高炉の原料装入方法
 本発明は、ベルレス式装入装置を有する高炉の原料装入方法に関する。
 近年、地球温暖化防止の観点からCO削減が求められている。鉄鋼業においてはCO排出量の約70%が高炉によるものであり、高炉におけるCO排出量の削減が求められる。高炉におけるCO削減は、高炉で使用するコークス、微粉炭、天然ガスなどの還元材の削減により可能である。
 一方で、還元材、特にコークスを削減する場合、炉内通気性を担保しているコークスが減少するので炉内通気抵抗が増加する。一般的な高炉では、炉頂から装入された鉱石が軟化を開始する温度に到達すると、上部に存在する原料の自重により空隙を埋めながら変形する。このため、高炉下部では、鉱石層の通気抵抗が非常に大きく、ガスがほとんど流れない融着帯が形成される。この融着帯の通気性が高炉全体の通気性に大きく影響を及ぼしており、高炉における生産性を律速している。
 還元材比を低減するために、融着帯の通気抵抗を改善して鉱石の還元性を高めるには、鉱石層にコークスを混合することが有効であることが知られており、鉱石層にコークスを混合するための方法に関して、数多くの提案がなされている。特許文献1には、高反応性コークス(JIS反応性が30%以上のコークス)を低反応性鉱石(JIS還元性が低い鉱石)と混合することで、低反応性鉱石を高効率に反応させて鉱石の還元性を高めるようにした方法が開示されている。
 特許文献2には、複数の主ホッパーから同時に複数原料を装入する高炉への原料装入方法が開示されている。
特公平7-76366号公報 国際公開2013/172045号
 しかし、特許文献1に開示された方法は、普通コークスより強度が小さい高反応性コークスを使用する必要があり、普通コークスのみを使用する高炉操業には適用できない。すなわち、特許文献1には、鉱石としてJIS還元性55%の鉱石のみを用い、この低反応性鉱石に、一部を高反応性コークスで置換したコークスを混合した例が開示されているが、仮に、普通コークスのみを使用した場合には、低反応性鉱石の還元性を十分に確保できない。
 特許文献2には、複数の主ホッパーから同時に複数原料を装入する高炉への原料装入方法を提示しているが、高炉への原料排出時には高炉内雰囲気に置換する均排圧時間が必要となる。生産量の維持のためには、少量原料のみでのホッパー使用は困難である。
 本発明の目的は、以上のような従来技術の課題を解決し、ベルレス式装入装置を有する高炉において、普通コークスを用いた場合でも、低反応性鉱石を効率的に還元させることができる高炉の原料装入方法を提供することにある。
 上記課題を解決するための本発明の要旨は以下のとおりである。
[1]炉頂部に複数の主ホッパーと、前記主ホッパーよりも容量の小さい副ホッパーを有するベルレス装入装置を備えた高炉の原料装入方法であって、前記複数の主ホッパーのうちの1つ以上に投入されたJIS還元率(RI)が55%超の鉱石(x)を排出して旋回シュートにより炉中心側から炉壁側に向かって順次装入する際に、前記鉱石(x)の装入を開始した後、少なくとも、1バッチで装入する前記鉱石(x)全量の45質量%の装入が完了するまでは、前記旋回シュートから前記鉱石(x)のみを装入し、それ以降の任意の時点から、前記副ホッパーに投入されたJIS還元率(RI)が55%以下の低反応性鉱石(y)の排出を開始し、それ以降の任意の期間、前記旋回シュートから前記鉱石(x)とともに前記低反応性鉱石(y)を装入する、高炉の原料装入方法。
[2]前記副ホッパーに複数チャージ分の前記低反応性鉱石(y)を投入し、前記副ホッパーから1チャージ分の前記低反応性鉱石(y)を各バッチに分割して装入する、[1]に記載の高炉の原料装入方法。
