WO2022210852A1 - 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置 - Google Patents

光導波路素子及びそれを用いた光変調デバイス並びに光送信装置 Download PDF

Info

Publication number
WO2022210852A1
WO2022210852A1 PCT/JP2022/015879 JP2022015879W WO2022210852A1 WO 2022210852 A1 WO2022210852 A1 WO 2022210852A1 JP 2022015879 W JP2022015879 W JP 2022015879W WO 2022210852 A1 WO2022210852 A1 WO 2022210852A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
optical
waveguide element
substrate
rough
Prior art date
Application number
PCT/JP2022/015879
Other languages
English (en)
French (fr)
Inventor
淳司 新井
祐美 村田
有紀 釘本
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Priority to CN202280015272.1A priority Critical patent/CN116868113A/zh
Priority to US18/283,764 priority patent/US20240176071A1/en
Publication of WO2022210852A1 publication Critical patent/WO2022210852A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12142Modulator

Definitions

  • the present invention relates to an optical waveguide element and an optical modulation device and an optical transmission apparatus using the same, and more particularly, to an optical waveguide member including a substrate on which an optical waveguide is formed, and an optical waveguide member in which an input portion or an output portion of the optical waveguide is arranged.
  • the present invention relates to an optical waveguide element having an optical component that is fixed to an end face of an optical waveguide member and that transmits input light to the input section or transmits output light from the output section.
  • a light modulation element (LN chip) is formed by forming a control electrode for controlling a light wave propagating through the optical waveguide in an optical waveguide element using a substrate having an electro-optic effect such as lithium niobate (LN). .
  • the LN chip is mounted in a housing made of metal or the like, and an optical lens is adhesively fixed to the end face of the optical waveguide element in order to input or output a light wave to or from the optical waveguide of the optical waveguide element.
  • an optical lens By using an optical lens, it is possible to provide an optical modulator with good coupling efficiency between input light or output light and an optical waveguide. Even if the mounting positions of the LN chip and the housing are misaligned, a configuration with low insertion loss can be realized by adjusting the position and angle of the lens.
  • FIG. 1 an optical block (optical component) 3 in which optical lenses (31, 32) are formed (or held) is attached to one side surface of the optical waveguide element.
  • FIG. 2A is a side view (lower side in FIG. 1) showing how the optical waveguide element (substrate 1) and the optical block 3 are attached.
  • the reinforcing block 10 is adhesively fixed with an adhesive (not shown).
  • An optical block 3 is adhered and fixed with an adhesive A to the end surfaces of the substrate 1 and the reinforcing block 10 .
  • the substrate 1 is composed of a thin plate with a thickness of 30 ⁇ m or less or a thin film with a thickness of 1 ⁇ m or less, as shown in FIG. It is also possible to increase the mechanical strength.
  • a substrate having an optical waveguide formed thereon alone, or a structure obtained by adding at least one of a holding substrate and a reinforcing block to the substrate will be referred to as an "optical waveguide member".
  • the optical block is not limited to the optical lens as described above, and may be a component that integrally forms or holds other optical components such as a reflective member or a polarizer used for polarized wave synthesis or the like, or a reflective component. There are spacers for fixing members and those parts. Further, the optical components to be adhesively fixed to the substrate 1 and the reinforcing block 10 are not limited to the optical block, and a sleeve (cylindrical) holding member or an optical fiber fixed to the V-groove substrate is directly attached to the end face of the substrate 1. Such configurations are also included.
  • the portion of the optical waveguide member to be joined is the portion of the optical waveguide member to be joined.
  • the end faces and the end faces of the optical components are mirror-finished.
  • the surface area becomes smaller than when the joint surface is a rough surface, and the anchor effect cannot be obtained. It causes the strength to decrease.
  • a ferroelectric material such as LN is used for the substrate constituting the optical waveguide device, and a material such as LN is used for the reinforcing block in order to match the linear expansion coefficient with that of the substrate 1 .
  • materials for optical components glass (organic glass, optical glass, etc.) and plastic are used. Therefore, the coefficient of thermal expansion (coefficient of linear expansion) of the LN substrate, holding substrate, reinforcing block, and optical block (optical component) constituting the optical waveguide member may differ by 5 ⁇ 10 ⁇ 6 /° C. or more. .
  • the same material for the reinforcing block and the holding substrate 11 as long as there is no adverse effect on the optical waveguide of the substrate 1, not only the coefficient of linear expansion but also the Vickers hardness can be matched. can.
  • the chip width is about 0.5 to 3 mm, and the total thickness of the reinforcing block and the substrate of the optical waveguide element is about 1 to 2 mm.
  • the chip width is about 0.5 to 3 mm, and the total thickness of the reinforcing block and the substrate of the optical waveguide element is about 1 to 2 mm.
  • Patent Document 2 As a method of solving such a problem, the applicant proposed a method of reducing the area of the joint portion as shown in Patent Document 2.
  • an optical waveguide element, an optical modulation device using the same, and an optical transmitter according to the present invention have the following technical features.
  • an optical waveguide member including a substrate on which an optical waveguide is formed, and fixed to an end face of the optical waveguide member on which an input portion or an output portion of the optical waveguide is arranged, and transmits input light to the input portion, or
  • an optical waveguide element comprising an optical component that transmits light output from the output section
  • the input section or the output section is included in a portion that is at least a part of the optical waveguide member and to which the optical component is fixed. It is characterized by providing a rougher portion than the roughness of the end face of the optical waveguide member.
  • a notch is provided in a part of the optical waveguide member, and the rough part is provided in at least a part of the surface forming the notch.
  • the depth of the notch is set in the range of 5 ⁇ m or more and 300 ⁇ m or less from the end face including the input portion or the output portion.
  • the coefficient of thermal expansion of the optical component in the direction parallel to the end face of the optical waveguide member is It is characterized by being different from at least part of the constituent members.
  • the distance between either the input portion or the output portion and the position where the rough portion is formed is 5 ⁇ m or more, It is characterized by being set to a range of 300 ⁇ m or less.
  • At least a portion of the portion where the curved surface is formed in the region where the rough portion is formed is another rough surface. It is characterized by less roughness than the part.
  • the optical waveguide element according to any one of (1) to (10) above comprises an electrode for modulating a light wave propagating through the optical waveguide, the optical waveguide element is housed in a housing, and the optical waveguide is An optical modulation device characterized by comprising an optical fiber for inputting or outputting a light wave to or from the optical fiber.
  • the optical modulation device according to (11) above is characterized by having an electronic circuit inside the housing for amplifying the modulated signal input to the optical waveguide element.
  • An optical transmitter comprising the optical modulation device according to (11) or (12) above, and an electronic circuit for outputting a modulation signal for causing the optical modulation device to perform a modulation operation.
