WO2019186873A1 - 排気ガス吸引流力装置、排気ガス吸引流力装置を備えた自動車及び排気ガス吸引流力装置を備えたモーターサイクル - Google Patents

排気ガス吸引流力装置、排気ガス吸引流力装置を備えた自動車及び排気ガス吸引流力装置を備えたモーターサイクル Download PDF

Info

Publication number
WO2019186873A1
WO2019186873A1 PCT/JP2018/013168 JP2018013168W WO2019186873A1 WO 2019186873 A1 WO2019186873 A1 WO 2019186873A1 JP 2018013168 W JP2018013168 W JP 2018013168W WO 2019186873 A1 WO2019186873 A1 WO 2019186873A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
negative pressure
flow
gas suction
suction flow
Prior art date
Application number
PCT/JP2018/013168
Other languages
English (en)
French (fr)
Inventor
良弘 戸上
慶幸 雨宮
Original Assignee
新田 栄一
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新田 栄一 filed Critical 新田 栄一
Priority to PCT/JP2018/013168 priority Critical patent/WO2019186873A1/ja
Publication of WO2019186873A1 publication Critical patent/WO2019186873A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits

Definitions

  • the present invention relates to an exhaust gas suction flow device that is connected to an end of an exhaust system of an internal combustion engine and accelerates an exhaust gas flow to be released to the atmosphere, an automobile equipped with an exhaust gas suction flow device, and an exhaust gas suction flow device. It relates to the equipped motorcycle.
  • an exhaust system not only releases exhaust gas generated by combustion to the atmosphere, but also plays an important role in adjusting exhaust gas components and reducing exhaust noise.
  • the exhaust system has become more complicated and the back pressure tends to increase.
  • a technique for exhausting the exhaust gas to the atmosphere at a high speed has been developed.
  • Patent Document 1 describes an invention in which scavenging is promoted by providing a bypass path in the exhaust system and increasing the exhaust gas flow rate to reduce the back pressure.
  • Patent Document 2 describes an invention in which an exhaust pipe is provided with a pipe flow pipe that takes out the exhaust gas and causes the pipe to flow, thereby solving the problem of heat damage.
  • Patent Document 3 describes an invention for generating a high level of negative pressure suction energy in which acceleration units for accelerating an exhaust gas flow to generate a negative pressure are provided in two upper and lower stages.
  • Patent Document 4 describes an invention in which a throttle portion for restricting the exhaust gas flow flux is provided when exhaust gas is discharged into the atmosphere at high speed to ensure high-speed discharge.
  • Patent Document 5 describes an invention that is flexible so as to cope with a certain change in engine displacement.
  • Patent Document 6 describes an invention aimed at downsizing a muffler having an early acceleration effect.
  • Such a system composed of a series of inventions has an aspect in which technical elucidation is not necessarily advanced even though a remarkable effect is actually obtained. Therefore, in order to obtain the optimum results by actually applying the system as described above to various engines, for example, through various experiments and appropriate experience, various parameters required for the system (size of components, etc.) Must be set appropriately.
  • the present invention relates to an exhaust gas suction flow device that can be connected to various devices equipped with an internal combustion engine, an exhaust gas suction flow device in which suitable parameters are set so as to obtain optimum results, and an exhaust gas suction flow device. It is an object of the present invention to provide an automobile equipped with a force device and a motorcycle equipped with an exhaust gas suction flow force device.
  • One aspect of the exhaust gas suction flow device is: An exhaust gas suction flow device connected to an end of an exhaust system of an internal combustion engine and accelerating an exhaust gas flow to be released into the atmosphere; Having a cylindrical portion, one end of the cylindrical portion being an exhaust gas inflow side that receives an exhaust gas flow discharged from the end of the exhaust system, and the other end of the cylindrical portion being discharged into the atmosphere
  • the exhaust gas outflow side as a whole, the main body of the cylindrical structure,
  • a negative pressure generating portion having a tubular structure as a whole, which is arranged in the apparatus main body and generates a negative pressure by accelerating an exhaust gas flow flowing in from the exhaust gas inflow side and outflowing to the exhaust gas outflow side;
  • a high-speed flow receiving pipe having a tubular structure as a whole, provided on the exhaust gas outflow side of the apparatus main body, in order to release the exhaust gas flow accelerated by the negative pressure generating unit to the atmosphere;
  • the negative pressure generating part has a negative pressure generating side guide part
  • An exhaust gas suction flow device connected to an end of an exhaust system of an internal combustion engine and accelerating an exhaust gas flow to be released into the atmosphere; Having a cylindrical portion, one end of the cylindrical portion being an exhaust gas inflow side that receives an exhaust gas flow discharged from the end of the exhaust system, and the other end of the cylindrical portion being discharged into the atmosphere
  • the exhaust gas outflow side as a whole, the main body of the cylindrical structure,
  • a negative pressure generating portion having a tubular structure as a whole, which is arranged in the apparatus main body and generates a negative pressure by accelerating an exhaust gas flow flowing in from the exhaust gas inflow side and outflowing to the exhaust gas outflow side;
  • a high-speed flow receiving pipe having a tubular structure as a whole, provided on the exhaust gas outflow side of the apparatus main body, in order to release the exhaust gas flow accelerated by the negative pressure generating unit to the atmosphere;
  • the negative pressure generating part has a negative pressure generating side guide part for generating
  • Still another aspect of the exhaust gas suction flow device is: An exhaust gas suction flow device connected to an end of an exhaust system of an internal combustion engine and accelerating an exhaust gas flow to be released into the atmosphere; Having a cylindrical portion, one end of the cylindrical portion being an exhaust gas inflow side that receives an exhaust gas flow discharged from the end of the exhaust system, and the other end of the cylindrical portion being discharged into the atmosphere
  • the exhaust gas outflow side as a whole, the main body of the cylindrical structure,
  • a negative pressure generating portion having a tubular structure as a whole, which is arranged in the apparatus main body and generates a negative pressure by accelerating an exhaust gas flow flowing in from the exhaust gas inflow side and outflowing to the exhaust gas outflow side;
  • a high-speed flow receiving pipe having a tubular structure as a whole, provided on the exhaust gas outflow side of the apparatus main body, in order to release the exhaust gas flow accelerated by the negative pressure generating unit to the atmosphere;
  • the high-speed flow receiving pipe includes a Laval nozzle part
  • the high-speed flow receiving pipe may have a high-speed flow receiving side guide portion that generates a swirling vortex.
  • the cylindrical part may be a polygonal shape.
  • An automobile equipped with the exhaust gas suction fluid device according to the invention includes the exhaust gas suction fluid device according to any one of the aspects of the invention.
  • the motorcycle provided with the exhaust gas suction fluid device according to the invention includes the exhaust gas suction fluid device according to any one of the aspects of the invention.
  • the present invention is configured and operates as described above, it is suitable as an exhaust gas suction fluid power device that can be connected to various devices including an internal combustion engine so that optimum results can be obtained. It is possible to provide an exhaust gas suction flow device with parameters set, an automobile equipped with an exhaust gas suction flow device, and a motorcycle equipped with an exhaust gas suction flow device.
  • FIG. 1 is a longitudinal sectional view of a first embodiment of an exhaust gas suction flow device.
  • FIG. 2B is a cross-sectional view taken along line II-II in FIG. 2A.
  • 1 is a cross-sectional perspective view of an embodiment of an exhaust gas suction flow device.
  • the exhaust gas suction flow power device of the present invention reinforces the combustion power of a conventional internal combustion engine (for example, an automobile engine) and drives the engine using negative pressure power and atmospheric pressure power.
  • Conventional internal combustion engine engines convert combustion power of fuel (gasoline, light oil, hydrogen, etc.) into power.
  • the exhaust gas suction flow power device of the present invention can function as an engine (second reinforcing engine) that reinforces the conventional internal combustion engine (first basic engine) by being connected to the conventional internal combustion engine. is there.
  • second reinforcing engine that reinforces the conventional internal combustion engine (first basic engine) by being connected to the conventional internal combustion engine. is there.
  • FIG. 1 shows an example of an exhaust gas suction flow device 10 according to the present invention.
  • the exhaust gas suction flow device 10 is connected to the end of the exhaust system of the internal combustion engine 11.
  • the exhaust system includes an exhaust pipe 13 connected to the combustion chamber 12 of the internal combustion engine 11, a catalyst device 14 provided in the exhaust pipe 13, a muffler 15, and the like.
  • Exhaust gas generated in the combustion chamber 12 of the internal combustion engine 11 is exhausted through the exhaust pipe 13.
  • the exhaust gas is purified by the catalyst device 14 provided in the exhaust pipe 13.
  • the exhaust gas suction flow device 10 can reinforce the combustion power of an engine of an internal combustion engine, for example, an automobile engine.
  • the exhaust gas suction flow device 10 can reinforce the combustion power of a motorcycle engine such as a motorcycle or a trike.
  • the exhaust gas suction flow device 10 can be used for all devices using an internal combustion engine, such as engines for large and small ships, aircraft including helicopters, agricultural machinery, generators using engines, heavy machinery such as forklifts. it can.
  • a four-cycle gasoline engine is assumed as the internal combustion engine 11, and the exhaust gas suction flow device 10 is installed at the exhaust pipe 13, that is, at the end of the exhaust system, and the exhaust gas flow passing through the exhaust system. Flows into the exhaust gas suction flow device 10.
  • the exhaust gas suction flow device 10 of the present embodiment has a hollow cylindrical structure, respectively, an apparatus main body 20, a negative pressure generation unit 30, an exhaust pipe connection unit 40, A high-speed flow receiving tube 50 is provided.
  • the apparatus main body 20 has a cylindrical structure as a whole, and includes a cylindrical portion 22 in which the negative pressure generating portion 30 is disposed, a front surface portion 21 that closes one end side of the cylindrical portion 22, and the cylindrical portion 22. And a rear surface portion 23 for closing the other end side.
  • the cylindrical portion 22 has a polygonal cylindrical shape. Specifically, the cylindrical portion 22 has a hexagonal cylindrical shape.
  • the polygonal cylinder shape is a shape that forms a crease in an exhaust gas suction region 34 described later. Openings 21 a and 23 a are provided concentrically at the center of the front surface portion 21 and the rear surface portion 23.
  • the front surface portion 21 is an exhaust gas inflow side disposed on the downstream side of the exhaust system muffler 15.
  • the rear surface portion 23 is on the exhaust gas outflow side of the exhaust system.
  • the apparatus main body 20 is airtightly connected to the end of the exhaust pipe 13 via an exhaust pipe connection portion 40 provided at one end located upstream of the exhaust gas flow (downstream of the exhaust pipe 13).
  • the front surface portion 21 of the apparatus main body 20 has an end connected to the exhaust pipe connecting portion 40 as an exhaust gas inflow side that receives an exhaust gas flow discharged from the end of the exhaust system.
  • the rear surface portion 23 of the apparatus main body 20 is an exhaust gas outflow side that discharges the exhaust gas flow in the apparatus main body 20 to the atmosphere.
  • the exhaust pipe connecting portion 40 has a cylindrical structure as a whole, and is joined to the front surface portion 21 of the apparatus main body 20 by, for example, welding so as to be disposed substantially concentrically with the apparatus main body 20.
