WO2019187815A1 - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
WO2019187815A1
WO2019187815A1 PCT/JP2019/006356 JP2019006356W WO2019187815A1 WO 2019187815 A1 WO2019187815 A1 WO 2019187815A1 JP 2019006356 W JP2019006356 W JP 2019006356W WO 2019187815 A1 WO2019187815 A1 WO 2019187815A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
command value
unit
value
current
Prior art date
Application number
PCT/JP2019/006356
Other languages
English (en)
French (fr)
Inventor
仁 福原
宮川 智
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to CN201980003974.6A priority Critical patent/CN111034030A/zh
Priority to EP19778380.6A priority patent/EP3780383A4/en
Priority to US16/643,611 priority patent/US11133769B2/en
Publication of WO2019187815A1 publication Critical patent/WO2019187815A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/13Observer control, e.g. using Luenberger observers or Kalman filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/40Regulating or controlling the amount of current drawn or delivered by the motor for controlling the mechanical load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/28Arrangements for controlling current

Definitions

  • the present invention relates to a motor control device.
  • This invention is made in view of the said present condition, and aims at providing the motor control apparatus which can detect early that the motor became an abnormal state.
  • a motor control device for controlling a motor calculates a voltage command value based on an input current command value, and uses the calculated voltage command value for the motor.
  • a control unit that controls the driving of the motor, a virtual motor unit that simulates a current value flowing through the motor based on the voltage command value calculated by the control unit and a plurality of parameters related to the specifications of the motor, and the control unit
  • a determination unit that determines whether or not the motor is in an abnormal state by comparing the input current command value and the current value simulated by the virtual motor unit;
  • the motor control device includes a current command value input to the control unit and a current value simulated by the virtual motor unit based on the voltage command value calculated from the current command value by the control unit. To determine whether or not the motor is in an abnormal state.
  • the motor control device has a configuration in which the reference value itself (current command value or simulated current value) for determining whether or not the motor is in an abnormal state is changed according to the situation. Have. Therefore, according to the motor control device, it is possible to detect that the motor is in an abnormal state accordingly earlier than before.
  • the determination unit may compare a difference between the current command value and the current value with a threshold value in order to determine whether or not the motor is in an abnormal state. Further, the ratio between the current command value and the current value may be compared with a threshold value (upper / lower threshold value).
  • a d-axis current command value and a q-axis current command value are input to the control unit as the current command value, and the control unit receives the input d-axis current command value and the q-axis
  • a configuration in which a d-axis voltage command value and a q-axis voltage command value are calculated as the voltage command values based on the current command value may be employed.
  • the control unit of the motor control device may perform vector control.
  • a plurality of parameters are a parameter indicating the resistance value of the armature of each phase of the motor, a parameter indicating the d-axis inductance of the motor, and a parameter indicating the q-axis inductance of the motor And a parameter indicating the armature interlinkage magnetic flux of the permanent magnet in the motor.
  • at least one of the parameters included in the plurality of parameters is set as information indicating the temperature dependence of the physical property value of the motor, and the virtual motor unit includes the d-axis voltage command value and the q-axis voltage command value.
  • a device that simulates the d-axis current value and the q-axis current value of the motor based on the plurality of parameters and the temperature of the motor may be employed.
  • a motor control device capable of detecting at an early stage that the motor is in an abnormal state.
  • FIG. 1 is an explanatory diagram of a schematic configuration and usage pattern of the motor control device according to the first embodiment of the present invention.
  • FIG. 2 is a functional block diagram of a control unit provided in the motor control device according to the first embodiment.
  • FIG. 3 is a functional block diagram of the motor control unit.
  • FIG. 4 is a functional block diagram of the virtual motor unit.
  • FIG. 5 is a flowchart of the determination process performed by the determination unit.
  • FIG. 6 is an explanatory diagram of a schematic configuration and a usage pattern of the motor control device according to the second embodiment of the present invention.
  • FIG. 7 is a functional block diagram of a control unit provided in the motor control device according to the second embodiment.
  • FIG. 1 shows a schematic configuration and usage of the motor control device 20 according to the first embodiment of the present invention.