  • the present invention includes an optical waveguide member including a substrate on which an optical waveguide is formed, and an optical waveguide member fixed to an end surface of the optical waveguide member on which an input portion or an output portion of the optical waveguide is arranged, and transmits input light to the input portion, Or, in an optical waveguide device comprising an optical component that transmits the output light from the output section, the input section or the output section is included in a portion that is at least a part of the optical waveguide member and to which the optical component is fixed. Since a rougher portion is provided than the roughness of the end surface of the optical waveguide member, the roughened portion increases the bonding strength with the optical component side, and it is possible to prevent the optical component from falling off. Moreover, on the joint surface, since the rough portions other than the optical waveguide portion which needs to be mirror-finished in terms of performance can be used as they are, it is also possible to simplify the manufacturing process for polishing the joint surface.
  • FIG. 1 is a plan view showing an example of a conventional optical waveguide device
  • FIG. FIG. 2 is a side view of the optical waveguide device of FIG. 1
  • (a) shows the case where the substrate 1 is thick
  • (b) shows the case where the holding substrate 11 is bonded to the thin plate (thin film) 1 .
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a side view explaining the 1st Example which concerns on the optical waveguide element of this invention.
  • (a) shows the case where the adhesive is applied to the rough portion B1, and
  • (b) shows the case where the adhesive is applied to more rough portions (B1, B2) than in the case of (a).
  • 4A and 4B are diagrams for explaining a part of a process for manufacturing the optical waveguide element of FIG.
  • FIG. 5 is a side view for explaining a second embodiment of the optical waveguide device of the present invention; (a) shows the case where the optical component is arranged parallel to the surface of the rough portion B3, and (b) shows the case where the optical component is arranged tilted with respect to the surface of the rough portion B3.
  • 6A and 6B are diagrams for explaining a part of a process for manufacturing the optical waveguide device of FIG. 5;
  • FIG. 10 is a side view for explaining a third embodiment of the optical waveguide device of the present invention;
  • FIG. 11 is a side view for explaining a fourth embodiment of the optical waveguide device of the present invention; It is a figure explaining the example which uses a spot size conversion part with the optical waveguide element of this invention. It is a figure explaining the formation area of the "rough part" based on the optical waveguide element of this invention.
  • 1 is a plan view for explaining an optical modulation device and an optical transmitter according to the present invention;
  • FIG. 1 is a plan view for explaining an optical modul
  • the optical waveguide element of the present invention comprises an optical waveguide member including a substrate 1 on which an optical waveguide is formed, and an end surface of the optical waveguide member on which an input portion or an output portion of the optical waveguide is arranged. (B0), and is at least part of the optical waveguide member, and includes an optical component 3 that transmits input light to the input section or transmits output light from the output section; A portion where the optical component 3 is fixed is provided with portions (B1 to B6) rougher than the end face (B0) of the optical waveguide member including the input portion or the output portion.
  • a substrate 1 is combined with a holding substrate 11 and a reinforcing block 10 as an optical waveguide member will be mainly described.
  • Materials for the substrate 1 used in the optical waveguide device of the present invention include ferroelectric materials having an electro-optical effect, specifically lithium niobate (LN), lithium tantalate (LT), PLZT (zirconate Substrates such as lead lanthanum titanate) and vapor deposition films made of these materials can be used.
  • Various materials such as semiconductor materials and organic materials can also be used as substrates for optical waveguide devices.
  • the thickness of the substrate 1 on which the optical waveguide is formed is sometimes set to 10 ⁇ m or less, more preferably 5 ⁇ m or less, in order to enhance the confinement of light waves propagating in the optical waveguide and improve the modulation efficiency.
  • the holding substrate 11 having a thickness of 0.2 to 1 mm is directly bonded or pasted with an adhesive.
  • LN, quartz, Si, molten glass, alumina, or the like can be used as the material of the holding substrate.
  • the "substrate on which an optical waveguide is formed” does not mean only one substrate, but a vapor-phase growth film is formed on a holding substrate, and the film (thin film) is It also includes the case of processing into an optical waveguide.
  • an optical waveguide on the substrate 1 As a method of forming an optical waveguide on the substrate 1, it is possible to use a method of thermally diffusing a high refractive index material such as Ti into the substrate, or a method of forming a high refractive index portion by a proton exchange method. It is also possible to form a rib-type optical waveguide in which the portion of the substrate corresponding to the optical waveguide is convex by etching the substrate portion other than the optical waveguide or by forming grooves on both sides of the optical waveguide. is. Furthermore, it is also possible to use a rib type optical waveguide and an optical waveguide such as a thermal diffusion method together.
  • a spot size conversion unit that changes the MFD at the input or output part of the optical waveguide can be provided as part of the optical waveguide.
  • the "rough portion" of the present invention is formed at a location that does not affect light waves propagating through the SSC.
  • a reinforcing block 10 is arranged and fixed on the upper part of the end surface of the substrate 1 where the light wave input part and the light wave output part are formed.
  • a material having a Vickers hardness similar to that of the reinforcing substrate 11 is used for the reinforcing block 10 in order to improve the surface precision when cutting the substrate.
  • the optical waveguide of the substrate 1 is not adversely affected, if the same material as the holding substrate 11 is used, not only the Vickers hardness but also the linear expansion coefficient can be matched.
  • the end face of the reinforcing block 10 (the face on the same side as the end face of the substrate 1) is used as a joint surface for bonding optical components such as an optical block, if necessary.
  • Optical parts include optical blocks that hold optical lenses, reflecting members, polarizers, etc., and sleeve (cylindrical) holding members or V-groove substrates that hold near the ends of optical fibers. Glass materials such as organic glass and optical glass, and plastic materials are used as materials for optical components.
  • the LN substrate has a thermal expansion coefficient (linear expansion coefficient) of 4.0 ⁇ 10 ⁇ 6 /° C. in the Z-axis direction, and 14.0 ⁇ 10 ⁇ 6 /° C. in the X-axis (Y-axis) direction. be. If the optical parts are made of an optical glass material such as BK-7, the coefficient of linear expansion is 7.1 ⁇ 10 ⁇ 6 /°C.
  • the difference between the linear expansion coefficients of the two is 5.0 ⁇ 10 -6 / ° C. or more. becomes conspicuous. As a result, the positional displacement of the optical components and the peeling or falling off of the optical components occur due to temperature changes in the substrate, the environment, or the like.
  • a material having a coefficient of linear expansion close to that of the substrate used for the optical waveguide element is selected.
  • Stainless steel is often used in the case of LN substrates, and the coefficient of linear expansion of stainless steel is 17.3 ⁇ 10 ⁇ 6 /° C. Since the difference between the coefficient of linear expansion of stainless steel and the optical component is large, the optical component is It is not joined to the housing, but is held exclusively by joining to the substrate 1 and the reinforcing block 10 .
  • a material with a low coefficient of linear expansion such as Kovar may be used for the housing.
  • the feature of the optical waveguide element of the present invention is that the "rougher portion" than the surface roughness of the end face B0 where the light wave input portion or output portion is formed is defined by the substrate 1 and the substrate 1.
  • a holding substrate 11 if there is a holding substrate, or at least a part of an optical waveguide member such as a reinforcing block 10 arranged on the substrate 1, which faces the optical component 3 (shaded portion D in FIG. 10).
  • the "rough portion” shown in each drawing is emphasized rather than the actual unevenness of the roughness.