  • the joining method may be only by welding, and screw connection or a combination thereof is also possible.
  • Such an apparatus main body 20 is manufactured using an refractory metal by an arbitrary processing method such as a sheet metal processing method, a deep drawing method, a die casting method, or the like.
  • a downstream end portion of the exhaust pipe connecting portion 40 enters an upstream side (an opening region 33 described later) of the apparatus main body 20.
  • the negative pressure generator 30 is provided inside the apparatus main body 20.
  • the negative pressure generator 30 is provided to accelerate mainly the flow (E1) in the central portion of the exhaust gas flow (E) flowing in from the exhaust gas inflow side.
  • the negative pressure generating unit 30 has a hollow cylindrical structure provided substantially concentrically with the apparatus main body 20.
  • the negative pressure generating portion 30 has a shape in which the cross-sectional area on the exhaust gas outflow side is narrower (smaller) than the exhaust gas inflow side.
  • the negative pressure generating unit 30 includes a cylindrical portion 31 having the largest cross-sectional area, a throttle tube 32 whose cross-sectional area is reduced in diameter at the downstream end, and an end plate 36 that blocks the downstream end of the cylindrical portion 31.
  • Each of the cylindrical portion 31 and the throttle tube 32 is substantially cylindrical.
  • a negative pressure generation side guide portion (hereinafter referred to as “first guide portion”) 311 that generates a swirling vortex is formed on the inner surface of the cylindrical portion 31.
  • the first guide portion 311 is formed by, for example, a spiral groove or ridge.
  • the exhaust gas flow in the negative pressure generating part 30 advances while turning.
  • the wall surface in contact with the fluid often has a resistance component due to vortices and turbulence.
  • the exhaust gas flow that travels in the cylindrical portion 31 travels while turning, so that turbulent flow does not occur and proceeds smoothly (tornado effect).
  • the throttle tube 32 protrudes from the center of the end plate 36 toward the downstream side.
  • One injection port 32 a is formed at the center of the throttle tube 32.
  • the injection port 32 a is disposed coaxially with the cylindrical portion 31.
  • a plurality of injection ports 32 a may be formed in the end plate 36.
  • the exhaust gas flow flowing into the negative pressure generating unit 30 from the exhaust gas inflow side is accelerated and flows out from the exhaust gas outflow side. This principle will be described in detail later. Further, in order to flow the flow (E2) on the outer peripheral side other than the central portion of the exhaust gas flow (E) flowing in from the exhaust gas inflow side to the outside of the negative pressure generation unit 30, the exhaust pipe connection portion 40 and the negative An opening region 33 is provided between the pressure generating unit 30 (cylinder unit 31).
  • the negative pressure generating part 30 is fixed to the cylindrical part 22 of the apparatus main body 20 by means of welding or the like at several places in the cylindrical part 31 using the support 35.
  • the support 35 is illustrated in a substantially cross shape, and has sufficient strength to fix the negative pressure generating unit 30 against external forces such as exhaust gas flow and running vibration. Functions as a support.
  • the space between the supports 35 is an exhaust gas suction region 34 through which the exhaust gas flow outside the negative pressure generating unit 30 passes, and the negative pressure formed behind the cylinder portion 31 through the periphery thereof. It leads to the space (negative pressure region V described later).
  • the support 35 is configured by a plate-like member (board) or the like.
  • the support shown in FIGS. 2 and 3 is a trapezoidal board, and extends over the entire length of the negative pressure generating unit 30 so as to extend in the direction of the center line connecting the upstream center and the downstream center of the negative pressure generating unit 30. It spans between the outer periphery of the support 35 and the inner periphery of the cylindrical portion 22.
  • the support body 35 constituted by a board is composed of six pieces that are spanned from each fold of the cylindrical portion 22 of the apparatus main body 20 toward the central axis of the negative pressure generating portion 30 at an interval of 60 °. .
  • the cylindrical portion 22 is formed into a polygonal shape such as a hexagon, and the fold is provided, so that the support 35 constituted by the board is positioned at the fold.
  • the flow (E2) on the outer peripheral side of the exhaust gas flow flows so as to go straight without turning.
  • the support 35 is constituted by a board, the flow (E2) on the outer peripheral side of the exhaust gas flow can be similarly low in flow resistance.
  • the support 35 may be constituted by pillars.
  • the support body 35 constituted by pillars includes a plurality of (for example, six) bridges extending from the upstream end of each fold of the cylindrical portion 22 of the apparatus main body 20 to the upstream end of the negative pressure generating section 30, and the apparatus main body.
  • the support 35 constituted by pillars may fix an intermediate portion of the cylindrical portion. Since the pillar has a small diameter, the flow resistance to the outer peripheral flow (E2) of the exhaust gas flow can be small.
  • the high-speed flow receiving pipe 50 is provided on the exhaust gas outflow side of the apparatus main body 20 in order to release the exhaust gas flow accelerated by the negative pressure generating unit 30 to the atmosphere.
  • the high-speed flow receiving pipe 50 has a cylindrical structure as a whole.
  • the high-speed flow receiving tube 50 is a Laval nozzle having a reduced diameter portion 51 at the intermediate portion as shown.
  • the high-speed flow receiving tube 50 may be a Laval nozzle having a reduced diameter portion 51 at the intermediate portion and an enlarged diameter at the downstream side.
  • the high-speed flow receiving pipe 50 is joined to the rear surface portion 23 of the apparatus main body 20 by, for example, welding so as to be disposed substantially concentrically with the apparatus main body 20.
  • the cross-sectional area and length of the high-speed flow receiving pipe 50 are appropriately set, and details thereof will be described later.
  • a high-speed flow receiving side guide portion (hereinafter referred to as “second guide portion”) 501 that generates a swirling vortex is formed.
  • the second guide portion 501 is formed by, for example, a spiral groove or protrusion.
  • the exhaust gas flow E discharged from the end of the exhaust system flows into the apparatus main body 20 through the exhaust pipe connecting portion 40, and is mainly in the center of the exhaust gas flow E.
  • the part flow E1 passes through the injection port 32a of the throttle tube 32 after passing through the cylindrical part 31 of the negative pressure generating part 30, it is accelerated at a stretch and becomes a high-speed flow.
  • a strong negative pressure region V is formed in the region between the throttle tube 32 and the high-speed flow receiving tube 50 (the region indicated by the stroke line in FIGS. 2A and 4).
  • the flow E2 on the outer peripheral side other than the central portion of the exhaust gas flow E flows out from the opening region 33 to the outside of the negative pressure generating unit 30, and this flow is sucked into the strong negative pressure region V described above.
  • the suction flow E3 becomes a high-speed suction flow, merges with the flow E1 in the central portion downstream of the negative pressure generating portion 30, and is released into the atmosphere as a high-speed flow E4 swirling in the high-speed flow receiving pipe 50.
  • the exhaust gas suction flow device 10 of the present embodiment introduces the exhaust gas into the exhaust gas suction flow device 10, and then the first path (mainly the flow E ⁇ b> 1 in the central portion) and the second path (mainly the main flow E ⁇ b> 1). Branches to a flow E2) other than the central portion.
  • the unit gas flow velocity of the exhaust gas is increased by passing through the negative pressure generating unit 30 having a shape with a smaller cross-sectional area on the downstream side than on the upstream side, and the discharge port portion having a small cross-sectional area ( Negative pressure (negative pressure region V) is generated in the throttle tube 32) for the following reason.
  • the cross-sectional area through which the fluid flows is inversely proportional to the fluid velocity. For example, if the diameter of the cross section through which the fluid flows is halved, the cross sectional area is reduced to a quarter, so the fluid velocity is quadrupled, and the fluid energy is proportional to the square of the fluid velocity, so it is 16 times. become. According to Bernoulli's theorem, which corresponds to the energy conservation law in fluids, the sum of fluid energy and pressure is equal before and after the change. For this reason, when the energy of the fluid increases, negative pressure is generated in the direction perpendicular to the flow velocity direction accordingly.
  • the second path is a path branched from the first path, but the exhaust gas (mainly the flow E2 other than the central portion) flowing through the second path is sucked into the negative pressure (negative pressure region V) described above.
  • a high-speed suction flow suction flow E3 is formed and merged into the first path (becomes E4).
  • the exhaust gas introduced into the exhaust gas suction flow device 10 (the exhaust gas flow branched into the first path and the second path) is promoted to be discharged as a whole (the exhaust gas flow is accelerated). )
  • the exhaust gas suction flow device 10 of the present invention can function as an engine (second reinforcing engine) that reinforces a conventional internal combustion engine (first basic engine). This will be specifically described below with reference to FIGS.
  • FIG. 5 is a diagram for explaining how the negative pressure propagates when the exhaust gas suction flow device 10 of the present invention is installed in the conventional internal combustion engine 11 (first basic engine).
  • the exhaust gas suction flow device 10 is illustrated in a simplified manner, and other exhaust system configurations are not illustrated.
  • the set of flow velocity and negative pressure propagates along the wall surface to the exhaust bubble of the internal combustion engine 11 (first basic engine) without delay, and the internal combustion engine 11 is in a state where the exhaust valve is empty.
  • the negative pressure propagates to the inside of the cylinder.
  • FIG. 6 is called an Otto cycle PV diagram, and shows the performance of a 4-cycle engine.
  • 6A shows a PV diagram of a conventional engine (ie, an internal combustion engine that does not include the exhaust gas suction flow device 10 of the present invention), and
  • FIG. 6B shows an engine of the present invention (ie, the exhaust gas suction of the present invention).
  • the PV diagram of an internal combustion engine provided with the hydrodynamic device 10 is shown.
  • the stroke of intake and exhaust does not contribute to the power of the engine, but rather becomes a loss, and is called a pump loss.
  • (1) intake air and (4) exhaust gas become resistances and take the power of the engine.
  • the engine of the present invention all the residual gas in the piston is scavenged by the negative pressure, and fresh air (oxygen) can be forcibly sucked from the overlapped open intake valve.
  • the amount increases and the combustion power can be increased (see FIG. 6B).
  • the magnitude of the negative pressure depends on the flow rate of the exhaust gas, and the flow rate of the exhaust gas is proportional to the engine speed. For this reason, the engine of this invention can obtain the torque according to the rotation speed.
  • the exhaust gas suction flow power device 10 of the present invention can function as an engine (second reinforcing engine) that reinforces the conventional internal combustion engine (first basic engine), and is integrated with the conventional internal combustion engine.
  • the engine with the maximum capacity can be configured.
  • an inflow cross-sectional area S ⁇ b> 1 that is a cross-sectional area on the exhaust gas inflow side of the negative pressure generating unit 30 (that is, a cross-sectional area of the cylindrical portion 31)
  • the relationship with the outflow cross-sectional area S2, which is the cross-sectional area on the exhaust gas outflow side of the negative pressure generating unit 30 (that is, the cross-sectional area of the injection port 32a of the throttle pipe 32) is important.