[3]炉頂部に複数の主ホッパーと、前記主ホッパーよりも容量の小さい副ホッパーを有するベルレス装入装置を備えた高炉の原料装入方法であって、前記複数の主ホッパーのうちの1つ以上に投入されたJIS還元率(RI)が55%超の鉱石(x)を排出して旋回シュートにより炉壁側から炉中心側に向かって順次装入する際に、前記鉱石(x)の装入開始と同時に又は装入開始後の任意の時点から、前記副ホッパーに投入されたJIS還元率(RI)が55%以下の低反応性鉱石(y)の排出を開始して、前記旋回シュートから前記鉱石(x)とともに前記低反応性鉱石(y)を装入し、少なくとも、1バッチで装入する前記鉱石(x)全量の56質量%の装入が完了する時点までに、前記低反応性鉱石(y)の装入を停止する、高炉の原料装入方法。
[4]前記副ホッパーに複数チャージ分の前記低反応性鉱石(y)を投入し、前記副ホッパーから1チャージ分の前記低反応性鉱石(y)を各バッチに分割して排出する、[3]に記載の高炉の原料装入方法。
[5]前記副ホッパーは、ホッパー本体および排出口を有し、前記副ホッパーは、前記ホッパー本体および前記排出口の中心軸が前記高炉の炉体中心軸と一致する位置に設けられる、[1]から[4]の何れか1つに記載の高炉の原料装入方法。
 本発明によれば、高炉半径方向において還元負荷の小さい部位に限定して低反応性鉱石(難還元性鉱石)を装入できるので、普通コークスを用いた場合でも、低反応性鉱石を効率的に還元させることができる。
図1は、炉体上部を切り欠いた状態のベルレス装入装置1aの斜視図である。 図2は、図1のII-II断面図である。 図3は、炉体上部を切り欠いた状態のベルレス装入装置1bの斜視図である。 図4は、図3のIV-IV断面図である。 図5は、標準的な鉱石層厚の半径方向の分布を示すグラフである。 図6は、旋回シュート4による原料の装入範囲を、無次元半径と装入比率との関係で示すグラフである。 図7は、炉内の原料装入層最上部の縦断面である。 図8は、原料の装入範囲及び装入中心位置を無次元半径と装入比率との関係で示すグラフである。 図9は、実施例で使用した模型試験装置の模式図である。 図10は、模型試験装置から排出された排出原料の分割回収方法を説明する図である。 図11は、炉中心側から炉壁側に向かって原料を順次装入した場合における低反応性鉱石(y)の比率と装入比率との関係を示すグラフである。 図12は、炉壁側から炉中心側に向かって原料を順次装入した場合における低反応性鉱石(y)の比率と装入比率との関係を示すグラフである。
 本発明では、炉頂部に複数の主ホッパーと、この主ホッパーよりも容量の小さい副ホッパーを有するベルレス装入装置を用い、複数の主ホッパーのうちの1つ以上の主ホッパーに普通鉱石、すなわちJIS還元率(RI)が55%超の鉱石(x)を投入し、副ホッパーには、複数チャージ分のJIS還元率(RI)が55%以下の低反応性鉱石(y)を投入し、これら主ホッパーと副ホッパーからそれぞれ1チャージ分の鉱石(x)と低反応性鉱石(y)を複数のバッチに分割して炉内に装入する。このような原料装入では、主ホッパー及び副ホッパーからの原料の切り出し量を調整することで低反応性鉱石(y)の混合比率を変更することができるので、低反応性鉱石(y)を好ましい混合形態に容易に制御できる。