  • 3, 7 and 8 show a state in which the "rough portion" enters the substrate 1 side of the end face B0 on which the input portion or the output portion is formed, but in FIG.
  • the depth of the notch (distance from end face B0 to B2 in FIG. 3, distance from end face B0 to B5 in FIG. 7) may be set in the range of 5 ⁇ m or more and 300 ⁇ m or less. As the depth of the cut increases, the anchoring effect of the adhesive A can be enhanced.
  • a notch is provided in a part of the holding substrate 11, and "rough portions" (B1, B2) are formed on at least part of the surface forming the notch. Then, the adhesive for bonding the optical component 3 is placed only on the rough portion B1 in FIG. 3(a) and on both the rough portions B1 and B2 in FIG. It makes up for the shortage and enables the optical component 3 to be firmly fixed to the substrate 1 side.
  • curved surfaces are provided between rough portions (B1 and B2, B4 and B5, B5 and B6).
  • the concentration of stress on the corners formed by the “rough portions” (B1, B2) is dispersed, so that the occurrence of cracks or the like in the holding substrate 11 can be suppressed.
  • the distance between the curved surface and the substrate 1 is 300 ⁇ m or less, the influence of cracks or the like on the optical waveguide of the substrate 1 can be reduced, which is more preferable.
  • the effect of the present invention can be obtained even if the corner formed by the "rough portion" is not provided with a curved surface, although the risk of cracking or the like increases.
  • the roughness of the curved surface may be finished smoother than the other rough portions (B1 to B6).
  • the shape of the "notch" is not limited to those shown in FIGS. 3 and 7.
  • the corners of the holding substrate 11 can be chamfered.
  • the chamfered portion may be a corner portion of the substrate 1 or the reinforcing block 10 .
  • FIG. 4 shows an example of a method of forming an end face including a "rough portion” as shown in FIG.
  • An example using the holding substrate 11 will be explained with reference to FIG.
  • the holding substrate 11 is cut with the cutting blade C1, and then cut with a thinner blade thickness than the cutting blade C1. Cut into chips with blade C2.
  • the cutting edge C1 has a coarser mesh than the cutting edge C2, and the surface in contact with the cutting edge C1 forms the "rough portion" of the present invention.
  • a fine-toothed cutting edge C2 is used to finish the end face smoothly (mirror surface) for the portion including the end face of the substrate 1 where the input portion or the output portion of the optical waveguide element is arranged.
  • a narrower whetstone for polishing, an electron beam, or the like is used after FIG. , only the portion of the curved surface R can be locally mechanically processed. Smoothness can also be adjusted by adjusting the shape, material, rotation speed, feed speed, and the like of the cutting blade.
  • FIG. 5 shows an example in which the optical component 3 is arranged away from the end face B0 of the input section or the output section of the substrate 1.
  • FIG. 5 In the optical waveguide device of FIG. 5, at least a portion (B3) of the rough portion formed on the holding substrate 11 protrudes toward the optical component 3 from the end face B0 of the substrate 1 on which the input section or the output section is formed.
  • the optical component 3 In FIG. 5A, the optical component 3 is arranged parallel to the surface of the rough portion B3, but in FIG. there is The configuration of FIG. 5B not only can hold the optical component more stably than the configuration of FIG. It also contributes to suppressing
  • no adhesive is provided between the optical component and the end surface B0, but an adhesive may be provided.
  • FIG. 6 shows an example of a method of forming an end face including a "rough portion" as shown in FIG.
  • the cutting blade C3 is inserted from the reinforcing block side, and then another cutting blade thinner than the blade thickness of the cutting blade C3. Cut into chips with C4.
  • the "coarse portion" B3 can be formed by making the cutting blade C4 coarser than the cutting blade C3.
  • 3 to 6 show an example in which the cutting blade is applied perpendicularly to the surface of the substrate 1, etc., but as shown in FIG. By cutting, it is also possible to form grooves and form rough portions (B4 to B6) on the surface of the grooves.
  • FIG. 9 is an end view of an optical waveguide member showing a state in which a spot size conversion section (SSC) is provided at the input section or output section of the optical waveguide 1.
  • SSC spot size conversion section
  • FIG. 9 In order to prevent the light wave propagating through the SSC from being scattered by the "rough part", a "rough part” is formed outside the mode field diameter (MFD) of the SSC (dotted line S indicates the boundary part of the MFD). There is a need to. More preferably, it is formed at a position 5 ⁇ m or more away from the MFD.
  • Reference numeral 4 is an adhesive layer that connects the holding substrate 11 (including the substrate 1 and SSC) and the reinforcing block 10 .
  • the SSC is formed by directly processing the optical waveguide such as gradually changing the waveguide width at the end of the optical waveguide formed on the substrate 1, or by forming a separate SSC at the end of the optical waveguide formed on the substrate 1.
  • the optical component is fixed to the end of the optical waveguide on which the SSC is formed, the holding substrate, or the reinforcing block
  • the optical component is fixed to the SSC, the holding substrate, or the reinforcing block, which are separate from the optical waveguide.
  • the Rukoto In the structure in which the SSC is formed, the SSC also forms part of the optical waveguide member.
  • FIG. 10 is a diagram for explaining regions where rough portions are formed.
  • FIG. 10 shows the plane on which the light wave input section 20 and output section 21 are arranged. If there is a rough portion D in the vicinity of the input portion 20 or the output portion 21 of the light wave, the internal stress generated by bonding the rough portion and the optical component affects the optical waveguide. change the rate. Therefore, as shown in FIG. 10, a "rough portion" (D) is formed in a region separated from the optical waveguides (20, 21) by a certain distance (S1 to S3). This distance (S1 to S3) may be set to 5 ⁇ m or more. More preferably, it is 10 ⁇ m or more.
  • the roughness of the rough portion (D) may be 50 nm or more in terms of arithmetic mean roughness Ra from the viewpoint of increasing the bonding strength of the adhesive. It is necessary to set the roughness of the end surface of the substrate 1 on which the input section and the output section are formed to 10 nm or less.
  • a saw mark running in a direction can also be a "rough part".
  • the end face (B0) of the substrate and the rough portion of the holding substrate have been described so far as not being on the same plane but having a step, but they may be on the same plane.
  • Such an identical plane can be formed by making the thickness of the cutting blade C1 and the cutting blade C2 in FIG. 4 the same, or by making the thickness of the cutting blade C3 and the cutting blade C4 the same in FIG.
  • the term "same plane” as used herein is a concept that includes steps based on processing accuracy that occur when cutting with different cutting blades.
  • the optical waveguide element of the present invention is provided with a modulation electrode for modulating a light wave propagating through the optical waveguide on the substrate 1, and housed in the housing CA as shown in FIG. Furthermore, by providing an optical fiber F for inputting and outputting light waves in the optical waveguide, the optical modulation device MD can be configured.
  • the optical fiber can not only be arranged outside the housing CA as shown in FIG. 11, but can also be introduced into the housing via a through-hole penetrating the side wall of the housing, and arranged and fixed.
  • An optical transmitter OTA can be configured by connecting an electronic circuit (digital signal processor DSP) that outputs a modulation signal that causes the optical modulation device MD to perform a modulation operation, to the optical modulation device MD.
  • DSP digital signal processor
  • a driver circuit DRV is used because the modulated signal applied to the optical waveguide device must be amplified.
  • the driver circuit DRV and the digital signal processor DSP can be arranged outside the housing CA, but can also be arranged inside the housing CA. In particular, by arranging the driver circuit DRV inside the housing, it is possible to further reduce the propagation loss of the modulated signal from the driver circuit.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