  • parameters are set for the outlet area S3, which is the cross-sectional area of the high-speed flow receiving pipe 50 that passes when the exhaust gas flow accelerated by the negative pressure generator 30 is discharged, and the length L of the high-speed flow receiving pipe 50. Is also important.
  • the size of the outflow cross-sectional area (the cross-sectional area of the injection port 32a) S2 is substantially 1 of the size of the inflow cross-sectional area S1.
  • / 4 is set.
  • the ratio of the size of the outflow cross-sectional area S2 to the size of the inflow cross-sectional area S1 (hereinafter referred to as the drawing ratio) is 1/3, 1/4, and 1/5.
  • the throttle ratio is 1/3
  • the flow velocity of the exhaust gas flow is three times (fluid energy is nine times) before and after passing through the negative pressure generating unit 30.
  • the flow rate of the exhaust gas flow is 4 times (fluid energy is 16 times) before and after passing through the negative pressure generating unit 30.
  • the flow rate of the exhaust gas flow is five times (fluid energy is 25 times) before and after passing through the negative pressure generating unit 30.
  • the larger the denominator of the throttle ratio that is, the stronger the throttle
  • the higher the flow rate of the exhaust gas flow and it becomes possible to generate a larger negative pressure.
  • the squeezing ratio of the outflow cross-sectional area S2 with respect to the size of the inflow cross-sectional area S1 is substantially 1 ⁇ 4, which is a range where the squeezing ratio is 1/3 to 1/5.
  • the discharge port area S3 and the length L of the high-speed flow receiving pipe 50 are very important parameters, and the exhaust gas outflow side of the negative pressure generating unit 30 (that is, the outflow interruption of the injection port 32a of the throttle pipe 32). It is preferable that the outlet of the high-speed flow receiving pipe 50 (opening portion on the exhaust gas outflow side) be covered with a high-speed flow of the accelerated exhaust gas flowing out from the area S2). With this setting, it is possible to prevent the backflow of the external atmosphere from the outlet of the high-speed flow receiving pipe 50, and it is possible to prevent the negative pressure from being reduced or eliminated.
  • the discharge port area S3 and the length L of the high-speed flow receiving pipe 50 are set such that the outer peripheral surface EL of the exhaust gas flow accelerated and discharged from the exhaust gas outflow side of the negative pressure generating unit 30 is the high-speed flow receiving pipe 50. It is preferable to set so that it may contact
  • the flow rate of the exhaust gas is proportional to the displacement of the internal combustion engine (engine) and the rotational speed.
  • ⁇ in the above formula (A) is a coefficient when the internal combustion engine is a naturally aspirated engine, and is set according to the range of the displacement Q (cc). Specifically, when the displacement Q is 500 cc or more and less than 2,000 cc, 3.0 ⁇ ⁇ ⁇ 6.9 is set. When the displacement Q is 2,000 cc or more and less than 15,000 cc, 2.1 ⁇ ⁇ ⁇ 2.7 is set. When the displacement Q is 15,000 cc or more and less than 40,000 cc, 1.1 ⁇ ⁇ ⁇ 1.9 is set. When the internal combustion engine is a supercharger intake engine, the coefficient ⁇ is set by setting the displacement Q to be increased by 10 to 15%.
  • the outflow cross-sectional area S2 is set by the above-described calculation formula (A), and the size of the outflow cross-sectional area S2 is the size of the inflow cross-sectional area S1.
  • the size of the inflow cross-sectional area S1 is set so as to be substantially set to 1 ⁇ 4.
  • the acceleration of the exhaust gas flow can be appropriately adjusted according to the operating environment of the internal combustion engine, the exhaust amount, and the like.
  • the exhaust gas suction flow device 10 according to the present invention can be applied to an internal combustion engine for a vehicle represented by the above-described gasoline engine or diesel engine, but the target is not limited to these, and the engine
  • the present invention can be applied to any internal combustion engine in which exhaust gas generated by the combustion of fuel inside acts as a thermodynamic fluid. For example, it can also be applied to a gas turbine engine or the like.
  • the exhaust gas suction flow device 10 includes the first guide part 311 and the second guide part 501 and the high-speed flow receiving pipe 50 of the Laval nozzle.
  • the exhaust gas suction flow device 10 includes the first guide portion 311 and the second guide portion 501, and the high-speed flow receiving pipe 50 may be a cylindrical shape that is not a Laval nozzle.
  • the exhaust gas suction flow device 10 may include the high-speed flow receiving pipe 50 of the Laval nozzle without including the first guide portion 311 and the second guide portion 501.
  • the high-speed flow receiving pipe 50 may partially include a Laval nozzle.
  • the exhaust gas suction flow device 10 including the first guide portion 311 and the second guide portion 501 or the high-speed flow receiving pipe 50 of the Laval nozzle can also accelerate the flow rate of the exhaust gas.
  • the exhaust gas suction flow device 10 is configured such that the negative pressure generating unit 30 includes the first guide unit 311 and the high-speed flow receiving pipe 50 includes the second guide unit 501. .
  • the exhaust gas suction flow device 10 may be configured such that the negative pressure generating unit 30 does not have the first guide part 311 and the high-speed flow receiving pipe 50 has the second guide part 501.
  • the negative pressure generating unit 30 may include the first guide unit 311, and the high-speed flow receiving pipe 50 may not include the second guide unit 501.
  • the cylindrical portion 22 of the apparatus main body 20 is a polygonal shape such as a hexagonal shape, but may be a cylindrical shape.
  • the throttle tube 32 of the negative pressure generating unit 30 has a sectional area that changes stepwise (discontinuously). However, the throttle tube 32 continuously contracts on the exhaust gas outflow side. You may form in the taper shape which diameters.
  • one aspect of the exhaust gas suction flow device 10 is as follows.
  • An exhaust gas suction flow device 10 connected to the end of the exhaust system of the internal combustion engine 11 for accelerating the exhaust gas flow and releasing it into the atmosphere, Having a cylindrical portion, one end of the cylindrical portion being an exhaust gas inflow side that receives an exhaust gas flow discharged from the end of the exhaust system, and the other end of the cylindrical portion being discharged into the atmosphere
  • the exhaust gas outflow side as a whole, the main body of the cylindrical structure
  • a negative pressure generator 30 having a generally cylindrical structure, which is arranged in the apparatus main body and generates a negative pressure by accelerating an exhaust gas flow flowing in from an exhaust gas inflow side and outflowing to an exhaust gas outflow side;
  • a high-speed flow receiving pipe 50 having a tubular structure as a whole, provided on the exhaust gas outflow side of the apparatus main body in order to release the exhaust gas flow accelerated by the negative pressure generating unit 30 to the atmosphere;
  • the negative pressure generating unit 30 includes a negative pressure
  • the negative pressure generator 30 having the throttle tube 32 formed with one or a plurality of injection ports 32a on the exhaust gas outlet side, and the negative pressure generator
  • the conventional internal combustion engine 11 is reinforced by providing the apparatus main body having the exhaust gas inflow side and the exhaust gas outflow side with a high-speed flow receiving pipe 50 for releasing the exhaust gas flow accelerated by 30 to the atmosphere.
  • the exhaust gas suction flow force device 10 includes a negative pressure generating unit 30 having a negative pressure generating side guide unit 311 and a high-speed flow receiving pipe 50 including a Laval nozzle unit, thereby increasing the exhaust flow velocity. It becomes.
  • An exhaust gas suction flow device 10 connected to the end of the exhaust system of the internal combustion engine 11 for accelerating the exhaust gas flow and releasing it into the atmosphere, Having a cylindrical portion, one end of the cylindrical portion being an exhaust gas inflow side that receives an exhaust gas flow discharged from the end of the exhaust system, and the other end of the cylindrical portion being discharged into the atmosphere
  • the exhaust gas outflow side as a whole, the main body of the cylindrical structure
  • a negative pressure generator 30 having a generally cylindrical structure, which is arranged in the apparatus main body and generates a negative pressure by accelerating an exhaust gas flow flowing in from an exhaust gas inflow side and outflowing to an exhaust gas outflow side;
  • a high-speed flow receiving pipe 50 having a tubular structure as a whole, provided on the exhaust gas outflow side of the apparatus main body in order to release the exhaust gas flow accelerated by the negative pressure generating unit 30 to the atmosphere;
  • the negative pressure generating part 30 has a negative pressure generating side guide part
  • the negative pressure generator 30 having the throttle tube 32 formed with one or a plurality of injection ports 32a on the exhaust gas outlet side, and the negative pressure generator
  • the conventional internal combustion engine 11 is reinforced by providing the apparatus main body having the exhaust gas inflow side and the exhaust gas outflow side with a high-speed flow receiving pipe 50 for releasing the exhaust gas flow accelerated by 30 to the atmosphere.
  • the exhaust gas suction flow device 10 includes the negative pressure generation unit 30 having the negative pressure generation side guide unit 311, thereby increasing the exhaust gas flow velocity.
  • An exhaust gas suction flow device 10 connected to the end of the exhaust system of the internal combustion engine 11 for accelerating the exhaust gas flow and releasing it into the atmosphere, Having a cylindrical portion, one end of the cylindrical portion being an exhaust gas inflow side that receives an exhaust gas flow discharged from the end of the exhaust system, and the other end of the cylindrical portion being discharged into the atmosphere
  • the exhaust gas outflow side as a whole, the main body of the cylindrical structure
  • a negative pressure generator 30 having a generally cylindrical structure, which is arranged in the apparatus main body and generates a negative pressure by accelerating an exhaust gas flow flowing in from an exhaust gas inflow side and outflowing to an exhaust gas outflow side
  • a high-speed flow receiving pipe 50 having a tubular structure as a whole, provided on the exhaust gas outflow side of the apparatus main body in order to release the exhaust gas flow accelerated by the negative pressure generating unit 30 to the atmosphere;
  • the high-speed flow receiving pipe 50 includes a Laval nozzle part.
  • the negative pressure generator 30 having the throttle tube 32 formed with one or a plurality of injection ports 32a on the exhaust gas outlet side, and the negative pressure generator
  • the conventional internal combustion engine 11 is reinforced by providing the apparatus main body having the exhaust gas inflow side and the exhaust gas outflow side with a high-speed flow receiving pipe 50 for releasing the exhaust gas flow accelerated by 30 to the atmosphere.
  • the exhaust gas suction flow force device 10 has an increased exhaust flow velocity because the high-speed flow receiving pipe 50 includes a Laval nozzle portion.
  • the high-speed flow receiving pipe 50 has a high-speed flow receiving side guide portion 501 that generates a swirling vortex. According to the exhaust gas suction flow device 10, since the high-speed flow receiving pipe 50 includes the high-speed flow receiving side guide portion 501, the exhaust flow velocity can be increased in the high-speed flow receiving pipe 50.
  • the said cylindrical part is made into polygonal shape. According to the exhaust gas suction flow device 10, a flow defining the direction of the exhaust flow can be generated by the polygonal cylindrical portion.
  • the automobile according to the present invention includes the exhaust gas suction flow device 10 according to any aspect of the present invention.
  • the motorcycle according to the present invention includes the exhaust gas suction flow power device 10 according to any aspect of the present invention. This automobile or motorcycle can reduce air pollution and the like by including the exhaust gas suction flow device 10 with increased combustion power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Silencers (AREA)

