WO2022181021A1 - 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置 - Google Patents

光導波路素子及びそれを用いた光変調デバイス並びに光送信装置 Download PDF

Info

Publication number
WO2022181021A1
WO2022181021A1 PCT/JP2021/047528 JP2021047528W WO2022181021A1 WO 2022181021 A1 WO2022181021 A1 WO 2022181021A1 JP 2021047528 W JP2021047528 W JP 2021047528W WO 2022181021 A1 WO2022181021 A1 WO 2022181021A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
layer
optical
component layer
rib
Prior art date
Application number
PCT/JP2021/047528
Other languages
English (en)
French (fr)
Inventor
有紀 釘本
祐美 村田
優 片岡
真悟 高野
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Priority to CN202180086181.2A priority Critical patent/CN116724259A/zh
Priority to US18/270,168 priority patent/US20240069281A1/en
Publication of WO2022181021A1 publication Critical patent/WO2022181021A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/025Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12097Ridge, rib or the like
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12142Modulator
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type

Definitions

  • the present invention relates to an optical waveguide element and an optical modulation device and an optical transmitter using the same, and more particularly, to an optical waveguide substrate having a rib-shaped optical waveguide made of a material having an electro-optical effect, and the rib-shaped optical waveguide.
  • the present invention relates to an optical waveguide device having spot size conversion means for changing the mode field diameter of a light wave propagating through the optical waveguide at a position where an input end or an output end of the waveguide is formed.
  • optical waveguide elements such as optical modulators using materials having an electro-optic effect for optical waveguides are frequently used.
  • miniaturization of optical waveguide devices broadening of the bandwidth, and reduction of driving voltage.
  • MFD mode field diameter
  • the modulation electrode for applying an electric field to the optical waveguide can be arranged close to the optical waveguide, which contributes to widening the bandwidth or lowering the drive voltage.
  • the MFD in the optical waveguide element is about 1 ⁇ m
  • the MFD of the optical fiber coupled to the element is 10 ⁇ m.
  • the coupling loss at the coupling portion between the two becomes very large.
  • SSC spot size converter
  • the SSCs shown in Patent Documents 1 to 3 use a rib-type optical waveguide that expands the width or thickness of the optical waveguide two-dimensionally or three-dimensionally toward the end of the optical waveguide.
  • the advantage of this method is that the design is simple. In addition to the complexity of the manufacturing process, the optical insertion loss could not be reduced sufficiently due to the influence of misalignment of the rib shape in each layer and the roughness of the surface or side surface of each layer.
  • the problem to be solved by the present invention is to solve the above-mentioned problems, to provide an optical waveguide element equipped with spot size conversion means that suppresses optical insertion loss without complicating the manufacturing process.
  • a further object of the present invention is to provide an optical modulation device and an optical transmitter using the optical waveguide element.
  • the optical waveguide element of the present invention an optical modulation device using the same, and an optical transmitter have the following technical features.
  • An optical waveguide substrate having a rib-shaped optical waveguide made of a material having an electro-optic effect, and propagating through the optical waveguide at a position where the input end or the output end of the rib-shaped optical waveguide is formed
  • An optical waveguide element having spot size conversion means for changing the mode field diameter of a light wave, wherein the spot size conversion means is connected to the rib type optical waveguide and has a tapered portion for expanding the width of the optical waveguide.
  • a first constituent layer, a second constituent layer stacked on the first constituent layer and having a width narrower than that of the first constituent layer, and a portion of the second constituent layer adjacent to the rib-shaped optical waveguide.
  • a third component layer is provided so as to cover the second component layer except for the part, and has a width wider than that of the second component layer.
  • the refractive index of the material that constitutes the second constituent layer is the refractive index of the material that constitutes the first constituent layer or the material that constitutes the third constituent layer. characterized by being higher than the rate.
  • the tip portion of the second component layer on the side of the rib-shaped optical waveguide is arranged on the rib-shaped optical waveguide.
  • the end face of the third component layer on the side of the rib-type optical waveguide is a light wave propagating through the second component layer. It is characterized by being arranged with an inclination other than 90 degrees with respect to the direction.
  • the end face structure of the spot size conversion means located on the end side of the optical waveguide substrate surrounds the second constituent layer.
  • the first component layer and the third component layer are arranged as follows.
  • the end surface structure of the spot size conversion means located on the end side of the optical waveguide substrate is such that the second component layer is exposed
  • the first constituent layer and the third constituent layer are arranged so as to prevent the occurrence of the above.
  • the optical waveguide substrate is composed of a thin plate on which the optical waveguide is formed and a holding substrate that holds the thin plate,
  • the refractive index of the material forming the holding substrate is lower than the refractive index of the material forming the thin plate.
  • the optical waveguide substrate comprises a thin plate on which the optical waveguide is formed, a holding substrate for holding the thin plate, and the thin plate.
  • An intermediate layer is provided between the thin plate and the holding substrate, and the refractive index of the material forming the intermediate layer is lower than the refractive index of the material forming the thin plate.
  • the optical waveguide element according to any one of (1) to (8) above comprises a modulation electrode for modulating a light wave propagating through the optical waveguide, the optical waveguide element and
  • the optical modulation device is characterized in that an electronic circuit for amplifying the modulation signal input to the modulation electrode is housed inside the housing.
  • An optical transmitter comprising the optical modulation device according to (9) above and an electronic circuit for outputting a modulation signal for causing the optical modulation device to perform a modulation operation.