光導波路を形成した基板を含む光導波路部材と光学部品との接合部に発生する内部応力による光学部品の脱落を防止すると共に、接合面の研磨処理に係る製造工程を簡略化することが可能な光導波路素子を提供すること。 光導波路を形成した基板1を含む光導波路部材と、該光導波路の入力部又は出力部が配置された該光導波路部材の端面(B0)固定され、該入力部への入力光を透過、又は該出力部からの出力光を透過する光学部品3を備える光導波路素子において、該光導波路部材の少なくとも一部であり、該光学部品3が固定された部分に、該入力部又は該出力部を含む該光導波路部材の端面(B0)の粗さよりも、粗い部分(B1,B2)を設けたことを特徴とする。

Description

光導波路素子及びそれを用いた光変調デバイス並びに光送信装置
 本発明は、光導波路素子及びそれを用いた光変調デバイス並びに光送信装置に関し、特に、光導波路を形成した基板を含む光導波路部材と、該光導波路の入力部又は出力部が配置された該光導波路部材の端面に固定され、該入力部への入力光を透過、又は該出力部からの出力光を透過する光学部品を備える光導波路素子に関する。
 光計測技術分野や光通信技術分野において、光変調器など、光導波路を形成した基板を用いた光導波路素子が多用されている。ニオブ酸リチウム(LN)などの電気光学効果を有する基板を用いた光導波路素子に、光導波路を伝搬する光波を制御するための制御電極を形成し、光変調素子(LNチップ)が形成される。LNチップは、金属等の筐体内に実装されると共に、光導波路素子の光導波路に光波を入力又は出力するため、光導波路素子の端面に光学レンズが接着固定される。
 光学レンズを用いることで、入力光又は出力光と、光導波路との結合効率の良い光変調器を提供することが可能である。仮に、LNチップと筐体との実装の位置がずれた場合においても、レンズの位置・角度を調整することで、挿入損失の低い構成を実現することができる。
 特許文献1のように、近年では、光導波路素子を筐体内に実装した光変調デバイスにおいて、小型化、広帯域化に対応するため、光導波路素子から出力される信号光を2つとして、これらを偏波合成することが提案されている。また、図1に示すように、筐体の一側面から、光波の入力(L1)や出力(L2)を行うため、光導波路素子の一側面に光導波路2の入力部と出力部を配置する構成が提案されている。これらの光導波路素子では、光波に係る複数の入力部や出力部が基板の同一端面に配置されるので、基板端面と光学部品との接地面積も大きくなる。
 図1では、光導波路素子の一側面に、光学レンズ(31,32)が形成(または保持)された光学ブロック(光学部品)3が貼り付けられる。図2(a)は、光導波路素子(基板1)と光学ブロック3を貼り付けた様子を示す、側面方向(図1の下側)から見た図であり、基板1の端面側の上部には補強ブロック10が接着剤(不図示)により接着固定されている。基板1と補強ブロック10の端面には光学ブロック3が接着剤Aにより接着固定されている。また、基板1を30μm以下の薄板や1μm以下の厚みの薄膜で構成する場合には、図2(b)に示すように保持基板11を薄板(薄膜)1に接合して配置し、基板の機械的強度を高めることも可能である。以下、光導波路を形成した基板のみ、または、当該基板に保持基板又は補強ブロックの少なくとも一方を付加した構造体を「光導波路部材」と称する。
 光学ブロック(光学部品)としては、上述したような光学レンズに限らず、偏波合成等に使用される反射部材や偏光子などの他の光学部材を一体的に形成又は保持するもの、または反射部材やそれらの部品を固定するためのスペーサなどがある。また、基板1と補強ブロック10に接着固定される光学部品は、光学ブロックに限らず、スリーブ(円筒)状の保持部材やV溝基板に固定した光ファイバを、基板1の端面に直接貼り付けるような構成も含まれる。
 図2(a)及び(b)に示すように、基板1(保持基板11を含む)や補強ブロック10などの光導波路部材に光学部品3を接合するには、接合する部分の光導波路部材の端面や光学部品の端面は、鏡面状態に形成される。このような鏡面状態の端面を互いに対向させて、接着剤で接合する場合には、接合面が粗面の場合と比較して表面積が小さくなり、アンカー効果が得られないことから、両者の接着強度が低下する原因となる。
 一方、光導波路素子を構成する基板にはLNなどの強誘電体材料が使用され、補強ブロックにも基板1と線膨張係数を合わせるために、LNなどの材料が使用される。
 これに対し、光学部品の素材としては、ガラス(有機ガラスや光学ガラスなど)やプラスチックが使用される。このため、光導波路部材を構成するLN基板、保持基板や補強ブロックと、光学ブロック(光学部品)とでは、熱膨張率(線膨張係数)が、5×10-6/℃以上異なる場合もある。
 なお、基板1の光導波路へ悪影響が無い限り補強ブロックと保持基板11に同じ材質を用いることで線膨張係数だけでなくビッカース硬度も合わせることができるので基板切断時の面精度を向上させることができる。
 また、光導波路素子のサイズは、チップ幅が0.5~3mm程度、補強ブロックと光導波路素子の基板の厚さの合計は1~2mm程度である。特に、偏波合成や、図1に示すような入出力が同一端面にある折り返し構造の場合では、チップ幅が1.5mmよりも大きくなり、光学ブロック(光学部品)3と基板1との接着面積がより大きくなるので、基板(保持基板を含む)や補強ブロックと光学部品との熱膨張率の差の影響を受けやすい。
 接合する部材の熱膨張率が異なると、環境の温度変化により接合部分に内部応力が発生するので、光学特性の変化、接合部分の亀裂、または光学部品の脱落などの不具合も生じる。特に、図2(a)に示すよう光導波路素子の厚さ方向(Y軸方向)や幅方向(X軸方向)など、接合面に平行な方向の熱膨張係数が異なる場合は、この傾向は顕著となる。
 このような不具合を解消する方法として、本出願人は、特許文献2に示すように、接合部分の面積をより小さくする方法を提示した。
 さらに、接合面を鏡面に仕上げるためには、基板を切断した後、端面を研磨処理する必要があり、より多くの加工時間を要するという問題も生じていた。
特開2020-003701号公報 特願2020-062129号(出願日:令和2年3月31日)