Abstract

内燃機関を備えた各種機器に接続可能な排気ガス吸引流力装置として、最適の成果を得ることのできるように好適なパラメータを設定した排気ガス吸引流力装置を提供すること。 排気ガス吸引流力装置10は、全体として筒状構造の装置本体20と、排気ガス流入側から流入する排気ガス流を加速して排気ガス流出側に流出することで負圧を発生させる、全体として筒状構造の負圧発生部30と、負圧発生部30により加速された排気ガス流を大気放出するために、装置本体20の排気ガス流出側に設けられた、全体として管状構造の高速流受領管50とを備えている。負圧発生部30は、旋回渦流を生じさせる負圧発生側ガイド部(第1のガイド部)311を有している。高速流受領管50はラバールノズル部を備え、高速流受領側ガイド部(第2のガイド部)501を有している。

Description

排気ガス吸引流力装置、排気ガス吸引流力装置を備えた自動車及び排気ガス吸引流力装置を備えたモーターサイクル
 本発明は、内燃機関の排気系の末端に接続され、排気ガス流を加速して大気放出する排気ガス吸引流力装置、排気ガス吸引流力装置を備えた自動車及び排気ガス吸引流力装置を備えたモーターサイクルに関するものである。
 自動車用エンジンに代表される内燃機関において、排気系は燃焼によって生じた排気ガスを大気に放出するに止まらず、排気ガスの成分調整や排気音の低減を行う重要な役割を負っている。特に、近年の排気ガス浄化に関する法整備の進行に伴い、排気系が複雑化し、背圧が増大する傾向が続いている。このような傾向を改善するため、排気ガスを高速化して大気放出する技術が開発されている。
 例えば、特許文献1には、排気系にバイパス路を設け、排気ガス流速を高めて背圧を減少させることで掃気を促進する発明が記載されている。特許文献2には、排気管に排気ガスを取り出してまた管流させる管流管を設け、熱害の問題解決を図った発明が記載されている。特許文献3には、排気ガス流を加速して負圧を発生させる加速部を上下2段に設けた、高度の負圧吸引エネルギーを発生させる発明が記載されている。特許文献4には、排気ガスを高速で大気放出する際に排気ガス流の流束を絞る絞り部を設け、高速排出の確実化を図った発明が記載されている。特許文献5には、エンジンの排気量の或る程度の変化に対応するように融通性を持たせた発明が記載されている。特許文献6には、早期促進効果を有するマフラーについて小型化を目的とした発明が記載されている。
 上記したような従来技術が開発される中で新たな課題も明確になった。その代表的な課題は、例えば、エンジン排気量等の変化に対応する柔軟性である。それが十分でない場合には、排気量の大小によって何種類もの製品を用意しなければならないことになる。また、他の課題は装置の小型化である。大型のエンジンであればあるほど自動車に装着しにくくなり、排気管にかかる荷重負担も増すことになる。このような経緯を経て、特許文献7に記載の発明が開発されている。
 このような一連の発明から成るシステムは、実際には顕著な効果が得られるにも拘らず技術的解明が必ずしも進んでいるとは言えない側面がある。そのため、上記したようなシステムを実際に各種エンジンに適用して最適の成果を得るには、例えば種々の実験や相応の経験を経て、上記したシステムに必要な各種パラメータ(構成部品のサイズ等)を好適に設定する必要がある。
特開平6-173634号公報 特開平7-233722号公報 特開平8-326547号公報 特開平9-170432号公報 特開平10-331631号公報 特開2001-98924号公報 特開2011-153574号公報
 本発明は、内燃機関を備えた各種機器に接続可能な排気ガス吸引流力装置として、最適の成果を得ることのできるように好適なパラメータを設定した排気ガス吸引流力装置、排気ガス吸引流力装置を備えた自動車及び排気ガス吸引流力装置を備えたモーターサイクルを提供することを課題とする。
 本発明に係る排気ガス吸引流力装置の一態様は、
 内燃機関の排気系の末端に接続され、排気ガス流を加速して大気放出する排気ガス吸引流力装置であって、
 筒状部を有し、前記筒状部の一端を、排気系の末端から排出される排気ガス流を受け入れる排気ガス流入側とし、前記筒状部の他端を、排気ガス流を大気放出する排気ガス流出側とした、全体として筒状構造の装置本体と、
 前記装置本体内に配置され、排気ガス流入側から流入する排気ガス流を加速して排気ガス流出側に流出することで負圧を発生させる、全体として筒状構造の負圧発生部と、
 前記負圧発生部により加速された排気ガス流を大気放出するために、前記装置本体の排気ガス流出側に設けられた、全体として管状構造の高速流受領管とを備え、
 前記負圧発生部は、旋回渦流を生じさせる負圧発生側ガイド部を有し、
 前記高速流受領管は、ラバールノズル部を備えている。
 なお、本発明において「負圧」とは基準となる圧力を下回る圧力という程の意味で、例えば、排気系を流れる排気ガス流の圧力は基準となる一つの圧力である。
 発明に係る排気ガス吸引流力装置の他態様は、
 内燃機関の排気系の末端に接続され、排気ガス流を加速して大気放出する排気ガス吸引流力装置であって、
 筒状部を有し、前記筒状部の一端を、排気系の末端から排出される排気ガス流を受け入れる排気ガス流入側とし、前記筒状部の他端を、排気ガス流を大気放出する排気ガス流出側とした、全体として筒状構造の装置本体と、
 前記装置本体内に配置され、排気ガス流入側から流入する排気ガス流を加速して排気ガス流出側に流出することで負圧を発生させる、全体として筒状構造の負圧発生部と、
 前記負圧発生部により加速された排気ガス流を大気放出するために、前記装置本体の排気ガス流出側に設けられた、全体として管状構造の高速流受領管とを備え、
 前記負圧発生部は、旋回渦流を生じさせる負圧発生側ガイド部を有している。
 発明に係る排気ガス吸引流力装置のさらなる他態様は、
 内燃機関の排気系の末端に接続され、排気ガス流を加速して大気放出する排気ガス吸引流力装置であって、
 筒状部を有し、前記筒状部の一端を、排気系の末端から排出される排気ガス流を受け入れる排気ガス流入側とし、前記筒状部の他端を、排気ガス流を大気放出する排気ガス流出側とした、全体として筒状構造の装置本体と、
 前記装置本体内に配置され、排気ガス流入側から流入する排気ガス流を加速して排気ガス流出側に流出することで負圧を発生させる、全体として筒状構造の負圧発生部と、
 前記負圧発生部により加速された排気ガス流を大気放出するために、前記装置本体の排気ガス流出側に設けられた、全体として管状構造の高速流受領管とを備え、
 前記高速流受領管は、ラバールノズル部を備えている。
 発明に係る排気ガス吸引流力装置の各態様において、
 前記高速流受領管は、旋回渦流を生じさせる高速流受領側ガイド部を有していてよい。
 発明に係る排気ガス吸引流力装置の各態様において、
 前記筒状部は、多角形状とされていてよい。
 発明に係る排気ガス吸引流力装置を備えた自動車は、本発明に係るいずれかの態様の排気ガス吸引流力装置を備えている。
 発明に係る排気ガス吸引流力装置を備えたモーターサイクルは、本発明に係るいずれかの態様の排気ガス吸引流力装置を備えている。
 本発明は以上のように構成され、かつ、作用するものであるので、内燃機関を備えた各種機器に接続可能な排気ガス吸引流力装置として、最適の成果を得ることのできるように好適なパラメータを設定した排気ガス吸引流力装置、排気ガス吸引流力装置を備えた自動車及び排気ガス吸引流力装置を備えたモーターサイクルを提供することができる。
本実施形態に係る排気ガス吸引流力装置の一例として内燃機関の排気系の末端に設置した状態を示す説明図である。 排気ガス吸引流力装置の第1実施形態の縦断面図である。 図2AにおけるII-II線横断面図である。 排気ガス吸引流力装置の一実施形態の断面斜視図である。 排気ガス吸引流力装置の各種パラメータを説明するための説明図である。 本発明において負圧が伝搬する様子を示す説明図である。 従来のエンジンにおけるオットーサイクルを示す説明図である。 本発明のエンジンにおけるオットーサイクルを示す説明図である。
 本発明の排気ガス吸引流力装置は、従来の内燃機関のエンジン(例えば、自動車用エンジン)の燃焼パワーを補強するとともに、負圧パワーと大気圧パワーを使ってエンジンを駆動する。従来の内燃機関のエンジンは、燃料(ガソリン、軽油、水素など)の燃焼パワーを使って動力に変換するものであった。本発明の排気ガス吸引流力装置は、従来の内燃機関に接続されることで、従来の内燃機関(第1基本エンジン)を補強するエンジン(第2補強エンジン)として機能させることができるものである。このように、本発明では、従来の第1基本エンジンに第2補強エンジンを追加することで一体となって完成された最大能力のエンジンを構成することができる。