  • the present invention provides an optical waveguide substrate having a rib-shaped optical waveguide formed of a material having an electro-optic effect, and a position where an input end or an output end of the rib-shaped optical waveguide is formed.
  • An optical waveguide element having spot size conversion means for changing the mode field diameter of a light wave, wherein the spot size conversion means is connected to the rib type optical waveguide and has a tapered portion for enlarging the width of the optical waveguide.
  • FIG. 1 is a plan view showing a first embodiment of an optical waveguide device of the present invention
  • FIG. 2 is a cross-sectional view of the optical waveguide device of FIG. 1, (a) a cross-sectional view taken along the dashed-dotted line AA', (b) a cross-sectional view taken along the dashed-dotted line BB', and (c) a cross-sectional view taken along the dashed-dotted line CC'.
  • (d) is a cross-sectional view taken along the dashed-dotted line DD'.
  • FIG. 10 is a diagram showing another example of an optical waveguide substrate
  • FIG. 4 is a plan view showing a second embodiment of the optical waveguide device of the present invention
  • FIG. 5 is a plan view showing a third embodiment of the optical waveguide device of the present invention
  • 6A and 6B are cross-sectional views of the optical waveguide device of FIG. 5, (a) a cross-sectional view taken along the dashed line E-E' and (b) a cross-sectional view taken along the dashed-dotted line FF'.
  • Figure 7 shows another embodiment of Figure 6;
  • the optical waveguide element of the present invention includes optical waveguide substrates (1, 4) having rib-type optical waveguides 10 made of a material having an electro-optic effect, and the rib-type optical waveguides.
  • the spot size conversion means comprises the rib a first component layer (1) having a tapered portion 11 connected to an optical waveguide 10 of the type and extending the width of the optical waveguide; a second component layer having a narrow width; characterized by comprising a third constituent layer (3) having a width wider than that of the
  • Materials constituting the optical waveguide used in the optical waveguide device of the present invention include ferroelectric materials having an electro-optical effect, specifically lithium niobate (LN), lithium tantalate (LT), PLZT (Substrates such as lead lanthanum zirconate titanate) or epitaxial films of these materials can be used.
  • Various materials such as semiconductor materials and organic materials can also be used as substrates for optical waveguide devices.
  • the thickness H1 of the optical waveguide 10 used in the present invention is as thin as 1 ⁇ m or less.
  • an epitaxial film for example, an epitaxial film is formed by a sputtering method, a CVD method, a sol-gel method, or the like in accordance with the crystal orientation of a single crystal substrate such as a SiO2 substrate, a sapphire single crystal substrate, or a silicon single crystal substrate. .
  • the thickness of the substrate constituting the first component layer 1 including the optical waveguide 10 is, for example, about 2 to 3 ⁇ m. Since it is thin, a holding substrate 4 is arranged on the rear surface side of the first component layer 1 in order to increase the mechanical strength of the optical waveguide element.
  • the holding substrate 4 may be made of a material having a lower refractive index than the first component layer 1 (optical waveguide 10), such as a SiO2 substrate.
  • the first component layer 1 and the holding substrate 4 may be directly bonded or bonded using an adhesive. Furthermore, by using an intermediate layer between the first constituent layer and the holding substrate, it is possible to expand the options for the holding substrate.
  • SiO 2 having a lower refractive index and a lower dielectric constant than LN is formed with a thickness of several ⁇ m
  • Si or alumina having a high refractive index can be used as the holding substrate.
  • the holding substrate 4 it is also possible to use the holding substrate 4 as a base for crystal growth and provide the first constituent layer 1 constituting the optical waveguide 10 of the epitaxial film.
  • a method for forming the rib-shaped projections that constitute the optical waveguide 10 can be formed by dry or wet etching a layer (for example, an LN layer) that forms the optical waveguide. Moreover, in order to increase the refractive index of the rib portion, a method of thermally diffusing a high refractive index material such as Ti at the position of the rib portion can also be used.
  • the spot size conversion means which is a feature of the optical waveguide device of the present invention, is a rib type as shown in FIG.
  • the refractive index of the material composing the second constituent layer (2) is higher than the refractive index of the material composing the first constituent layer (1) and the material composing the third constituent layer (3).
  • the first component layer (1) and the third component layer (3) can be made of materials having the same refractive index.
  • the first constituent layer may be a crystal such as lithium niobate or lithium tantalate, or a crystal obtained by doping these with other substances.
  • a material containing either Si or Ge can be used for the second component layer.
  • the third constituent layer can be made of the same material as the first constituent layer or a material containing Ta, Nb, Ti, Zr, Ce, Zn, Sb, and Nd.
  • the refractive index difference between the first and third constituent layers may be less than 0.1.
  • the tapered portion 11 of the optical waveguide 10 constituting the first component layer (1) is used to widen the spot size in the lateral direction (width W1 direction in FIG. 2).
  • the second component layer (2) having a higher refractive index than the first component layer (1) is arranged above the first component layer (1), the light wave propagating through the first component layer 1 (11) is , the spot size is enlarged while also being drawn toward the second constituent layer.
  • multimodes are less likely to occur, the angle ⁇ 1 of the taper portion does not need to be designed accurately, and there is no problem even if the angle is slightly smaller than the desired angle (the divergence angle of the taper portion is large).
  • the tip portion ⁇ of the second component layer on the optical waveguide 10 side may be arranged closer to the optical waveguide 10 than the connection portion ⁇ between the optical waveguide 10 and the tapered portion 11 .
  • FIG. 2B which is a cross-sectional view taken along the dashed-dotted line BB' in FIG.
  • a second component layer 2 having a higher refractive index than the wave path 10 (first component layer 1) appears.
  • the thickness H2 of the second component layer 2 is as thin as 50 to 100 nm, there is no mode in the second component layer, and a portion of the first component layer 1 seeps out.
  • An MFD (indicated by a circular or elliptical dotted line L in FIG. 2) having approximately the same size as the optical waveguide of the first component layer is observed.
  • the first component layer is tapered at a gentle angle
  • the second component layer thereon is shown in FIG. extends the width W2 to 3 to 5 ⁇ m.
  • the width W2 of the second constituent layer is adjusted within the range of 0.05 to 5 ⁇ m depending on the relationship between the refractive indices of the first constituent layer 1 and the second constituent layer 2.
  • FIG. If W2 is narrower than this, there is an advantage that the single mode is easily maintained, but formation of the second constituent layer itself is difficult. Conversely, if the thickness is large, although there is a drawback that multimodes tend to occur, the formation becomes easier, so the thickness may be within the range described above.
  • the third component layer 3 is formed so as to cover the second component layer 2 from the one-dot chain line C-C' to the one-dot chain line D-D' in FIG.
  • the refractive index of the third component layer 3 is lower than that of the second component layer, and may be the same as that of the first component layer 1, for example.
  • FIG. 2D which is a cross-sectional view taken along the dashed-dotted line DD' in FIG.
  • a first constituent layer 1 and a third constituent layer 3 are arranged so as to surround the constituent layer 2 .
  • the width W2 of the second component layer 2 can be set to 3 to 5 ⁇ m
  • the thickness H1 of the first component layer 1 can be set to 1 ⁇ m
  • the thickness H3 of the third component layer 3 can be set to 1 to 4 ⁇ m.
  • the MFD at the input end or output end of the light wave L is expanded to 3 to 5 ⁇ m in the horizontal direction and 2 to 5 ⁇ m in the vertical direction, as shown in FIG. 2(d). In this way, the function can be exhibited as an SSC made of three kinds of materials from the first to the third constituent layers.
  • the shape and arrangement of the third constituent layer 3 may be configured so that the light wave propagating along the second constituent layer 2 does not undergo an abrupt change in refractive index.
  • the end face (30, 31) of the third component layer on the side of the rib-type optical waveguide 10 has an angle ( ⁇ 2, ⁇ 3) with respect to the propagation direction of the light wave (the same direction as the arrow Lout).
  • ⁇ 2 in FIG. 1 can be set to 100 to 170 degrees
  • ⁇ 3 can be set to 10 to 80 degrees.
  • ⁇ 2 and ⁇ 3 may be opposite numerical values.
  • the end faces (30, 31) of the third component layer are arranged on a straight line, but as shown in FIG. It is also possible to configure it to spread over In this case, ⁇ 3 can be set between 100 and 170 degrees.
  • the end face structure of the spot size conversion means located on the end side of the optical waveguide substrate (1, 4) is such that the second component layer 2 is not exposed.
  • a first component layer 1 and a third component layer 2 are arranged.
  • the width of the second structural layer 2 gradually narrows toward the ends of the optical waveguide substrates (1, 4).
  • the third constituent layer 3 has the function of confining the light wave, so as shown in FIG. 5, the width W3 of the third constituent layer is adjusted to, for example, 3 to 5 ⁇ m.
  • FIGS. 6(a) and 6(b) are cross-sectional views taken along dashed-dotted lines E-E' and F-F' in FIG.
  • the elliptical dashed line L outlines the contour of the MFD of the light wave.
  • the confinement effect of the second component layer is maintained and the influence of the side surface roughness of the ridge of the third component layer 3 is reduced. It is also possible to
  • the width of the first constituent layer 1 is also changed corresponding to the change in the width of the third constituent layer 3 .
  • the first constituent layer and the third constituent layer can work together to confine light, and the shape of the MFD of the light wave can also be stabilized.
  • the MFD becomes larger than expected when spreading and propagating through the first and third constituent layers, as shown in FIG.
  • the optical waveguide device of the present invention not only functions as a spot size conversion means, but also improves the positional accuracy of the arrangement of each layer.
  • the shape and arrangement of the second component layer makes it possible to reduce the occurrence of optical insertion loss due to surface roughness of each layer such as the third component layer.
  • each layer is configured as a single constituent layer, but for example, at least one of the first to third constituent layers may be configured as a combination of two or more layers. It is possible. In that case, it is also possible to slightly change the shape or material so as to work together with adjacent constituent layers to provide an appropriate MFD.
  • the optical waveguide element described above further includes a modulation electrode (not shown) for modulating the light wave propagating through the optical waveguide 10 on the optical waveguide substrate 1 (4), and is accommodated in the housing SC as shown in FIG. .
  • the optical modulation device MD can be configured.
  • the optical fiber is introduced into the housing via a through-hole passing through the side wall of the housing and directly joined to the optical waveguide element.
  • the optical waveguide element and the optical fiber can also be optically connected via a spatial optical system.
  • An input end or an output end of the optical waveguide 10 is provided with spot size conversion means (SSC1, SSC2).
  • An optical transmitter OTA can be configured by connecting an electronic circuit (digital signal processor DSP) that outputs a modulation signal that causes the optical modulation device MD to perform a modulation operation, to the optical modulation device MD.
  • DSP digital signal processor
  • a driver circuit DRV is used because the modulated signal applied to the optical waveguide device must be amplified.
  • the driver circuit DRV or the digital signal processor DSP can be arranged outside the housing SC, but it can also be arranged inside the housing SC. In particular, by arranging the driver circuit DRV inside the housing, it is possible to further reduce the propagation loss of the modulated signal from the driver circuit.
  • an optical waveguide element provided with spot size conversion means that suppresses optical insertion loss without complicating the manufacturing process. Furthermore, it is possible to provide an optical modulation device and an optical transmitter using the optical waveguide element.
  • optical waveguide substrate (first constituent layer) 2 second component layer 3 third component layer 4 holding substrate 10 rib type optical waveguide 11 tapered portion MD optical modulation device OTA optical transmitter

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

製造工程が複雑化せず、光挿入損失を抑制したスポットサイズ変換手段を備えた光導波路素子を提供すること。 電気光学効果を有する材料で形成されるリブ型の光導波路(10)を有する光導波路基板(4)と、前記リブ型の光導波路(10)の入力端又は出力端が形成された位置に、該光導波路を伝搬する光波のモードフィールド径を変化させるスポットサイズ変換手段を備えた光導波路素子において、該スポットサイズ変換手段は、該リブ型の光導波路(10)に接続され、該光導波路の幅を拡大するテーパー部分(11)を備えた第1構成層(1)と、該第1構成層(1)に積層され、該第1構成層(1)の幅よりも狭い幅を有する第2構成層(2)と、該第2構成層(2)の該リブ型の光導波路に近接する一部を除き、該第2構成層(2)を覆うように配置され、該第2構成層(2)の幅よりも広い幅を有する第3構成層(3)を備えていることを特徴とする。

Description

光導波路素子及びそれを用いた光変調デバイス並びに光送信装置
 本発明は、光導波路素子及びそれを用いた光変調デバイス並びに光送信装置に関し、特に、電気光学効果を有する材料で形成されるリブ型の光導波路を有する光導波路基板と、前記リブ型の光導波路の入力端又は出力端が形成された位置に、該光導波路を伝搬する光波のモードフィールド径を変化させるスポットサイズ変換手段を備えた光導波路素子に関する。
 光計測技術分野又は光通信技術分野において、電気光学効果を有する材料を光導波路に用いた光変調器などの光導波路素子が多用されている。近年、光導波路素子の小型化、広帯域化又は低駆動電圧化などが求められており、小型化のためには、光導波路素子の入力光を素子内で折り返し、入出力を同一方向にする構成が提案されている。折り返しの光導波路では、導波光の曲げ損失を小さくする必要があり、モードフィールド径(MFD)を1μm程度まで微細化することが求められる。また、幅の狭い光導波路を利用する場合には、光導波路に電界を印加する変調電極も光導波路に近接して配置でき、広帯域化又は低駆動電圧化にも寄与する。
 しかしながら、光導波路素子内でのMFDを1μm程度にした場合、素子に結合する光ファイバーのMFDは10μmであることから、光導波路素子内の光導波路と光ファイバーとの間には、MFDにおいて10倍もの差がある。このため、両者の結合部分での結合損が非常に大きくなる。
 光導波路素子と光ファイバーとの間に、MFDを拡大させるレンズを取り付ける方法等があるが、MFDを1μmから10μmのように10倍程度も変換するレンズは、設計上不可能である。仮に、レンズで変換させるためには、少なくとも光導波路素子の端部における光導波路のMFDは3μm以上である必要がある。
 また、光導波路素子上の入出射部付近に、MFDを変換するスポットサイズ変換手段(Spot Size Converter,SSC)を設け、光導波路素子内で3~5μm程度までMFDを拡大することが提案されている。そして、SSCと光ファイバーとの間にレンズを配置し、両者を光学的に結合している。
 特許文献1乃至3に示すようなSSCは、光導波路の端部に向かって、二次元的または三次元的に光導波路の幅又は厚みを拡大するリブ型の光導波路が用いられる。この方法のメリットは、デザインが簡易であることが挙げられるが、光導波路を広げることで、マルチモードを誘起してしまうことから、使用可能なデザインに制限がある。また、製造工程が複雑であることに加え、各層におけるリブ形状の配置ずれや各層の表面又は側面の荒れの影響を受けて、光挿入損失を十分に下げることができなかった。
国際公開WO2012/042708号 国際公開WO2013/146818号 特許第6369036号公報
 本発明が解決しようとする課題は、上述したような問題を解決し、製造工程が複雑化せず、光挿入損失を抑制したスポットサイズ変換手段を備えた光導波路素子を提供することである。さらには、その光導波路素子を用いた光変調デバイス並びに光送信装置を提供することである。
 上記課題を解決するため、本発明の光導波路素子及びそれを用いた光変調デバイス並びに光送信装置は、以下の技術的特徴を有する。
(1) 電気光学効果を有する材料で形成されるリブ型の光導波路を有する光導波路基板と、前記リブ型の光導波路の入力端又は出力端が形成された位置に、該光導波路を伝搬する光波のモードフィールド径を変化させるスポットサイズ変換手段を備えた光導波路素子において、該スポットサイズ変換手段は、該リブ型の光導波路に接続され、該光導波路の幅を拡大するテーパー部分を備えた第1構成層と、該第1構成層に積層され、該第1構成層の幅よりも狭い幅を有する第2構成層と、該第2構成層の該リブ型の光導波路に近接する一部を除き、該第2構成層を覆うように配置され、該第2構成層の幅よりも広い幅を有する第3構成層を備えていることを特徴とする。
(2) 上記(1)に記載の光導波路素子において、該第2構成層を構成する材料の屈折率は、該第1構成層を構成する材料又は該第3構成層を構成する材料の屈折率よりも高いことを特徴とする。
(3) 上記(1)又は(2)に記載の光導波路素子において、該第2構成層の該リブ型の光導波路側の先端部分は、該リブ型の光導波路上に配置されていることを特徴とする。
(4) 上記(1)乃至(3)のいずれかに記載の光導波路素子において、該第3構成層の該リブ型の光導波路側の端面は、該第2構成層を伝搬する光波の進行方向に対して90度以外の傾きを有して配置されていることを特徴とする。
(5) 上記(1)乃至(4)のいずれかに記載の光導波路素子において、該光導波路基板の端部側に位置する該スポットサイズ変換手段の端面構造は、該第2構成層を取り囲むように、該第1構成層と該第3構成層が配置されていることを特徴とする。
(6) 上記(1)乃至(4)のいずれかに記載の光導波路素子において、該光導波路基板の端部側に位置する該スポットサイズ変換手段の端面構造は、該第2構成層が露出しないように、該第1構成層と該第3構成層が配置されていることを特徴とする。
(7) 上記(1)乃至(6)のいずれかに記載の光導波路素子において、該光導波路基板は、該光導波路が形成された薄板と、該薄板を保持する保持基板とから構成され、該保持基板を構成する材料の屈折率は、該薄板を構成する材料の屈折率よりも低いことを特徴とする。
(8) 上記(1)乃至(6)のいずれかに記載の光導波路素子において、該光導波路基板は、該光導波路が形成された薄板と、該薄板を保持する保持基板と、該薄板と該保持基板との間に中間層を設け、該中間層を構成する材料の屈折率は、該薄板を構成する材料の屈折率よりも低いことを特徴とする。
(9) 上記(1)乃至(8)のいずれかに記載の光導波路素子は、該光導波路を伝搬する光波を変調するための変調電極を備え、該光導波路素子と、該光導波路素子の変調電極に入力する変調信号を増幅する電子回路とを筐体の内部に収容することを特徴とする光変調デバイスである。
(10) 上記(9)に記載の光変調デバイスと、該光変調デバイスに変調動作を行わせる変調信号を出力する電子回路とを有することを特徴とする光送信装置である。
 本発明は、電気光学効果を有する材料で形成されるリブ型の光導波路を有する光導波路基板と、前記リブ型の光導波路の入力端又は出力端が形成された位置に、該光導波路を伝搬する光波のモードフィールド径を変化させるスポットサイズ変換手段を備えた光導波路素子において、該スポットサイズ変換手段は、該リブ型の光導波路に接続され、該光導波路の幅を拡大するテーパー部分を備えた第1構成層と、該第1構成層に積層され、該第1構成層の幅よりも狭い幅を有する第2構成層と、該第2構成層の該リブ型の光導波路に近接する一部を除き、該第2構成層を覆うように配置され、該第2構成層の幅よりも広い幅を有する第3構成層を備えているので、各層の配置に係る位置精度を比較的緩やかにでき、各層の表面の荒れによる光挿入損失の発生も低減することが可能となる。
本発明の光導波路素子に係る第1の実施例を示す平面図である。 図1の光導波路素子の断面図であり、(a)一点鎖線A-A’の断面図、(b)一点鎖線B-B’の断面図、(c)一点鎖線C-C’の断面図、(d)一点鎖線D-D’の断面図である。 光導波路基板の他の例を示す図である。 本発明の光導波路素子に係る第2の実施例を示す平面図である。 本発明の光導波路素子に係る第3の実施例を示す平面図である。 図5の光導波路素子の断面図であり、(a)一点鎖線E-E’の断面図、(b)一点鎖線F-F’の断面図である。 図6の別の実施例を示す図である。 図5の応用例を示す図である。 本発明の光変調デバイス及び光送信装置を説明する平面図である。
 以下、本発明の光導波路素子について、好適例を用いて詳細に説明する。
 なお、以下の説明では、光導波路のスポットサイズ変換手段の構造は、出力端を中心に説明するが、入力端であっても同様に構成できることは言うまでもない。
 本発明の光導波路素子は、図1及び2に示すように、電気光学効果を有する材料で形成されるリブ型の光導波路10を有する光導波路基板(1,4)と、前記リブ型の光導波路10の入力端又は出力端が形成された位置に、該光導波路を伝搬する光波のモードフィールド径を変化させるスポットサイズ変換手段を備えた光導波路素子において、該スポットサイズ変換手段は、該リブ型の光導波路10に接続され、該光導波路の幅を拡大するテーパー部分11を備えた第1構成層(1)と、該第1構成層に積層され、該第1構成層の幅よりも狭い幅を有する第2構成層(2)と、該第2構成層の該リブ型の光導波路に近接する一部を除き、該第2構成層を覆うように配置され、該第2構成層の幅よりも広い幅を有する第3構成層(3)を備えていることを特徴とする。
 本発明の光導波路素子に使用される光導波路を構成する材料としては、電気光学効果を有する強誘電体材料、具体的には、ニオブ酸リチウム(LN)又はタンタル酸リチウム(LT)、PLZT(ジルコン酸チタン酸鉛ランタン)などの基板又は、これらの材料によるエピタキシャル膜などが利用可能である。また、半導体材料又は有機材料など種々の材料も光導波路素子の基板として利用可能である。
 本発明で使用される光導波路10の厚みH1は、1μm以下の極めて細いものであり、LNなどの結晶基板を機械的に研磨して薄板化する方法又は、LNなどのエピタキシャル膜を使用する方法がある。エピタキシャル膜の場合には、例えば、SiO基板、サファイア単結晶基板又はシリコン単結晶基板など、単結晶基板の結晶方位に合わせて、エピタキシャル膜を、スパッタ法、CVD法、ゾルゲル法などで形成する。
 図3に示すように、光導波路10を含む第1構成層1を構成する基板の厚み(図3のH1(10)とH1(12)を加えた厚み)が、例えば2~3μm程度と極めて薄いので、光導波路素子の機械的強度を高めるため、第1構成層1の裏面側には、保持基板4が配置される。保持基板4は、SiO基板などのように、第1構成層1(光導波路10)より低屈折率の材料としても良い。また、第1構成層1と保持基板4とは直接接合又は接着剤を用いて接合する方法も利用可能である。さらに、第1構成層と保持基板との間に中間層を用いることで、保持基板の選択肢を広げることが可能となる。例えば、LNより低屈折率で低誘電率のSiOを中間層として数μmの厚みで形成すれば、屈折率の高いSi又はアルミナなども保持基板として使うことが可能となる。一方、図2(a)に示すように、保持基板4を結晶成長の土台として使用し、エピタキシャル膜の光導波路10を構成する第1構成層1を設けることも可能である。
 光導波路10を構成するリブ型の突起の形成方法は、光導波路を形成する層(例えばLN層)を、ドライ又はウェットエッチングすることで形成することができる。また、リブ部の屈折率を高めるため、リブ部の位置にTiなどの高屈折率材料を熱拡散する方法も併せて使用することも可能である。
 本発明の光導波路素子の特徴であるスポットサイズ変換手段(SSC)は、図1及び図1に示す一点鎖線(A-A’等)における断面図である図2に示すように、リブ型の光導波路10に接続され、該光導波路の幅を拡大するテーパー部分11を備えた第1構成層(1)と、該第1構成層に積層され、該第1構成層の幅よりも狭い幅を有する第2構成層(2)と、該第2構成層の該リブ型の光導波路に近接する一部を除き、該第2構成層を覆うように配置され、該第2構成層の幅よりも広い幅を有する第3構成層(3)から構成される。
 第2構成層(2)を構成する材料の屈折率は、第1構成層(1)を構成する材料及び第3構成層(3)を構成する材料の屈折率よりも高い。また、必要に応じて、第1構成層(1)と第3構成層(3)とは同じ屈折率を有する材料で構成することも可能である。具体的には、第1構成層は、上述のように、ニオブ酸リチウム、タンタル酸リチウムなどの結晶又は、これらにその他の物質をドープした結晶であっても良い。また、第2構成層としては、Si、Geのいずれかを含む材料を用いることができる。さらに、第3構成層は、第1構成層と同じ材料又は、Ta、Nb、Ti、Zr、Ce、Zn、Sb、Ndを含む材料で形成することができる。第3構成層に使用する材料は、第1構成層の屈折率との差が小さいほど、第2構成層から上下層への光のしみ出し量が均等になるので、結合端面のMFDにおいて、第2構成層を挟んだ上下方向の対称性が高くなり、結合損をより小さくすることができる。この観点から、第1、第3構成層の屈折率差は0.1より小さくしても良い。
 本発明に使用するスポットサイズ変換手段では、第1構成層(1)を構成する光導波路10をテーパー部分11を使用してスポットサイズを横方向(図2の幅W1方向)に広げる。しかしながら、第1構成層(1)の上側には、第1構成層より屈折率の高い第2構成層(2)が配置されているので、第1構成層1(11)を伝搬する光波は、第2構成層の方にも引き寄せられながら、スポットサイズが拡大している。これにより、マルチモードが発生し難く、テーパー部分の角度θ1も、精確に設計する必要は無く、所望の角度より少し小さく(テーパー部分の広がり角が大きく)なっても問題は無い。
 この光波を第2構成層側に引きつける効果は、第1構成層の光導波路10がテーパー部分11に変化する前に発生させることが効果的である。このため、第2構成層の光導波路10側の先端部分αは、光導波路10とテーパー部分11との接続部βよりも光導波路10側に配置されるようにしても良い。
 図1の一点鎖線B-B’における断面図である図2(b)に示すように、光導波路10(高さH1:1μm、幅W1:1μmのサイズ,MFD:1μm)の上に、光導波路10(第1構成層1)よりも屈折率の高い第2構成層2を出現させる。しかしながら、第2構成層2の厚みH2は50~100nmと非常に薄いので、第2構成層内にはモードが立たず、第1構成層1の外側に一部が染み出すような形で、ほぼ第1構成層の光導波路と同等のサイズのMFD(図2の円形又は楕円状の点線Lで示す。)が観察される。
 その後、図1に示すように、第1構成層は緩い角度で先太になり、一点鎖線C-C’の断面図である図2(c)に示すように、その上の第2構成層は、幅W2を3~5μmまで広がっている。第2構成層の幅W2は、第1構成層1と第2構成層2の屈折率の関係により0.05~5μmの範囲で調整される。W2がこれより細い場合、シングルモードを保ちやすい利点はあるが、第2構成層自体の形成が困難である。逆に太い場合にはマルチモードが立ちやすい欠点はあるものの、形成が容易になることから、上述した範囲内で作成しても良い。
 さらに、図1の一点鎖線C-C’から一点鎖線D-D’にかけては、第2構成層2を覆うように、第3構成層3が形成される。上述したように、第3構成層3の屈折率は、第2構成層の屈折率よりも低く、例えば、第1構成層1との同じ屈折率としても良い。図1の一点鎖線D-D’の断面図である図2(d)に示すように、光導波路基板(1,4)の端部側に位置するスポットサイズ変換手段の端面構造は、第2構成層2を取り囲むように、第1構成層1と第3構成層3が配置されている。各構成要素のサイズは、一例として、第2構成層2の幅W2を3~5μmとし、第1構成層1の厚みH1を1μm、第3構成層3の厚みH3を1~4μmに設定できる。このような範囲に設定した際に、光波Lの入力端又は出力端におけるMFDは、図2(d)に示すように、横方向は3~5μm、縦方向は2~5μmまで拡大される。このように、第1構成層から第3構成層までの3種の材料からなるSSCとして、その機能を発現させることが出来る。
 第3構成層3の形状及び配置に際しては、第2構成層2に沿って伝播する光波に対して、急激な屈折率変化を発生させないように、構成しても良い。具体的には、図1に示すように、第3構成層のリブ型光導波路10側の端面(30,31)が光波の伝搬方向(矢印Loutと同じ方向)に対する角度(θ2,θ3)が90度以外に設定する。例えば、図1のθ2で100~170度、θ3で10~80度に設定することが可能である。θ2とθ3は逆の数値であっても良い。さらに、図1では第3構成層の端面(30,31)を一直線上に配置したが、図4に示すように、端面30と31とを鋭角に配置し、第3構成層の幅が徐々に広がるように構成することも可能である。この場合には、θ3は100~170度に設定できる。
 他の実施例では、図5乃至8に示すように、光導波路基板(1,4)の端部側に位置するスポットサイズ変換手段の端面構造は、第2構成層2が露出しないように、第1構成層1と第3構成層2が配置されている。図5に示すように、第2構造層2は、光導波路基板(1,4)の端部に向けて、幅を徐々に狭くしている。これに対応し、光波の閉じ込め機能を第3構成層3で担うため、図5に示すように、第3構成層の幅W3を、例えば、3~5μmとなるように調整している。この様子を、図5の一点鎖線E-E’及びF-F’における断面図である図6(a)及び(b)に示す。楕円状の点線Lは、光波のMFDの輪郭の概略を示す。
 光の入力端又は出力端である一点鎖線F-F’における断面図(図6(b))では、第2構成層2は消失しており、第1構成層1と第3構成層3による2種の材料からなるSSCとして、その機能を発現させることが出来る。このような構造は、図1のSSCと比較し、微細導波路である第2構成層2の出来栄えが、SSCの特性に影響を与えることが抑制でき、製造プロセスの裕度が広がるという利点がある。また、基板端面において第2構成層2が無いことにより実効屈折率を下げることが出来るので、反射を小さくすることが出来る点でも有効である。なお、第2構成層2を先細の状態で光の入力端又は出力端付近まで残すことで、第2構成層による閉じ込め効果を維持し、第3構成層3のリッジの側面荒れの影響を小さくすることも可能となる。
 図6に示す断面図の代わりに、図7に示す断面図の実施例を採用することも可能である。図7では、第3構成層3の幅の変化に対応し、第1構成層1の幅も変化している。これにより、第1構成層と第3構成層が協働して光閉じ込めを行うことができ、光波のMFDの形状も安定化することが可能となる。さらに、第1及び第3構成層に広がって伝搬する際に、予定以上にMFDが大きくなった場合には、図8に示すように、光の入力端又は出力端に向かって、第3構成層、又は第3及び第1構成層の幅を、徐々に狭くする構成を付与することも可能である。当然、第3構成層、又は第3及び第1構成層の幅を、徐々に拡大し、伝搬する光波のMFDをさらに拡大することも可能である。
 以上のことからも、本発明の光導波路素子は、第1乃至第3構成層の形状及び配置を調整することで、スポットサイズ変換手段として機能させるだけでなく、各層の配置に係る位置精度を比較的緩やかにでき、また、第2構成層の形状・配置により、第3構成層等の各層の表面の荒れによる光挿入損失の発生も低減することが可能となる。
 なお、上述の説明では、各層の構成が、各々、単一の構成層として説明したが、例えば、第1乃至3構成層の少なくとも一つの層を、2つ以上層の組合せとして構成することも可能である。その際には、形状又は材質を若干変化させ、隣接する構成層と協働して適切なMFDとなるように適宜設定することも可能である。
 次に、本発明の光導波路素子を用いた光変調デバイスと光送信装置について説明する。
 上述した光導波路素子は、さらに、光導波路基板1(4)に光導波路10を伝搬する光波を変調する変調電極(不図示)を設け、図9のように、筐体SC内に収容される。さらに、光導波路に光波を入出力する光ファイバFを設けることで、光変調デバイスMDを構成することができる。図9では、光ファイバは、筐体の側壁を貫通する貫通孔を介して筐体内に導入し、光導波路素子に直接接合されている。光導波路素子と光ファイバとは、空間光学系を介して光学的に接続することも可能である。光導波路10の入力端又は出力端には、スポットサイズ変換手段(SSC1,SSC2)が設けられている。
 光変調デバイスMDに変調動作を行わせる変調信号を出力する電子回路(デジタル信号プロセッサーDSP)を、光変調デバイスMDに接続することにより、光送信装置OTAを構成することが可能である。光導波路素子に印加する変調信号は増幅する必要があるため、ドライバ回路DRVが使用される。ドライバ回路DRV又はデジタル信号プロセッサーDSPは、筐体SCの外部に配置することも可能であるが、筐体SC内に配置することも可能である。特に、ドライバ回路DRVを筐体内に配置することで、ドライバ回路からの変調信号の伝搬損失をより低減することが可能となる。
 以上説明したように、本発明によれば、製造工程が複雑化せず、光挿入損失を抑制したスポットサイズ変換手段を備えた光導波路素子を提供することが可能となる。さらには、その光導波路素子を用いた光変調デバイス並びに光送信装置を提供することが可能となる。
 1 光導波路基板(第1構成層)
 2 第2構成層
 3 第3構成層
 4 保持基板
 10 リブ型光導波路
 11 テーパー部分
 MD 光変調デバイス
 OTA 光送信装置

 

Claims (10)

  1.  電気光学効果を有する材料で形成されるリブ型の光導波路を有する光導波路基板と、前記リブ型の光導波路の入力端又は出力端が形成された位置に、該光導波路を伝搬する光波のモードフィールド径を変化させるスポットサイズ変換手段を備えた光導波路素子において、
     該スポットサイズ変換手段は、
     該リブ型の光導波路に接続され、該光導波路の幅を拡大するテーパー部分を備えた第1構成層と、
     該第1構成層に積層され、該第1構成層の幅よりも狭い幅を有する第2構成層と、
     該第2構成層の該リブ型の光導波路に近接する一部を除き、該第2構成層を覆うように配置され、該第2構成層の幅よりも広い幅を有する第3構成層を備えていることを特徴とする光導波路素子。
  2.  請求項1に記載の光導波路素子において、該第2構成層を構成する材料の屈折率は、該第1構成層を構成する材料や該第3構成層を構成する材料の屈折率よりも高いことを特徴とする光導波路素子。
  3.  請求項1又は2に記載の光導波路素子において、該第2構成層の該リブ型の光導波路側の先端部分は、該リブ型の光導波路上に配置されていることを特徴とする光導波路素子。
  4.  請求項1乃至3のいずれかに記載の光導波路素子において、該第3構成層の該リブ型の光導波路側の端面は、該第2構成層を伝搬する光波の進行方向に対して90度以外の傾きを有して配置されていることを特徴とする光導波路素子。
  5.  請求項1乃至4のいずれかに記載の光導波路素子において、該光導波路基板の端部側に位置する該スポットサイズ変換手段の端面構造は、該第2構成層を取り囲むように、該第1構成層と該第3構成層が配置されていることを特徴とする光導波路素子。
  6.  請求項1乃至4のいずれかに記載の光導波路素子において、該光導波路基板の端部側に位置する該スポットサイズ変換手段の端面構造は、該第2構成層が露出しないように、該第1構成層と該第3構成層が配置されていることを特徴とする光導波路素子。
  7.  請求項1乃至6のいずれかに記載の光導波路素子において、該光導波路基板は、該光導波路が形成された薄板と、該薄板を保持する保持基板とから構成され、該保持基板を構成する材料の屈折率は、該薄板を構成する材料の屈折率よりも低いことを特徴とする光導波路素子。
  8.  請求項1乃至6のいずれかに記載の光導波路素子において、該光導波路基板は、該光導波路が形成された薄板と、該薄板を保持する保持基板と、該薄板と該保持基板との間に中間層を設け、該中間層を構成する材料の屈折率は、該薄板を構成する材料の屈折率よりも低いことを特徴とする光導波路素子。
  9.  請求項1乃至8のいずれかに記載の光導波路素子は、該光導波路を伝搬する光波を変調するための変調電極を備え、該光導波路素子と、該光導波路素子の変調電極に入力する変調信号を増幅する電子回路とを筐体の内部に収容することを特徴とする光変調デバイス。
  10.  請求項9に記載の光変調デバイスと、該光変調デバイスに変調動作を行わせる変調信号を出力する電子回路とを有することを特徴とする光送信装置。
PCT/JP2021/047528 2021-02-26 2021-12-22 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置 WO2022181021A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180086181.2A CN116724259A (zh) 2021-02-26 2021-12-22 光波导元件及使用其的光调制器件以及光发送装置
US18/270,168 US20240069281A1 (en) 2021-02-26 2021-12-22 Optical waveguide element, optical modulation device using optical waveguide element, and optical transmission device using optical waveguide element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021031062A JP2022131873A (ja) 2021-02-26 2021-02-26 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置
JP2021-031062 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022181021A1 true WO2022181021A1 (ja) 2022-09-01

Family

ID=83048006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047528 WO2022181021A1 (ja) 2021-02-26 2021-12-22 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置

Country Status (4)

Country Link
US (1) US20240069281A1 (ja)
JP (1) JP2022131873A (ja)
CN (1) CN116724259A (ja)
WO (1) WO2022181021A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007072433A (ja) * 2005-08-11 2007-03-22 Ricoh Co Ltd 光集積素子及び光制御素子
JP2010230741A (ja) * 2009-03-26 2010-10-14 Ngk Insulators Ltd 光変調器
WO2012114866A1 (ja) * 2011-02-21 2012-08-30 日本電気株式会社 スポットサイズ変換器及びその製造方法
JP2014191301A (ja) * 2013-03-28 2014-10-06 Fujitsu Ltd スポットサイズ変換器、その製造方法及び光集積回路装置
US20150346429A1 (en) * 2014-05-27 2015-12-03 Skorpios Technologies, Inc. Waveguide mode expander using amorphous silicon
JP2016042575A (ja) * 2014-08-13 2016-03-31 華為技術有限公司Huawei Technologies Co.,Ltd. 光集積回路を製造する方法
JP2019095698A (ja) * 2017-11-27 2019-06-20 富士通オプティカルコンポーネンツ株式会社 光モジュール及び光変調器
US10444433B1 (en) * 2018-10-25 2019-10-15 Globalfoundries Inc. Waveguides including a patterned dielectric layer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007072433A (ja) * 2005-08-11 2007-03-22 Ricoh Co Ltd 光集積素子及び光制御素子
JP2010230741A (ja) * 2009-03-26 2010-10-14 Ngk Insulators Ltd 光変調器
WO2012114866A1 (ja) * 2011-02-21 2012-08-30 日本電気株式会社 スポットサイズ変換器及びその製造方法
JP2014191301A (ja) * 2013-03-28 2014-10-06 Fujitsu Ltd スポットサイズ変換器、その製造方法及び光集積回路装置
US20150346429A1 (en) * 2014-05-27 2015-12-03 Skorpios Technologies, Inc. Waveguide mode expander using amorphous silicon
JP2016042575A (ja) * 2014-08-13 2016-03-31 華為技術有限公司Huawei Technologies Co.,Ltd. 光集積回路を製造する方法
JP2019095698A (ja) * 2017-11-27 2019-06-20 富士通オプティカルコンポーネンツ株式会社 光モジュール及び光変調器
US10444433B1 (en) * 2018-10-25 2019-10-15 Globalfoundries Inc. Waveguides including a patterned dielectric layer

Also Published As

Publication number Publication date
CN116724259A (zh) 2023-09-08
US20240069281A1 (en) 2024-02-29
JP2022131873A (ja) 2022-09-07

Similar Documents

Publication Publication Date Title
US7382942B2 (en) Optical waveguide devices
US8923658B2 (en) Optical waveguide device
JP4183716B2 (ja) 光導波路素子
CN216411633U (zh) 光波导元件及使用光波导元件的光调制器件和光发送装置
JP2020020953A (ja) 光変調器、光変調器モジュール、及び光送信モジュール
JP2007264548A (ja) 光変調素子
WO2014157456A1 (ja) 光変調器
EP1870765A1 (en) Optical control element
JP7226554B2 (ja) プラズモニック導波路およびその製造方法
WO2022181021A1 (ja) 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置
JP5254855B2 (ja) 進行波型光変調器
US20220163825A1 (en) Optical waveguide element
WO2022138699A1 (ja) 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置
WO2023053404A1 (ja) 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置
WO2024075277A1 (ja) 光導波路素子及びそれを用いた光変調器並びに光送信装置
WO2024069953A1 (ja) 光変調器及びそれを用いた光送信装置
WO2024069977A1 (ja) 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置
US20230314732A1 (en) Optical waveguide element, and optical modulation device and optical transmission apparatus using same
WO2024069952A1 (ja) 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置
WO2023188194A1 (ja) 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置
WO2023145090A1 (ja) 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置
JP2007139958A (ja) 光導波路デバイス
CN118119879A (zh) 光波导元件、使用光波导元件的光调制器件及光发送装置
CN116888512A (zh) 光波导元件、使用光波导元件的光调制器件及光发送装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928114

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180086181.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21928114

Country of ref document: EP

Kind code of ref document: A1