 本発明が解決しようとする課題は、上述したような問題を解決し、光導波路を形成した基板を含む光導波路部材と光学部品との接合部に発生する内部応力による光学部品の脱落を防止すると共に、接合面の研磨処理に係る製造工程を簡略化することが可能な光導波路素子を提供することである。また、その光導波路素子を利用した光変調デバイス及び光送信装置を提供することである。
 上記課題を解決するため、本発明の光導波路素子及びそれを用いた光変調デバイス並びに光送信装置は、以下の技術的特徴を有する。
(1) 光導波路を形成した基板を含む光導波路部材と、該光導波路の入力部又は出力部が配置された該光導波路部材の端面に固定され、該入力部への入力光を透過、又は該出力部からの出力光を透過する光学部品を備える光導波路素子において、該光導波路部材の少なくとも一部であり、該光学部品が固定された部分に、該入力部又は該出力部を含む該光導波路部材の端面の粗さよりも、粗い部分を設けたことを特徴とする。
(2) 上記(1)に記載の光導波路素子において、該光導波路部材の一部に切り欠き部を設け、該切り欠き部を形成する面の少なくとも一部に、該粗い部分を設けたことを特徴とする。
(3) 上記(2)に記載の光導波路素子において、該切り欠き部の深さは、該入力部又は該出力部を含む端面から、5μm以上、300μm以下の範囲に設定されていることを特徴とする。
(4) 上記(1)乃至(3)のいずれかに記載の光導波路素子において、該光導波路部材の端面に平行な方向において、該光学部品の熱膨張率は、該光導波路部材の端面を構成する部材の少なくとも一部とは異なることを特徴とする。
(5) 上記(1)乃至(4)のいずれかに記載の光導波路素子において、該光導波路の入力部又は出力部の少なくとも一方にはスポットサイズ変換部が設けられていることを特徴とする。
(6) 上記(1)乃至(5)のいずれかに記載の光導波路素子において、前記粗い部分の少なくとも一部に、該光学部品を接合する接着剤が設けられていることを特徴とする。
(7) 上記(1)乃至(6)のいずれかに記載の光導波路素子において、前記粗い部分の粗さRaは50nm以上であることを特徴とする。
(8) 上記(1)乃至(7)のいずれかに記載の光導波路素子において、該入力部又は該出力部のいずれかと、前記粗い部分が形成されている位置までの距離が、5μm以上、300μm以下の範囲に設定されていることを特徴とする。
(9) 上記(1)乃至(8)のいずれかに記載の光導波路素子において、前記粗い部分の少なくとも一部が、該入力部又は該出力部よりも該光学部品側に突出していることを特徴とする。
(10) 上記(1)乃至(9)のいずれかに記載の光導波路素子において、前記粗い部分が形成されている領域内で、曲面が形成されている箇所の少なくとも一部は、他の粗い部分よりも粗さが小さいことを特徴とする。
(11) 上記(1)乃至(10)のいずれかに記載の光導波路素子は、該光導波路を伝搬する光波を変調する電極を備え、該光導波路素子は筐体内に収容され、該光導波路に光波を入力又は出力する光ファイバを備えることを特徴とする光変調デバイスである。
(12) 上記(11)に記載の光変調デバイスにおいて、該光導波路素子に入力する変調信号を増幅する電子回路を該筐体の内部に有することを特徴とする。
(13) 上記(11)又は(12)に記載の光変調デバイスと、該光変調デバイスに変調動作を行わせる変調信号を出力する電子回路とを有することを特徴とする光送信装置である。
 本発明は、光導波路を形成した基板を含む光導波路部材と、該光導波路の入力部又は出力部が配置された該光導波路部材の端面に固定され、該入力部への入力光を透過、又は該出力部からの出力光を透過する光学部品を備える光導波路素子において、該光導波路部材の少なくとも一部であり、該光学部品が固定された部分に、該入力部又は該出力部を含む該光導波路部材の端面の粗さよりも、粗い部分を設けているので、当該粗い部分で光学部品側との接合強度を高くし、光学部品の脱落を防止することが可能となる。しかも、接合面において、性能上鏡面化が必要な光導波路部分以外における粗い部分をそのまま使用できるので、接合面の研磨処理に係る製造工程を簡略化することも可能となる。
従来の光導波路素子の一例を示す平面図である。 図1の光導波路素子の側面図である。(a)は基板1が厚い場合、(b)は薄板(薄膜)1に保持基板11を接合している場合を示す。 本発明の光導波路素子に係る第1の実施例を説明する側面図である。(a)は粗い部分B1に接着剤を塗布した場合、(b)は(a)の場合よりも多くの粗い部分(B1,B2)に接着剤を塗布した場合を示す。 図3の光導波路素子を製造する工程の一部を説明する図である。 本発明の光導波路素子に係る第2の実施例を説明する側面図である。(a)は光学部品を粗い部分B3の面に平行に配置した場合、(b)は光学部品を粗い部分B3の面に対して傾けて配置した場合を示す。 図5の光導波路素子を製造する工程の一部を説明する図である。 本発明の光導波路素子に係る第3の実施例を説明する側面図である。 本発明の光導波路素子に係る第4の実施例を説明する側面図である。 本発明の光導波路素子でスポットサイズ変換部を使用する例を説明する図である。 本発明の光導波路素子に係る「粗い部分」の形成領域を説明する図である。 本発明の光変調デバイス及び光送信装置を説明する平面図である。
 以下、本発明の光導波路素子について、好適例を用いて詳細に説明する。
 本発明の光導波路素子は、図3乃至10に示すように、光導波路を形成した基板1を含む光導波路部材と、該光導波路の入力部又は出力部が配置された該光導波路部材の端面(B0)に固定され、該入力部への入力光を透過、又は該出力部からの出力光を透過する光学部品3を備える光導波路素子において、該光導波路部材の少なくとも一部であり、該光学部品3が固定された部分に、該入力部又は該出力部を含む該光導波路部材の端面(B0)の粗さよりも、粗い部分(B1~B6)を設けたことを特徴とする。
 以下の説明では、光導波路部材として、基板1に保持基板11と補強ブロック10を組み合わせた例を中心に説明する。
 本発明の光導波路素子に使用される基板1の材料としては、電気光学効果を有する強誘電体材料、具体的には、ニオブ酸リチウム(LN)やタンタル酸リチウム(LT)、PLZT(ジルコン酸チタン酸鉛ランタン)などの基板や、これらの材料による気相成長膜などが利用可能である。また、半導体材料や有機材料など種々の材料も光導波路素子の基板として利用可能である。
 光導波路を形成した基板1の厚さは、光導波路を伝搬する光波の閉じ込めを強くし変調効率を向上させるため、10μm以下、より好ましくは5μm以下に設定される場合がある。このような場合には、基板1の機械的強度を補強するため、0.2~1mm厚の保持基板11を、直接接合又は接着剤を介して貼り合わせることが行われる。なお、保持基板の材料としてはLN、石英、Si、溶融ガラス、アルミナなどが適用できる。
 本発明の光導波路素子において、「光導波路を形成した基板」とは、単に1枚の基板のみを意味するのではなく、保持基板上に気相成長膜を形成し、当該膜(薄膜)に光導波路に加工する場合も含む。
 基板1に光導波路を形成する方法としては、Tiなどの高屈折率材料を基板に熱拡散する方法や、プロトン交換法により高屈折率部分を形成する方法を使用することが可能である。また、光導波路以外の基板部分をエッチングする方法や、光導波路の両側に溝を形成する方法などで、基板の光導波路に対応する部分を凸状としたリブ型光導波路を形成することも可能である。さらに、リブ型光導波路と、熱拡散法などの光導波路を一緒に使用することも可能である。
 また、光導波路のモードフィールド径(MFD)が1μm以下のように、幅の狭い光導波路を使用する場合には、光導波路の入力部又は出力部にMFDを変更するスポットサイズ変換部(SSC)を、光導波路の一部として設けることが可能である。後述するように、SSCがある場合には、当該SSCを伝搬する光波に影響を与えない位置に、本発明の「粗い部分」が形成される。
 基板1の光波の入力部や出力部が形成される端面側の上部には、補強ブロック10が配置固定される。補強ブロック10には基板切断時の面精度を向上させるため補強基板11とビッカース硬度が近い材料が使用される。基板1の光導波路へ悪影響が無い限りは、保持基板11と同じ材質を用いると、ビッカース硬度だけでなく線膨張係数も合わせることができる。補強ブロック10の端面(基板1の端面と同じ側の面)は、必要に応じて、光学ブロックなどの光学部品を接着するための接合面として利用される。
 光学部品は、光学レンズ、反射部材、偏光子などを保持する光学ブロックや、光ファイバの端部付近を保持するスリーブ(円筒)状の保持部材またはV溝基板などが含まれる。光学部品を構成する材料は、有機ガラスや光学ガラスなどのガラス材料や、プラスチック材料が使用される。
 LN基板はZ軸方向に対して熱膨張率(線膨張係数)が4.0×10-6/℃であり、X軸(Y軸)方向には、14.0×10-6/℃である。光学部品を例えばBK-7などの光学ガラス材料で構成する場合には、線膨張係数は7.1×10-6/℃となる。LN基板に光学部品を貼り付けた場合には、LN基板の接合面にX軸又はY軸が存在すると、両者の線膨張係数の差が、5.0×10-6/℃以上となり、差異が顕著となる。その結果、基板や環境等の温度変化に伴い、光学部品の位置ずれや、光学部品の剥離あるいは脱落が発生する。
 また、光導波路素子を収容する金属等の筐体は、光導波路素子に使用される基板に近い線膨張係数を持つ材料が選択される。LN基板の場合にはステンレス鋼が多く用いられるが、ステンレス鋼の線膨張係数は、17.3×10-6/℃で光学部品との線膨張係数の差が大きくなることから、光学部品は筐体には接合されず、専ら基板1や補強ブロック10に接合して保持されている。なお、保持基板11に石英ガラスなどの低線膨張係数の素子を使用する場合、筐体にコバールなど低線膨張係数の材料を用いてもよい。
 本発明の光導波路素子の特徴は、図3乃至10に示すように、光波の入力部又は出力部が形成された端面B0の面の粗さよりも「粗い部分」を、基板1、基板1を保持する保持基板(保持基板がある場合)11、又は基板1上に配置される補強ブロック10などによる光導波路部材の少なくとも一部で、光学部品3に対向する部分(図10の網掛け部分D)に形成することである。なお、各図に示す「粗い部分」は、参考のため、実際の粗さの凹凸よりも強調して記載している。
 また、図3,7及び8では、「粗い部分」が、入力部又は出力部が形成された端面B0よりも基板1側に入り込んだ状態を示しているが、図5では、端面B0より突出した状態を示している。当然、両者を組み合わせることも可能である。
 さらに、切り欠き部の深さ(図3の端面B0からB2までの距離,図7の端面B0からB5までの距離)は、5μm以上、300μm以下の範囲に設定しても良い。切り込みが深いほど、接着剤Aのアンカー効果を高めることができるが、深すぎると光導波路部材を構成する基板等の機械的強度が弱くなる。
 図3では、保持基板11の一部に切り欠き部を設け、その切り欠き部を形成する面の少なくとも一部に「粗い部分」(B1,B2)を形成している。そして、光学部品3を接合させる接着剤を、図3(a)では、粗い部分B1のみに、図3(b)では、粗い部分B1及びB2の両方に配置し、基板端面B0における接着剤の不足を補い、光学部品3を基板1側に強固に固定することを可能としている。
 図3及び図7に示すように、粗い部分(B1とB2、B4とB5、B5とB6)の間に曲面(R、R1,R2)を設けている。このようにすることで例えば「粗い部分」(B1,B2)で形成される角部への応力集中が分散されるので保持基板11での亀裂等の発生を抑制することができる。特に、曲面と基板1との距離が300μm以下の場合、基板1の光導波路への亀裂等による影響を低減することができるためより好適である。勿論、亀裂等の発生のリスクは高まるが「粗い部分」で形成される角部に曲面を設けなくても本発明の効果を得ることはできる。
 また、曲面を設ける場合は、曲面の表面が近傍の粗い部分と同じかそれより粗くなると、その部分に入り込んだ接着剤の内部応力で、曲面に応力集中が発生し易くなるので、曲面での亀裂等の原因となる。これを避けるため、曲面の粗さは、他の粗い部分(B1~B6)よりも滑らかに仕上げても良い。
 「切り欠き部」の形状としては、図3及び7に限定されず、例えば、図8のように、保持基板11の角部を面取りをして形成することも可能である。面取りする部分は、基板1や補強ブロック10の角部であっても良い。
 図3に示すような「粗い部分」を含む端面の形成方法の一例を、図4に示す。図4は保持基板11を用いた例で説明するが、保持基板11が無く、厚い基板1のみの場合も同様である。基板1に補強ブロック10を貼り付けた状態で、チップ(光導波路素子単体)に切断する際に、切断刃C1で保持基板11に切込みを入れ、その後、切断刃C1よりも刃厚の薄い切断刃C2でチップに切断する。切断刃C1の目の粗さは、切断刃C2の目よりも粗く、切断刃C1が接触した面には本発明の「粗い部分」が形成される。光導波路素子の入力部又は出力部が配置される基板1の端面を含む部分は、目の細かい切断刃C2を使用し、端面を滑らか(鏡面)に仕上げている。
 また、図3の曲面Rを他の粗い部分(B1~B6)よりも滑らかに仕上げるには、図4(a)の後などに、より幅の狭い研磨用の砥石や電子ビーム等を用いて、曲面Rの部分のみを局所的に機械的に加工することが可能である。また、切断刃の形状、材質、回転速度および送り速度等を調整することにより、滑らかさを調整することもできる。
 図5は、基板1の入力部又は出力部の端面B0から離して光学部品3を配置する例を示している。図5の光導波路素子では、保持基板11に形成された粗い部分の少なくとも一部(B3)が、入力部又は出力部が形成された基板1の端面B0よりも光学部品3側に突出している。図5(a)では、粗い部分B3の面に平行に光学部品3を配置しているが、図5(b)では、当該粗い部分B3の面に対して光学部品3を傾けて配置している。図5(b)の構成は、図5(a)の構成よりも光学部品を安定的に保持できるだけでなく、光学部品3の基板1側の面で光波が反射し、光導波路への反射光を抑制することにも寄与する。なお、図5では光学部品と端面B0との間には接着剤がない構成としたが、接着剤を入れるようにしてもよい。
 図5に示すような「粗い部分」を含む端面の形成方法の一例を、図6に示す。基板1(保持基板11を含む)に補強ブロック10を固定し、各チップに切断する際に、補強ブロック側から切断刃C3を入れ、その後、切断刃C3の刃厚よりも薄い別の切断刃C4でチップに切断する。この際、切断刃C4の目の粗さを、切断刃C3の目よりも粗くすることで、「粗い部分」B3を形成することができる。
 図3乃至図6は、基板1等の表面に対して垂直に切断刃を当てる例を示したが、図7に示すように、図7の横方向(基板1の表面に平行な方向)から切削することで、溝を形成し、該溝の表面に粗い部分(B4~B6)を形成することも可能である。
 図9は、光導波路1の入力部又は出力部に、スポットサイズ変換部(SSC)を設けた様子を示す光導波路部材の端面図である。SSCを伝搬する光波が「粗い部分」で散乱されないようにするためには、SSCのモードフィールド径(MFD)(点線SがMFDの境界部分を示す。)の外側に、「粗い部分」を形成する必要がある。より好ましくは、MFDより5μm以上離れた位置に形成される。符号4は、保持基板11(基板1やSSCを含む)と補強ブロック10とを接続する接着層である。
 SSCは、基板1に形成された光導波路端部の導波路幅を徐々に変化させるなど光導波路を直接加工する場合と、基板1に形成された光導波路の端部に別体のSSCを形成する場合とがある。前者の構成では光学部品はSSCが形成された光導波路端部、保持基板又は補強ブロックに固定され、後者の構成では光学部品は光導波路とは別体のSSC、保持基板又は補強ブロックに固定されることとなる。SSCが形成された構成においては、当該SSCも光導波路部材の一部を構成する。
 図10は、粗い部分を形成する領域を説明する図である。図10は、光波の入力部20と出力部21が配置された面を示している。光波の入力部20や出力部21の近傍に粗い部分Dがあると、粗い部分と光学部品との接合により発生する内部応力が光導波路にも影響を及ぼし、最悪な場合は、光導波路の屈折率を変化させることとなる。このため、図10に示すように光導波路(20,21)から一定距離(S1~S3)だけ離れた領域に「粗い部分」(D)を形成している。この距離(S1~S3)は、5μm以上に設定されていても良い。より好ましくは、10μm以上である。
 さらに、粗い部分(D)の粗さとしては、接着剤の接合強度を高める観点から、算術平均粗さRaで50nm以上であっても良い。なお、入力部や出力部が形成された基板1の端面の粗さは、10nm以下に設定することが必要である。
 図10の粗い部分を形成可能な領域Dには、図3、図5又は図7に示すような「粗い部分」だけでなく、図10の面に平行に横方向又は縦方向、さらには斜め方向に走るソーマークを「粗い部分」とすることも可能である。なお、ここまでは基板の端面(B0)と保持基板の粗い部分は同一平面でなく、段差がある構成として説明してきたが同一平面としてもよい。このような同一平面は図4における切断刃C1と切断刃C2の刃厚を同じにするか、図5における切断刃C3と切断刃C4の刃厚を同じにすることで形成することができる。ここでいう「同一平面」は異なる切断刃で切断する際に発生する加工精度に基づく段差を含む概念である。
 本発明の光導波路素子は、基板1に光導波路を伝搬する光波を変調する変調電極を設け、図11のように、筐体CA内に収容される。さらに、光導波路に光波を入出力する光ファイバFを設けることで、光変調デバイスMDを構成することができる。光ファイバは、図11のように筐体CAの外側に配置するだけでなく、筐体の側壁を貫通する貫通孔を介して筐体内に導入して配置固定することも可能である。
 光変調デバイスMDに変調動作を行わせる変調信号を出力する電子回路(デジタル信号プロセッサーDSP)を、光変調デバイスMDに接続することにより、光送信装置OTAを構成することが可能である。光導波路素子に印加する変調信号は増幅する必要があるため、ドライバ回路DRVが使用される。ドライバ回路DRVやデジタル信号プロセッサーDSPは、筐体CAの外部に配置することも可能であるが、筐体CA内に配置することも可能である。特に、ドライバ回路DRVを筐体内に配置することで、ドライバ回路からの変調信号の伝搬損失をより低減することが可能となる。
 以上説明したように、本発明によれば、光導波路を形成した基板を含む光導波路部材と光学部品との接合部に発生する内部応力による光学部品の脱落を防止すると共に、接合面の研磨処理に係る製造工程を簡略化することが可能な光導波路素子を提供することが可能となる。また、その光導波路素子を利用した光変調デバイス及び光送信装置を提供することが可能となる。
 1 基板
 2 光導波路
 3 光学ブロック(光学部品)
 10 補強ブロック
 A 接合面(接着剤)
 MD 光変調デバイス
 OTA 光送信装置
 B1~B6 粗い部分

 

Claims (13)

  1.  光導波路を形成した基板を含む光導波路部材と、該光導波路の入力部又は出力部が配置された該光導波路部材の端面に固定され、該入力部への入力光を透過、又は該出力部からの出力光を透過する光学部品を備える光導波路素子において、
     該光導波路部材の少なくとも一部であり、該光学部品が固定された部分に、該入力部又は該出力部を含む該光導波路部材の端面の粗さよりも、粗い部分を設けたことを特徴とする光導波路素子。
  2.  請求項1に記載の光導波路素子において、該光導波路部材の一部に切り欠き部を設け、該切り欠き部を形成する面の少なくとも一部に、該粗い部分を設けたことを特徴とする光導波路素子。
  3.  請求項2に記載の光導波路素子において、該切り欠き部の深さは、該入力部又は該出力部を含む端面から、5μm以上、300μm以下の範囲に設定されていることを特徴とする光導波路素子。
  4.  請求項1乃至3のいずれかに記載の光導波路素子において、該光導波路部材の端面に平行な方向において、該光学部品の熱膨張率は、該光導波路部材の端面を構成する部材の少なくとも一部とは異なることを特徴とする光導波路素子。
  5.  請求項1乃至4のいずれかに記載の光導波路素子において、該光導波路の入力部又は出力部の少なくとも一方にはスポットサイズ変換部が設けられていることを特徴とする光導波路素子。
  6.  請求項1乃至5のいずれかに記載の光導波路素子において、前記粗い部分の少なくとも一部に、該光学部品を接合する接着剤が設けられていることを特徴とする光導波路素子。
  7.  請求項1乃至6のいずれかに記載の光導波路素子において、前記粗い部分の粗さRaは50nm以上であることを特徴とする光導波路素子。
  8.  請求項1乃至7のいずれかに記載の光導波路素子において、該入力部又は該出力部のいずれかと、前記粗い部分が形成されている位置までの距離が、5μm以上、300μm以下の範囲に設定されていることを特徴とする光導波路素子。
  9.  請求項1乃至8のいずれかに記載の光導波路素子において、前記粗い部分の少なくとも一部が、該入力部又は該出力部よりも該光学部品側に突出していることを特徴とする光導波路素子。
  10.  請求項1乃至9のいずれかに記載の光導波路素子において、前記粗い部分が形成されている領域内で、曲面が形成されている箇所の少なくとも一部は、他の粗い部分よりも粗さが小さいことを特徴とする光導波路素子。
  11.  請求項1乃至10のいずれかに記載の光導波路素子は、該光導波路を伝搬する光波を変調する電極を備え、該光導波路素子は筐体内に収容され、該光導波路に光波を入力又は出力する光ファイバを備えることを特徴とする光変調デバイス。
  12.  請求項11に記載の光変調デバイスにおいて、該光導波路素子に入力する変調信号を増幅する電子回路を該筐体の内部に有することを特徴とする光変調デバイス。
  13.  請求項11又は12に記載の光変調デバイスと、該光変調デバイスに変調動作を行わせる変調信号を出力する電子回路とを有することを特徴とする光送信装置。
PCT/JP2022/015879 2021-03-30 2022-03-30 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置 WO2022210852A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280015272.1A CN116868113A (zh) 2021-03-30 2022-03-30 光波导元件、使用光波导元件的光调制器件及光发送装置
US18/283,764 US20240176071A1 (en) 2021-03-30 2022-03-30 Optical waveguide element, optical modulation device using optical waveguide element, and optical transmission device using optical waveguide element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021058578A JP2022155191A (ja) 2021-03-30 2021-03-30 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置
JP2021-058578 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022210852A1 true WO2022210852A1 (ja) 2022-10-06

Family

ID=83456484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015879 WO2022210852A1 (ja) 2021-03-30 2022-03-30 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置

Country Status (4)

Country Link
US (1) US20240176071A1 (ja)
JP (1) JP2022155191A (ja)
CN (1) CN116868113A (ja)
WO (1) WO2022210852A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281898A (ja) * 1993-03-25 1994-10-07 Ibiden Co Ltd 光変調器及びその製造方法
JPH0719711U (ja) * 1993-09-10 1995-04-07 日本碍子株式会社 光導波路と光ファイバとの結合構造
JP2005157088A (ja) * 2003-11-27 2005-06-16 Mitsumi Electric Co Ltd 光導波路モジュール
JP2009237326A (ja) * 2008-03-27 2009-10-15 Furukawa Electric Co Ltd:The 光集積回路モジュール、このモジュールに用いる光学ベンチ、及び光集積回路モジュールの作製方法
JP2014209206A (ja) * 2013-03-25 2014-11-06 日本碍子株式会社 光入力部材の保持部品と光導波路部品との接続構造およびその製造方法
US20150117812A1 (en) * 2011-12-27 2015-04-30 Colorchip (Israel) Ltd. Planar lightwave circuit and a method for its manufacture
JP2019095698A (ja) * 2017-11-27 2019-06-20 富士通オプティカルコンポーネンツ株式会社 光モジュール及び光変調器
JP2019179193A (ja) * 2018-03-30 2019-10-17 住友大阪セメント株式会社 光変調器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281898A (ja) * 1993-03-25 1994-10-07 Ibiden Co Ltd 光変調器及びその製造方法
JPH0719711U (ja) * 1993-09-10 1995-04-07 日本碍子株式会社 光導波路と光ファイバとの結合構造
JP2005157088A (ja) * 2003-11-27 2005-06-16 Mitsumi Electric Co Ltd 光導波路モジュール
JP2009237326A (ja) * 2008-03-27 2009-10-15 Furukawa Electric Co Ltd:The 光集積回路モジュール、このモジュールに用いる光学ベンチ、及び光集積回路モジュールの作製方法
US20150117812A1 (en) * 2011-12-27 2015-04-30 Colorchip (Israel) Ltd. Planar lightwave circuit and a method for its manufacture
JP2014209206A (ja) * 2013-03-25 2014-11-06 日本碍子株式会社 光入力部材の保持部品と光導波路部品との接続構造およびその製造方法
JP2019095698A (ja) * 2017-11-27 2019-06-20 富士通オプティカルコンポーネンツ株式会社 光モジュール及び光変調器
JP2019179193A (ja) * 2018-03-30 2019-10-17 住友大阪セメント株式会社 光変調器

Also Published As

Publication number Publication date
CN116868113A (zh) 2023-10-10
US20240176071A1 (en) 2024-05-30
JP2022155191A (ja) 2022-10-13

Similar Documents

Publication Publication Date Title
JP7380389B2 (ja) 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置
US7778497B2 (en) Optical modulators
US11378828B2 (en) Optical waveguide device
WO2019187899A1 (ja) 光変調器
US5297218A (en) Optical semiconductor laser and optical waveguide alignment device
JP3517657B2 (ja) 埋込型光非可逆回路装置
WO2022210852A1 (ja) 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置
WO2014199831A1 (ja) 光路変更素子、光路変更素子の接続構造、光源デバイスおよび光実装デバイス
JP7452190B2 (ja) 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置
WO2023188175A1 (ja) 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置
US20240255783A1 (en) Optical Waveguide Device, and Optical Modulation Device and Optical Transmission Apparatus Using Same
WO2023188311A1 (ja) 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置
US20240255784A1 (en) Optical Waveguide Device, and Optical Modulation Device and Optical Transmission Apparatus Using Same
WO2024069952A1 (ja) 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置
WO2023162259A1 (ja) 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置
JP2007139958A (ja) 光導波路デバイス
JP2000098156A (ja) 光導波路素子、光ファイバアレイの端面構造及びその製造方法
JPH10239637A (ja) 光アイソレータ及びそれを用いた光モジュール
JP2022131873A (ja) 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置
CN118591747A (en) Optical waveguide element, optical modulation device using the same, and optical transmission device
JPH10160981A (ja) 光導波路モジュール
JP2010237592A (ja) 光素子と光ファイバとの接合構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781062

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280015272.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781062

Country of ref document: EP

Kind code of ref document: A1