 図1は、本発明に係る排気ガス吸引流力装置10の一例を示す。図1に示すように、排気ガス吸引流力装置10は、内燃機関11の排気系の末端に接続される。排気系は、内燃機関11の燃焼室12に接続された排気管13や、この排気管13に設けられた触媒装置14やマフラー15等によって構成されている。内燃機関11の燃焼室12で生成された排気ガスは、排気管13を通して排出される。排気ガスは、排気管13に設けられた触媒装置14によって浄化される。
 排気ガス吸引流力装置10は、内燃機関のエンジン、例えば、自動車のエンジンの燃焼パワーを補強することができる。排気ガス吸引流力装置10は、オートバイやトライクなどのようなモーターサイクルのエンジンの燃焼パワーを補強することができる。排気ガス吸引流力装置10は、大小の船舶用のエンジン、ヘリコプターを含む航空機用、農機具、エンジン利用の発電機、フォークリフトなどの重機械等、内燃機関を利用した全ての機器に利用することもできる。
 本実施形態では、内燃機関11として4サイクルガソリンエンジンを想定しており、上記排気ガス吸引流力装置10は、その排気管13即ち排気系の末端に設置され、排気系を通過する排気ガス流が排気ガス吸引流力装置10に流入する。
 図2及び図3に詳細に示すように、本実施形態の排気ガス吸引流力装置10は、それぞれ中空な筒状構造を有する、装置本体20、負圧発生部30、排気管接続部40、高速流受領管50を備える。
 装置本体20は、全体として筒状構造を呈しており、負圧発生部30を内部に配置する筒状部22と、筒状部22の一端側を塞ぐ前面部21と、筒状部22の他端側を塞ぐ後面部23とを備えている。筒状部22は、多角筒形状とされている。具体的には、筒状部22は、六角筒形状とされる。多角筒形状は、後述する排気ガス吸引領域34内に折目を形成する形状である。前面部21と後面部23の中心には、開口部21a,23aが同心に設けられている。前面部21は、排気系のマフラー15の下流側に配置される排気ガス流入側となる。後面部23は、排気系の排気ガス流出側となる。
 装置本体20は、排気ガス流の上流側(排気管13の下流)に位置する一端部に設けられた排気管接続部40を介して排気管13の末端に気密的に接続されている。装置本体20の前面部21は、排気管接続部40が接続される一端を排気系の末端から排出される排気ガス流を受け入れる排気ガス流入側とされる。装置本体20の後面部23は、装置本体20内の排気ガス流を大気放出する排気ガス流出側とされる。
 排気管接続部40は、全体として筒状構造を呈しており、装置本体20と実質的に同心に配置されるように、装置本体20の前面部21において、例えば溶接により接合されている。なお、接合方法は、溶接によるものだけでもよいし、ネジ接続やそれらの併用も可能である。このような装置本体20は耐熱性金属を用いて、任意の加工方法、例えば板金加工法、深絞り法、ダイキャスト法等により製造される。排気管接続部40の下流端部は、装置本体20の上流側(後述する開口領域33)内に入り込んでいる。
 負圧発生部30は、装置本体20の内部に設けられている。負圧発生部30は、排気ガス流入側から流入する排気ガス流(E)のうちの主として中央部の流れ(E1)を加速するために設けられる。負圧発生部30は、装置本体20と概ね同心に設けられた中空な筒状構造である。負圧発生部30は、排気ガス流入側よりも排気ガス流出側の断面積が絞られた(小さくなった)形状となっている。
 具体的には、負圧発生部30は、横断面積が最大の筒部31と、横断面積が下流端において縮径した絞り管32と、筒部31の下流端を塞ぐ端盤36とから成る。筒部31と絞り管32は、それぞれ実質的に円筒状に構成される。
 筒部31の内面には、旋回渦流を生じさせる負圧発生側ガイド部(以下、「第1のガイド部」という。)311が形成されている。第1のガイド部311は、例えば、旋条状の溝又は突条によって形成される。第1のガイド部311によって、負圧発生部30内の排気ガス流は、旋回しながら進行する。一般的に、流体が接している壁面は、渦や乱流によって抵抗成分をもつことが多い。しかし、筒部31内を進行する排気ガス流は、旋回しながら進行することにより、乱流が生じなくなり、スムーズに進行する(トルネード効果)。
 絞り管32は、端盤36の中心から下流に向けて突設される。絞り管32の中心には、1個の噴射口32aが形成されている。噴射口32aは、筒部31と同軸に配置されている。なお、図示しないが、噴射口32aは、複数個、端盤36に形成されてもよい。
 このような負圧発生部30の形状により、排気ガス流入側から負圧発生部30に流入した排気ガス流は、加速されて排気ガス流出側から流出されることになる。この原理については後に詳述する。また、排気ガス流入側から流入する排気ガス流(E)のうちの主として中央部以外の外周側の流れ(E2)を負圧発生部30の外部に流すために、排気管接続部40と負圧発生部30(筒部31)との間には、開口領域33が設けられる。
 負圧発生部30は、筒部31において、支持体35を用いて数カ所で装置本体20の筒状部22に溶接等の手段により固定されている。図2Bに示すように、支持体35は、ほぼ十字型に例示されており、排気ガス流及び走行振動等の外力に対抗して負圧発生部30を固定するために十分な強度を備えた支柱として機能する。それら支持体35の間の空所は、負圧発生部30の外部の排気ガス流が通過する排気ガス吸引領域34であり、筒部31の周囲を経由しその後方に形成されている負圧空間(後述する負圧領域V)に通じている。
 支持体35は、具体的には、板状部材(ボード)などによって構成される。図2、図3に示す支持体は、台形状のボードであって、負圧発生部30の上流側中心と下流側中心を結ぶ中心線の方向に延びるように負圧発生部30の全長に亘って、支持体35の外周と筒状部22の内周との間に架け渡されている。ボードによって構成される支持体35は、装置本体20の筒状部22の各折目から負圧発生部30の中心軸に向かって60°の間隔で架け渡された6枚で構成されている。筒状部22が六角形のような多角形とされ、折目が付けられていることで、ボードによって構成される支持体35は折目で位置決めされる。このボード状の支持体35によって、排気ガス流のうち外周側の流れ(E2)は、旋回することなく直進するように流れる。支持体35がボードによって構成されると、排気ガス流のうち外周側の流れ(E2)は、同じく流動抵抗が小さいものとなり得る。
 図示しないが、支持体35は、ピラーによって構成されてもよい。ピラーによって構成される支持体35は、装置本体20の筒状部22の各折目の上流端から負圧発生部30の上流端に架け渡された複数本(例えば6本)と、装置本体20の筒状部22の各折目の下流端から負圧発生部30の下流端に架け渡された複数本(例えば6本)とによって構成される。いうまでもなく、ピラーによって構成される支持体35は、筒状部の中間部を固定してもよい。ピラーは、その径が細いので、排気ガス流のうち外周側の流れ(E2)に対する流動抵抗は小さいものになり得る。
 高速流受領管50は、負圧発生部30によって加速された排気ガス流を大気放出するために、装置本体20の排気ガス流出側に設けられている。高速流受領管50は、全体として筒状構造を呈している。高速流受領管50は、図示したような中間部に縮径部51を有するラバールノズルとされる。高速流受領管50は、図2及び図3に示すように中間部に縮径部51を有し、下流側を拡径したラバールノズルとしてもよい。高速流受領管50がラバールノズルとされることにより、排気ガスの流速を加速させることができる。高速流受領管50は、装置本体20と実質的に同心に配置されるように、装置本体20の後面部23において、例えば溶接により接合されている。この高速流受領管50の断面積及び長さが適切に設定されているが、その詳細については後述する。
 高速流受領管50の内面には、旋回渦流を生じさせる高速流受領側ガイド部(以下、「第2のガイド部」という。)501が形成されている。第2のガイド部501も、第1のガイド部311と同様、例えば、旋条状の溝又は突条によって形成される。第2のガイド部501によって、高速流受領管50内の排気ガス流は、トルネード効果によって旋回しながらスムーズに進行する。
 上記した排気ガス吸引流力装置10において、排気系の末端から排出される排気ガス流Eが、排気管接続部40を介して装置本体20内部に流入し、排気ガス流Eのうちの主として中央部の流れE1が、負圧発生部30の筒部31を通過した後に絞り管32の噴射口32aを通過することで一気に加速され高速の流れとなる。この加速に伴って絞り管32の周囲の高速流受領管50との間の領域(図2A、図4のあみ線で示した領域)に、強力な負圧領域Vが形成される。
 一方、排気ガス流Eのうちの主として中央部以外の外周側の流れE2は、開口領域33から負圧発生部30の外部に流出するが、この流れは上記した強力な負圧領域Vに吸引されて高速の吸引流E3となり、負圧発生部30の下流において中央部の流れE1と合流して、高速流受領管50内で旋回する高速流E4となって大気放出される。