 一般に、高炉で主原料として使用される鉱石のJIS還元率(RI)は55%超(通常は80%程度以下)であり、JIS還元率(RI)が55%以下の鉱石は低反応性とみなすことができる。本発明では、JIS還元率(RI)が55%以下の鉱石を低反応性鉱石(y)とする。なかでもJIS還元率(RI)が40%以下の鉱石は特に難還元性であるので、本発明はこのような鉱石を用いる場合に特に有用である。ここで、JIS還元率(RI)は、JIS(日本工業規格) M8713で規定される還元試験方法で測定できる。
 本発明において鉱石(鉱石(x)、低反応性鉱石(y))とは、鉄源である焼結鉱、塊鉱石、ペレットなどの1種以上を意味する。主にスラグの成分調整を目的とした副原料(例えば、石灰石、珪石、蛇紋岩など)が鉱石(x)に混合される場合、鉱石は上記副原料を含む。
 本発明で使用するコークスは、いわゆる普通コークス、すなわち、JIS反応性(JIS(日本工業規格) K2151:2004の反応性試験方法で測定したJIS反応性)が30%以下のコークスでよい。
 高炉の操業では、高炉内に鉱石層とコークス層とが交互に形成されるように原料が装入される。1層の鉱石層を形成させるのに用いられる鉱石が1チャージ分の鉱石であり、この1チャージ分の鉱石が複数のバッチに分割されて高炉内に装入される。本発明に係る高炉の原料装入方法は、1バッチで装入される鉱石(鉱石(x)、低反応性鉱石(y))の装入方法を対象とする。
 1バッチで装入される原料の粒径に変動があると、炉内のガス流れが不安定になるおそれがある。このため、副ホッパー内の原料の降下がマスフローとなるようにし、副ホッパーに投入された原料が、投入された順番に副ホッパーから排出させることが好ましい。副ホッパーの排出口の径をd1とし、副ホッパーのホッパー本体の径をd2とすると、ホッパー本体の径d2が、d1<d2≦1.5×d1を満足することが好ましい。これにより、副ホッパー内における原料の降下がマスフローとなる。
 図1及び図2は、本発明で使用する高炉のベルレス装入装置の一実施形態を示す模式図である。図1は、炉体上部を切り欠いた状態のベルレス装入装置1aの斜視図である。図2は、図1のII-II断面図である。ベルレス装入装置1aは、炉体中心軸を中心とする1つの仮想円上にホッパー中心軸を有する3基の主ホッパー2と、これら複数の主ホッパー2の外側に配置された1基の副ホッパー3を有している。
 図3及び図4は、本発明で使用する高炉のベルレス装入装置の他の実施形態を示す模式図である。図3は、炉体上部を切り欠いた状態のベルレス装入装置1bの斜視図である。図4は、図3のIV-IV断面図である。図1及び図2の実施形態と同様、このベルレス装入装置1bも炉体中心軸を中心とする1つの仮想円上にホッパー中心軸を有する3基の主ホッパー2と、1基の副ホッパー3を有している。ベルレス装入装置1bでは、この副ホッパー3が3基の主ホッパー2に中心に設けられ、副ホッパー3のホッパー本体3a及び排出口3bの中心軸が、高炉の炉体中心軸と一致するように設けられている。
 以上のような各実施形態のベルレス装入装置1a、1bにおいて、主ホッパー2から排出された鉱石(x)と副ホッパー3から排出された低反応性鉱石(y)は、集合ホッパー5を経由して旋回シュート4から炉内に装入される。図1、図3において、6は高炉本体、7は装入ベルトコンベアである。
 低反応性鉱石(y)の排出速度を制御できるように、副ホッパー3の排出口には流量調整弁(図示せず)が設けられている。
 以下、上述したベルレス装入装置1a、1bを使用する場合を例に、本発明の原料装入方法の詳細を説明する。
 図5は、標準的な鉱石層厚の半径方向の分布を示すグラフである。図5の縦軸は装入層最上部における「鉱石層厚/全層厚(鉱石層厚+コークス層厚)」であり、横軸は無次元半径である。ここで、無次元半径は、炉中心を始点(0)とし、炉壁を終点(1.0)とする高炉の無次元半径を意味する。