  • the motor control device 20 is a device (so-called servo driver) for driving a motor (three-phase motor) 55. As illustrated, the motor control device 20 includes a power circuit 21 and a control unit 30.
  • the power circuit 21 is a circuit that generates a three-phase alternating current supplied to the motor 55 under the control of the control unit 30 (details will be described later).
  • the power circuit 21 includes a rectifier circuit 22 and a smoothing capacitor 23 for rectifying three-phase alternating current from the three-phase power supply 50.
  • the power circuit 21 also includes an inverter circuit 24 for converting the output voltage of the rectifier circuit 22 smoothed by the smoothing capacitor 23 into a three-phase AC voltage.
  • the control unit 30 is basically a unit that controls the motor 55 by controlling the inverter circuit 24 in accordance with an instruction from the host device 10 such as a PLC (Programmable logic controller).
  • the control unit 30 includes a processor (CPU, microcontroller, etc.) and its peripheral circuits.
  • the motor control device 20 is provided with three current sensors 25 for measuring the U-phase current value Iu, the V-phase current value Iv, and the W-phase current value Iw of the motor 55. Further, the motor 55 is provided with a rotation angle sensor 56 for detecting the rotation angle ⁇ of the motor 55, and information from these sensors 25 and 56 is input to the control unit 30.
  • FIG. 2 is a functional block diagram of the control unit 30, and FIG. 3 is a functional block diagram of the motor control unit 31.
  • FIG. 4 is a functional block diagram of the virtual motor unit 32, and FIG. 5 is a flowchart of determination processing performed by the determination unit 33.
  • Each of the functional blocks shown in FIG. 2 to FIG. 4 may be software (implemented as one function of the processor) or hardware (integrated circuit, etc.). .
  • control unit 30 of the motor control device 20 functions as a motor control unit 31, a virtual motor unit 32, and a determination unit 33.
  • the motor control unit 31 controls the motor 55 by vector control based on the current command values Idreq and Iqreq, the U-phase current value Iu, the V-phase current value Iv, the W-phase current value Iw, and the rotation angle ⁇ of the motor 55.
  • the virtual motor unit 32 and the determination unit 33 are functional blocks implemented in the control unit 30 so that it can be detected at an early stage that the motor 55 is in an abnormal state.
  • the motor control unit 31 includes a PI control unit 41, a two-phase three-phase conversion unit 42, a PWM signal generation unit 43, and a three-phase two-phase conversion unit 44.
  • the PI control unit 41 generates a voltage command value Vd by PI calculation of a current deviation between the current command value Idreq and the current value Id from the three-phase two-phase conversion unit 44, and the current command value Iqreq and the three-phase two-phase
  • This is a functional block that generates a voltage command value Vq by PI calculation of a current deviation between the current values Iq from the conversion unit 44.
  • the current command values Idreq and Iqreq in the present embodiment are generated in the control unit 30 based on commands (speed command, position command, etc.) from the host device 10 and other information (speed of the motor 55, etc.). Information. However, the current command values Idreq and Iqreq may be information input from the host device 10.
  • the two-phase / three-phase conversion unit 42 converts the voltage command values Vd and Vq from the PI control unit 41 into three-phase AC voltage command values Vu, Vv, and Vw using the rotation angle ⁇ of the motor 55. It is.
  • the PWM signal generation unit 43 generates a PWM signal for ON / OFF control of the six semiconductor switches in the inverter circuit 24 based on the voltage command values Vu, Vv, Vw from the two-phase / three-phase conversion unit 42. It is.
  • the three-phase to two-phase conversion unit 44 converts the current values Iu, Iv, and Iw of each phase detected by the current sensor 25 for each phase based on the rotation angle ⁇ of the motor 55 into the two-phase current values in the rotating coordinate system. It is a functional block for converting to Id and Iq.
  • the motor control unit 31 is a functional block that performs vector control with the above-described configuration, and stops control of the motor 55 (inverter circuit 24) when a predetermined stop instruction is input from the determination unit 33. It is a functional block (see FIG. 2).
  • the virtual motor unit 32 (FIG. 2) is a functional block that simulates the current command values Idreq and Iqreq based on the voltage command values Vd, Vq and the like calculated by the motor control unit 31 and various preset motor parameters. It is.
  • the following motor parameters are set in the virtual motor unit 32 from the host device 10 or another computer.
  • the resistance value R [ohm] of the armature of each phase of the motor 55 D-axis inductance Ld [H] and q-axis inductance Lq [H] of the motor 55
  • the virtual motor unit 32 includes the voltage command values Vd, Vq, the current values Id, Iq and the motor generated during the control process of the motor 55 by the motor control unit 31 (FIG. 3).
  • An electrical angular velocity ⁇ 55 (a value obtained by differentiating the electrical angle ⁇ e calculated from ⁇ ) is input.
  • the virtual motor unit 32 calculates sId and sIq according to the following equation (1), and integrates the calculated sId and sIq to thereby calculate Id and Iq.
  • the process for calculating the simulation results Id ′ and Iq ′ is repeated.
  • the determination unit 33 is a functional block that performs the determination process of the procedure illustrated in FIG. 5 every time the simulation results Id ′ and Iq ′ of Id and Iq are calculated by the virtual motor unit 32.
  • the determination unit 33 determines whether or not an abnormality determination condition is established between the virtual current value and the actual current value. Is determined (step S101).
  • the virtual current value is both or one of the simulation results Id ′ and Iq ′.
  • the abnormality determination condition is a condition (relational expression between the actual current value and the virtual current value) that is determined in advance so that it can be established when it can be determined that the motor 55 is in an abnormal state.
  • the virtual current value (both or one of Id ′ and Iq ′) is a theoretical value of a two-phase current value flowing through the motor 55 when the motor 55 is in a normal state. Therefore, it can be determined whether the motor 55 is in an abnormal state based on the difference between the virtual current value and the actual current value.
  • the motor 55 It can be determined whether or not is in an abnormal state. (Id′ ⁇ Id) 2 + (Iq′ ⁇ Iq) 2 ⁇ threshold value (Id ′ / Id) value is outside the allowable range for Id and (Iq ′ / Iq) value is outside the allowable range for Iq
  • step S101 When the abnormality determination condition is not satisfied (step S101; NO), the determination unit 33 ends this determination process (the process of FIG. 5) without performing any particular process. On the other hand, when the abnormality determination condition is satisfied (step S101; YES), the determination unit 33 instructs the motor control unit 31 to stop the control (step S102), and then ends the determination process.
  • the motor control device 20 simulates based on the current command value input to the motor control unit 31 and the voltage command value calculated by the motor control unit 31 from the current command value.
  • the current value flowing through the motor 55 is compared to determine whether or not the motor 55 is in an abnormal state.
  • the motor control device is configured such that the reference value itself (current command value or simulated current value) for determining whether or not the motor 55 is in an abnormal state is changed according to the situation. Have Therefore, according to the motor control device, it is possible to detect that the motor is in an abnormal state accordingly earlier than before.
  • FIG. 6 shows a schematic configuration and a usage pattern of the motor control device 20b according to the second embodiment of the present invention.
  • the motor control device 20b is a device in which the control unit 30 of the motor control device 20 is replaced with a control unit 30b.
  • the control unit 30b is a unit obtained by modifying the control unit 30 so as to determine whether or not the motor 55 is in an abnormal state in consideration of the temperature of the motor 55.
  • control unit 30b has a configuration in which the virtual motor unit 32 of the control unit 30 is replaced with a virtual motor unit 32b.
  • the virtual motor unit 32b simulates the current command values Idreq and Iqreq based on the voltage command values Vd, Vq and the like calculated by the motor control unit 31 and various preset motor parameters. Is a functional block.
  • the virtual motor unit 32b includes, as various motor parameters, information R (T) representing the resistance value of the armature of each phase of the motor 55 as a function of the temperature T of the motor 55 and the d-axis inductance of the motor 55.
  • Information Ld (T) or the like expressed as a function of the temperature T is set.
  • the temperature T of the motor 55 is input to the virtual motor unit 32 b from a temperature sensor 57 attached to the motor 55.
  • the virtual motor unit 32b is configured to calculate Id ′ and Iq ′ using parameter values (resistance value R, d-axis inductance Ld, etc.) at the current temperature T of the motor 55 (see FIG. 4). ing.
  • the motor control device 20b is configured to simulate the current command value in consideration of the temperature T of the motor 55, that is, abnormal in consideration of the influence of the temperature T of the motor 55. It has a configuration that does not require determination conditions. In the motor control device 20 described above, it is necessary to determine the abnormality determination condition in consideration of the influence of the temperature T of the motor 55. Therefore, according to the motor control device 20b, the influence of the temperature T of the motor 55 is affected. Since it is not necessary to determine the abnormality determination condition in consideration, it can be detected earlier than the motor control device 20 that the motor 55 is in an abnormal state.
  • the motor control device (20, 20b) can perform various modifications.
  • the control unit 30 (motor control unit 31) may be modified to perform sensorless vector control or to perform no vector control.
  • the determination unit 33 may be modified so that a stop instruction is issued or information indicating that is transmitted to the upper level device 10 without issuing a stop instruction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

モータが異常状態になったことを早期に検出できるモータ制御装置を提供する。モータ制御装置は、入力された電流指令値に基づき電圧指令値を算出し、算出した電圧指令値を用いて前記モータの駆動制御を行う制御部と、前記制御部が算出した前記電圧指令値と前記モータの仕様に関する複数のパラメータとに基づき前記モータを流れる電流値をシミュレートする仮想モータ部と、前記制御部に入力された前記電流指令値と前記仮想モータ部によりシミュレートされた前記電流値とを比較することで前記モータが異常状態にあるか否かを判定する判定部と、を備える。

Description

モータ制御装置
 本発明は、モータ制御装置に関する。
 モータが暴走すると作業者に危険が及ぶことやモータにより駆動されている機器が破損することがある。そのため、モータの回転速度やモータの駆動電流を閾値と比較することで、モータが暴走状態となっているか否かを判定することが行われている(例えば、特許文献1参照)。
 ただし、モータの回転速度等と閾値との比較では、モータが暴走状態になったことを早期に検出できない場合があった。
特開平5-22977号公報
 本発明は、上記現状に鑑みてなされたものであり、モータが異常状態になったことを早期に検出できるモータ制御装置を提供することを目的とする。
 上記目的を達成するために、本発明の一観点に係る、モータを制御するモータ制御装置は、入力された電流指令値に基づき電圧指令値を算出し、算出した電圧指令値を用いて前記モータの駆動制御を行う制御部と、前記制御部が算出した前記電圧指令値と前記モータの仕様に関する複数のパラメータとに基づき前記モータを流れる電流値をシミュレートする仮想モータ部と、前記制御部に入力された前記電流指令値と前記仮想モータ部によりシミュレートされた前記電流値とを比較することで前記モータが異常状態にあるか否かを判定する判定部と、を備える。
 すなわち、本発明の一観点に係るモータ制御装置は、制御部に入力された電流指令値と、制御部が当該電流指令値から算出した電圧指令値に基づき仮想モータ部によりシミュレートされた電流値とを比較することでモータが異常状態にあるか否かを判定する構成を有する。換言すれば、モータ制御装置は、モータが異常状態にあるか否かを判定するための基準値自体(電流指令値、又は、シミュレートされた電流値)が状況に応じて変更される構成を有する。従って、モータ制御装置によれば、その分、モータが異常状態になったことを、従来よりも早期に検出することが可能となる。
 モータ制御装置の各部(制御部、仮想モータ部、判定部)としては、具体的な構成の異なる様々なものを採用することが出来る。例えば、判定部は、モータが異常状態にあるか否かを判定するために、電流指令値と電流値の間の差を閾値と比較するものであっても良い。また、電流指令値と電流値の比を閾値(上下限閾値)と比較するものであっても良い。
 モータ制御装置に、『前記制御部には、前記電流指令値としてd軸電流指令値及びq軸電流指令値が入力され、前記制御部は、入力された前記d軸電流指令値及び前記q軸電流指令値に基づき、前記電圧指令値として、d軸電圧指令値及びq軸電圧指令値を算出する』構成を採用しておいても良い。換言すれば、モータ制御装置の制御部は、ベクトル制御を行うものであっても良い。
 ベクトル制御を行う制御部を採用する場合、複数のパラメータは、前記モータの各相の電機子の抵抗値を示すパラメータ、前記モータのd軸インダクタンスを示すパラメータ、前記モータのq軸インダクタンスを示すパラメータ及び前記モータ内の永久磁石の電機子鎖交磁束を示すパラメータを含んでも良い。また、前記複数のパラメータに含まれる少なくとも1つの前記パラメータを、前記モータの物性値の温度依存性を示す情報としておき、仮想モータ部として、前記d軸電圧指令値及び前記q軸電圧指令値と前記複数のパラメータと前記モータの温度とに基づき、前記モータのd軸電流値及びq軸電流値をシミュレートするものを採用して良い。
 本発明によれば、モータが異常状態になったことを早期に検出できるモータ制御装置を提供することができる。
図1は、本発明の第1実施形態に係るモータ制御装置の概略構成及び使用形態の説明図である。 図2は、第1実施形態に係るモータ制御装置が備える制御部の機能ブロック図である。 図3は、モータ制御部の機能ブロック図である。 図4は、仮想モータ部の機能ブロック図である。 図5は、判定部が行う判定処理の流れ図である。 図6は、本発明の第2実施形態に係るモータ制御装置の概略構成及び使用形態の説明図である。 図7は、第2実施形態に係るモータ制御装置が備える制御部の機能ブロック図である。
 以下、本発明の実施の形態を、図面を参照して説明する。
 《第1実施形態》
 図1に、本発明の第1実施形態に係るモータ制御装置20の概略構成及び使用形態を示す。
 本実施形態に係るモータ制御装置20は、モータ(三相モータ)55を駆動するための装置(いわゆるサーボドライバ)である。図示してあるように、モータ制御装置20は、パワー回路21と制御部30とを備える。
 パワー回路21は、制御部30(詳細は後述)の制御下、モータ55に供給する三相交流を生成する回路である。パワー回路21は、三相電源50からの三相交流を整流するための整流回路22と平滑コンデンサ23とを備えている。また、パワー回路21は、平滑コンデンサ23により平滑化された整流回路22の出力電圧を、三相交流電圧に変換するためのインバータ回路24も備えている。
 制御部30は、基本的には、PLC(Programmable logic controller)等の上位装置10からの指示に従ってインバータ回路24を制御することによりモータ55を制御するユニットである。制御部30は、プロセッサ(CPU、マイクロコントローラ等)とその周辺回路とから構成されている。
 図示してあるように、モータ制御装置20には、モータ55のU相電流値Iu、V相電流値Iv、W相電流値Iwを測定するための3つの電流センサ25が設けられている。また、モータ55には、モータ55の回転角θを検出するための回転角センサ56が設けられており、制御部30には、これらのセンサ25,56からの情報が入力されている。
 以下、図2~図5を用いて、制御部30の機能を説明する。図2は、制御部30の機能ブロック図であり、図3は、モータ制御部31の機能ブロック図である。また、図4は、仮想モータ部32の機能ブロック図であり、図5は、判定部33が行う判定処理の流れ図である。なお、図2~図4に示してある各機能ブロックは、ソフトウェアが用いられたもの(プロセッサの一機能として実現されたもの)であっても、ハードウェア(集積回路等)であってもよい。
 図2に示してあるように、モータ制御装置20の制御部30は、モータ制御部31、仮想モータ部32及び判定部33として機能する。
 モータ制御部31は、電流指令値Idreq及びIqreqと、モータ55のU相電流値Iu、V相電流値Iv、W相電流値Iw及び回転角θとに基づき、ベクトル制御により、モータ55を制御する機能ブロックである。仮想モータ部32及び判定部33は、モータ55が異常状態になったことを早期に検出できるようにするために、制御部30に実装されている機能ブロックである。
 以下、モータ制御部31、仮想モータ部32及び判定部33の機能を具体的に説明する。
 〔モータ制御部31〕
 図3に示してあるように、モータ制御部31は、PI制御部41、二相三相変換部42、PWM信号生成部43及び三相二相変換部44を備える。
 PI制御部41は、電流指令値Idreqと三相二相変換部44からの電流値Idと間の電流偏差のPI演算により電圧指令値Vdを生成すると共に、電流指令値Iqreqと三相二相変換部44からの電流値Iq間の電流偏差のPI演算により電圧指令値Vqを生成する機能ブロックである。なお、本実施形態における電流指令値Idreq及びIqreqは、上位装置10からの指令(速度指令、位置指令等)と他の情報(モータ55の速度等)とに基づき、制御部30内で生成される情報である。ただし、電流指令値Idreq及びIqreqは、上位装置10から入力される情報であっても良い。
 二相三相変換部42は、PI制御部41からの電圧指令値Vd、Vqを、モータ55の回転角θを用いて、三相交流の電圧指令値Vu、Vv、Vwに変換する機能ブロックである。PWM信号生成部43は、二相三相変換部42からの電圧指令値Vu、Vv、Vwに基づき、インバータ回路24内の6つの半導体スイッチのON/OFF制御用のPWM信号を生成する機能ブロックである。
 三相二相変換部44は、モータ55の回転角θに基づき、各相用の電流センサ25により検知された各相の電流値Iu、Iv、Iwを、回転座標系における二相の電流値Id、Iqに変換する機能ブロックである。
 モータ制御部31は、以上のような構成によりベクトル制御を行う機能ブロックであると共に、判定部33から所定の停止指示が入力された場合には、モータ55(インバータ回路24)に対する制御を中止する機能ブロック(図2参照)となっている。
 〔仮想モータ部32〕
 仮想モータ部32(図2)は、モータ制御部31が算出した電圧指令値Vd、Vq等と、予め設定されている各種モータパラメータとに基づき、電流指令値Idreq及びIqreqをシミュレートする機能ブロックである。
 この仮想モータ部32には、モータ制御装置20の実際の運用を開始する前に、上位装置10又は他のコンピュータから、以下のようなモータパラメータが設定される。
・モータ55の各相の電機子の抵抗値R[ohm]
・モータ55のd軸インダクタンスLd[H]及びq軸インダクタンスLq[H]
・モータ55内の永久磁石の電機子鎖交磁束φm[V/(rad/sec)]
 また、モータ制御装置20の運用中、仮想モータ部32には、モータ制御部31(図3)によるモータ55の制御処理中で生成された電圧指令値Vd、Vqと電流値Id、Iqとモータ55の電機角速度ω(θから算出された電気角θeを微分した値)とが入力される。
 そして、仮想モータ部32は、図4に模式的に示してあるように、以下の(1)式にてsId,sIqを算出し、算出したsId,sIqを積分することで、Id,Iqのシミュレーション結果Id′,Iq′を算出する処理を繰り返すように構成されている。
Figure JPOXMLDOC01-appb-M000001

 なお、この(1)式におけるsは、ラプラス演算子である。また、(1)式は、永久磁石同期モータのdq座標系における電圧方程式である以下の(2)式を、sId,sIqについて解いた式である。
Figure JPOXMLDOC01-appb-M000002
 〔判定部33〕
 判定部33は、仮想モータ部32によりId,Iqのシミュレーション結果Id′,Iq′が算出される度に、図5に示した手順の判定処理を行う機能ブロックである。
 すなわち、仮想モータ部32によりId,Iqのシミュレーション結果Id′,Iq′が算出されると、判定部33は、仮想電流値と実電流値との間に異常判定条件が成立しているか否かを判断する(ステップS101)。
 ここで、仮想電流値とは、シミュレーション結果Id′及びIq′の双方又は一方のことである。また、実電流値とは、仮想電流値がId′及びIq′である場合には、電流指令値Idreq及びIqreq、又は、電流値Id及びIqのことであり、仮想電流値がIx′(x=d、q)である場合には、電流指令値Ixreq、又は、電流値Ixのことである。
 異常判定条件とは、モータ55が異常状態となったと判定できるときに成立するように予め定められている条件(実電流値及び仮想電流値の関係式)のことである。
 すなわち、仮想電流値(Id′及びIq′の双方又は一方)は、モータ55が正常な状態にある場合にモータ55を流れる二相電流値の理論値である。従って、仮想電流値と実電流値の違いの多寡によりモータ55が異常状態となったか否かを判定できる。
 具体的には、Id′及びIq′を仮想電流値として使用し、Id、Iqを実電流値として使用する場合には、例えば、以下のような条件を異常判定条件として使用すれば、モータ55が異常状態となったか否かを判定することができる。
・(Id′-Id)+(Iq′-Iq)≧閾値
・(Id′/Id)値がId用許容範囲外、且つ、(Iq′/Iq)値がIq用許容範囲外
 また、Ix′(x=d、q)を仮想電流値として使用し、Ixを実電流値として使用する場合には、例えば、以下のような条件を異常判定条件として使用すれば、モータ55が異常状態となったか否かを判定することができる。
・|Ix′-Ix|≧閾値
・(Ix′/Ix)値が許容範囲外
 なお、上記した各種条件における各閾値、各許容範囲は、実験等により予め定めておけば良い。
 異常判定条件が成立していなかった場合(ステップS101;NO)、判定部33は、特に処理を行うことなく、この判定処理(図5の処理)を終了する。一方、異常判定条件が成立していた場合(ステップS101;YES)、判定部33は、モータ制御部31に制御の停止を指示(ステップS102)してから、この判定処理を終了する。
 以上、説明したように、本実施形態に係るモータ制御装置20は、モータ制御部31に入力された電流指令値と、モータ制御部31が当該電流指令値から算出した電圧指令値に基づきシミュレートされたモータ55を流れる電流値とを比較することでモータ55が異常状態にあるか否かを判定する構成を有する。換言すれば、モータ制御装置は、モータ55が異常状態にあるか否かを判定するための基準値自体(電流指令値、又は、シミュレートされた電流値)が状況に応じて変更される構成を有する。従って、モータ制御装置によれば、その分、モータが異常状態になったことを、従来よりも早期に検出することが可能となる。
 《第2実施形態》
 図6に、本発明の第2実施形態に係るモータ制御装置20bの概略構成及び使用形態を示す。
 本実施形態に係るモータ制御装置20bは、モータ制御装置20の制御部30を、制御部30bに置換した装置である。制御部30bは、モータ55が異常状態になったか否かの判定をモータ55の温度を考慮して行うように制御部30を変形したユニットである。
 具体的には、図7に示してあるように、制御部30bは、制御部30の仮想モータ部32を、仮想モータ部32bに置換した構成を有している。
 仮想モータ部32bは、仮想モータ部32と同様に、モータ制御部31が算出した電圧指令値Vd、Vq等と、予め設定されている各種モータパラメータとに基づき、電流指令値Idreq及びIqreqをシミュレートする機能ブロックである。
 ただし、仮想モータ部32bには、各種モータパラメータとして、モータ55の各相の電機子の抵抗値をモータ55の温度Tの関数として表した情報R(T)や、モータ55のd軸インダクタンスを温度Tの関数として表した情報Ld(T)等が設定される。また、仮想モータ部32bには、モータ55に取り付けられた温度センサ57からモータ55の温度Tが入力される。そして、仮想モータ部32bは、モータ55の現在の温度Tにおけるパラメータ値(抵抗値R、d軸インダクタンスLd等)を用いて、Id′及びIq′を算出する(図4参照)ように構成されている。
 以上、説明したように、本実施形態に係るモータ制御装置20bは、モータ55の温度Tを考慮して電流指令値をシミュレートする構成、すなわち、モータ55の温度Tの影響を考慮して異常判定条件を決定する必要がない構成を有する。そして、上記したモータ制御装置20では、モータ55の温度Tの影響を考慮して異常判定条件を決定する必要があるのであるから、モータ制御装置20bによれば、モータ55の温度Tの影響を考慮して異常判定条件を決定する必要がない分、モータ55が異常状態になったことを、モータ制御装置20よりも早期に検出できることになる。
 《変形例》
 上記した各実施形態に係るモータ制御装置(20,20b)は、各種の変形を行えるものである。例えば、制御部30(モータ制御部31)を、センサレスのベクトル制御を行うものや、ベクトル制御を行わないものに変形しても良い。判定部33を、異常判定条件が成立していた場合、停止指示を出すと共に、又は、停止指示を出さずに、その旨を示す情報を上位装置10に送信するものに変形しても良い。
 仮想モータ部32bに設定する全モータパラメータを、温度依存性を示すものとするのではなく、仮想モータ部32bに設定する幾つかのモータパラメータを、温度依存性を示すものとしておいても良い。
 《付記》
 モータ(55)を制御するモータ制御装置(20)であって、
 入力された電流指令値に基づき電圧指令値を算出し、算出した電圧指令値を用いて前記モータの駆動制御を行う制御部(31)と、
 前記制御部(31)が算出した前記電圧指令値と前記モータ(55)の仕様に関する複数のパラメータとに基づき前記モータを流れる電流値をシミュレートする仮想モータ部(32)と、
 前記制御部(31)に入力された前記電流指令値と前記仮想モータ部(32)によりシミュレートされた前記電流値とを比較することで前記モータ(55)が異常状態にあるか否かを判定する判定部(33)と、
 を備えることを特徴とするモータ制御装置(20)。
 10 上位装置
 20、20b モータ制御装置
 21 パワー回路
 22 整流回路
 23 平滑コンデンサ
 24 インバータ回路
 25 電流センサ
 30、30b 制御部
 31 モータ制御部
 32、32b 仮想モータ部
 33 判定部
 41 PI制御部
 42 二相三相変換部
 43 PWM信号生成部
 44 三相二相変換部
 50 三相電源
 55 モータ
 56 回転角センサ
 57 温度センサ

Claims (4)

  1.  モータを制御するモータ制御装置であって、
     入力された電流指令値に基づき電圧指令値を算出し、算出した電圧指令値を用いて前記モータの駆動制御を行う制御部と、
     前記制御部が算出した前記電圧指令値と前記モータの仕様に関する複数のパラメータとに基づき前記モータを流れる電流値をシミュレートする仮想モータ部と、
     前記制御部に入力された前記電流指令値と前記仮想モータ部によりシミュレートされた前記電流値とを比較することで前記モータが異常状態にあるか否かを判定する判定部と、
     を備えることを特徴とするモータ制御装置。
  2.  前記制御部には、前記電流指令値としてd軸電流指令値及びq軸電流指令値が入力され、
     前記制御部は、入力された前記d軸電流指令値及び前記q軸電流指令値に基づき、前記電圧指令値として、d軸電圧指令値及びq軸電圧指令値を算出する、
     ことを特徴とする請求項1に記載のモータ制御装置。
  3.  前記複数のパラメータは、前記モータの各相の電機子の抵抗値を示すパラメータ、前記モータのd軸インダクタンスを示すパラメータ、前記モータのq軸インダクタンスを示すパラメータ及び前記モータ内の永久磁石の電機子鎖交磁束を示すパラメータを含む、
     ことを特徴とする請求項2に記載のモータ制御装置。
  4.  前記複数のパラメータに含まれる少なくとも1つの前記パラメータが、前記モータの物性値の温度依存性を示す情報であり、
     前記仮想モータ部は、前記d軸電圧指令値及び前記q軸電圧指令値と前記複数のパラメータと前記モータの温度とに基づき、前記モータのd軸電流値及びq軸電流値をシミュレートする、
     ことを特徴とする請求項3に記載のモータ制御装置。
PCT/JP2019/006356 2018-03-29 2019-02-20 モータ制御装置 WO2019187815A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980003974.6A CN111034030A (zh) 2018-03-29 2019-02-20 电动机控制装置
EP19778380.6A EP3780383A4 (en) 2018-03-29 2019-02-20 ENGINE CONTROL DEVICE
US16/643,611 US11133769B2 (en) 2018-03-29 2019-02-20 Motor control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-063668 2018-03-29
JP2018063668A JP2019176649A (ja) 2018-03-29 2018-03-29 モータ制御装置

Publications (1)

Publication Number Publication Date
WO2019187815A1 true WO2019187815A1 (ja) 2019-10-03

Family

ID=68059811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006356 WO2019187815A1 (ja) 2018-03-29 2019-02-20 モータ制御装置

Country Status (5)

Country Link
US (1) US11133769B2 (ja)
EP (1) EP3780383A4 (ja)
JP (1) JP2019176649A (ja)
CN (1) CN111034030A (ja)
WO (1) WO2019187815A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108599651B (zh) * 2018-05-15 2020-07-03 华中科技大学 基于虚拟电压注入的感应电机无速度传感器驱动控制方法
KR102488028B1 (ko) * 2020-10-29 2023-01-13 경북대학교 산학협력단 유도 전동기의 턴 쇼트 고장 진단 장치 및 그 방법
US11988715B2 (en) 2020-10-29 2024-05-21 Kyungpook National University Industry-Academic Cooperation Foundation Device for diagnosing turn-short fault of induction motor and method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321722A (en) * 1976-08-12 1978-02-28 Toshiba Corp Method and apparatus for directly controlling motor
JPS5980175A (ja) * 1982-10-25 1984-05-09 Toshiba Corp 電動機の速度制御装置
JPH0522977A (ja) 1991-07-12 1993-01-29 Yaskawa Electric Corp サーボモータの暴走検出・防止方法
JPH06269191A (ja) * 1993-03-12 1994-09-22 Mitsubishi Electric Corp サーボモータの制御装置
JP2013240264A (ja) * 2012-04-20 2013-11-28 Mitsubishi Electric Corp モータ制御装置
WO2016143481A1 (ja) * 2015-03-10 2016-09-15 株式会社明電舎 電力変換器の同期制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6900607B2 (en) * 2001-08-17 2005-05-31 Delphi Technologies, Inc. Combined feedforward and feedback parameter estimation for electric machines
CN103701394B (zh) * 2013-12-30 2016-06-08 哈尔滨工业大学 一种基于电流量的逆变器功率管开路故障在线诊断方法
CN103997274B (zh) * 2014-05-30 2016-05-18 清华大学 基于一维模糊控制的模型参考自适应系统参数自整定方法
CN105634310B (zh) * 2014-11-06 2018-09-04 台达电子工业股份有限公司 控制信号产生系统及其逆变器控制装置与相关控制电路
EP3160037A1 (en) * 2015-10-20 2017-04-26 ABB Schweiz AG Method for identifying the discrete instantaneous angular speed of an electromechanical system
CN105490605A (zh) * 2015-12-16 2016-04-13 上海新时达电气股份有限公司 感应电机预测控制模型参数在线调整方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321722A (en) * 1976-08-12 1978-02-28 Toshiba Corp Method and apparatus for directly controlling motor
JPS5980175A (ja) * 1982-10-25 1984-05-09 Toshiba Corp 電動機の速度制御装置
JPH0522977A (ja) 1991-07-12 1993-01-29 Yaskawa Electric Corp サーボモータの暴走検出・防止方法
JPH06269191A (ja) * 1993-03-12 1994-09-22 Mitsubishi Electric Corp サーボモータの制御装置
JP2013240264A (ja) * 2012-04-20 2013-11-28 Mitsubishi Electric Corp モータ制御装置
WO2016143481A1 (ja) * 2015-03-10 2016-09-15 株式会社明電舎 電力変換器の同期制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3780383A4

Also Published As

Publication number Publication date
EP3780383A1 (en) 2021-02-17
CN111034030A (zh) 2020-04-17
EP3780383A4 (en) 2021-12-01
US20200212835A1 (en) 2020-07-02
US11133769B2 (en) 2021-09-28
JP2019176649A (ja) 2019-10-10

Similar Documents

Publication Publication Date Title
JP5397023B2 (ja) 交流モータの制御装置
JP6183291B2 (ja) 同期モータの制御装置
JP3218954B2 (ja) 交流モータ制御回路の異常検出装置
WO2019187815A1 (ja) モータ制御装置
US9461576B2 (en) Fan motor drive device and blower device
JP5910460B2 (ja) 断線検出装置
JP2003348900A (ja) モータ異常検出装置及び電動パワーステアリング制御装置
JP4860012B2 (ja) 電気車の電力変換装置
JP2009232498A (ja) モータ制御装置
JP5664928B2 (ja) 回転電機制御装置
JP5316551B2 (ja) 回転機の制御装置
JPH1127996A (ja) Acモータ用電流ベクトル制御方法およびacモータ駆動装置
JPH0928099A (ja) 誘導モータのベクトル制御装置
JP2010178609A (ja) モータ制御装置
JP2004266885A (ja) 電動機制御装置および制御逸脱検出方法
JP7153879B2 (ja) 電動工具
JP6591794B2 (ja) 誘導機の電力変換装置と二次時定数測定方法及び速度制御方法
JP2019134612A (ja) 電動機の制御装置
JP6588410B2 (ja) 電動機の駆動装置
JP5996485B2 (ja) モータの駆動制御装置
JP2008086072A (ja) モータ制御装置及びモータ制御方法
CN107528517B (zh) 旋转电机的控制方法
JP5675435B2 (ja) インバータ制御装置
JP2022101781A (ja) 制御装置、モータシステム及び同定方法
JP2011087424A (ja) 誘導電動機の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19778380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019778380

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019778380

Country of ref document: EP

Effective date: 20201029