 ここで、上記した排気ガス吸引流力装置10において排気ガス流の加速が実現される原理について説明する。本実施形態の排気ガス吸引流力装置10は、排気ガスを排気ガス吸引流力装置10内に導入したのちに、第1の経路(主として中央部の流れE1)と、第2の経路(主として中央部以外の流れE2)に分岐する。
 第1の経路では、上流側よりも下流側の方が断面積が小さい形状を有する負圧発生部30を通過することにより排気ガスの単位体積流速が高められ、断面積が小さい排出口部分(絞り管32)に負圧(負圧領域V)が発生するが、これは以下の理由による。
 すなわち、周知のように、流体の流れる断面積と流体の速度は反比例する。例えば、流体の流れる断面の直径を半分にすると、断面積は4分の1になるため、流体の速度は4倍になり、流体のエネルギーは、流体の速度の2乗に比例するので16倍になる。流体におけるエネルギー保存則に相当するベルヌーイの定理によれば、変化の前後において、流体のエネルギーと圧力の和は等しい。このため、流体のエネルギーが増加すると、その分だけ流速方向と垂直な方向に負圧が生じることになる。
 すなわち、排気ガスのうち第1の経路を流れる排気ガス(主として中央部の流れE1)が下流側に断面積が小さくなる負圧発生部30を通過すると断面積が減少することにより流速が増加し、流体のエネルギーが増加することによって負圧(負圧領域V)が生じる。
 第2の経路は、第1の経路から分岐された経路であるが、第2の経路を流れる排気ガス(主として中央部以外の流れE2)が上記した負圧(負圧領域V)に吸引されることにより高速の吸引流(吸引流E3)となり、第1の経路に合流する(E4となる)。これにより、排気ガス吸引流力装置10に導入された排気ガス(第1の経路と第2の経路に分岐された排気ガス流)は全体として排出が促進される(排気ガス流が加速される)こととなる。
 また、本発明の排気ガス吸引流力装置10は、従来の内燃機関(第1基本エンジン)を補強するエンジン(第2補強エンジン)として機能させることができる。以下、図5、図6を用いて具体的に説明する。
 図5は、従来の内燃機関11(第1基本エンジン)に本発明の排気ガス吸引流力装置10を設置したときに負圧が伝播する様子を説明する図である。なお、図5では、排気ガス吸引流力装置10を簡易化して図示し、その他の排気系の構成の図示を省略している。
 周知のように、ベルヌーイの定理によれば、変化の前後において、流体のエネルギーと圧力の和は等しいことから、流体(排気ガス流)の流速の運動エネルギーと流速方向と垂直方向に発生する負圧(図5の実線の矢印で示す壁面からの負圧)の和は変化しない(ゼロである)。このため、排気ガス流の流速の運動エネルギーと壁面からの負圧はセットで生じることになる。
 また、一旦、壁面に生じた流速は、慣性の法則により存在し続けようとする。したがって、図5に示すように、流速と負圧のセットは、壁面に沿って遅滞なく内燃機関11(第1基本エンジン)の排気バブルまで伝搬し、排気バルブが空いた状態では、内燃機関11のシリンダ内部まで、負圧が伝搬することになる。
 図6は、オットーサイクルのPV線図と呼ばれるもので、4サイクルエンジンの性能を表す図である。図6Aは、従来のエンジン(すなわち、本発明の排気ガス吸引流力装置10を備えない内燃機関)のPV線図を示し、図6Bは、本発明のエンジン(すなわち、本発明の排気ガス吸引流力装置10を備える内燃機関)のPV線図を示す。
 図6Aに示すように、従来のエンジンでは、吸気と排気の行程はエンジンの動力に寄与せず、むしろ損失になるためポンプ損失と呼ばれている。具体的には、図6Aに示すように、(1)吸気及び(4)排気が抵抗となり、エンジンの動力(パワー)を奪うことになる。
 一方、本発明のエンジンでは、図5に示すように、排気の行程(排気バルブが空いた状態)において、シリンダ内の負圧(図5の実線の矢印)とシリンダ外の大気圧(図5の点線の矢印)の両方が作用することにより、ともにピストンを押し上げる方向に力が加えられる。このため、図6Bに示すように、(1)吸気及び(4)排気によって、エンジンの動力(パワー)に大きく寄与することができる。
 また、従来のエンジンでは排気行程で10%程度の残留ガスがシリンダ内に残ることが多い。そして、この残留ガスによって比熱比が小さくなり、燃焼時の温度上昇が抑えられることで燃焼パワーが減少する(図6A参照)。
 一方、本発明のエンジンでは、負圧によってピストン内の残留ガスをすべて掃気するとともに、オーバーラップして開いた吸気バルブから新鮮な空気(酸素)を強制吸引することができるため、シリンダ内の酸素量が増え、燃焼パワーを増大させることができる(図6B参照)。そして、負圧の大きさは排気ガスの流速に依存し、排気ガスの流速はエンジンの回転数に比例する。このため、本発明のエンジンは、回転数に応じたトルクを得ることができる。
 以上のことから、本発明の排気ガス吸引流力装置10は、従来の内燃機関(第1基本エンジン)を補強するエンジン(第2補強エンジン)として機能させることができ、従来の内燃機関と一体となって最大能力のエンジンを構成することができる。
 次に、上記した排気ガス吸引流力装置10の好適な実施形態における各種パラメータについて図4を参照して説明する。上記した排気ガス吸引流力装置10においては、図4に示すように、負圧発生部30の排気ガス流入側の断面積(すなわち、筒部31の断面積)である流入断面積S1と、負圧発生部30の排気ガス流出側の断面積(すなわち、絞り管32の噴射口32aの断面積)である流出断面積S2との関係が重要となる。また、負圧発生部30により加速された排気ガス流が排出される際に通過する高速流受領管50の断面積である排出口面積S3と、高速流受領管50の長さLのパラメータ設定も重要となる。
 具体的には、好適な実施形態においては、排気ガス吸引流力装置10において、流出断面積(噴射口32aの断面積)S2の大きさは、流入断面積S1の大きさの実質的に1/4に設定される。例えば、流入断面積S1の大きさに対する流出断面積S2の大きさの割合(以下、絞り比という)が1/3、1/4、1/5の場合について検討する。絞り比が1/3の場合は、負圧発生部30の通過前後において排気ガス流の流速は3倍(流体エネルギーは9倍)となる。絞り比が1/4の場合は、負圧発生部30の通過前後において排気ガス流の流速は4倍(流体エネルギーは16倍)となる。絞り比が1/5の場合は、負圧発生部30の通過前後において排気ガス流の流速は5倍(流体エネルギーは25倍)となる。
 このように、絞り比の分母を大きくする(つまり、絞りを強くする)ほど排気ガス流の流速が速くなり、より大きな負圧を発生させることが可能となるが、実験的には、絞り比を実質的に1/4にすることが、バランス的に好ましいことが分かっている。ここで、流入断面積S1の大きさに対する流出断面積S2の絞り比が実質的に1/4とは、絞り比が1/3乃至1/5の範囲である。
 また、高速流受領管50の排出口面積S3及びその長さLは、非常に重要なパラメータであり、負圧発生部30の排気ガス流出側(つまり、絞り管32の噴射口32aの流出断面積S2で示される領域)から流出する加速された排気ガスの高速流によって、高速流受領管50の出口(排気ガス流出側の開口部分)に蓋ができるように設定することが好ましい。このように設定すると、高速流受領管50の出口から外部の大気の逆流を防止することができ、負圧の低減または消失を防止することができる。
 例えば、高速流受領管50の長さLが短すぎると、外部の大気が逆流し負圧が低減または消失され、反対に長さLが長すぎると抵抗になり好ましくない。このため、高速流受領管50の排出口面積S3及びその長さLは、負圧発生部30の排気ガス流出側から加速されて流出される排気ガス流の外周面ELが高速流受領管50の内面に当接するように設定されることが好ましい。
 また、排気ガスの流量は内燃機関(エンジン)の排気量と回転数に比例する。このため、負圧発生部30の排気ガス流出側の流出断面積S2(cm)は、排気量Q(cc)との関係において次式で表すことができる。
S2=βQ/1000・・・(A)
 ここで、上式(A)におけるβは、内燃機関が自然吸気エンジンの場合の係数であり、排気量Q(cc)の範囲に応じて設定される。具体的には、排気量Qが500cc以上2,000cc未満のときには、3.0≦β≦6.9に設定される。排気量Qが2,000cc以上15,000cc未満のときには、2.1≦β≦2.7に設定される。排気量Qが15,000cc以上40,000cc未満のときには、1.1≦β≦1.9に設定される。
 なお、内燃機関が過給器吸気エンジンの場合には、排気量Qを10~15%増しで設定することで、係数βが設定される。
 このように、本実施形態の排気ガス吸引流力装置10では、上記した計算式(A)によって流出断面積S2が設定され、流出断面積S2の大きさが、流入断面積S1の大きさの実質的に1/4に設定されるように、流入断面積S1の大きさが設定される。
