WO2019187522A1 - 光導波路素子 - Google Patents

光導波路素子 Download PDF

Info

Publication number
WO2019187522A1
WO2019187522A1 PCT/JP2019/001412 JP2019001412W WO2019187522A1 WO 2019187522 A1 WO2019187522 A1 WO 2019187522A1 JP 2019001412 W JP2019001412 W JP 2019001412W WO 2019187522 A1 WO2019187522 A1 WO 2019187522A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
electrode
substrate
heat conduction
suppressing means
Prior art date
Application number
PCT/JP2019/001412
Other languages
English (en)
French (fr)
Inventor
佳澄 石川
高野 真悟
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Publication of WO2019187522A1 publication Critical patent/WO2019187522A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/061Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-optical organic material
    • G02F1/065Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-optical organic material in an optical waveguide structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details

Definitions

  • the present invention relates to an optical waveguide device using an organic polymer exhibiting an electro-optic effect for an optical waveguide.
  • an optical waveguide element in which an optical waveguide is formed using a material exhibiting an electro-optic effect is often used.
  • an optical waveguide element includes a control electrode for controlling a light wave propagating in the optical waveguide together with the optical waveguide.
  • a Mach-Zehnder type optical modulation element in which a Mach-Zehnder interferometer is formed of an optical waveguide using a material exhibiting an electro-optic effect is widely used.
  • the Mach-Zehnder light modulation element includes an incident waveguide for introducing light from the outside, a branching unit for propagating the light introduced by the incident waveguide in two paths, and a subsequent stage of the branching unit.
  • the two parallel waveguides for propagating the light beams branched into two and the output waveguide for combining the light propagated through the two parallel waveguides and outputting them to the outside.
  • the Mach-Zehnder type optical modulation element adjusts the bias point as a control electrode for controlling the light wave, and a high-frequency modulation electrode for applying a high-frequency modulation signal to the light wave propagating through one or both of the parallel waveguides.
  • a bias point adjusting electrode is provided.
  • a light modulation element using an organic electro-optic polymer material in which an organic nonlinear optical compound is dispersed in a polymer material has been developed as a material exhibiting an electro-optic effect.
  • a progressive high-frequency electrode is used as the high-frequency modulation electrode in the same manner as the light modulation element using an electro-optic substrate such as a lithium niobate (LN) material.
  • the bias point adjustment often uses a configuration in which the bias point is adjusted by a thermo-optic effect using a heater electrode due to the problem of DC drift.
  • a region where a high-frequency modulation signal is applied to a light wave propagating through one or both of the parallel waveguides is a high-frequency modulation region, and a region where the bias point is adjusted by applying heat from the heater is a bias point adjustment region.
  • a bias point adjustment region In this case, in order to stably operate the light modulation element, it is necessary to suppress high-frequency crosstalk from the high-frequency modulation region to the bias point adjustment region and thermal crosstalk from the bias point adjustment region to the high-frequency modulation region. Necessary. If high-frequency crosstalk or thermal crosstalk occurs, the quality of the modulated signal is significantly reduced, making it difficult to obtain desired characteristics.
  • Patent Document 1 proposes an optical modulator made of an organic electro-optic polymer material in which a high-frequency modulation region and a bias point adjustment region are produced by combining elements made of substrates of different materials. Has been. However, as in Patent Document 1, manufacturing each region as a separate element leads to a complicated manufacturing process and an increase in cost.
  • the problem to be solved by the present invention is to provide an optical waveguide device capable of solving the above-described problems and effectively suppressing high-frequency crosstalk and thermal crosstalk.
  • the optical waveguide device of the present invention has the following technical features.
  • the control electrode includes a signal electrode formed on one surface of the substrate and a back surface ground electrode formed on a surface opposite to the one surface of the substrate.
  • a surface ground electrode formed on the one surface and electrically connected to the back surface ground electrode through a via penetrating the substrate is generated by the heater electrode between the signal electrode and the heater electrode. It has heat conduction suppression means for suppressing heat conduction, and the heat conduction suppression means uses a part of the surface ground electrode.
  • the surface ground electrode is formed at the input end or the output end of the signal electrode so as to sandwich the signal electrode, and the heat conduction suppressing means includes: The surface ground electrode closest to the heater electrode is used.
  • the signal electrode includes a first signal electrode having the input end or the output end at one side end along the light wave traveling direction of the substrate. And a second signal electrode having the input end or the output end at the other side end along the light wave traveling direction of the substrate, and the heat conduction suppressing means moves the substrate to the light wave traveling direction. It is characterized by being formed so as to cross in a direction orthogonal to the above.
  • the thermal conduction suppression unit is electrically connected to the back surface ground electrode through a plurality of vias.
  • the heat conduction suppressing means is a portion that crosses the optical waveguide, and is disposed on one side and the other side of the optical waveguide.
  • the one side and the other side of the heat conduction suppressing means are formed separately and are electrically connected by aerial wiring passing through the space above the optical waveguide.
  • the heat conduction suppressing means for suppressing the conduction of heat generated by the heater electrode is provided between the signal electrode and the heater electrode, and the heat conduction suppressing means is back-grounded by the via penetrating the substrate. Since a part of the surface ground electrode electrically connected to the electrode is used, high frequency crosstalk and thermal crosstalk can be effectively suppressed.
  • FIG. 1 shows the optical waveguide element which concerns on 1st Example of this invention. It is a top view which shows the optical waveguide element which concerns on 2nd Example of this invention. It is a top view which shows the optical waveguide element which concerns on 3rd Example of this invention. It is a top view which shows the optical waveguide element which concerns on 4th Example of this invention. It is a top view which shows the optical waveguide element which concerns on 5th Example of this invention. It is a top view which shows the optical waveguide element which concerns on 6th Example of this invention. It is a top view which shows the optical waveguide element which concerns on 7th Example of this invention. It is a top view which shows the optical waveguide element which concerns on 8th Example of this invention.
  • FIG. 1st Example of this invention It is a top view which shows the optical waveguide element which concerns on 2nd Example of this invention. It is a top view which shows the optical waveguide element which concerns on 3rd Example of this invention. It is a top view which shows the optical waveguide element which
  • FIG. 8B is a cross-sectional view taken along line A-A ′ in the optical waveguide element of FIG. 8A. It is a top view which shows the optical waveguide element based on 9th Example of this invention.
  • FIG. 9B is a cross-sectional view taken along line B-B ′ in the optical waveguide element of FIG. 9A.
  • the optical waveguide device of one embodiment of the present invention includes a substrate (11) having an electro-optic effect, an optical waveguide (12) formed on the substrate, and a light wave propagating through the optical waveguide.
  • the control electrode is a signal electrode (on the one surface of the substrate ( 21) and a back surface ground electrode (not shown) formed on the surface opposite to the one surface of the substrate, and a via (through the substrate) formed on the one surface of the substrate.
  • the heat conduction suppressing means is configured using a part of the front surface ground electrode electrically connected to the back surface ground electrode by a via penetrating the substrate, the high frequency signal radiated and leaked from the signal electrode is prevented. Interference with the heater electrode can also be suppressed. That is, while having a simple structure, it is possible to achieve suppression of thermal crosstalk and suppression of high-frequency crosstalk. Therefore, it is possible to provide a high-performance optical waveguide device at a low cost.
  • the surface ground electrode used as the heat conduction suppression means is also a ground electrode for the signal electrode, it is possible to reduce the size of the optical waveguide device as compared with the configuration in which the heat conduction suppression means is provided separately from the ground electrode. it can.
  • FIG. 1 is a plan view showing an optical waveguide device according to a first embodiment of the present invention.
  • the optical waveguide device 10 according to the first embodiment includes a base material 15 (see FIGS. 8B and 9B), a substrate 11 having an electro-optic effect, an optical waveguide 12 formed on the substrate, and the optical waveguide. It has a control electrode for modulating the propagating light wave and a heater electrode 41 for adjusting the bias point.
  • the base material 15 is not particularly limited in material and shape as long as it has sufficient flatness to form the optical waveguide 12 and has sufficient mechanical strength.
  • the substrate 11 is formed by laminating a lower clad layer, a core layer, an upper clad layer, and the like.
  • a material having a higher refractive index than that of the upper and lower cladding layers is used for the core layer, and the optical waveguide 12 is formed by controlling the shape of the core layer.
  • the optical waveguide 12 is formed by controlling the shape of the core layer.
  • At least one of the core layer and the upper and lower cladding layers is formed of an organic electro-optic polymer material in which an organic nonlinear optical compound is dispersed in a polymer material.
  • the polymer material used for the organic electro-optic polymer material include acrylic resins such as polymethyl methacrylate, epoxy resins, polyimide resins, silicone resins, polystyrene resins, polyamide resins, polyester resins, and phenols. Resin, polyquinoline resin, polyquinoxaline resin, polybenzoxazole resin, polybenzothiazole resin, polybenzimidazole resin, and the like.
  • the nonlinear optical organic compound is not particularly limited as long as it is a known one.
  • the nonlinear optical organic compound include an atomic group having an electron donating property (hereinafter referred to as “donor”) and an atomic group having an electron withdrawing property (hereinafter referred to as “acceptor”) in one molecule.
  • donor an electron donating property
  • acceptor an atomic group having an electron withdrawing property
  • a molecule having a structure in which a ⁇ -electron conjugated atomic group is arranged between a donor and an acceptor may be used. Specific examples of such molecules include Disperse Reds, Disperse Oranges, and stilbene compounds.
  • the nonlinear optical organic compound can be introduced into the polymer material by addition to the polymer material described above or by chemical bonding to the side chain or main chain of the polymer material described above. By orienting the dipole of the nonlinear optical organic compound dispersed in the organic electro-optic polymer material, the substrate 11 can have an electro-optic effect.
  • the control electrode includes a signal electrode 21 formed on one surface (front surface) of the substrate 11 and a back surface ground electrode (not shown) formed on the opposite surface (back surface).
  • the back ground electrode is formed between the substrate 11 and the base material 15 below the substrate 11.
  • the signal electrode 21 and the back ground electrode arranged so as to sandwich the substrate 11 form a transmission line having a microstrip line structure.
  • surface ground electrodes 22 (1) to (4) electrically connected to the back surface ground electrode through vias 24 penetrating the substrate 11 are also formed.
  • the surface ground electrodes 22 (1) and (2) are arranged so as to sandwich the input end portion (input feedthrough) of the signal electrode 21.
  • the surface ground electrodes 22 (3) and (4) are arranged so as to sandwich the output end portion (output feedthrough) of the signal electrode 21.
  • These electrodes can be formed by, for example, forming a base electrode pattern of Ti / Au or the like on the surface of the substrate and performing a gold plating method or the like.
  • the surface ground electrode is also referred to as “upper ground electrode”, and the back surface ground electrode is also referred to as “lower ground electrode”.
  • the signal electrode 21 has an action section extending above the optical waveguide 12 in the same direction as the extending direction of the optical waveguide 12, a section extending from the input end of the signal electrode 21 toward the start point of the action section, and an end point of the action section. And a section extending toward the output end of the signal electrode 21.
  • a high frequency modulation signal is input to the signal electrode 21 from an external driver element (not shown).
  • the action section is a section in which a modulation action is exerted on a light wave propagating through the optical waveguide 12 by an electric field generated by a high-frequency modulation signal.
  • the heater electrode 41 has a bias point adjustment section extending above the optical waveguide 12 in the same direction as the extending direction of the optical waveguide 12, a section extending from the input end of the heater electrode 41 toward the start point of the bias point adjustment section, And a section extending from the end point of the bias point adjustment section toward the output end of the heater electrode 41.
  • a DC signal for bias modulation is input to the heater electrode 41 from an external DC voltage controller 42.
  • the bias point adjustment section is an section in which a bias point adjustment action is exerted on the light wave propagating through the optical waveguide 12 by heat generation due to application of a DC signal.
  • a heat conduction suppressing means 51 for suppressing the conduction of heat generated by the heater electrode 41 is disposed.
  • the heat conduction suppressing means 51 is configured using a part of the surface ground electrode. More specifically, the surface ground electrode 22 (4) closest to the heater electrode 41 is used. It can also be said that the heat conduction suppressing means 51 is formed integrally with the surface ground electrode 22 (4). Since the surface ground electrode 22 is electrically connected to the back surface ground electrode through the via 26 penetrating the substrate 11, the heat conduction suppressing means 51 is also electrically connected to the back surface ground electrode.
  • the heat conduction suppressing means 51 is formed so as to extend from one side end of the substrate 11 (the side end having the input / output end portion of the signal electrode or heater electrode) to the vicinity of the center in the width direction of the substrate 11.
  • the width direction means a direction orthogonal to the light wave traveling direction of the substrate 11.
  • the signal electrode 21 and the heater electrode 41 are linearly separated by the heat conduction suppressing means 51.
  • the heat conduction suppression means 51 may be formed so as to linearly divide at least the signal electrode 21 and the bias point adjustment section of the heater electrode 41 that is a heat source.
  • the heat conduction suppression means 51 is electrically connected to the back surface ground electrode, not only can the heat generated from the heater electrode 41 be radiated from the back surface ground electrode and conducted to the signal electrode 21 side, but also the signal It is possible to suppress interference of the high frequency signal radiated from the electrode 21 and leaking to the heater electrode 41. Therefore, suppression of thermal crosstalk and suppression of high-frequency crosstalk can be realized with a simple configuration.
  • FIG. 2 is a plan view showing an optical waveguide device according to the second embodiment of the present invention.
  • the second embodiment is an extension of the first embodiment. It should be noted that the description overlapping with the already described contents is omitted (the same applies to the third and subsequent embodiments).
  • the optical waveguide device 10 according to the second embodiment includes, as a signal electrode, a first signal electrode 21 having an input end and an output end at one side end along the light wave traveling direction of the substrate 11, and the other side. And a second signal electrode 31 having an input end and an output end at the ends.
  • Surface ground electrodes 22 (1) to (4) are arranged at the input end and output end of the signal electrode 21 so as to sandwich the signal electrode 21.
  • the surface ground electrodes 32 (1) to (4) are arranged at the input end and output end of the signal electrode 31 so as to sandwich the signal electrode 31.
  • the heat conduction suppressing means 52 is formed across the substrate 11 in the width direction (direction orthogonal to the light wave traveling direction).
  • the heat conduction suppressing means 52 includes the surface ground electrode 22 (4) closest to the heater electrode 41 among the plurality of surface ground electrodes 22 (1) to (4) provided for the signal electrode 21, and the signal electrode 31. Are connected to the surface ground electrode 32 (4) closest to the heater electrode 41 among the plurality of surface ground electrodes 32 (1) to (4).
  • the signal electrode 21 and the heater electrode 41 are divided by the heat conduction suppressing means 52 but also the signal electrode 31 and the heater electrode 41 are divided by the heat conduction suppressing means 52. Therefore, even in an optical waveguide element having a plurality of light modulation units, it is possible to realize suppression of thermal crosstalk and suppression of high-frequency crosstalk with a simple configuration.
  • FIG. 3 is a plan view showing an optical waveguide device according to the third embodiment of the present invention.
  • the third embodiment is a modification of the first embodiment.
  • the heat conduction suppressing means is a portion that traverses one optical waveguide of the arm parts (parallel waveguide parts) of the Mach-Zehnder type waveguide. 56 is divided into two.
  • the heat conduction suppressing means 55 on one side of the optical waveguide and the heat conduction suppressing means 56 on the other side are electrically connected by an aerial wiring 61 passing through the space above the optical waveguide.
  • As the aerial wiring 61 a metal ribbon or a wire can be used, and connected to the heat conduction suppressing means 55, 56 by bonding or the like.
  • FIG. 4 is a plan view showing an optical waveguide device according to the fourth embodiment of the present invention.
  • the fourth embodiment is a modification of the second embodiment.
  • the heat conduction suppressing means is a portion where each of the arm portions (parallel waveguide portions) of the Mach-Zehnder type waveguide crosses each optical waveguide, and the heat conduction suppressing means 55, 56, 57. It is divided into three.
  • the heat conduction suppressing means 55 and the heat conduction suppressing means 56 arranged so as to sandwich one optical waveguide of the arm portion are electrically connected by an aerial wiring 61 passing through the space above the optical waveguide.
  • the heat conduction suppressing means 56 and the heat conduction suppressing means 57 arranged so as to sandwich the other optical waveguide of the arm portion are electrically connected by an aerial wiring 62 that passes through the space above the optical waveguide.
  • the heat conduction suppressing means is formed so as not to overlap the optical waveguide, the light conduction loss caused by the absorption of the light wave propagating through the optical waveguide by the heat conduction suppressing means. And the deterioration of the characteristics of the optical waveguide device can be suppressed.
  • FIG. 5 is a plan view showing an optical waveguide device according to a fifth embodiment of the present invention.
  • the fifth embodiment is another modification of the first embodiment.
  • the heat conduction suppressing means 51 and the back ground electrode are not limited to the vias in the surface ground electrode 22 (4), but other heat conduction suppressing means 51 are provided. It is also electrically connected by a plurality of vias.
  • FIG. 6 is a plan view showing an optical waveguide device according to the sixth embodiment of the present invention.
  • the sixth embodiment is another modification of the second embodiment.
  • the heat conduction suppressing means 51 and the back ground electrode are not only the vias in the portions of the surface ground electrodes 22 (4) and 32 (4), but also the heat conduction suppressing means 51. Are also electrically connected by a plurality of other vias.
  • the heat conduction suppressing means and the back ground electrode are connected by a large number of vias, so that the heat radiation from the heat conduction suppressing means can be further promoted.
  • FIG. 7 is a plan view showing an optical waveguide device according to a seventh embodiment of the present invention.
  • the optical waveguide device 10 according to the seventh embodiment is accommodated in a housing 80 of the optical modulator.
  • the housing 80 further accommodates relay boards 81 and 82 on which relay signal lines for electrically connecting the control electrodes of the optical waveguide element 10 and external driver elements are formed.
  • the relay transmission line of the relay board 81 is electrically connected to the input terminal of the control electrode by wire bonding or the like
  • the relay transmission line of the relay board 82 is electrically connected to the output terminal of the control electrode by wire bonding or the like. .
  • Lead pins 83 and 84 for electrically connecting the heater electrode of the optical waveguide element 10 to an external DC voltage control unit are disposed on the side wall of the housing 80.
  • the lead pin 83 is electrically connected to the input terminal of the heater electrode by wire bonding or the like
  • the lead pin 84 is electrically connected to the output terminal of the heater electrode by wire bonding or the like.
  • a feature of the seventh embodiment is that it has a heat transfer sheet 91 that promotes heat transfer from the heat conduction suppressing means 51 of the optical waveguide element to the side wall of the housing 80.
  • the heat transfer plate sheet 91 partially overlaps the heat conduction suppressing means 51 and is attached to at least one of the heat conduction suppressing means 51 and the side wall of the housing 80 so that the other part contacts the side wall of the housing 80.
  • Fixed for example, a sheet in which ceramics, graphite, or the like is dispersed can be used.
  • the flexibility or rigidity of the heat transfer sheet 91 is not particularly limited, and various materials can be used.
  • the heat conduction suppressing means and the casing are connected by the heat transfer sheet, not only the heat of the heat conduction suppressing means is conducted to the back ground electrode but also conducted to the casing. Therefore, the heat radiation from the heat conduction suppressing means can be further promoted.
  • FIG. 8A is a plan view showing an optical waveguide device according to an eighth embodiment of the present invention.
  • FIG. 8B is a cross-sectional view taken along line AA ′ in the optical waveguide device of FIG. 8A.
  • the eighth embodiment is a modification of the seventh embodiment.
  • a heat transfer adhesive 92 that promotes heat transfer from the heat conduction suppressing means 51 of the optical waveguide element to the bottom surface of the housing 80 is provided. .
  • the heat transfer adhesive 92 is applied so as to connect from the surface of the heat conduction suppressing means 51 to the bottom surface of the housing 80 via the side surface of the optical waveguide element.
  • the heat transfer adhesive 92 for example, an adhesive in which ceramics or graphite is dispersed can be used.
  • FIG. 9A is a plan view showing an optical waveguide device according to the ninth embodiment of the present invention.
  • FIG. 9B is a cross-sectional view taken along line BB ′ in the optical waveguide device of FIG. 9A.
  • the ninth embodiment is a modification of the seventh embodiment.
  • a heat transfer sheet 93 that promotes heat transfer from the heat conduction suppressing means 51 of the optical waveguide element to the lid portion of the housing 80 is provided. .
  • the heat transfer sheet 93 is attached so that the back surface side is in contact with the surface of the heat conduction suppressing means 51 and the front surface side is in contact with the lid portion of the housing 80.
  • the heat transfer sheet 93 for example, a sheet in which ceramics, graphite, or the like is dispersed can be used. Moreover, the thickness of the heat transfer sheet 93 only needs to be thick enough to fill the space between the heat conduction suppressing unit 51 and the lid of the housing 80.
  • the heat conduction suppressing means and the housing are connected by the heat transfer adhesive or the heat transfer sheet, only the heat of the heat conduction suppressing means is conducted to the back ground electrode. It can also conduct to the housing. Thereby, the heat radiation from the heat conduction suppressing means can be further promoted.
  • the present invention has been described based on the embodiments.
  • the present invention is not limited to the above-described contents, and can be appropriately changed in design without departing from the gist of the present invention. Needless to say, the embodiments can be appropriately combined.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

高周波クロストークおよび熱クロストークを効果的に抑制することが可能な光導波路素子を提供する。 電気光学効果を有する基板11と、該基板に形成された光導波路12と、該光導波路を伝搬する光波を変調するための制御電極と、バイアス点を調整するためのヒータ電極41とを有する光導波路素子10において、該制御電極は、該基板の一方の面に形成された信号電極21と、該基板の前記一方の面とは反対側の面に形成された裏面接地電極とを備え、該基板の前記一方の面に形成され、該基板を貫通するビア24で該裏面接地電極と電気的に接続された表面接地電極22を備え、該信号電極と該ヒータ電極との間に、該ヒータ電極により発生した熱の伝導を抑制するための熱伝導抑制手段51を有し、該熱伝導抑制手段は、該表面接地電極の一部を用いていることを特徴とする。

Description

光導波路素子
 本発明は、電気光学効果を示す有機高分子を光導波路に用いる光導波路素子に関する。
 近年、光通信または光計測の分野においては、電気光学効果を示す材料を用いて光導波路を形成した光導波路素子が多く用いられている。光導波路素子は、一般的に、上記の光導波路と共に、該光導波路内を伝搬する光波を制御するための制御電極を備える。
 このような光導波路素子として、電気光学効果を示す材料を用いた光導波路でマッハツェンダー干渉計を形成した、マッハツェンダー型光変調素子が広く用いられている。マッハツェンダー型光変調素子は、外部から光を導入するための入射導波路と、該入射導波路により導入された光を2つの経路に分けて伝搬させるための分岐部と、該分岐部の後段に分岐されたそれぞれの光を伝搬させる2つの並行導波路と、該2本の並行導波路を伝搬した光を合波して外部へ出力するための出射導波路とを用いて構成される。また、マッハツェンダー型光変調素子は、光波を制御するための制御電極として、並行導波路の片方または両方を伝搬する光波に高周波の変調信号を作用させるための高周波変調電極と、バイアス点を調整するためのバイアス点調整電極が備えられている。
 このような光変調素子の一種に、電気光学効果を示す材料として、有機の非線形光学化合物を高分子材料中に分散した有機電気光学高分子材料を用いた光変調素子が開発されている。この光変調素子の場合、高周波変調電極には、ニオブ酸リチウム(LN)材料などの電気光学基板を用いた光変調素子と同様に進行型の高周波電極が用いられる。一方、バイアス点調整には、DCドリフトの問題から、ヒータ電極を用いて熱光学効果によりバイアス点を調整する構成が用いられることが多い。
 ここで、高周波の変調信号を並行導波路の片方または両方を伝搬する光波に作用させる領域を高周波変調領域とし、ヒータからの熱を作用させてバイアス点を調整する領域をバイアス点調整領域とする。この場合、光変調素子を安定的に動作させるためには、高周波変調領域からバイアス点調整領域への高周波クロストーク、及び、バイアス点調整領域から高周波変調領域への熱クロストークを抑制することが必要となる。仮に、高周波クロストークまたは熱クロストークが発生した場合、変調した信号の品質が著しく低下し、所望の特性を得ることが困難になる。
 このような問題の発生を避けるために、特許文献1では、高周波変調領域とバイアス点調整領域を別々の材料の基板による素子を組み合わせて作製した、有機電気光学高分子材料による光変調器が提案されている。
 しかしながら、特許文献1のように、それぞれの領域を別素子として作製するということは、製造工程の複雑化、コスト増加に繋がる。
特表2015-501945号公報
 本発明が解決しようとする課題は、上述したような問題を解決し、高周波クロストークおよび熱クロストークを効果的に抑制することが可能な光導波路素子を提供することである。
 上記課題を解決するため、本発明の光導波路素子は、以下の技術的特徴を有する。
(1) 電気光学効果を有する基板と、該基板に形成された光導波路と、該光導波路を伝搬する光波を変調するための制御電極と、バイアス点を調整するためのヒータ電極とを有する光導波路素子において、該制御電極は、該基板の一方の面に形成された信号電極と、該基板の前記一方の面とは反対側の面に形成された裏面接地電極とを備え、該基板の前記一方の面に形成され、該基板を貫通するビアで該裏面接地電極と電気的に接続された表面接地電極を備え、該信号電極と該ヒータ電極との間に、該ヒータ電極により発生した熱の伝導を抑制するための熱伝導抑制手段を有し、該熱伝導抑制手段は、該表面接地電極の一部を用いていることを特徴とする。
(2) 上記(1)に記載の光導波路素子において、該信号電極の入力端部又は出力端部に、該信号電極を挟むように該表面接地電極が形成され、該熱伝導抑制手段は、該ヒータ電極に最も近い該表面接地電極を用いていることを特徴とする。
(3) 上記(2)に記載の光導波路素子において、該信号電極として、該基板の光波進行方向に沿った一方の側端に該入力端部又は該出力端部を持つ第1の信号電極と、該基板の光波進行方向に沿った他方の側端に該入力端部又は該出力端部を持つ第2の信号電極とを有し、該熱伝導抑制手段は、該基板を光波進行方向に対して直交する方向に横断して形成されていることを特徴とする。
(4) 上記(1)乃至(3)のいずれかに記載の光導波路素子において、該熱伝導抑制手段は、複数のビアを介して該裏面接地電極と電気的に接続されていることを特徴とする。
(5) 上記(1)乃至(4)のいずれかに記載の光導波路素子において、該熱伝導抑制手段は、該光導波路を横切る部分で、該光導波路の一方の側と他方の側とに分離して形成され、該熱伝導抑制手段の前記一方の側と前記他方の側とは、該光導波路の上側の空間を通る空中配線で電気的に接続されていることを特徴とする。
 本発明によれば、信号電極とヒータ電極との間に、ヒータ電極により発生した熱の伝導を抑制するための熱伝導抑制手段を設け、熱伝導抑制手段を、基板を貫通するビアで裏面接地電極と電気的に接続された表面接地電極の一部を用いて構成したので、高周波クロストークおよび熱クロストークを効果的に抑制することが可能となる。
本発明の第1実施例に係る光導波路素子を示す平面図である。 本発明の第2実施例に係る光導波路素子を示す平面図である。 本発明の第3実施例に係る光導波路素子を示す平面図である。 本発明の第4実施例に係る光導波路素子を示す平面図である。 本発明の第5実施例に係る光導波路素子を示す平面図である。 本発明の第6実施例に係る光導波路素子を示す平面図である。 本発明の第7実施例に係る光導波路素子を示す平面図である。 本発明の第8実施例に係る光導波路素子を示す平面図である。 図8Aの光導波路素子におけるA-A’線の断面図である。 本発明の第9実施例に係る光導波路素子を示す平面図である。 図9Aの光導波路素子におけるB-B’線の断面図である。
 本発明に係る光導波路素子について、好適例を用いて詳細に説明する。なお、以下で示す例によって本発明が限定されるものではない。
 本発明の一態様の光導波路素子は、例えば図1に示すように、電気光学効果を有する基板(11)と、該基板に形成された光導波路(12)と、該光導波路を伝搬する光波を変調するための制御電極と、バイアス点を調整するためのヒータ電極(41)とを有する光導波路素子(10)において、該制御電極は、該基板の一方の面に形成された信号電極(21)と、該基板の前記一方の面とは反対側の面に形成された裏面接地電極(不図示)とを備え、該基板の前記一方の面に形成され、該基板を貫通するビア(24)で該裏面接地電極と電気的に接続された表面接地電極(22)を備え、該信号電極と該ヒータ電極との間に、該ヒータ電極により発生した熱の伝導を抑制するための熱伝導抑制手段(51)を有し、該熱伝導抑制手段は、該表面接地電極の一部を用いていることを特徴とする。
 このような構造によれば、ヒータ電極により発生した熱が信号電極側に伝搬することを、信号電極とヒータ電極との間に配置した熱伝導抑制手段で抑制することができる。しかも、熱伝導抑制手段は、基板を貫通するビアで裏面接地電極と電気的に接続された表面接地電極の一部を用いて構成されているので、信号電極から放射されて漏れた高周波信号がヒータ電極に干渉することも抑制することができる。すなわち、簡易な構造でありながら、熱クロストークの抑制と高周波クロストークの抑制とを実現することができる。従って、低コストで高性能の光導波路素子を提供することが可能となる。更に、熱伝導抑制手段として用いる表面接地電極の一部は、信号電極に対する接地電極でもあるので、接地電極とは別に熱伝導抑制手段を設けた構成に比べ、光導波路素子を小型化することができる。
 以下、本発明に係る光導波路素子の具体的な構成について、実施例を挙げて説明する。
[第1実施例]
 図1は、本発明の第1実施例に係る光導波路素子を示す平面図である。
 第1実施例に係る光導波路素子10は、基材15(図8B,図9Bを参照)と、電気光学効果を有する基板11と、該基板に形成された光導波路12と、該光導波路を伝搬する光波を変調するための制御電極と、バイアス点を調整するためのヒータ電極41とを有する。
 基材15は、光導波路12を形成するのに十分な平坦性を有しており、かつ機械的に十分な強度を有するものであれば、材質、形状とも特に限定されない。基材15としては、例えば、シリコン基板、石英基板、ガラス基板、セラミック基板等を用いることができる。
 基板11は、下部クラッド層、コア層、上部クラッド層などを積層して構成される。コア層は上下クラッド層よりも屈折率が高い材料が用いられ、その形状を制御することにより光導波路12が形成される。光導波路12の形状について特に制限はないが、例えば、コア層の一部を上側又は下側に突出させたリブ状の光導波路がある。
 コア層および上下クラッド層の少なくとも一層は、有機非線形光学化合物を高分子材料中に分散した有機電気光学高分子材料により形成される。有機電気光学高分子材料に用いる高分子材料としては、例えば、ポリメチルメタクリレートなどのアクリル系樹脂、エポキシ系樹脂、ポリイミド系樹脂、シリコーン系樹脂、ポリスチレン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、フェノール系樹脂、ポリキノリン系樹脂、ポリキノキサリン系樹脂、ポリベンゾオキサゾール系樹脂、ポリベンゾチアゾール系樹脂、ポリベンゾイミダゾール系樹脂などが挙げられる。
 非線形光学有機化合物は、公知のものであれば特に限定されない。非線形光学有機化合物としては、例えば、1分子中に、電子供与性を有する原子団(以下、「ドナー」と言う。)と、電子吸引性を有する原子団(以下、「アクセプター」と言う。)との両方を有しており、ドナーとアクセプターの間に、π電子共役系の原子団を配している構造を有した分子を用いてもよい。このような分子としては、具体的には、Disperse Red類、Disperse Orange類、スチルベン化合物などが挙げられる。非線形光学有機化合物は、前述の高分子材料への添加、または上述の高分子材料の側鎖または主鎖への化学結合により、高分子材料に導入することができる。
 有機電気光学高分子材料中に分散された非線形光学有機化合物の双極子を配向させることにより、基板11に電気光学効果を持たせることができる。
 基板11には、光導波路12を伝搬する光波を変調するための制御電極と、バイアス点を調整するためのヒータ電極41が配置される。制御電極は、基板11の一方の面(表面)に形成された信号電極21と、その反対側の面(裏面)に形成された裏面接地電極(不図示)とを含む。裏面接地電極は、基板11とその下側の基材15との間に形成される。基板11を挟むように配置された信号電極21及び裏面接地電極は、マイクロストリップライン構造の伝送線路を形成する。
 基板11の表面には更に、基板11を貫通するビア24で裏面接地電極と電気的に接続された表面接地電極22(1)~(4)も形成される。表面接地電極22(1),(2)は、信号電極21の入力端部(入力用フィードスルー)を挟むように配置されている。表面接地電極22(3),(4)は、信号電極21の出力端部(出力用フィードスルー)を挟むように配置されている。
 これらの電極は、例えば、基板表面に、Ti・Au等による下地電極パターンを形成し、金メッキ方法などにより形成することが可能である。表面接地電極は「上部接地電極」とも称され、裏面接地電極は「下部接地電極」とも称される。
 信号電極21は、光導波路12の上側を光導波路12の延伸方向と同じ方向に延びる作用区間と、信号電極21の入力端部から作用区間の始点部に向かって延びる区間と、作用区間の終点部から信号電極21の出力端部に向かって延びる区間とを有する。信号電極21には、外部のドライバ素子(不図示)から高周波の変調信号が入力される。作用区間は、高周波の変調信号によって発生する電界により、光導波路12を伝搬する光波に変調作用を及ぼす区間である。
 ヒータ電極41は、光導波路12の上側を光導波路12の延伸方向と同じ方向に延びるバイアス点調整区間と、ヒータ電極41の入力端部からバイアス点調整区間の始点部に向かって延びる区間と、バイアス点調整区間の終点部からヒータ電極41の出力端部に向かって延びる区間とを有する。ヒータ電極41には、外部のDC電圧制御部42からバイアス変調用のDC信号が入力される。バイアス点調整区間は、DC信号の印加による発熱により、光導波路12を伝搬する光波にバイアス点の調整作用を及ぼす区間である。
 信号電極21とヒータ電極41との間には、ヒータ電極41により発生した熱の伝導を抑制するための熱伝導抑制手段51が配置される。熱伝導抑制手段51は、表面接地電極の一部を用いて構成される。より具体的には、ヒータ電極41に最も近い表面接地電極22(4)を用いて構成される。熱伝導抑制手段51は、表面接地電極22(4)と一体的に形成されているとも言える。表面接地電極22は、基板11を貫通するビア26で裏面接地電極と電気的に接続されているので、熱伝導抑制手段51も裏面接地電極と電気的に接続されることになる。
 熱伝導抑制手段51は、基板11の一方の側端(信号電極またはヒータ電極の入出力端部がある側端)から、基板11の幅方向の中央付近まで延びるように形成されている。ここで、幅方向とは、基板11の光波進行方向に対して直交する方向のことを言う。このように、本例では、信号電極21とヒータ電極41とが、熱伝導抑制手段51によって直線的に分断されている。なお、熱伝導抑制手段51は、少なくとも、信号電極21と発熱源であるヒータ電極41のバイアス点調整区間とを直線的に分断するように形成してもよい。
 熱伝導抑制手段51は、裏面接地電極と電気的に接続されているので、ヒータ電極41から発生した熱を裏面接地電極から放熱させて信号電極21側に伝導することを抑制できるだけでなく、信号電極21から放射されて漏れた高周波信号がヒータ電極41に干渉することも抑制できる。従って、熱クロストークの抑制と高周波クロストークの抑制とを簡易な構成で実現することができる。
[第2実施例]
 図2は、本発明の第2実施例に係る光導波路素子を示す平面図である。第2実施例は、第1実施例の拡張例である。なお、既に説明した内容と重複する部分については説明を省略することとする(第3実施例以降も同様)。
 第2実施例に係る光導波路素子10は、信号電極として、基板11の光波進行方向に沿った一方の側端に入力端部及び出力端部を持つ第1の信号電極21と、他方の側端に入力端部及び出力端部を持つ第2の信号電極31とを有している。信号電極21の入力端部及び出力端部には、信号電極21を挟むように表面接地電極22(1)~(4)が配置される。また、信号電極31の入力端部及び出力端部にも、信号電極31を挟むように表面接地電極32(1)~(4)が配置される。
 熱伝導抑制手段52は、基板11を幅方向(光波進行方向に対して直交する方向)に横断して形成される。熱伝導抑制手段52は、信号電極21に対して設けられた複数の表面接地電極22(1)~(4)のうちのヒータ電極41に最も近い表面接地電極22(4)と、信号電極31に対して設けられた複数の表面接地電極32(1)~(4)のうちのヒータ電極41に最も近い表面接地電極32(4)とを接続するように構成される。
 このように、第2実施例では、信号電極21とヒータ電極41が熱伝導抑制手段52によって分断されるだけでなく、信号電極31とヒータ電極41も熱伝導抑制手段52によって分断される。したがって、複数の光変調部を有する光導波路素子においても、熱クロストークの抑制と高周波クロストークの抑制とを簡易な構成で実現することができる。
[第3実施例]
 図3は、本発明の第3実施例に係る光導波路素子を示す平面図である。第3実施例は、第1実施例の変形例である。
 第3実施例に係る光導波路素子10は、熱伝導抑制手段が、マッハツェンダー型導波路のアーム部(並行導波路部)のうちの一方の光導波路を横切る部分で、熱伝導抑制手段55,56の2つに分断されている。光導波路の一方の側にある熱伝導抑制手段55と、他方の側にある熱伝導抑制手段56とは、その光導波路の上側の空間を通る空中配線61で電気的に接続されている。空中配線61としては、金属リボンまたはワイヤ等を用いることができ、熱伝導抑制手段55,56にボンディング等により接続される。
[第4実施例]
 図4は、本発明の第4実施例に係る光導波路素子を示す平面図である。第4実施例は、第2実施例の変形例である。
 第4実施例に係る光導波路素子10は、熱伝導抑制手段が、マッハツェンダー型導波路のアーム部(並行導波路部)の各光導波路を横切る部分で、熱伝導抑制手段55,56,57の3つに分断されている。アーム部の一方の光導波路を挟むように配置された熱伝導抑制手段55と熱伝導抑制手段56とは、その光導波路の上側の空間を通る空中配線61で電気的に接続されている。アーム部の他方の光導波路を挟むように配置された熱伝導抑制手段56と熱伝導抑制手段57とは、その光導波路の上側の空間を通る空中配線62で電気的に接続されている。
 第3実施例及び第4実施例によれば、熱伝導抑制手段が光導波路に重ならないように形成されているので、熱伝導抑制手段が光導波路を伝搬する光波を吸収することによる光波の損失を低減することができ、光導波路素子の特性の劣化を抑制することができる。
[第5実施例]
 図5は、本発明の第5実施例に係る光導波路素子を示す平面図である。第5実施例は、第1実施例の別の変形例である。
 第5実施例に係る光導波路素子10は、熱伝導抑制手段51と裏面接地電極とが、表面接地電極22(4)の部分にあるビアだけでなく、熱伝導抑制手段51に設けた他の複数のビアによっても電気的に接続されている。
[第6実施例]
 図6は、本発明の第6実施例に係る光導波路素子を示す平面図である。第6実施例は、第2実施例の別の変形例である。
 第6実施例に係る光導波路素子10は、熱伝導抑制手段51と裏面接地電極とが、表面接地電極22(4),32(4)の部分にあるビアだけでなく、熱伝導抑制手段51に設けた他の複数のビアによっても電気的に接続されている。
 第5実施例及び第6実施例によれば、熱伝導抑制手段と裏面接地電極とが多数のビアで接続されるので、熱伝導抑制手段からの放熱をより促進させることができる。
[第7実施例]
 図7は、本発明の第7実施例に係る光導波路素子を示す平面図である。
 第7実施例に係る光導波路素子10は、光変調器の筐体80に収容されている。筐体80には更に、光導波路素子10の制御電極と外部のドライバ素子とを電気的に接続するための中継信号線路が形成された中継基板81,82も収容されている。中継基板81の中継伝送線路は、ワイヤボンディング等により制御電極の入力端子と電気的に接続され、中継基板82の中継伝送線路は、ワイヤボンディング等により制御電極の出力端子と電気的に接続される。
 筐体80の側壁には、光導波路素子10のヒータ電極を外部のDC電圧制御部と電気的に接続するためのリードピン83,84が配設されている。リードピン83は、ワイヤボンディング等によりヒータ電極の入力端子と電気的に接続され、リードピン84は、ワイヤボンディング等によりヒータ電極の出力端子と電気的に接続される。
 第7実施例の特徴は、光導波路素子の熱伝導抑制手段51から筐体80の側壁への伝熱を促す伝熱シート91を有することである。伝熱板シート91は、熱伝導抑制手段51に部分的に重なると共に、他の一部が筐体80の側壁に接触するように、熱伝導抑制手段51または筐体80の側壁の少なくとも一方に固定される。伝熱シート91としては、例えば、セラミックスまたはグラファイトなどが分散されたシートを用いることができる。伝熱シート91の柔軟性または剛性について特に限定はなく、種々の材質のものを使用することができる。
 第7実施例によれば、熱伝導抑制手段と筐体とが伝熱シートで接続されるので、熱伝導抑制手段の熱を裏面接地電極に伝導させるだけでなく、筐体に対しても伝導できるので、熱伝導抑制手段からの放熱をより促進させることができる。
[第8実施例]
 図8Aは、本発明の第8実施例に係る光導波路素子を示す平面図である。図8Bは、図8Aの光導波路素子におけるA-A’線の断面図である。第8実施例は、第7実施例の変形例である。
 第8実施例では、第7実施例の伝熱シート91に代えて、光導波路素子の熱伝導抑制手段51から筐体80の底面への伝熱を促す伝熱接着剤92を有している。伝熱接着剤92は、熱伝導抑制手段51の表面から光導波路素子の側面を経由して筐体80の底面までを繋ぐように塗布される。伝熱接着剤92としては、例えば、セラミックスまたはグラファイトなどが分散された接着剤を用いることができる。
[第9実施例]
 図9Aは、本発明の第9実施例に係る光導波路素子を示す平面図である。図9Bは、図9Aの光導波路素子におけるB-B’線の断面図である。第9実施例は、第7実施例の変形例である。
 第9実施例では、第7実施例の伝熱シート91に代えて、光導波路素子の熱伝導抑制手段51から筐体80の蓋部への伝熱を促す伝熱シート93を有している。伝熱シート93は、裏面側が熱伝導抑制手段51の表面に接触し、表面側が筐体80の蓋部に接触するように貼り付けられる。伝熱シート93としては、例えば、セラミックスまたはグラファイトなどが分散されたシートを用いることができる。また、伝熱シート93の厚さは、熱伝導抑制手段51と筐体80の蓋部との間の空間を埋めることができる程度の厚さがあればよい。
 第8実施例及び第9実施例によっても、熱伝導抑制手段と筐体とが伝熱接着剤又は伝熱シートで接続されるので、熱伝導抑制手段の熱を裏面接地電極に伝導させるだけでなく、筐体に対しても伝導できる。これにより、熱伝導抑制手段からの放熱をより促進させることができる。
 以上、実施例に基づいて本発明を説明したが、本発明は上述した内容に限定されず、本発明の趣旨を逸脱しない範囲で適宜設計変更することが可能である。また、各実施例を適宜組み合わせ得ることは言うまでもない
 によれば、高周波クロストークおよび熱クロストークを効果的に抑制することが可能な光導波路素子を提供することができる。
 10 光導波路素子
 11 基板
 12 光導波路
 15 基材
 21,31 信号電極
 22,32 接地電極
 24,34 ビア
 41 ヒータ電極
 42 DC電圧制御部
 51,52,55,56,57 熱伝導抑制手段
 61,62 空中配線
 80 筐体
 81,82 中継基板
 91,93 伝熱シート
 92 伝熱接着剤

Claims (5)

  1.  電気光学効果を有する基板と、該基板に形成された光導波路と、該光導波路を伝搬する光波を変調するための制御電極と、バイアス点を調整するためのヒータ電極とを有する光導波路素子において、
     該制御電極は、該基板の一方の面に形成された信号電極と、該基板の前記一方の面とは反対側の面に形成された裏面接地電極とを備え、
     該基板の前記一方の面に形成され、該基板を貫通するビアで該裏面接地電極と電気的に接続された表面接地電極を備え、
     該信号電極と該ヒータ電極との間に、該ヒータ電極により発生した熱の伝導を抑制するための熱伝導抑制手段を有し、
     該熱伝導抑制手段は、該表面接地電極の一部を用いていることを特徴とする光導波路素子。
  2.  請求項1に記載の光導波路素子において、
     該信号電極の入力端部又は出力端部に、該信号電極を挟むように該表面接地電極が形成され、
     該熱伝導抑制手段は、該ヒータ電極に最も近い該表面接地電極を用いていることを特徴とする光導波路素子。
  3.  請求項2に記載の光導波路素子において、
     該信号電極として、該基板の光波進行方向に沿った一方の側端に該入力端部又は該出力端部を持つ第1の信号電極と、該基板の光波進行方向に沿った他方の側端に該入力端部又は該出力端部を持つ第2の信号電極とを有し、
     該熱伝導抑制手段は、該基板を光波進行方向に対して直交する方向に横断して形成されていることを特徴とする光導波路素子。
  4.  請求項1乃至請求項3のいずれかに記載の光導波路素子において、
     該熱伝導抑制手段は、複数のビアを介して該裏面接地電極と電気的に接続されていることを特徴とする光導波路素子。
  5.  請求項1乃至請求項4のいずれかに記載の光導波路素子において、
     該熱伝導抑制手段は、該光導波路を横切る部分で、該光導波路の一方の側と他方の側とに分離して形成され、
     該熱伝導抑制手段の前記一方の側と前記他方の側とは、該光導波路の上側の空間を通る空中配線で電気的に接続されていることを特徴とする光導波路素子。
PCT/JP2019/001412 2018-03-28 2019-01-18 光導波路素子 WO2019187522A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-062204 2018-03-28
JP2018062204A JP7035704B2 (ja) 2018-03-28 2018-03-28 光導波路素子

Publications (1)

Publication Number Publication Date
WO2019187522A1 true WO2019187522A1 (ja) 2019-10-03

Family

ID=68059675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001412 WO2019187522A1 (ja) 2018-03-28 2019-01-18 光導波路素子

Country Status (2)

Country Link
JP (1) JP7035704B2 (ja)
WO (1) WO2019187522A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230059850A1 (en) * 2020-02-10 2023-02-23 Tdk Corporation Optical modulation element

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6222965B1 (en) * 1999-07-08 2001-04-24 Agere Systems Opto Electronics Guardian Inc. Bias control system for electrooptic devices
JP2003228031A (ja) * 2002-02-01 2003-08-15 Nec Corp 光回路部品
JP2005128440A (ja) * 2003-10-27 2005-05-19 Fujitsu Ltd 電気回路を内蔵する光導波路モジュール及びその製造方法
JP2008249790A (ja) * 2007-03-29 2008-10-16 Sumitomo Osaka Cement Co Ltd 光導波路素子、及び光導波路素子の温度クロストーク抑止方法
JP2011095333A (ja) * 2009-10-27 2011-05-12 Toshiba Corp 実装構造体
JP2012048121A (ja) * 2010-08-30 2012-03-08 Fujitsu Optical Components Ltd 光変調器モジュール
JP2013242592A (ja) * 2013-07-23 2013-12-05 Sumitomo Osaka Cement Co Ltd 光導波路素子
JP2017032968A (ja) * 2016-02-08 2017-02-09 住友大阪セメント株式会社 光変調器及びそれを用いた光送信装置
US20170357110A1 (en) * 2016-06-10 2017-12-14 Futurewei Technologies, Inc. Second Order Detection of Two Orthogonal Dithers for I/Q Modulator Bias Control

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6222965B1 (en) * 1999-07-08 2001-04-24 Agere Systems Opto Electronics Guardian Inc. Bias control system for electrooptic devices
JP2003228031A (ja) * 2002-02-01 2003-08-15 Nec Corp 光回路部品
JP2005128440A (ja) * 2003-10-27 2005-05-19 Fujitsu Ltd 電気回路を内蔵する光導波路モジュール及びその製造方法
JP2008249790A (ja) * 2007-03-29 2008-10-16 Sumitomo Osaka Cement Co Ltd 光導波路素子、及び光導波路素子の温度クロストーク抑止方法
JP2011095333A (ja) * 2009-10-27 2011-05-12 Toshiba Corp 実装構造体
JP2012048121A (ja) * 2010-08-30 2012-03-08 Fujitsu Optical Components Ltd 光変調器モジュール
JP2013242592A (ja) * 2013-07-23 2013-12-05 Sumitomo Osaka Cement Co Ltd 光導波路素子
JP2017032968A (ja) * 2016-02-08 2017-02-09 住友大阪セメント株式会社 光変調器及びそれを用いた光送信装置
US20170357110A1 (en) * 2016-06-10 2017-12-14 Futurewei Technologies, Inc. Second Order Detection of Two Orthogonal Dithers for I/Q Modulator Bias Control

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PARK ET AL.: "Thermal bias operation in electro- optic polymer modulators", APPLIED PHYSICS LETTERS, vol. 83, 30 July 2003 (2003-07-30), pages 827 - 829, XP001178827, DOI: 10.1063/1.1596377 *
SUN ET AL.: "Polymer electro-optic modulator linear bias using the thermo-optic effect", CHINESE PHYSICS LETTERS, vol. 29, no. 1, 9 August 2011 (2011-08-09), pages 014212-1 - 014212-4, XP055641608 *

Also Published As

Publication number Publication date
JP2019174619A (ja) 2019-10-10
JP7035704B2 (ja) 2022-03-15

Similar Documents

Publication Publication Date Title
JP5664507B2 (ja) 光制御素子
JP6458603B2 (ja) 光デバイス
US20090290830A1 (en) Optical phase modulator
JP2011028014A (ja) 光デバイスおよび光送信機
WO2014157456A1 (ja) 光変調器
JP5716714B2 (ja) 光導波路素子
JP2015197452A (ja) 光制御素子
US20230367147A1 (en) Optical waveguide element, optical modulator, optical modulation module, and optical transmission device
WO2019187522A1 (ja) 光導波路素子
JP2018173543A (ja) 光デバイス
JP7035730B2 (ja) 光導波路素子
WO2017171094A1 (ja) 光変調器
JP7259486B2 (ja) 光変調器
WO2022163724A1 (ja) 光変調器とそれを用いた光送信装置
US11442329B2 (en) Optical waveguide element, optical modulator, optical modulation module, and optical transmission apparatus
JP4376795B2 (ja) 導波路型光変調器
JP6729133B2 (ja) 光変調器
JP2017181851A (ja) 光変調器
JP7087360B2 (ja) 光変調器及びそれを用いた光送信装置
JP2005181537A (ja) 光変調器
JP6398382B2 (ja) 光デバイス
JP6504003B2 (ja) 光デバイス
JP6915706B2 (ja) 光変調器
WO2022145342A1 (ja) 光変調器とそれを用いた光送信装置
JP7054068B2 (ja) 光制御素子とそれを用いた光変調デバイス並びに光送信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19775230

Country of ref document: EP

Kind code of ref document: A1