WO2019187899A1 - 光変調器 - Google Patents

光変調器 Download PDF

Info

Publication number
WO2019187899A1
WO2019187899A1 PCT/JP2019/007283 JP2019007283W WO2019187899A1 WO 2019187899 A1 WO2019187899 A1 WO 2019187899A1 JP 2019007283 W JP2019007283 W JP 2019007283W WO 2019187899 A1 WO2019187899 A1 WO 2019187899A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
substrate
fixing member
optical fiber
face
Prior art date
Application number
PCT/JP2019/007283
Other languages
English (en)
French (fr)
Inventor
孝知 伊藤
佳澄 石川
高野 真悟
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Priority to CN201980023046.6A priority Critical patent/CN111936903A/zh
Priority to EP19775403.9A priority patent/EP3779540B1/en
Priority to US17/042,732 priority patent/US11397342B2/en
Publication of WO2019187899A1 publication Critical patent/WO2019187899A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/46Fixing elements

Definitions

  • the present invention relates to an optical modulator.
  • This application claims priority based on Japanese Patent Application No. 2018-069370 filed in Japan on March 30, 2018, the contents of which are incorporated herein by reference.
  • optical modulation element in which an optical waveguide is formed on a substrate has been proposed.
  • Light input / output of the light modulation element is sometimes performed by bonding and fixing an optical fiber to the input / output end of the light modulation element using an optical adhesive.
  • optical modulator a configuration in which an optical fiber is fixed to an input / output end of an optical modulation element is referred to as an “optical modulator”.
  • An optical fiber is known to have a core part that propagates light and a clad part that is formed concentrically around the core part.
  • a configuration is known in which the core portion has a diameter of about 10 ⁇ m and the entire optical fiber including the cladding portion has a diameter of about 125 ⁇ m. The area of the end portion of such an optical fiber is smaller than the area of the end face of the light modulation element.
  • the bonding strength of the bonded and fixed portion (adhesive fixing portion) cannot be sufficiently secured, and the adhesive is fixed.
  • problems such as disconnection of the optical fiber are likely to occur.
  • a jig attached to the end of the optical fiber is used, and the optical fiber and jig are integrated to increase the bonding area to the light modulating element, and the light modulation is configured to adhere to the end of the light modulating element.
  • a container is known (see, for example, Patent Document 1).
  • such a jig is referred to as a “fixing member”.
  • the end face of the optical fiber and the end face of the optical waveguide are accurately aligned with sub-micron accuracy or less, and the connection position between the optical fiber and the optical waveguide is adjusted. It is required to suppress optical loss. Therefore, after fixing the end face of the light modulation element and the end face of the fixing member into which the optical fiber is inserted through an optical adhesive, the fixing in which the optical fiber is inserted in the in-plane direction of the end face of the light modulation element is usually performed. While moving the end face of the member, the end face of the optical fiber and the end face of the optical waveguide are aligned (optical coupling adjustment). Thereby, an optical fiber and an optical modulation element can be connected while suppressing optical loss.
  • the end face of the optical fiber and the end face of the light modulation element are usually mirror-finished to suppress loss due to irregular reflection of the optical signal. Therefore, when the end face of the optical fiber and the end face of the light modulation element are brought into contact with each other through the optical adhesive, the end faces are adsorbed by the ambient atmospheric pressure and are easily fixed. When such adsorption occurs, it is difficult to move the end face of the optical fiber in the in-plane direction of the end face of the light modulation element, and it is difficult to adjust the optical coupling between the optical fiber and the optical waveguide.
  • the present invention has been made in view of such circumstances, and provides an optical modulator capable of easily adjusting the optical coupling between an optical fiber and an optical waveguide and suppressing optical loss. With the goal.
  • a first aspect of the present invention includes a substrate having an electro-optic effect, an optical waveguide provided on the substrate, an optical fiber bonded to one end of the optical waveguide, and the light
  • a fixing member provided at an end portion of the fiber
  • an optical adhesive layer that bonds the optical fiber and the substrate; one end of the optical waveguide is disposed on an end surface of the substrate;
  • the agent layer bonds the optical fiber, the fixing member, and the substrate, optically bonds the end surface of the optical fiber and one end of the optical waveguide, and faces the end surface of the substrate.
  • the first aspect of the present invention preferably includes the following features. Two or more of the following features may be combined as long as there is no problem.
  • the surface roughness of the surface of the fixing member may be larger than the surface roughness of the end surface of the substrate facing the surface of the fixing member.
  • the difference between the surface roughness Ra 1 of the end face of the substrate facing the surface of the fixing member and the surface roughness Ra 2 of the surface of the fixing member is 0.2 ⁇ m or more. It is good also as a structure.
  • the surface roughness Ra 1 may be 0.2 ⁇ m or less
  • the surface roughness Ra 2 may be 0.4 ⁇ m or more and 3 ⁇ m or less.
  • the separation distance between the end face of the optical fiber and the end face of the substrate may be larger than the separation distance between the face of the fixing member and the end face of the substrate.
  • the fixing member may be a cylindrical member having a through hole through which the optical fiber can be inserted.
  • the present invention it is possible to easily adjust the optical coupling between the optical fiber and the optical waveguide, and it is possible to provide an optical modulator in which optical loss is suppressed.
  • FIG. 1 is a schematic perspective view of an optical modulator 1.
  • FIG. 2 is a schematic partially enlarged view of the optical modulator 1 in plan view.
  • FIG. It is a schematic explanatory drawing which shows the modification of a fixing member. It is a schematic explanatory drawing which shows the modification of a fixing member. It is a schematic explanatory drawing which shows the modification of a fixing member. It is a schematic explanatory drawing which shows the modification of a fixing member.
  • FIG. 1 is a schematic perspective view of the optical modulator 1.
  • the optical modulator 1 includes a substrate 10, an optical waveguide 20, auxiliary members 111 and 112, optical fibers 31 and 32, fixing members 41 and 42, and an optical adhesive layer 50. .
  • the thickness direction of the substrate 10 is the Z-axis direction
  • the longitudinal direction of the substrate 10 is the X-axis direction
  • the width direction of the substrate 10 is the Y-axis direction.
  • the field of view in which the optical modulator 1 of the present embodiment is “planarily viewed” means the field of view from the Z-axis direction.
  • the substrate 10 is a plate-like member having a rectangular shape in plan view using a material having an electro-optic effect as a forming material.
  • a material for forming the substrate 10 a crystalline material such as lithium niobate (LiNbO 3 : LN), lithium tantalate (LiTaO 3 ), lanthanum zirconate titanate (PLZT) can be preferably used.
  • a known technique such as thermal diffusion of a metal such as Ti with respect to a plate material using the crystal material as a forming material, rib formation by etching processing, proton exchange, or the like can be used. Can be formed.
  • an organic electro-optic polymer material in which an organic nonlinear optical compound is dispersed in a polymer material can be used as a material for forming the substrate 10.
  • a low refractive index layer is formed on the base material using two or more kinds of polymer materials having different refractive indexes, using silicon or quartz as a base material.
  • the high refractive index layer and the low refractive index layer are laminated in this order.
  • the optical waveguide is patterned by forming the high refractive index layer and the low refractive index layer by etching or imprinting.
  • the substrate 10 can be formed by using an organic electro-optic polymer material for at least part of the high refractive index layer and the low refractive index layer.
  • the optical waveguide 20 is formed on the substrate 10 in the longitudinal direction of the substrate 10.
  • the optical waveguide 20 included in the optical modulator 1 of the present embodiment is a single Mach-Zehnder optical waveguide.
  • One end 20 a of the optical waveguide 20 is disposed on one end surface 10 a of the substrate 10, and the other end 20 b of the optical waveguide 20 is disposed on the other end surface 10 b of the substrate 10.
  • the optical waveguide 20 has two parallel first waveguides 21 and second waveguides 22 extending in the longitudinal direction of the substrate 10.
  • the polarized light incident on the inside of the optical waveguide 20 from the one end 20a of the optical waveguide 20 branches and propagates to the first waveguide 21 and the second waveguide 22, respectively.
  • the optical modulator 1 preferably has a signal electrode and a ground electrode (not shown) in the vicinity of the first waveguide 21 and the second waveguide 22 in plan view.
  • the signal electrode and the ground electrode change the refractive index of the optical waveguide 20 by an electric field applied between the signal electrode and the ground electrode. As a result, the linearly polarized light propagating through the optical waveguide 20 can be modulated.
  • the type of signal electrode and ground electrode is not particularly limited.
  • a coplanar line is often employed in an electro-optic element using a crystal substrate such as LiNbO 3 as the substrate 10.
  • a microstrip line is often employed in an electro-optic element that uses a substrate made of an organic electro-optic polymer material as the substrate 10.
  • the auxiliary members 111 and 112 are plate-like members bonded to the surface of the substrate 10.
  • the auxiliary member 111 is provided on the one end surface 10a side in the longitudinal direction of the substrate 10 in a plan view and at a position overlapping the one end 20a of the optical waveguide 20.
  • the auxiliary member 112 is provided on the other end surface 10 b side in the longitudinal direction of the substrate 10 in a plan view and at a position overlapping the other end 20 b of the optical waveguide 20.
  • the one end surface 111a of the auxiliary member 111 is provided so as to be flush with the surface of the substrate 10 on the one end surface 10a side.
  • the other end surface 112a of the auxiliary member 112 is provided so as to be flush with the surface of the substrate 10 on the other end surface 10b side.
  • the same material as that of the substrate 10 can be used.
  • a silicon substrate, a glass substrate, a ceramic substrate, or the like can be used as a material for forming the auxiliary members 111 and 112 as a material for forming the auxiliary members 111 and 112 as a material for forming the auxiliary members 111 and 112.
  • the auxiliary member 111 and the auxiliary member 112 have a function of facilitating the connection between the optical fiber 31 and the optical fiber 32 and the substrate 10. That is, the one end surface 10 a of the substrate 10 can be expanded by the one end surface 111 a of the auxiliary member 111. Therefore, the whole joining end face of the below-mentioned fixing member 41 to which the optical fiber 31 is bonded can be joined to the expanded one end face 10a. Thereby, the adhesive strength of the optical fiber 31 and the one end surface 10a can be increased.
  • the other end surface 10 b of the substrate 10 can be expanded by the other end surface 112 a of the auxiliary member 112. Therefore, the whole joining end face of the below-described fixing member 42 to which the optical fiber 32 is bonded can be joined to the expanded other end face 10b. Thereby, the adhesive strength of the optical fiber 32 and the other end surface 10b can be increased.
  • the optical fiber 31 includes a core that propagates an optical signal and a clad provided concentrically outside the core.
  • the diameter of the optical fibers 31 and 32 is, for example, about 125 ⁇ m.
  • the core diameter of the optical fibers 31 and 32 is, for example, about 10 ⁇ m.
  • the optical fiber 31 is inserted into a cylindrical fixing member 41 and bonded to the one end surface 10 a of the substrate 10 together with the fixing member 41. At this time, the core of the optical fiber 31 is optically connected to the one end 20 a of the optical waveguide 20.
  • the material for forming the fixing member 41 can be arbitrarily selected, but glass or ceramics can be preferably used.
  • the optical fiber 32 is inserted into a cylindrical fixing member 42 and bonded to the other end surface 10 b of the substrate 10 together with the fixing member 42. At this time, the core of the optical fiber 32 is optically connected to the other end 20 b of the optical waveguide 20.
  • FIG. 2 is a partially enlarged view of the optical modulator 1 in a plan view, and is an explanatory view for explaining the peripheral structure of the fixing member 41.
  • the fixing member 41 is a cylindrical member provided at one end 311 of the optical fiber 31.
  • the end surface 41 a of the fixing member 41 faces the one end surface 10 a of the substrate 10 and is bonded to the one end surface 10 a of the substrate 10 through the optical adhesive layer 50.
  • the optical fiber 31 is inserted into the through hole 411 of the fixing member 41.
  • the optical adhesive layer 50 bonds the optical fiber 31, the fixing member 41, and the substrate 10, and optically couples the end face 31 a of the optical fiber 31 and the one end 20 a of the optical waveguide 20.
  • the optical adhesive layer 50 enters the inside of the through hole 411 and is in contact with the end face 31 a of the optical fiber 31.
  • optical fiber 31 and the fixing member 41 may be fixed to each other during optical coupling adjustment. Further, the optical fiber 31 and the fixing member 41 are not fixed to each other at the time of optical coupling adjustment, and when the fixing member 41 and the substrate 10 are bonded, the optical fiber 31 and the fixing member 41 are also fixed together. Also good.
  • optical adhesive constituting the optical adhesive layer 50
  • a generally known material can be used as the optical adhesive constituting the optical adhesive layer 50.
  • the surface roughness of the end surface 41 a of the fixing member 41 is different from the surface roughness of the one end surface 10 a of the substrate 10. Therefore, even if the end face 31a of the optical fiber 31 and the one end face 10a of the substrate 10 are brought into contact with each other via an optical adhesive, the end faces are hardly attracted by the surrounding atmospheric pressure, and the suction is easily suppressed. Therefore, the optical fiber 31 and the fixing member 41 can be easily moved in the in-plane direction of the one end face 10a of the substrate 10, and the optical coupling adjustment between the optical fiber 31 and the optical waveguide 20 is facilitated.
  • the surface roughness of the end surface 41a of the fixing member 41 is larger than the surface roughness of the one end surface 10a of the substrate 10 facing the end surface 41a of the fixing member 41.
  • the surface roughness of the one end face 10 a of the substrate 10 is also possible to make the surface roughness of the one end face 10 a of the substrate 10 larger than the surface roughness of the end face 41 a of the fixing member 41.
  • the surface roughness of the one end surface 10a of the substrate 10 is increased, the surface roughness of the one end 20a of the optical waveguide 20 is increased, which may scatter the optical signal.
  • the scattering of the optical signal at the one end 20a of the optical waveguide 20 as described above can be suppressed.
  • the fixing member 41 and the optical fiber 31 are separate members, they can be processed individually and adjusted to have different surface roughness. For example, when the surface roughness of the end surface 41 a of the fixing member 41 is made larger than the surface roughness of the end surface 31 a of the optical fiber 31, scattering of optical signals on the end surface 31 a of the optical fiber 31 can be suppressed.
  • the difference between the surface roughness Ra 1 of the one end face 10 a of the substrate 10 and the surface roughness Ra 2 of the end face 41 a of the fixing member 41 is preferably 0.2 ⁇ m or more. Further, the surface roughness Ra 1 of the one end face 10a is preferably 0.2 ⁇ m or less, and the surface roughness Ra 2 of the end face 41a is preferably 0.4 ⁇ m or more and 3 ⁇ m or less.
  • the surface roughness Ra 2 of the surface roughness Ra 1 and the end surface 41a of the one end surface 10a is in the above range, processing of each member is easy and it is easy to adjust the optical coupling.
  • surface roughness Ra 1 and “surface roughness Ra 2 ” employ the value of “arithmetic surface roughness Ra” measured by the method defined in JIS B 0601.
  • the end face 31a of the optical fiber 31 is preferably located in the middle of the through hole 411 as shown in FIG.
  • the end face 31 a of the optical fiber 31 is disposed at a position that is recessed from the end face 41 a of the fixing member 41 in the field of view from the one end 20 a side of the optical waveguide 20. That is, the separation distance between the end surface 31 a of the optical fiber 31 and the one end surface 10 a of the substrate 10 is larger than the separation distance between the end surface 41 a of the fixing member 41 and the one end surface 10 a of the substrate 10.
  • the end face 31a of the optical fiber 31 is hardly damaged when adjusting the optical coupling, and light scattering at the end face 31a of the optical fiber 31 can be suppressed.
  • the relationship between the surface roughness of the end surface 42a of the fixing member 42 and the surface roughness of the other end surface 10b of the substrate 10 is the relationship between the surface roughness of the end surface 41a of the fixing member 41 and the surface roughness of the one end surface 10a of the substrate 10 described above. It is preferable to control similarly.
  • the surface roughness of the end surface 42 a of the fixing member 42 is different from the surface roughness of the other end surface 10 b of the substrate 10, and the surface roughness of the end surface 42 a of the fixing member 42 is greater than the surface roughness of the other end surface 10 b of the substrate 10. Is also preferably large.
  • the difference between the surface roughness Ra 1 of the other end face 10 b of the substrate 10 and the surface roughness Ra 2 of the end face 42 a of the fixing member 42 is preferably 0.2 ⁇ m or more.
  • the surface roughness Ra 1 of the other end surface 10b is preferably 0.2 ⁇ m or less
  • the surface roughness Ra 2 of the end surface 42a is preferably 0.4 ⁇ m or more and 3 ⁇ m or less.
  • the optical fiber 32 and the fixing member 42 can be easily moved in the in-plane direction of the other end surface 10 b of the substrate 10, and the optical coupling between the optical fiber 32 and the optical waveguide 20 can be easily adjusted.
  • the surface roughness of the end surface 41a of the fixing member 41 and the surface roughness of the end surface 42a of the fixing member 42 may be the same or different. If the surface roughness of the end surface 41a of the fixing member 41 and the surface roughness of the end surface 42a of the fixing member 42 are the same, the same member can be used as the fixing member 41 and the fixing member 42, which is preferable.
  • the surface roughness of the one end surface 10a of the substrate 10 and the surface roughness of the other end surface 10b may be the same or different. If the surface roughness of the one end surface 10a is the same as the surface roughness of the other end surface 10b, the substrate 10 can be adjusted by applying the same processing to the one end surface 10a and the other end surface 10b of the substrate 10. Therefore, it is easy to manufacture and preferable.
  • the optical modulator 1 of the present embodiment has the above configuration.
  • the optical coupling between the optical fiber 31 and the optical waveguide 20 can be easily adjusted, and the optical modulator with suppressed light loss can be obtained.
  • the surface roughness Ra 2 of the end face 41a of the fixed member 41 has a greater than the surface roughness Ra 1 of one end face 10a of the substrate 10, the surface roughness Ra 2 is the surface roughness it may be smaller than ra 1.
  • cylindrical fixing members 41 and 42 are used, but the present invention is not limited to this.
  • the fixing member may be a block having a V groove, and the optical fiber 31 may be fixed to the V groove.
  • the optical fiber 31 and the fixing member can be easily moved in the in-plane direction of the end face of the substrate 10. Thereby, the optical coupling adjustment of the optical fiber 31 and the optical waveguide 20 becomes easy.
  • the number of optical waveguides and the number of optical fibers 31 at the end of the optical waveguide 20 are one, but a plurality of optical waveguides may be used.
  • the optical waveguide formed on the substrate 10 and the plurality of optical fibers 31 are fixed using a block such as a fiber array as a fixing member.
  • the fixing member that holds the plurality of optical fibers becomes large, and the end surface of the fixing member also increases.
  • the adsorption force between the end surface of the substrate 10 and the end surface of the fixing member increases, and adjustment of optical coupling tends to be difficult.
  • the surface roughness of the end surface 111a of the auxiliary member 111 may be smaller than the surface roughness of the end surface 41a of the fixing member 41.
  • the surface roughness of the one end surface 112a of the auxiliary member 112 may be smaller than the surface roughness of the end surface 42a of the fixing member 42.
  • the surface roughness of the one end surface 111 a of the auxiliary member 111 may be the same as the surface roughness of the one end surface 10 a of the substrate 10.
  • the surface roughness of the one end surface 112 a of the auxiliary member 112 may be the same as the surface roughness of the other end surface 10 b of the substrate 10.
  • the surface roughness at the one end surface of the auxiliary member and the surface roughness at the end surface of the substrate 10 are uniform, so the difference between the surface roughness of the fixing member is uniform and the optical fiber It is possible to easily adjust the optical coupling between the optical waveguide and the optical waveguide.
  • the separation distance between the end surface 31 a of the optical fiber 31 and the one end surface 10 a of the substrate 10 is larger than the separation distance between the end surface 41 a of the fixing member 41 and the one end surface 10 a of the substrate 10. It may be the same. In other words, the end surface 41a of the fixing member 41 and the one end surface 10a of the substrate 10 may be flush with each other.
  • an optical component such as a lens may be disposed between the end face 31 a of the optical fiber 31 and the one end face 10 a of the substrate 10.
  • the optical component is disposed at a position recessed from the end surface 41 a of the fixing member 41.
  • 3 to 5 are explanatory views showing modified examples of the fixing member.
  • the area of the end surface S1 of the fixing member 43 is smaller than the area of the end surface of a simple cylinder that does not have the groove 432.
  • the fixing member 44 shown in FIG. 4 is a cylindrical member having a through hole 441, and has a groove 442 that overlaps the through hole 441 and intersects with the X shape in a field of view in the direction of the central axis P of the through hole 441 on one end side. .
  • the area of the end surface S2 of the fixing member 44 is smaller than the area of the end surface of a simple cylinder that does not have the groove 442.
  • the fixing member 45 shown in FIG. 5 is a cylindrical member having a through hole 451, and an outer peripheral edge 452 on one end side is chamfered. Thereby, the area of the end surface S3 of the fixing member 45 is smaller than the area of the end surface of a simple cylinder that is not chamfered.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本発明は、光ファイバと光導波路との光結合調整を容易に行うことが可能であり、光損失が抑制された光変調器を提供することを目的とする。 本発明の光変調器(1)は、電気光学効果を有する基板(10)と、基板に設けられた光導波路(20)と、光導波路の一端に接着された光ファイバ(31)と、光ファイバの端部に設けられた固定部材(41)と、光ファイバと基板とを接着する光学接着剤層(50)と、を有し、光導波路(20)の一端は、基板(10)の端面に配置され、光学接着剤層(50)は、光ファイバ(31)、固定部材(41)および基板(10)を接着するとともに、光ファイバの端面(31a)と光導波路の一端(20a)とを光学的に結合し、基板の端面に面する固定部材の面(41a)の表面粗さは、固定部材の面に面する基板の端面(10a)の表面粗さと異なる。

Description

光変調器
 本発明は、光変調器に関する。
 本願は、2018年3月30日に、日本に出願された特願2018-069370号に基づき優先権を主張し、その内容をここに援用する。
 従来、基板上に光導波路が形成された光変調素子が提案されている。光変調素子の光入出力は、光変調素子における入出力端に光学接着剤を用いて光ファイバを接着し、固定して行うことがある。以下、本明細書においては、光変調素子における入出力端に光ファイバが固定された構成を「光変調器」と称する。
 光ファイバは、光を伝搬するコア部と、コア部を中心として同心円状に形成されるクラッド部とを有する構成が知られている。光ファイバにおいて、コア部の直径は10μm程度であり、クラッド部まで含んだ光ファイバ全体の直径は125μm程度である構成が知られている。このような光ファイバの端部の面積は、光変調素子の端面の面積に比べて小さい。
 このため、従来の光変調器は、光ファイバの端部が光変調素子の端面に接着固定された場合、接着固定された部分(接着固定部)の接着強度が十分に確保できず、接着固定部に負荷がかかると光ファイバが外れるなどの問題が生じやすかった。
 このような課題に対し、光ファイバの端部に取り付ける治具を用い、光ファイバと治具とを一体として光変調素子に対する接着面積を増やし、光変調素子の端部に接着した構成の光変調器が知られている(例えば、特許文献1参照)。このような光変調器では、光ファイバの接着強度を高めるとともに、接着固定部の光ファイバにかかる負荷を低減することができる。本明細書においては、このような治具を「固定部材」と称する。
特開2012-047865号公報
 光変調素子の端部に光ファイバを固定する際には、光ファイバの端面と光導波路の端面とをサブミクロン以下の精度で正確に位置合わせし、光ファイバと光導波路との接続位置での光損失を抑制することが求められる。そのため、通常は、光学接着剤を介して光変調素子の端面と光ファイバが挿入された固定部材の端面とを突き合わせた後、光変調素子の端面の面内方向に光ファイバが挿入された固定部材の端面を移動させながら、光ファイバの端面と光導波路の端面との位置合わせ(光結合調整)を行う。これにより、光損失を抑制しながら光ファイバと光変調素子とを接続することができる。
 一方、光ファイバの端面や光変調素子の端面は、光信号の乱反射による損失を抑制するため、通常は鏡面加工がされている。そのため、光学接着剤を介して光ファイバの端面と光変調素子の端面とを突き合わせると、周囲の大気圧により端面同士が吸着し、固定され易くなる。このような吸着が生じると、光変調素子の端面の面内方向に光ファイバの端面を移動させにくく、光ファイバと光導波路との光結合調整が困難となっていた。
 本発明はこのような事情に鑑みてなされたものであって、光ファイバと光導波路との光結合調整を容易に行うことが可能であり、光損失が抑制された光変調器を提供することを目的とする。
 上記の課題を解決するため、本発明の第一の態様は、電気光学効果を有する基板と、前記基板に設けられた光導波路と、前記光導波路の一端に接着された光ファイバと、前記光ファイバの端部に設けられた固定部材と、前記光ファイバと前記基板とを接着する光学接着剤層と、を有し、前記光導波路の一端は、前記基板の端面に配置され、前記光学接着剤層は、前記光ファイバ、前記固定部材および前記基板を接着するとともに、前記光ファイバの端面と前記光導波路の一端とを光学的に結合し、前記基板の端面に面する前記固定部材の面の表面粗さは、前記固定部材の面に面する前記基板の端面の表面粗さと異なる光変調器を提供する。
 本発明の第一の態様は以下の特徴を好ましく含む。下記の特徴は、問題のない限り、互いに2つ以上を組み合わせても良い。
 本発明の上記態様においては、前記固定部材の面の表面粗さは、前記固定部材の面に面する前記基板の端面の表面粗さよりも大きい構成としてもよい。
 本発明の上記態様においては、前記固定部材の面に面する前記基板の端面の表面粗さRaと、前記固定部材の面の表面粗さRaとの差は、0.2μm以上である構成としてもよい。
 本発明の上記態様においては、前記表面粗さRaは0.2μm以下であり、前記表面粗さRaは0.4μm以上3μm以下である構成としてもよい。
 本発明の上記態様においては、前記光ファイバの端面と前記基板の端面との離間距離は、前記固定部材の面と前記基板の端面との離間距離よりも大きい構成としてもよい。
 本発明の上記態様においては、前記固定部材は、前記光ファイバを挿通可能な貫通孔を有する筒状部材である構成としてもよい。
 本発明によれば、光ファイバと光導波路との光結合調整を容易に行うことが可能であり、光損失が抑制された光変調器を提供することができる。
光変調器1の概略斜視図である。 光変調器1の平面視における概略一部拡大図である。 固定部材の変形例を示す概略説明図である。 固定部材の変形例を示す概略説明図である。 固定部材の変形例を示す概略説明図である。
 以下、図1~図5を参照しながら、本実施形態に係る光変調器について説明する。なお、以下の全ての図面においては、図面を見やすくするため、各構成要素の寸法や比率などの全て又は一部は適宜異ならせてある。以下の説明は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。本発明を逸脱しない範囲で、数や位置や大きさや長さや数値などの変更や省略や追加をする事ができる。
 図1は、光変調器1の概略斜視図である。
 図1,2に示すように、光変調器1は、基板10、光導波路20、補助部材111,112、光ファイバ31,32、固定部材41,42、光学接着剤層50を有している。
 なお、以下の説明においてはXYZ座標系を設定し、このXYZ座標系を参照しつつ各部材の位置関係を説明する。この際、基板10の厚さ方向をZ軸方向、基板10の長手方向をX軸方向、基板10の幅方向をY軸方向とする。
 ここで、本実施形態の光変調器1を「平面視」する視野とは、Z軸方向からの視野を意味する。
 基板10は、電気光学効果を有する材料を形成材料とする平面視矩形の板状部材である。基板10の形成材料としては、ニオブ酸リチウム(LiNbO:LN)、タンタル酸リチウム(LiTaO)、ジルコン酸チタン酸ランタン(PLZT)などの結晶材料を好ましく用いることができる。
 基板10の形成材料として結晶材料を用いる場合、結晶材料を形成材料とする板材に対するTi等の金属の熱拡散、エッチング加工によるリブ形成、プロトン交換などの公知の技術を用いることで、光導波路を形成することができる。
 また、基板10の形成材料として、有機非線形光学化合物を高分子材料中に分散させた有機電気光学高分子材料も用いることができる。
 基板10の形成材料として有機電気光学高分子材料を用いる場合、まず、シリコンや石英などを基材とし、屈折率の異なる2種以上の高分子材料を用いて、基材上に低屈折率層、高屈折率層および低屈折率層の順に積層する。このとき、高屈折率層や低屈折率層に対し、エッチング加工やインプリントによる成形を施すことにより、光導波路をパターニングする。基板10は、有機電気光学高分子材料を高屈折率層と低屈折率層の少なくとも一部に用いることにより形成することができる。
 光導波路20は、基板10上において基板10の長手方向に形成されている。図1に示すように、本実施形態の光変調器1が有する光導波路20は、単一のマッハツェンダ型光導波路である。光導波路20の一端20aは、基板10の一端面10aに配置され、光導波路20の他端20bは、基板10の他端面10bに配置されている。
 光導波路20は、基板10の長手方向に延在する2本の平行な第1導波路21および第2導波路22を有している。光導波路20の一端20aから光導波路20の内部に入射した偏波は、第1導波路21および第2導波路22にそれぞれ分岐して伝播する。
 光変調器1は、平面視において、第1導波路21、第2導波路22の近傍に、不図示の信号電極と接地電極とを好ましく有している。信号電極および接地電極は、信号電極と接地電極との間に印加した電界により、光導波路20の屈折率を変化させる。これにより、光導波路20を伝播する直線偏光の変調を行うことができる。
 信号電極および接地電極の種類は特に限定されない。例えば、LiNbOなど結晶基板を基板10として用いる電気光学素子では、コプレーナ線路を採用することが多い。また、有機電気光学高分子材料を用いた基板を基板10として用いる電気光学素子では、マイクロストリップ線路を採用することが多い。
 補助部材111,112は、基板10の表面に接着された板状の部材である。
 補助部材111は、平面視において基板10の長手方向の一端面10a側であって、光導波路20の一端20aと重なる位置に設けられている。
 補助部材112は、平面視において基板10の長手方向の他端面10b側であって、光導波路20の他端20bと重なる位置に設けられている。
 補助部材111の一端面111aは、基板10の一端面10a側の面と同一平面となるように設けられている。
 一端面111aと一端面10a側の面とを同一平面に形成する方法として、補助部材を設けた後にダイサーなどによる精密切断によって端面形成を行う方法や、端面を研磨し、平坦化する方法などが挙げられる。
 補助部材112の他端面112aは、基板10の他端面10b側の面と同一平面となるように設けられている。
 補助部材111,112の形成材料としては、基板10と同じ材料を用いることができる。また、補助部材111,112の形成材料としては、シリコン基板、ガラス基板、セラミックス基板なども用いることができる。
 補助部材111および補助部材112は、光ファイバ31および光ファイバ32と基板10との接続を容易にする機能を有している。すなわち、補助部材111の一端面111aによって、基板10の一端面10aを拡張することができる。よって、光ファイバ31が接着された後述の固定部材41の接合端面全体を、拡張された一端面10aに接合することができる。これにより、光ファイバ31と一端面10aとの接着強度を増加することができる。
 同様に、補助部材112の他端面112aによって、基板10の他端面10bを拡張することができる。よって、光ファイバ32が接着された後述の固定部材42の接合端面全体を拡張された他端面10bに接合することができる。これにより、光ファイバ32と他端面10bとの接着強度を増加することができる。
 光ファイバ31は、光信号を伝搬するコアと、コアの外側に同心状に設けられたクラッドとを備える。
 光ファイバ31,32の直径は、例えば、125μm程度である。光ファイバ31,32のコアの直径は、例えば、10μm程度である。
 光ファイバ31は、筒状の固定部材41に挿入され、固定部材41とともに基板10の一端面10aに接着されている。このとき、光ファイバ31のコアは、光導波路20の一端20aと光学的に接続されている。固定部材41の形成材料としては任意に選択できるが、ガラスやセラミックスを好ましく用いることができる。
 同様に、光ファイバ32は、筒状の固定部材42に挿入され、固定部材42とともに基板10の他端面10bに接着されている。このとき、光ファイバ32のコアは、光導波路20の他端20bと光学的に接続されている。
 図2は、光変調器1の平面視における一部拡大図であり、固定部材41の周辺構造を説明する説明図である。
 固定部材41は、光ファイバ31の一端311に設けられた筒状部材である。固定部材41の端面41aは、基板10の一端面10aに面し、光学接着剤層50を介して基板10の一端面10aに接着されている。固定部材41が有する貫通孔411には、光ファイバ31が挿入されている。
 光学接着剤層50は、光ファイバ31、固定部材41および基板10を接着するとともに、光ファイバ31の端面31aと光導波路20の一端20aとを光学的に結合している。図では、光学接着剤層50が貫通孔411の内部に侵入し、光ファイバ31の端面31aに接触していることとしている。
 なお、光ファイバ31と固定部材41とは、光結合調整時に互いに固定されていてもよい。
 また、光ファイバ31と固定部材41は、光結合調整時には互いに固定されておらず、固定部材41と基板10とを接着する際に、あわせて光ファイバ31と固定部材41とも固定されることとしてもよい。
 光学接着剤層50を構成する光学接着剤は、通常知られた材料を用いることができる。
 本発明の光変調器1においては、固定部材41の端面41aの表面粗さは、基板10の一端面10aの表面粗さと異なっている。そのため、光学接着剤を介して光ファイバ31の端面31aと基板10の一端面10aとを突き合わせたとしても、周囲の大気圧による端面同士の吸着が生じ難く、吸着が抑制されやすい。そのため、基板10の一端面10aの面内方向に光ファイバ31および固定部材41を移動させやすく、光ファイバ31と光導波路20との光結合調整が容易となる。
 本実施形態においては、固定部材41の端面41aの表面粗さは、固定部材41の端面41aに面する基板10の一端面10aの表面粗さよりも大きい。
 また、基板10の一端面10aの表面粗さを固定部材41の端面41aの表面粗さよりも大きくすることも可能である。しかし、基板10の一端面10aの表面粗さを大きくすると、光導波路20の一端20aの表面粗さが大きくなり、光信号を散乱させるおそれがある。対して、本実施形態のように固定部材41の端面41aの表面粗さを大きくすることにより、上述のような光導波路20の一端20aにおける光信号の散乱を抑制することができる。
 また、固定部材41と光ファイバ31とは個別の部材であるため、個別に加工し、それぞれの表面粗さを異なるように調整することができる。例えば、光ファイバ31の端面31aの表面粗さよりも固定部材41の端面41aの表面粗さを大きくした場合、光ファイバ31の端面31aにおける光信号の散乱を抑制することができる。
 基板10の一端面10aの表面粗さRaと、固定部材41の端面41aの表面粗さRaとの差は、0.2μm以上であることが好ましい。
 また、一端面10aの表面粗さRaは0.2μm以下であり、端面41aの表面粗さRaは0.4μm以上3μm以下であることが好ましい。
 一端面10aの表面粗さRaおよび端面41aの表面粗さRaが上記範囲であると、各部材の加工が容易であり、光結合の調整が容易となる。
 なお、本実施形態において「表面粗さRa」「表面粗さRa」は、JIS B 0601に規定する方法で測定した「算術表面粗さRa」の値を採用する。
 光ファイバ31の端面31aは、図2に示すように、貫通孔411の途中に位置していることが好ましい。光ファイバ31の端面31aは、光導波路20の一端20a側からの視野において、固定部材41の端面41aよりも窪んだ位置に配置している。すなわち、光ファイバ31の端面31aと基板10の一端面10aとの離間距離は、固定部材41の端面41aと基板10の一端面10aとの離間距離よりも大きい。
 このような構成を採用する光変調器1においては、光結合の調整の際に光ファイバ31の端面31aが傷付きにくく、光ファイバ31の端面31aでの光散乱を抑制することができる。
 固定部材42の端面42aの表面粗さと基板10の他端面10bの表面粗さとの関係は、上述した固定部材41の端面41aの表面粗さと、基板10の一端面10aの表面粗さとの関係と同様に制御すると好ましい。
 すなわち、固定部材42の端面42aの表面粗さは、基板10の他端面10bの表面粗さと異なっており、固定部材42の端面42aの表面粗さは、基板10の他端面10bの表面粗さよりも大きいことが好ましい。
 基板10の他端面10bの表面粗さRaと、固定部材42の端面42aの表面粗さRaとの差は、0.2μm以上であることが好ましい。
 また、他端面10bの表面粗さRaは0.2μm以下であり、端面42aの表面粗さRaは0.4μm以上3μm以下であることが好ましい。
 このような構成とすることで、基板10の他端面10bの面内方向に光ファイバ32および固定部材42を移動させやすく、光ファイバ32と光導波路20との光結合調整が容易となる。
 固定部材41の端面41aの表面粗さと、固定部材42の端面42aの表面粗さとは、同じであっても異なっていてもよい。固定部材41の端面41aの表面粗さと、固定部材42の端面42aの表面粗さとが同じであると、固定部材41および固定部材42として同じ部材を使用可能となり好ましい。
 基板10の一端面10aの表面粗さと、他端面10bの表面粗さとは、同じであっても異なっていてもよい。一端面10aの表面粗さと、他端面10bの表面粗さとが同じであると、基板10の一端面10aと、他端面10bとに同じ加工を施すことで基板10を調整することが可能となるため、製造が容易となり好ましい。
 本実施形態の光変調器1は、以上のような構成となっている。
 以上のような構成の光変調器1によれば、光ファイバ31と光導波路20との光結合調整を容易に行うことが可能であり、光損失が抑制された光変調器となる。
 なお、本実施形態においては、固定部材41の端面41aの表面粗さRaが基板10の一端面10aの表面粗さRaよりも大きいこととしたが、表面粗さRaが表面粗さRaよりも小さいこととしてもよい。
 また、本実施形態においては、筒状の固定部材41,42を用いることとしたが、これに限らない。
 例えば固定部材はV溝を有するブロックとして、当該V溝に光ファイバ31を固定する構成としてもよい。
 この場合、ブロックの端面の表面粗さが、基板10の端面の表面粗さと異なる構成とすることで、基板10の端面の面内方向に光ファイバ31および固定部材を移動させやすくなる。これにより、光ファイバ31と光導波路20との光結合調整が容易となる。
 また、本実施形態においては、光導波路20端部における光導波路の数および光ファイバ31の数はそれぞれ1つとしたが、それぞれ複数でもよい。
 基板10に形成された光導波路と、複数の光ファイバ31とは、ファイバーアレイ等のブロックを固定部材として用いて固定される構成が知られている。このように、光ファイバ31が複数になると、複数の光ファイバを保持する固定部材が大型化し、固定部材の端面も大きくなる。その結果、基板10の端面と固定部材の端面との間の吸着力が大きくなり、光結合の調整が困難になる傾向にある。
 このような構成に対し、本発明を適応し、固定部材の端面の表面粗さを基板の端面の表面粗さと異なる構成とすると、複数の光ファイバ31と複数の光導波路の端面との光結合調整を容易に行うことが可能となる。
 以上、添付図面を参照しながら本発明に係る好適な実施の形態例について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
 例えば、補助部材111の一端面111aの表面粗さを、固定部材41の端面41aの表面粗さよりも小さくしてもよい。このような構成にすることで、補助部材111と固定部材41との吸着を抑制することができ、光ファイバと光導波路との光結合調整を容易に行うことが可能となる。
 同様に、補助部材112の一端面112aの表面粗さを、固定部材42の端面42aの表面粗さよりも小さくしてもよい。このような構成にすることで、補助部材112と固定部材42との吸着をより抑制することができ、光ファイバと光導波路との光結合調整を容易に行うことが可能となる。
 また、補助部材111の一端面111aの表面粗さは、基板10の一端面10aの表面粗さと同じであってもよい。同様に、補助部材112の一端面112aの表面粗さは、基板10の他端面10bの表面粗さと同じであってもよい。
 このような構成にすることで、補助部材の一端面における表面粗さと、基板10の端面における表面粗さとが一様になるため、固定部材の表面粗さとの差も一様になり、光ファイバと光導波路との光結合調整を容易に行うことが可能となる。
 また、図2では光ファイバ31の端面31aと基板10の一端面10aとの離間距離は、固定部材41の端面41aと基板10の一端面10aとの離間距離よりも大きいが、当該離間距離が同じでもよい。言い換えると固定部材41の端面41aと基板10の一端面10aとが同一平面となるようにしてもよい。
 また、図2の構成において、光ファイバ31の端面31aと基板10の一端面10aとの間にレンズなどの光学部品を配置してもよい。この場合、当該光学部品は、固定部材41の端面41aより窪んだ位置に配置される。
 図3~5は、固定部材の変形例を示す説明図である。
 図3に示す固定部材43は、貫通孔431を有する筒状部材であり、一端側に貫通孔431の中心軸Pの方向の視野において貫通孔431に重なる溝432を有する。これにより、固定部材43の端面S1の面積は、溝432を有さない単純な円筒の端面の面積と比べて小さくなっている。
 図4に示す固定部材44は、貫通孔441を有する筒状部材であり、一端側に貫通孔441の中心軸Pの方向の視野において貫通孔441に重なりX字状に交差する溝442を有する。これにより、固定部材44の端面S2の面積は、溝442を有さない単純な円筒の端面の面積と比べて小さくなっている。
 図5に示す固定部材45は、貫通孔451を有する筒状部材であり、一端側の外周縁452が面取りされている。これにより、固定部材45の端面S3の面積は、面取りされていない単純な円筒の端面の面積と比べて小さくなっている。
 これら固定部材43~45においては、光学接着剤を介して基板の端面と突き合わせた際に、基板の端面に吸着したとしても、単純な円筒状の固定部材と比べて吸着の強度が小さくなる。そのため、固定部材43~45を用いて光ファイバを固定すると、基板の端面の面内方向に光ファイバの端面を移動させやすく、光ファイバと光導波路との光結合調整が容易となる。 
 光ファイバと光導波路との光結合調整を容易に行うことが可能であり、光損失が抑制された光変調器を提供することができる。
 1…光変調器
 10…基板
 10a…一端面
 10b…他端面
 20…光導波路
 20a,311…一端
 20b…他端
 21…第1導波路
 22…第2導波路
 31,32…光ファイバ
 41…固定部材
 31a,41a,S1,S2,S3…端面
 41,42,43,44,45…固定部材
 42a…固定部材の端面
 50…光学接着剤層
 111、112…補助部材
 111a、112a…補助部材の一端面
 411,431,441,451…貫通孔
 432、442…溝
 452…外周縁
 S1、S2、S3…固定部材の端面
 P…貫通孔の中心軸

Claims (6)

  1.  電気光学効果を有する基板と、
     前記基板に設けられた光導波路と、
     前記光導波路の一端に接着された光ファイバと、
     前記光ファイバの端部に設けられた固定部材と、
     前記光ファイバと前記基板とを接着する光学接着剤層と、を有し、
     前記光導波路の一端は、前記基板の端面に配置され、
     前記光学接着剤層は、前記光ファイバ、前記固定部材および前記基板を接着するとともに、前記光ファイバの端面と前記光導波路の一端とを光学的に結合し、
     前記基板の端面に面する前記固定部材の面の表面粗さは、前記固定部材の面に面する前記基板の端面の表面粗さと異なる光変調器。
  2.  前記固定部材の面の表面粗さは、前記固定部材の面に面する前記基板の端面の表面粗さよりも大きい請求項1に記載の光変調器。
  3.  前記固定部材の面に面する前記基板の端面の表面粗さRaと、前記固定部材の面の表面粗さRaとの差は、0.2μm以上である請求項1または2に記載の光変調器。
  4.  前記表面粗さRaは0.2μm以下であり、
     前記表面粗さRaは0.4μm以上3μm以下である請求項3に記載の光変調器。
  5.  前記光ファイバの端面と前記基板の端面との離間距離は、前記固定部材の面と前記基板の端面との離間距離よりも大きい請求項1から4のいずれか1項に記載の光変調器。
  6.  前記固定部材は、前記光ファイバを挿通可能な貫通孔を有する筒状部材である請求項1から5のいずれか1項に記載の光変調器。
PCT/JP2019/007283 2018-03-30 2019-02-26 光変調器 WO2019187899A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980023046.6A CN111936903A (zh) 2018-03-30 2019-02-26 光调制器
EP19775403.9A EP3779540B1 (en) 2018-03-30 2019-02-26 Optical modulator
US17/042,732 US11397342B2 (en) 2018-03-30 2019-02-26 Optical modulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-069370 2018-03-30
JP2018069370A JP7059758B2 (ja) 2018-03-30 2018-03-30 光変調器

Publications (1)

Publication Number Publication Date
WO2019187899A1 true WO2019187899A1 (ja) 2019-10-03

Family

ID=68061242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007283 WO2019187899A1 (ja) 2018-03-30 2019-02-26 光変調器

Country Status (5)

Country Link
US (1) US11397342B2 (ja)
EP (1) EP3779540B1 (ja)
JP (1) JP7059758B2 (ja)
CN (1) CN111936903A (ja)
WO (1) WO2019187899A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7059758B2 (ja) * 2018-03-30 2022-04-26 住友大阪セメント株式会社 光変調器
JP7371556B2 (ja) * 2020-03-31 2023-10-31 住友大阪セメント株式会社 光導波路素子
JP2022155191A (ja) * 2021-03-30 2022-10-13 住友大阪セメント株式会社 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719711U (ja) * 1993-09-10 1995-04-07 日本碍子株式会社 光導波路と光ファイバとの結合構造
JPH08146242A (ja) * 1994-11-24 1996-06-07 Hoya Corp 保持部材、光学装置およびアライメント方法
JPH1020146A (ja) * 1996-07-03 1998-01-23 Takaoka Electric Mfg Co Ltd 光導波路と光ファイバの結合構造および結合方法
JP2006178388A (ja) * 2004-11-29 2006-07-06 Konica Minolta Holdings Inc 光学素子固定方法及び光学素子固定構造
JP2006301597A (ja) * 2005-03-22 2006-11-02 Fuji Photo Film Co Ltd レーザー装置およびその組立方法
JP2012047865A (ja) 2010-08-25 2012-03-08 Anritsu Corp 光導波路構造体
US20150117812A1 (en) * 2011-12-27 2015-04-30 Colorchip (Israel) Ltd. Planar lightwave circuit and a method for its manufacture
JP2018069370A (ja) 2016-10-28 2018-05-10 ファナック株式会社 搬送用ロボット

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6480633B1 (en) * 1999-06-17 2002-11-12 Agere Systems Inc. Electro-optic device including a buffer layer of transparent conductive material
DE60132056T2 (de) * 2000-03-15 2008-12-18 Sumitomo Osaka Cement Co., Ltd. Optischer wellenleitermodulator mit ausgangslichtmonitor
US20040028334A1 (en) * 2002-05-06 2004-02-12 Marco Marazzi Active optical devices and methods of controlling them
JP2005157088A (ja) 2003-11-27 2005-06-16 Mitsumi Electric Co Ltd 光導波路モジュール
JP2006178382A (ja) * 2004-11-29 2006-07-06 Konica Minolta Holdings Inc 光学素子、光学素子保持構造、光学素子鏡筒及び光通信モジュール
JP4868763B2 (ja) * 2005-03-31 2012-02-01 住友大阪セメント株式会社 光変調器
JP5723335B2 (ja) * 2012-09-04 2015-05-27 日本電信電話株式会社 光ファイバ接続部材
JP7059758B2 (ja) * 2018-03-30 2022-04-26 住友大阪セメント株式会社 光変調器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719711U (ja) * 1993-09-10 1995-04-07 日本碍子株式会社 光導波路と光ファイバとの結合構造
JPH08146242A (ja) * 1994-11-24 1996-06-07 Hoya Corp 保持部材、光学装置およびアライメント方法
JPH1020146A (ja) * 1996-07-03 1998-01-23 Takaoka Electric Mfg Co Ltd 光導波路と光ファイバの結合構造および結合方法
JP2006178388A (ja) * 2004-11-29 2006-07-06 Konica Minolta Holdings Inc 光学素子固定方法及び光学素子固定構造
JP2006301597A (ja) * 2005-03-22 2006-11-02 Fuji Photo Film Co Ltd レーザー装置およびその組立方法
JP2012047865A (ja) 2010-08-25 2012-03-08 Anritsu Corp 光導波路構造体
US20150117812A1 (en) * 2011-12-27 2015-04-30 Colorchip (Israel) Ltd. Planar lightwave circuit and a method for its manufacture
JP2018069370A (ja) 2016-10-28 2018-05-10 ファナック株式会社 搬送用ロボット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3779540A4

Also Published As

Publication number Publication date
EP3779540A1 (en) 2021-02-17
JP2019179193A (ja) 2019-10-17
EP3779540A4 (en) 2021-12-15
US20210018771A1 (en) 2021-01-21
JP7059758B2 (ja) 2022-04-26
CN111936903A (zh) 2020-11-13
US11397342B2 (en) 2022-07-26
EP3779540B1 (en) 2024-05-29

Similar Documents

Publication Publication Date Title
JP4874685B2 (ja) 光変調器
JP5454547B2 (ja) 光変調器
JP7380389B2 (ja) 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置
WO2019187899A1 (ja) 光変調器
JP7371556B2 (ja) 光導波路素子
US7778497B2 (en) Optical modulators
WO2014157456A1 (ja) 光変調器
JP4868763B2 (ja) 光変調器
US10598862B2 (en) Optical modulator
JP4691428B2 (ja) 光変調器
JP4453894B2 (ja) 光導波路デバイスおよび進行波形光変調器
JP4544474B2 (ja) 光変調器
JP7452190B2 (ja) 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置
US20070081755A1 (en) Optical modulator
WO2023188311A1 (ja) 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置
WO2022210852A1 (ja) 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置
WO2023188175A1 (ja) 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置
US20240255783A1 (en) Optical Waveguide Device, and Optical Modulation Device and Optical Transmission Apparatus Using Same
WO2023162259A1 (ja) 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置
WO2022181021A1 (ja) 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置
WO2023145090A1 (ja) 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置
JPH10239637A (ja) 光アイソレータ及びそれを用いた光モジュール
JP2006276519A (ja) 導波路型光デバイス
JP2010237592A (ja) 光素子と光ファイバとの接合構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775403

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2019775403

Country of ref document: EP