 以上のように、本実施形態の排気ガス吸引流力装置10によれば、内燃機関の運転環境や排気量等に応じて、排気ガス流の加速度合を適切に調節できるようになる。本発明の実施に当たっては、排気量等の条件に相応した排気ガス吸引流力装置10を適用することが重要であるので、大小サイズの異なる装置を用意するものとする。本発明に係る排気ガス吸引流力装置10は、上記したガソリンエンジンやディーゼルエンジンに代表される車両用の内燃機関に適用することができるものであるが対象がこれらに限られるわけではなく、機関内部での燃料の燃焼により生じる排気ガスが熱力学的流体として働く内燃機関であれば適用可能であって、例えばガスタービンエンジン等に適用することも可能である。
 以上、本発明の排気ガス吸引流力装置の実施形態について説明したが、本発明は、前記の実施形態に限定されるものではなく、本発明の課題を解決できる範囲での変更や改良は、本発明に含まれる。
 例えば、上記した実施形態において、排気ガス吸引流力装置10は、第1のガイド部311及び第2のガイド部501とラバールノズルの高速流受領管50とを備えた。しかし、排気ガス吸引流力装置10は、第1のガイド部311及び第2のガイド部501を備え、高速流受領管50は、ラバールノズルでない筒状としてもよい。逆に、排気ガス吸引流力装置10は、第1のガイド部311及び第2のガイド部501を備えず、ラバールノズルの高速流受領管50を備えるようにしてもよい。また、高速流受領管50は、部分的にラバールノズルを含んでもよい。第1のガイド部311及び第2のガイド部501又はラバールノズルの高速流受領管50を備えた排気ガス吸引流力装置10も、排気ガスの流速を加速させることができる。
 また、上記した実施形態において、排気ガス吸引流力装置10は、負圧発生部30が第1のガイド部311を有し、高速流受領管50が第2のガイド部501を有するようにした。しかし、排気ガス吸引流力装置10は、負圧発生部30が第1のガイド部311を有さず、高速流受領管50が第2のガイド部501を有するようにしてもよいし、逆に、負圧発生部30が第1のガイド部311を有し、高速流受領管50が第2のガイド部501を有しないようにしてもよい。
 また、上記した実施形態において、装置本体20の筒状部22は、六角形状のような多角形状としたが、円筒状であってもよい。また、上記した実施形態において、負圧発生部30の絞り管32は、その断面積が段階的に(不連続に)変化するとしたが、絞り管32は、排気ガス流出側で連続的に縮径するテーパ状に形成されてもよい。
 以上まとめると、本発明に係る排気ガス吸引流力装置10の一態様は、
 内燃機関11の排気系の末端に接続され、排気ガス流を加速して大気放出する排気ガス吸引流力装置10であって、
 筒状部を有し、前記筒状部の一端を、排気系の末端から排出される排気ガス流を受け入れる排気ガス流入側とし、前記筒状部の他端を、排気ガス流を大気放出する排気ガス流出側とした、全体として筒状構造の装置本体と、
 前記装置本体内に配置され、排気ガス流入側から流入する排気ガス流を加速して排気ガス流出側に流出することで負圧を発生させる、全体として筒状構造の負圧発生部30と、
 前記負圧発生部30により加速された排気ガス流を大気放出するために、前記装置本体の排気ガス流出側に設けられた、全体として管状構造の高速流受領管50とを備え、
 前記負圧発生部30は、旋回渦流を生じさせる負圧発生側ガイド部311を有し、
 前記高速流受領管50は、ラバールノズル部を備えている。
 この排気ガス吸引流力装置10の一態様によれば、1個又は複数個の噴射口32aを形成した絞り管32を排気ガス流出側に有した前記負圧発生部30と、負圧発生部30により加速された排気ガス流を大気放出するための高速流受領管50とを、排気ガス流入側及び排気ガス流出側を有する装置本体内に備えたことにより、従来の内燃機関11を補強するエンジンとして機能することができる。すなわち、この排気ガス吸引流力装置10は、負圧によって内燃機関11のピストン内の残留ガスをすべて掃気するとともに、オーバーラップして開いた吸気バルブから新鮮な空気を強制吸引し、燃焼パワーを増大させることができる。この排気ガス吸引流力装置10は、負圧発生側ガイド部311を有する負圧発生部30を備え、また、高速流受領管50がラバールノズル部を備えていることにより、排気流速を上げたものとなる。
 本発明に係る排気ガス吸引流力装置10の他態様は、
 内燃機関11の排気系の末端に接続され、排気ガス流を加速して大気放出する排気ガス吸引流力装置10であって、
 筒状部を有し、前記筒状部の一端を、排気系の末端から排出される排気ガス流を受け入れる排気ガス流入側とし、前記筒状部の他端を、排気ガス流を大気放出する排気ガス流出側とした、全体として筒状構造の装置本体と、
 前記装置本体内に配置され、排気ガス流入側から流入する排気ガス流を加速して排気ガス流出側に流出することで負圧を発生させる、全体として筒状構造の負圧発生部30と、
 前記負圧発生部30により加速された排気ガス流を大気放出するために、前記装置本体の排気ガス流出側に設けられた、全体として管状構造の高速流受領管50とを備え、
 前記負圧発生部30は、旋回渦流を生じさせる負圧発生側ガイド部311を有している。
 この排気ガス吸引流力装置10の他態様によれば、1個又は複数個の噴射口32aを形成した絞り管32を排気ガス流出側に有した前記負圧発生部30と、負圧発生部30により加速された排気ガス流を大気放出するための高速流受領管50とを、排気ガス流入側及び排気ガス流出側を有する装置本体内に備えたことにより、従来の内燃機関11を補強するエンジンとして機能することができる。すなわち、この排気ガス吸引流力装置10は、負圧によって内燃機関11のピストン内の残留ガスをすべて掃気するとともに、オーバーラップして開いた吸気バルブから新鮮な空気を強制吸引し、燃焼パワーを増大させることができる。排気ガス吸引流力装置10は、負圧発生側ガイド部311を有する負圧発生部30を備えていることにより、排気流速を上げたものとなる。
 本発明に係る排気ガス吸引流力装置10の異なる他態様は、
 内燃機関11の排気系の末端に接続され、排気ガス流を加速して大気放出する排気ガス吸引流力装置10であって、
 筒状部を有し、前記筒状部の一端を、排気系の末端から排出される排気ガス流を受け入れる排気ガス流入側とし、前記筒状部の他端を、排気ガス流を大気放出する排気ガス流出側とした、全体として筒状構造の装置本体と、
 前記装置本体内に配置され、排気ガス流入側から流入する排気ガス流を加速して排気ガス流出側に流出することで負圧を発生させる、全体として筒状構造の負圧発生部30と、
 前記負圧発生部30により加速された排気ガス流を大気放出するために、前記装置本体の排気ガス流出側に設けられた、全体として管状構造の高速流受領管50とを備え、
 前記高速流受領管50は、ラバールノズル部を備えている。
 この排気ガス吸引流力装置10の一態様によれば、1個又は複数個の噴射口32aを形成した絞り管32を排気ガス流出側に有した前記負圧発生部30と、負圧発生部30により加速された排気ガス流を大気放出するための高速流受領管50とを、排気ガス流入側及び排気ガス流出側を有する装置本体内に備えたことにより、従来の内燃機関11を補強するエンジンとして機能することができる。すなわち、この排気ガス吸引流力装置10は、負圧によって内燃機関11のピストン内の残留ガスをすべて掃気するとともに、オーバーラップして開いた吸気バルブから新鮮な空気を強制吸引し、燃焼パワーを増大させることができる。排気ガス吸引流力装置10は、高速流受領管50がラバールノズル部を備えていることにより、排気流速を上げたものとなる。
 前記本発明に係る排気ガス吸引流力装置10において、
 前記高速流受領管50は、旋回渦流を生じさせる高速流受領側ガイド部501を有している。
 この排気ガス吸引流力装置10によれば、高速流受領管50が高速流受領側ガイド部501を有していることにより、高速流受領管50において排気流速を上げることができる。
 前記本発明に係る排気ガス吸引流力装置10において、
 前記筒状部は、多角形状とされている。
 この排気ガス吸引流力装置10によれば、多角形状の筒状部によって、排気流の方向を規定した流れを生み出すことができる。
 本発明に係る自動車は、本発明に係るいずれかの態様の排気ガス吸引流力装置10を備えている。
 本発明に係るオートバイは、本発明に係るいずれかの態様の排気ガス吸引流力装置10を備えている。
 この自動車やオートバイは、燃焼パワーを増大させた排気ガス吸引流力装置10を備えていることにより、大気汚染などを低減することができる。
 10 排気ガス吸引流力装置
 11 内燃機関
 13 排気管
 20 装置本体
 21 前面部
 22 筒状部
 23 後面部
 30 負圧発生部
 31 筒部
311 負圧発生側ガイド部(第1のガイド部)
 32 絞り管
 32a 噴射口
 33 開口領域
 34 排気ガス吸引領域
 35 支持体
 40 排気管接続部
 50 高速流受領管
501 高速流受領側ガイド部(第2のガイド部)