 図5に示すように、無次元半径0.6以上の炉壁側および無次元半径0.4以下の炉中心側で鉱石層厚が薄くなることがわかる。鉱石層厚が薄くなる領域は、ガス流が多く還元負荷の低い領域であるので、低反応性鉱石(y)はこのような還元負荷の低い領域に装入する方が好ましい。一方、無次元半径が0.4以下となる炉中心側に低反応性鉱石(y)を装入した場合、低反応性鉱石(y)の反応遅れに起因する融着帯垂れ込みなどにより、高炉中心側のガス流が抑制され、通気性悪化やヒートロス増加を誘発するおそれがある。したがって、低反応性鉱石(y)は、無次元半径0.6以上の領域に装入することが望ましい。
 図6は、旋回シュート4による原料の装入範囲を、無次元半径と装入比率との関係で示すグラフである。図6に示した装入範囲は、図9に示した1/20スケールの模型試験装置により求めたものである。図6(a)は原料を炉中心側から炉壁側に向かって順次装入した場合の装入範囲を示す。図6(b)は原料を炉壁側から炉中心側に向かって順次装入した場合の原料装入範囲を示す。ここで、装入範囲とは、高炉内へ旋回シュート4から原料が装入されて装入ベース面上に堆積した原料の山の炉半径方向での装入(堆積)範囲を意味する。高炉炉頂の原料の堆積面は炉中心部が最も低い位置となるすり鉢状となっており、その斜面に旋回シュート4から原料が落下した位置を装入中心位置とする。そして、その装入中心位置から炉中心方向および炉壁方向へ原料が広がって堆積した範囲を装入範囲としている。炉中心側から炉壁側へと旋回シュート4を移動させると、すり鉢状の斜面の下側から原料が装入されるので、炉中心側への原料の広がりが抑制される。このため、炉中心側から炉壁側へと旋回シュート4を移動させて原料を装入した場合の装入範囲は、炉壁側から炉中心側へ旋回シュート4を移動させて原料を装入した場合よりも狭くなる。図6の横軸の「装入比率」とは、旋回シュート4により1バッチ分の原料を炉中心側から炉壁側に向かって、又は、炉壁側から炉中心側に向かって順次装入する際に、1バッチで装入する鉱石(x)全量のうち、炉半径方向の各装入位置において装入が完了した鉱石(x)の割合を意味する。例えば、装入比率0.1とは、1バッチで装入する鉱石(x)全量のうち、その装入位置において10質量%の装入が完了したことを示す。
 図7は、炉内の原料装入層最上部の縦断面である。図7に「装入範囲」とその中心である「装入中心位置」を模式的に示した。
 原料を炉中心側から炉壁側に向かって順次装入する場合、図6(a)によれば、無次元半径0.6以上の領域に対応するのは、装入比率0.45以上の領域であることがわかる。原料を炉壁側から炉中心側に向かって順次装入する場合、図6(b)によれば、無次元半径0.6以上の領域に対応するのは、装入比率0.56以下の領域であることがわかる。
 そこで、本発明では、1つの主ホッパー2に投入された鉱石(x)を排出して旋回シュート4により炉中心側から炉壁側に向かって順次装入する場合(本発明の第一の原料装入方法)には、鉱石(x)の装入を開始した後、少なくとも、1バッチで装入する鉱石(x)全量の45質量%の装入が完了するまでは、旋回シュート4から鉱石(x)のみを装入し、それ以降の任意の時点から、副ホッパー3に投入された低反応性鉱石(y)の排出を開始し、それ以降の任意の期間、旋回シュート4から鉱石(x)とともに低反応性鉱石(y)を装入する。ここで、低反応性鉱石(y)の排出を開始するタイミングは、装入すべき鉱石(x)全量の45質量%の装入が完了した時点でもよいし、装入すべき鉱石(x)全量の45質量%の装入が完了した後、一定期間経過した後でもよい。低反応性鉱石(y)の排出は、鉱石(x)全量の装入が完了するまで行ってもよいし、鉱石(x)全量の装入が完了する以前に停止してもよい。低反応性鉱石(y)の排出を開始するタイミングや低反応性鉱石(y)の排出を行う期間は、必要とされる低反応性鉱石(y)の混合形態に応じて決めればよい。
 1つの主ホッパー2に投入された鉱石(x)を排出して旋回シュート4により炉壁側から炉中心側に向かって順次装入する場合(本発明の第二の原料装入方法)には、鉱石(x)の装入開始と同時に又は装入開始後の任意の時点から、副ホッパー3に投入された低反応性鉱石(y)の排出を開始して、旋回シュート4から鉱石(x)とともに低反応性鉱石(y)を装入し、少なくとも、1バッチで装入する鉱石(x)全量の56質量%の装入が完了する時点までに、低反応性鉱石(y)の排出を停止する。この場合も、低反応性鉱石(y)の排出を開始するタイミングや低反応性鉱石(y)の排出を行う期間は、必要とされる低反応性鉱石(y)の混合形態に応じて決めればよい。
 上記のような特定の無次元半径領域(特定の装入比率の領域)において低反応性鉱石(y)を含む原料の装入を行う場合、図7に示す装入原料の山aのように「装入中心位置」がその指定範囲(上記特定の無次元半径領域)内に入るようにする必要がある。例えば、図7の装入原料の山aのように「装入中心位置」が指定範囲(上記特定の無次元半径領域)内にない場合は、装入範囲と指定範囲が一部重複していても、装入原料の山の過半数が指定範囲外となる場合があるので好ましくない。図8は、原料の装入範囲及び装入中心位置を無次元半径と装入比率との関係で示すグラフである。図8に示すように、「装入中心位置」を基準にすると無次元半径0.4~0.6の領域は、装入比率0.27~0.46の領域に対応する。
 このように、目標とするタイミングで低反応性鉱石(y)を炉内に装入することで、炉中心側や還元負荷の高い領域を避け、低反応性鉱石(y)を還元負荷の低い領域に装入できる。これにより、普通コークスを用いた場合でも、低反応性鉱石(y)を効率的に還元させることができる。さらに、炉中心部に低反応性鉱石(y)が装入されることによる通気性悪化も抑制され、ガス流れや鉱石の還元状態を効果的に安定化でき、高炉操業における還元材比を低減できる。
 図1及び図2のベルレス装入装置1aと、図3及び図4のベルレス装入装置1bとを比較した場合、副ホッパー3が高炉中心軸を外れて配置された図1及び図2のベルレス装入装置1aでは、旋回シュート4の旋回位置が、高炉中心軸に対して副ホッパー側である場合と反副ホッパー側である場合とで原料流の落下位置に偏差が生じる。これに対して、副ホッパー3の本体及び排出口の中心軸が炉体中心軸と一致する図3及び図4のベルレス装入装置1bは、主ホッパー2から排出される原料と副ホッパー3から排出される原料の速度ベクトルの絶対値が全ての主ホッパー2で同じになり、原料流の落下位置に上記のような偏差を生じることがない。このため、原料の落下位置を高精度に制御することが容易である。集合ホッパー5の直上に副ホッパー3が存在することで、副ホッパー3から集合ホッパー5までの原料流路が省略でき、排出タイミング等の調整も容易となる。
 本発明では副ホッパー3に複数チャージ分の低反応性鉱石(y)を投入し、副ホッパー3から1チャージ分の低反応性鉱石(y)を複数のバッチに分割して高炉内に装入する。これにより、原料排出時の均排圧時間を削減できるので、独立した副ホッパーを用いて少量原料を高炉内に装入する場合であっても高炉の生産量を維持できる。
 1/20スケールの模型試験装置を用い、鉱石(x)と低反応性鉱石(y)の装入試験を行った。図9は、実施例で使用した模型試験装置の模式図である。低反応性鉱石(y)の排出速度を制御できるように、模型試験装置の副ホッパーの排出口に流量調整弁(図示せず)を設けている。
 鉱石(x)としてはJIS還元率(RI)が65%の鉱石(焼結鉱)を用い、低反応性鉱石(y)としてはJIS還元率(RI)が50%の鉱石(塊鉱石)を用いた。コークスは普通コークスを用いた。発明例では、主ホッパーに鉱石(x)を投入し、副ホッパーに低反応性鉱石(y)を投入し、主ホッパーからの鉱石(x)の排出期間の一部において副ホッパーから低反応性鉱石(y)を排出した。一方、比較例では、従来法に準じて主ホッパーのみを用い、主ホッパーに鉱石(x)と低反応性鉱石(y)を所定の状態となるように投入し、主ホッパーからこれらを排出した。
 図10は、模型試験装置から排出された排出原料の分割回収方法を説明する図である。この試験では、図10に示すように模型試験装置から旋回シュートを取り外し、搬送コンベア上に複数個のサンプリングボックスを設置し、このサンプリングボックスを原料排出と同期して一定速度で移動することで、排出原料を分割回収した。回収した排出原料について、鉱石(x)と低反応性鉱石(y)の色調差に基づく画像解析を行い、排出原料中の低反応性鉱石(y)の比率を求めた。
 模型試験装置を用いて、旋回シュートにより炉中心側から炉壁側に向かって原料を順次装入する装入試験を行い、排出原料中の低反応性鉱石(y)の比率を上記方法で測定した。図11は、炉中心側から炉壁側に向かって原料を順次装入した場合における低反応性鉱石(y)の比率と装入比率との関係を示すグラフである。
 図11に示すように、発明例1では目標とする装入比率0.45以上を満足する装入比率0.7以上の領域に、低反応性鉱石(y)を装入することができた。発明例2では、装入比率0.8以上の領域に集中して低反応性鉱石(y)を装入することができた。一方、比較例1では、装入比率0.45未満となる領域にも低反応性鉱石(y)が装入されており、装入比率0.45以上となる領域のみに低反応性鉱石(y)を装入できなかった。
 同様に、模型試験装置を用いて、旋回シュートにより炉壁側から炉中心側に向かって原料を順次装入する装入試験を行い、排出原料中の低反応性鉱石(y)の比率を上記方法で測定した。図12は、炉壁側から炉中心側に向かって原料を順次装入した場合における低反応性鉱石(y)の比率と装入比率との関係を示すグラフである。
 図12に示すように、発明例3では目標とする装入比率0.56以下を満足する装入比率0.2以下の領域に低反応性鉱石(y)を装入することができた。一方、比較例2では、装入比率が0.56より高い領域にも低反応性鉱石(y)が装入されており、装入比率0.56以下となる領域のみに低反応性鉱石(y)を装入することができなかった。
 表1に、各実施例および比較例の操業条件を高炉操業予測モデルにより評価した結果をまとめて示す。表1に示すように、発明例1~3は、比較例1、2よりも還元材比および充填層の圧力損失が低下した。このように、目標のタイミングで低反応性鉱石(y)を排出することで、低反応性鉱石(y)を還元負荷の低い領域に装入できる。これにより、鉱石の還元状態を安定化させることができるとともに、高炉中心側に低反応性鉱石(y)が装入されることによる通気性悪化やヒートロス増加も抑制され、この結果、高炉の還元材比を低減できることが確認できた。
Figure JPOXMLDOC01-appb-T000001
 
 1a ベルレス装入装置
 1b ベルレス装入装置
 2 主ホッパー
 3 副ホッパー
 3a ホッパー本体
 3b 排出口
 4 旋回シュート
 5 集合ホッパー
 6 高炉本体
 7 装入ベルトコンベア

Claims (5)

  1.  炉頂部に複数の主ホッパーと、前記主ホッパーよりも容量の小さい副ホッパーを有するベルレス装入装置を備えた高炉の原料装入方法であって、
     前記複数の主ホッパーのうちの1つ以上に投入されたJIS還元率(RI)が55%超の鉱石(x)を排出して旋回シュートにより炉中心側から炉壁側に向かって順次装入する際に、
     前記鉱石(x)の装入を開始した後、少なくとも、1バッチで装入する前記鉱石(x)全量の45質量%の装入が完了するまでは、前記旋回シュートから前記鉱石(x)のみを装入し、
     それ以降の任意の時点から、前記副ホッパーに投入されたJIS還元率(RI)が55%以下の低反応性鉱石(y)の排出を開始し、それ以降の任意の期間、前記旋回シュートから前記鉱石(x)とともに前記低反応性鉱石(y)を装入する、高炉の原料装入方法。
  2.  前記副ホッパーに複数チャージ分の前記低反応性鉱石(y)を投入し、前記副ホッパーから1チャージ分の前記低反応性鉱石(y)を各バッチに分割して装入する、請求項1に記載の高炉の原料装入方法。
  3.  炉頂部に複数の主ホッパーと、前記主ホッパーよりも容量の小さい副ホッパーを有するベルレス装入装置を備えた高炉の原料装入方法であって、
     前記複数の主ホッパーのうちの1つ以上に投入されたJIS還元率(RI)が55%超の鉱石(x)を排出して旋回シュートにより炉壁側から炉中心側に向かって順次装入する際に、
     前記鉱石(x)の装入開始と同時に又は装入開始後の任意の時点から、前記副ホッパーに投入されたJIS還元率(RI)が55%以下の低反応性鉱石(y)の排出を開始して、前記旋回シュートから前記鉱石(x)とともに前記低反応性鉱石(y)を装入し、
     少なくとも、1バッチで装入する前記鉱石(x)全量の56質量%の装入が完了する時点までに、前記低反応性鉱石(y)の装入を停止する、高炉の原料装入方法。
  4.  前記副ホッパーに複数チャージ分の前記低反応性鉱石(y)を投入し、前記副ホッパーから1チャージ分の前記低反応性鉱石(y)を各バッチに分割して装入する、請求項3に記載の高炉の原料装入方法。
  5.  前記副ホッパーは、ホッパー本体および排出口を有し、
     前記副ホッパーは、前記ホッパー本体および前記排出口の中心軸が前記高炉の炉体中心軸と一致する位置に設けられる、請求項1から請求項4の何れか一項に記載の高炉の原料装入方法。
PCT/JP2019/008262 2018-03-30 2019-03-04 高炉の原料装入方法 WO2019187998A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US17/041,538 US12098437B2 (en) 2018-03-30 2019-03-04 Method for charging raw materials into blast furnace
JP2019526011A JP6558518B1 (ja) 2018-03-30 2019-03-04 高炉の原料装入方法
EP19776828.6A EP3751010B1 (en) 2018-03-30 2019-03-04 Method for charging raw materials into blast furnace
CN201980023480.4A CN111971400B (zh) 2018-03-30 2019-03-04 高炉的原料装入方法
EP21209225.8A EP3992308B1 (en) 2018-03-30 2019-03-04 Method for charging raw materials into blast furnace
BR112020019449-2A BR112020019449B1 (pt) 2018-03-30 2019-03-04 Métodos para carregamento de matérias-primas em alto-forno
RU2020131569A RU2759939C1 (ru) 2018-03-30 2019-03-04 Способ загрузки сырья в доменную печь
KR1020207027973A KR102455111B1 (ko) 2018-03-30 2019-03-04 고로의 원료 장입 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018066476 2018-03-30
JP2018-066476 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019187998A1 true WO2019187998A1 (ja) 2019-10-03

Family

ID=68059017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008262 WO2019187998A1 (ja) 2018-03-30 2019-03-04 高炉の原料装入方法

Country Status (8)

Country Link
US (1) US12098437B2 (ja)
EP (2) EP3751010B1 (ja)
JP (1) JP6558518B1 (ja)
KR (1) KR102455111B1 (ja)
CN (1) CN111971400B (ja)
BR (1) BR112020019449B1 (ja)
RU (1) RU2759939C1 (ja)
WO (1) WO2019187998A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0776366B2 (ja) 1987-07-31 1995-08-16 新日本製鐵株式会社 高炉操業方法
KR100931175B1 (ko) * 2002-12-27 2009-12-11 주식회사 포스코 괴갈철광의 고로장입방법
JP2013147692A (ja) * 2012-01-18 2013-08-01 Jfe Steel Corp 高出銑比高炉操業方法
WO2013172045A1 (ja) 2012-05-18 2013-11-21 Jfeスチール株式会社 高炉への原料装入方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6013042B2 (ja) 1978-08-28 1985-04-04 株式会社神戸製鋼所 高炉操業法
JPS57207105A (en) 1981-06-16 1982-12-18 Sumitomo Metal Ind Ltd Charging method for raw material into bell-less type blast furnace
JPS6115904A (ja) * 1984-06-29 1986-01-24 Sumitomo Metal Ind Ltd 高炉操業方法
JP3124658B2 (ja) 1993-09-08 2001-01-15 株式会社細川洋行 乳用バッグインボックス用袋体の連結体
RU2095420C1 (ru) 1995-08-02 1997-11-10 Акционерное общество "Новолипецкий металлургический комбинат" Способ загрузки доменной печи
JP3948352B2 (ja) * 2002-06-07 2007-07-25 住友金属工業株式会社 高炉の操業方法およびベルレス式装入装置
JP4052047B2 (ja) 2002-07-12 2008-02-27 Jfeスチール株式会社 高炉への原料装入方法
DE10333569A1 (de) 2003-07-23 2005-02-17 Z & J Technologies Gmbh Einrichtung zur Verteilung von Schüttgut in wenigstens zwei oberhalb der Gicht eines Hochofens angeordnete Bunker
EP1811045A1 (en) 2006-01-20 2007-07-25 Paul Wurth S.A. Multiple hopper charging installation for a shaft furnace
EP1811044A1 (en) * 2006-01-20 2007-07-25 Paul Wurth S.A. Three hopper charging installation for a shaft furnace
JP5535955B2 (ja) * 2011-02-08 2014-07-02 三井造船株式会社 気相成長装置
JP2013172045A (ja) 2012-02-22 2013-09-02 Hitachi Aic Inc フィルムコンデンサ
CN104131120B (zh) 2014-07-22 2016-04-27 武汉钢铁(集团)公司 提高烧结矿利用效率的高炉布料方法
JP6119700B2 (ja) 2014-08-29 2017-04-26 Jfeスチール株式会社 高炉操業方法
JP6041072B1 (ja) 2015-02-03 2016-12-07 Jfeスチール株式会社 高炉への原料装入方法
JP6376095B2 (ja) 2015-09-25 2018-08-22 Jfeスチール株式会社 高炉操業方法
JP6115904B1 (ja) 2016-06-17 2017-04-19 株式会社すなおネット 食品製品及び食品製品の提供方法
CN111989411B (zh) * 2018-03-30 2022-07-08 杰富意钢铁株式会社 高炉的原料装入方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0776366B2 (ja) 1987-07-31 1995-08-16 新日本製鐵株式会社 高炉操業方法
KR100931175B1 (ko) * 2002-12-27 2009-12-11 주식회사 포스코 괴갈철광의 고로장입방법
JP2013147692A (ja) * 2012-01-18 2013-08-01 Jfe Steel Corp 高出銑比高炉操業方法
WO2013172045A1 (ja) 2012-05-18 2013-11-21 Jfeスチール株式会社 高炉への原料装入方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3751010A4

Also Published As

Publication number Publication date
KR20200124737A (ko) 2020-11-03
JPWO2019187998A1 (ja) 2020-04-30
EP3751010A1 (en) 2020-12-16
BR112020019449B1 (pt) 2023-10-03
EP3751010B1 (en) 2024-05-01
EP3751010A4 (en) 2021-06-30
KR102455111B1 (ko) 2022-10-14
CN111971400B (zh) 2022-04-15
JP6558518B1 (ja) 2019-08-14
CN111971400A (zh) 2020-11-20
US12098437B2 (en) 2024-09-24
EP3992308A1 (en) 2022-05-04
RU2759939C1 (ru) 2021-11-18
US20210095353A1 (en) 2021-04-01
EP3992308B1 (en) 2023-07-26
BR112020019449A2 (pt) 2021-01-05

Similar Documents

Publication Publication Date Title
WO2013172035A1 (ja) 高炉への原料装入方法
JP6558518B1 (ja) 高炉の原料装入方法
CN111989411B (zh) 高炉的原料装入方法
CN108350513B (zh) 向高炉装入原料的方法
JP5338309B2 (ja) 高炉への原料装入方法
JP2010150646A (ja) 高炉への原料装入方法
US20240052439A1 (en) Method for charging raw materials into blast furnace
JP6558519B1 (ja) 高炉の原料装入方法
JP6102497B2 (ja) ベルレス高炉の原料装入方法
CN109072318B (zh) 向高炉装入原料的方法
JP6769507B2 (ja) 高炉の原料装入方法
JP6627718B2 (ja) 高炉への原料装入方法
JP5217650B2 (ja) 高炉への原料装入方法
JP5842738B2 (ja) 高炉操業方法
JP5338311B2 (ja) 高炉への原料装入方法
JPH0512403B2 (ja)
JP2001192714A (ja) 高炉への原料装入方法
JP2018070953A (ja) 高炉への原料装入方法
JP2008095206A (ja) 高炉への原料装入方法
JP2002348604A (ja) 高炉への原料装入方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019526011

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776828

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207027973

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020019449

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019776828

Country of ref document: EP

Effective date: 20200908

ENP Entry into the national phase

Ref document number: 112020019449

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200925