Claims (7)

  1.  内燃機関の排気系の末端に接続され、排気ガス流を加速して大気放出する排気ガス吸引流力装置であって、
     筒状部を有し、前記筒状部の一端を、排気系の末端から排出される排気ガス流を受け入れる排気ガス流入側とし、前記筒状部の他端を、排気ガス流を大気放出する排気ガス流出側とした、全体として筒状構造の装置本体と、
     前記装置本体内に配置され、排気ガス流入側から流入する排気ガス流を加速して排気ガス流出側に流出することで負圧を発生させる、全体として筒状構造の負圧発生部と、
     前記負圧発生部により加速された排気ガス流を大気放出するために、前記装置本体の排気ガス流出側に設けられた、全体として管状構造の高速流受領管とを備え、
     前記負圧発生部は、旋回渦流を生じさせる負圧発生側ガイド部を有し、
     前記高速流受領管は、ラバールノズル部を備えている、
     ことを特徴とする排気ガス吸引流力装置。
  2.  内燃機関の排気系の末端に接続され、排気ガス流を加速して大気放出する排気ガス吸引流力装置であって、
     筒状部を有し、前記筒状部の一端を、排気系の末端から排出される排気ガス流を受け入れる排気ガス流入側とし、前記筒状部の他端を、排気ガス流を大気放出する排気ガス流出側とした、全体として筒状構造の装置本体と、
     前記装置本体内に配置され、排気ガス流入側から流入する排気ガス流を加速して排気ガス流出側に流出することで負圧を発生させる、全体として筒状構造の負圧発生部と、
     前記負圧発生部により加速された排気ガス流を大気放出するために、前記装置本体の排気ガス流出側に設けられた、全体として管状構造の高速流受領管とを備え、
     前記負圧発生部は、旋回渦流を生じさせる負圧発生側ガイド部を有している、
     ことを特徴とする排気ガス吸引流力装置。
  3.  内燃機関の排気系の末端に接続され、排気ガス流を加速して大気放出する排気ガス吸引流力装置であって、
     筒状部を有し、前記筒状部の一端を、排気系の末端から排出される排気ガス流を受け入れる排気ガス流入側とし、前記筒状部の他端を、排気ガス流を大気放出する排気ガス流出側とした、全体として筒状構造の装置本体と、
     前記装置本体内に配置され、排気ガス流入側から流入する排気ガス流を加速して排気ガス流出側に流出することで負圧を発生させる、全体として筒状構造の負圧発生部と、
     前記負圧発生部により加速された排気ガス流を大気放出するために、前記装置本体の排気ガス流出側に設けられた、全体として管状構造の高速流受領管とを備え、
     前記高速流受領管は、ラバールノズル部を備えている、
     ことを特徴とする排気ガス吸引流力装置。
  4.  前記高速流受領管は、旋回渦流を生じさせる高速流受領側ガイド部を有している、
     請求項1乃至3のうちいずれか一項に記載の排気ガス吸引流力装置。
  5.  前記筒状部は、多角形状とされている、
     請求項1乃至4のうちいずれか一項に記載の排気ガス吸引流力装置。
  6.  請求項1乃至5のうちいずれか一項に記載の排気ガス吸引流力装置を備えた自動車。
  7.  請求項1乃至5のうちいずれか一項に記載の排気ガス吸引流力装置を備えたモーターサイクル。
PCT/JP2018/013168 2018-03-29 2018-03-29 排気ガス吸引流力装置、排気ガス吸引流力装置を備えた自動車及び排気ガス吸引流力装置を備えたモーターサイクル WO2019186873A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/013168 WO2019186873A1 (ja) 2018-03-29 2018-03-29 排気ガス吸引流力装置、排気ガス吸引流力装置を備えた自動車及び排気ガス吸引流力装置を備えたモーターサイクル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/013168 WO2019186873A1 (ja) 2018-03-29 2018-03-29 排気ガス吸引流力装置、排気ガス吸引流力装置を備えた自動車及び排気ガス吸引流力装置を備えたモーターサイクル

Publications (1)

Publication Number Publication Date
WO2019186873A1 true WO2019186873A1 (ja) 2019-10-03

Family

ID=68059780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013168 WO2019186873A1 (ja) 2018-03-29 2018-03-29 排気ガス吸引流力装置、排気ガス吸引流力装置を備えた自動車及び排気ガス吸引流力装置を備えたモーターサイクル

Country Status (1)

Country Link
WO (1) WO2019186873A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413821A (en) * 1977-07-01 1979-02-01 Kawasaki Heavy Ind Ltd Exhaust pipe for two cycle engine
JPH10110612A (ja) * 1996-10-04 1998-04-28 Taga Seisakusho:Kk 排気装置
JP2011153574A (ja) * 2010-01-27 2011-08-11 Takimoto Kenji 排気ガス流の加速装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413821A (en) * 1977-07-01 1979-02-01 Kawasaki Heavy Ind Ltd Exhaust pipe for two cycle engine
JPH10110612A (ja) * 1996-10-04 1998-04-28 Taga Seisakusho:Kk 排気装置
JP2011153574A (ja) * 2010-01-27 2011-08-11 Takimoto Kenji 排気ガス流の加速装置

Similar Documents

Publication Publication Date Title
RU2351775C2 (ru) Устройство выпуска отработанного газа транспортного средства
JP5161898B2 (ja) 排気ガス流の加速装置
KR100766806B1 (ko) 자동차용 배기구
JP5184825B2 (ja) 往復ピストン燃焼機関用複合拡散装置、及び往復ピストン燃焼機関
KR100853583B1 (ko) 내연 기관 엔진의 역류 제어 순환배기구
US5662079A (en) Manifold flow turning vanes in internal combustion engines
CN109681316A (zh) 一种涡轮增压汽车的进气结构
JP7465558B2 (ja) 内燃機関の排気促進装置及び排気系改良方法
US7942125B2 (en) Intake and exhaust system of internal combustion engine
KR102104213B1 (ko) 출력 및 연비향상과 소음감소 기능을 갖춘 차량용 배기가스 배출장치
US5014512A (en) Acceleration device of exhaust gas stream for an internal combustion engine
WO2019186873A1 (ja) 排気ガス吸引流力装置、排気ガス吸引流力装置を備えた自動車及び排気ガス吸引流力装置を備えたモーターサイクル
WO2011070955A1 (ja) エンジン、ならびにそれを備えた車両および船舶
KR20100111802A (ko) 내연기관 엔진의 역류제어 순환배기구
KR200466707Y1 (ko) 자동차의 배기 장치용 서브 머플러
KR100759765B1 (ko) 터보 차량의 배기가스 제어장치
WO2019186872A1 (ja) 排気ガス吸引流力装置、排気ガス吸引流力装置を備えた自動車及び排気ガス吸引流力装置を備えたモーターサイクル
JP2019074051A (ja) 排気ガス吸引流力装置
TWM535168U (zh) 強化進氣輔助裝置
CA1338429C (en) Air cooling system in an internal combustion engine
JP2001159306A (ja) 内燃機関
CN113638797B (zh) 内燃机用废气减排装置
KR100464711B1 (ko) 자동차용 배기구
TWI638943B (zh) Auxiliary device for additionally increasing vehicle thrust by using exhaust gas
JPH08326547A (ja) 内燃機関における負圧吸引エネルギー発生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18912082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP