WO2019186829A1 - リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池 Download PDF

Info

Publication number
WO2019186829A1
WO2019186829A1 PCT/JP2018/012983 JP2018012983W WO2019186829A1 WO 2019186829 A1 WO2019186829 A1 WO 2019186829A1 JP 2018012983 W JP2018012983 W JP 2018012983W WO 2019186829 A1 WO2019186829 A1 WO 2019186829A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
electrode material
lithium ion
ion secondary
secondary battery
Prior art date
Application number
PCT/JP2018/012983
Other languages
English (en)
French (fr)
Inventor
秀介 土屋
崇 坂本
健志 政吉
賢匠 星
隆行 宮内
高志 久保田
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to US17/042,171 priority Critical patent/US20210083288A1/en
Priority to JP2020508662A priority patent/JP7238884B2/ja
Priority to PCT/JP2018/012983 priority patent/WO2019186829A1/ja
Priority to EP18911585.0A priority patent/EP3780182A4/en
Priority to TW108110804A priority patent/TW201943131A/zh
Publication of WO2019186829A1 publication Critical patent/WO2019186829A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0433Molding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode material for lithium ion secondary batteries, a method for producing a negative electrode material for lithium ion secondary batteries, a negative electrode material slurry for lithium ion secondary batteries, a negative electrode for lithium ion secondary batteries, and a lithium ion secondary battery. .
  • Lithium-ion secondary batteries have a higher energy density than other secondary batteries such as nickel / cadmium batteries, nickel / hydrogen batteries, lead-acid batteries, etc., so they are widely used as power sources for portable electronic products such as laptop computers and mobile phones. It is used. In recent years, the use of lithium ion secondary batteries not only for relatively small electrical appliances but also for electric vehicles, power sources for power storage, etc. has been remarkable.
  • the present invention provides a negative electrode material for a lithium ion secondary battery, a method for producing a negative electrode material for a lithium ion secondary battery, and a negative electrode material for a lithium ion secondary battery that can achieve both high density and maintenance of charge / discharge efficiency. It is an object to provide a slurry, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery.
  • the negative electrode material for a lithium ion secondary battery according to ⁇ 1> comprising particles in a state where a plurality of flat graphite particles are aggregated or bonded so that main surfaces thereof are non-parallel.
  • ⁇ 5> The negative electrode material for a lithium ion secondary battery according to any one of ⁇ 1> to ⁇ 4>, wherein the specific surface area is 1.0 m 2 / g to 10 m 2 / g. ⁇ 6> (a) obtaining a mixture containing graphitizable aggregate or graphite and a graphitizable binder; and (b) graphitizing the mixture. ⁇ 1> to ⁇ 1. 5> The manufacturing method of the negative electrode material for lithium ion secondary batteries of any one of 5>.
  • a negative electrode material slurry for a lithium ion secondary battery comprising the negative electrode material for a lithium ion secondary battery according to any one of ⁇ 1> to ⁇ 5>, an organic binder, and a solvent.
  • a lithium ion secondary battery comprising a positive electrode, an electrolyte, and the negative electrode for a lithium ion secondary battery according to ⁇ 8>.
  • a negative electrode material for a lithium ion secondary battery capable of achieving both high density and maintenance of charge / discharge efficiency, a method for producing a negative electrode material for a lithium ion secondary battery, a negative electrode material slurry for a lithium ion secondary battery, A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery are provided.
  • the present invention is not limited to the following embodiments.
  • the constituent elements including element steps and the like
  • the present invention is not limited thereto.
  • the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes.
  • numerical ranges indicated using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • each component may contain a plurality of corresponding substances.
  • the content or content of each component is the total content or content of the multiple types of substances present in the composition unless otherwise specified. Means quantity.
  • a plurality of particles corresponding to each component may be included.
  • the particle diameter of each component means a value for a mixture of the plurality of particles present in the composition unless otherwise specified.
  • the term “layer” or “film” includes only a part of the region in addition to the case where the layer or film is formed over the entire region. The case where it is formed is also included.
  • the negative electrode material for a lithium ion secondary battery of the present disclosure (hereinafter also simply referred to as a negative electrode material) has a density when a 3.0 g sample filled in a cylindrical space with a diameter of 15 mm is pressed at a speed of 10 mm / min.
  • a value C obtained by the following formula from pressure A (kN / cm 2 ) when the density is 1.35 g / cm 3 and pressure B (kN / cm 2 ) when the density is 1.70 g / cm 3 Is 5.5 or less.
  • C (pressure B ⁇ pressure A) / (1.70 ⁇ 1.35)
  • the difference between the pressure applied to make the density of the sample 1.35 g / cm 3 and the pressure applied to make 1.70 g / cm 3 under the above measurement conditions is a certain value or less. It was found that the negative electrode material can achieve both higher density and maintenance of charge / discharge efficiency. The reason for this is not necessarily clear, but since the press pressure necessary to obtain the desired density is relatively small, the load on the negative electrode material due to the press is reduced, so cracks are less likely to occur and side reactions due to the new surface. It is conceivable that the occurrence of is suppressed.
  • the value C obtained by the above formula is preferably 5.0 or less, and more preferably 4.5 or less.
  • a specific method for measuring the pressure A (kN / cm 2 ) and the pressure B (kN / cm 2 ) of the negative electrode material used for calculating the value C is not particularly limited.
  • measurement can be performed by the following method using an apparatus configured as shown in FIG.
  • a sample having a diameter of 15 mm is filled with 3.0 g of a sample, and compressed at a constant speed of 10 mm / min using an autograph (for example, manufactured by Shimadzu Corporation). During this compression, the distance from the bottom surface of the sample to the press surface is measured, and the density during pressing is calculated from the volume of the sample obtained by multiplying this by the bottom area (1.767 cm 2 ) of the mold.
  • the autograph press hammer is equipped with a load cell and measures the applied pressure when a predetermined density is reached.
  • the negative electrode material is not particularly limited as long as it satisfies the above-described conditions, but is preferably a carbon material.
  • the negative electrode material When the negative electrode material is a carbon material, it may be a carbon material alone or may contain foreign elements. Examples of the carbon material include natural graphite such as scale, earth, and sphere, graphite such as artificial graphite, amorphous carbon, carbon black, fibrous carbon, and nanocarbon.
  • the carbon material contained in the negative electrode material may be a single type or a combination of two or more types.
  • the negative electrode material may contain particles containing an element capable of inserting and extracting lithium ions.
  • the element capable of inserting and extracting lithium ions is not particularly limited, and examples thereof include Si, Sn, Ge, and In.
  • the negative electrode material may include particles (hereinafter, also referred to as graphite secondary particles) in which a plurality of flat graphite particles are aggregated or bonded so that their main surfaces are non-parallel.
  • graphite secondary particles particles in which a plurality of flat graphite particles are aggregated or bonded so that their main surfaces are non-parallel.
  • the flat graphite particles are non-spherical graphite particles having anisotropy in shape.
  • Examples of the flat graphite particles include graphite particles having a shape such as a scale shape, a scale shape, or a partial lump shape.
  • the flat graphite particles have an aspect ratio represented by A / B of 1.2 to 20, for example, where A is the length in the major axis direction and B is the length in the minor axis direction. Is preferable, and 1.3 to 10 is more preferable.
  • A is the length in the major axis direction
  • B is the length in the minor axis direction.
  • Is preferable and 1.3 to 10 is more preferable.
  • the aspect ratio is 1.2 or more, the contact area between the particles increases, and the conductivity tends to be further improved.
  • the aspect ratio is 20 or less, input / output characteristics such as rapid charge / discharge characteristics of the lithium ion secondary battery tend to be further improved.
  • the aspect ratio is obtained by observing graphite particles with a microscope, arbitrarily selecting 100 graphite particles, measuring each A / B, and taking the arithmetic average value of the measured values.
  • the length A in the major axis direction and the length B in the minor axis direction are measured as follows. That is, in the projected image of the graphite particles observed with a microscope, two parallel tangents circumscribing the outer periphery of the graphite particles, the tangent line a1 and tangent line a2 having the maximum distance are selected, and this A distance between the tangent line a1 and the tangent line a2 is a length A in the major axis direction.
  • the main surface is non-parallel of the plurality of flat graphite particles means that the surface (main surface) having the largest cross-sectional area of the plurality of flat graphite particles is not aligned in a certain direction.
  • the principal surfaces of the plurality of flat graphite particles are non-parallel to each other can be confirmed by microscopic observation.
  • the plurality of flat graphite particles are assembled or bonded in a state in which the main surfaces are not parallel to each other, so that the increase in the orientation of the main surface in the negative electrode of the flat graphite particles is suppressed, and the conductivity is reduced.
  • the graphite secondary particles may partially include a structure in which a plurality of flat graphite particles are aggregated or bonded so that their main surfaces are parallel to each other. Whether or not the flat graphite particles are aggregated or bonded in the graphite secondary particles can be confirmed, for example, by observation with a scanning electron microscope.
  • a state in which a plurality of flat graphite particles are aggregated or bonded refers to a state in which two or more flat graphite particles are aggregated or bonded.
  • Coupled refers to a state in which the particles are chemically bonded directly or via a carbon substance.
  • Aggregate refers to a state in which the particles are not chemically bonded, but the shape as an aggregate is maintained due to the organic binder or the shape thereof.
  • the flat graphite particles may be aggregated or bonded via a carbon substance.
  • the carbon material include a carbon material obtained by heat-treating an organic binder containing at least one of cyclic and chain molecular structures such as tar and pitch.
  • Examples of the carbon material include amorphous carbon and graphite, and are not particularly limited. However, from the viewpoint of mechanical strength, crystallinity develops more rapidly than hard amorphous carbon heated at around 1000 ° C. It is preferable to bond with graphitic carbon graphitized at a high temperature of 2000 ° C. or higher. In the case of being bonded with graphite carbon, the flat graphite particles tend to move in the secondary graphite particles, and the press pressure tends to be easily released.
  • the average particle diameter of the flat graphite particles is, for example, preferably 1 ⁇ m to 50 ⁇ m, more preferably 1 ⁇ m to 25 ⁇ m, and more preferably 1 ⁇ m to 15 ⁇ m, from the viewpoint of easy aggregation or bonding. Further preferred.
  • the average particle diameter of the flat graphite particles can be measured by a laser diffraction particle size distribution measuring device, and is the particle diameter (D50) when the integration from the small diameter side is 50% in the volume-based particle size distribution.
  • the flat graphite particles and their raw materials are not particularly limited, and include artificial graphite, scaly natural graphite, scaly natural graphite, coke, resin, tar, pitch, and the like.
  • graphite obtained from artificial graphite, natural graphite, or coke has high crystallinity and becomes soft particles, so that the density of the negative electrode tends to be easily increased.
  • the negative electrode material may include spherical graphite particles. Spherical graphite is not easily crushed, and this spherical graphite serves as a support for the press. A relatively large gap remains around the spherical graphite, which acts as a bypass when lithium ions move between the positive and negative electrodes. May improve.
  • spherical graphite particles examples include spherical artificial graphite and spherical natural graphite.
  • the spherical graphite particles are contained in the above-described graphite secondary particles (that is, the flat graphite particles and the spherical graphite particles are aggregated or combined to form the graphite secondary particles). It may be in a state of being mixed with graphite secondary particles.
  • the average particle diameter of the spherical graphite particles is, for example, preferably 1 ⁇ m to 50 ⁇ m, more preferably 1 ⁇ m to 25 ⁇ m, and even more preferably 1 ⁇ m to 15 ⁇ m.
  • the average particle diameter of the flat graphite particles can be measured with a laser diffraction particle size distribution measuring device, as in the case of the flat graphite particles, and the integration from the small diameter side is 50% in the volume-based particle size distribution. Particle diameter (D50).
  • the negative electrode material includes graphite secondary particles and spherical graphite particles
  • the graphite secondary particles and spherical graphite particles are mixed, or the graphite secondary particles and spherical graphite particles are combined.
  • the composite particles include particles in a state where graphite secondary particles and spherical graphite particles are bonded via organic carbides.
  • Spherical graphite with a high degree of circularity has a thickness even when the particles are rotated by the pressure of the press (that is, the depth per spherical graphite particle in the direction of the current collector because it is pressed from the electrode surface in the electrode) Is almost unchanged.
  • the flat primary particles are rotated to release the pressure of the press, and the thickness (depth) in the direction of the current collector is reduced, so that the density near the electrode surface is higher than the density near the current collector. May be higher.
  • the present inventors have found that when spherical graphite with a high degree of circularity is appropriately blended with the negative electrode material, it has a function of suppressing density unevenness from the electrode surface to the current collector direction when the electrode is pressed. .
  • the electrolyte solution on the electrode surface is uniformly present around the particles, and an effect of improving load characteristics such as rapid charge / discharge can be obtained.
  • the content ratio of the spherical graphite in the negative electrode material is larger, the density after pressurization becomes smaller and the oil absorption tends to decrease at the same time. Therefore, the amount of the spherical graphite takes into account the desired density after pressurization and the amount of oil supply. It is preferable to set.
  • the average particle size of the negative electrode material is, for example, preferably 5 ⁇ m to 40 ⁇ m, more preferably 8 ⁇ m to 30 ⁇ m, and even more preferably 10 ⁇ m to 25 ⁇ m.
  • the average particle diameter may be, for example, a volume average particle diameter measured by a laser diffraction / scattering method. Specifically, it may be the particle diameter (D50) when the integration from the small diameter side becomes 50% in the volume-based particle size distribution measured using a laser diffraction particle size distribution measuring apparatus.
  • a sample electrode is prepared, the electrode is embedded in an epoxy resin, and then mirror-polished to cross-section the electrode.
  • an electron milling device for example, “E-3500”, manufactured by Hitachi High-Technology Corporation
  • scanning electron Examples thereof include a measurement method using a microscope (for example, “VE-7800” manufactured by Keyence Corporation).
  • the average particle size in this case is the median value of 100 particle sizes arbitrarily selected from the observed particles.
  • the sample electrode has, for example, a mixture of 98 parts by weight of a negative electrode material, 1 part by weight of styrene butadiene resin as a binder, and 1 part by weight of carboxymethyl cellulose as a thickener, and the viscosity of the mixture at 25 ° C. is 1500 mPa ⁇ After adding water to add s to 2500 mPa ⁇ s to prepare a dispersion and coating the dispersion on a copper foil having a thickness of 10 ⁇ m to a thickness of about 70 ⁇ m (during coating) It can be produced by drying at 120 ° C. for 1 hour.
  • the oil absorption amount of the negative electrode material is, for example, preferably 50 ml / 100 g or more, more preferably 50 ml / 100 g to 120 ml / 100 g, still more preferably 55 ml / 100 g to 110 ml / 100 g.
  • the oil absorption is an index indicating the ratio of voids in the negative electrode material.
  • the oil absorption amount of the negative electrode material is JIS K6217-4: 2008 “Carbon black for rubber—Basic characteristics—Part 4: Determination of oil absorption amount” as dibutyl phthalate (DBP) as a reagent liquid.
  • DBP dibutyl phthalate
  • it can be measured by using linseed oil (for example, manufactured by Kanto Chemical Co., Ltd.). Specifically, linseed oil is titrated on the target powder with a constant speed burette, and the change in viscosity characteristics is measured from a torque detector. The amount of linseed oil added per unit mass of the target powder corresponding to 70% of the generated maximum torque is the oil absorption (ml / 100 g).
  • the measuring device for example, an absorption amount measuring apparatus of Asahi Research Institute, Ltd. can be used.
  • the orientation of the negative electrode material is an index indicating the degree of orientation of the particles of the negative electrode material contained in the negative electrode.
  • Small orientation means that the negative electrode material particles are oriented in random directions. That is, it means that the orientation of the graphite particles along the surface of the current collector is suppressed by the pressure during pressing.
  • the specific surface area of the negative electrode material is an index indicating the area of the interface between the negative electrode material and the electrolytic solution.
  • the smaller the specific surface area value the larger the area of the interface between the negative electrode material and the electrolyte solution, the increase in the reaction field of the decomposition reaction of the electrolyte solution is suppressed, the gas generation is suppressed, and the initial charge / discharge efficiency Tends to be good.
  • the value of the specific surface area is larger, the current density per unit area is less likely to increase rapidly, and the load is reduced, so that the charge / discharge efficiency, charge acceptance, rapid charge / discharge characteristics, etc. tend to be better.
  • the specific surface area of the negative electrode material is not particularly limited, for example, is preferably 1.0m 2 / g ⁇ 10m 2 / g, is 1.5m 2 /g ⁇ 8.0m 2 / g It is more preferable.
  • the specific surface area of the negative electrode material can be measured by the BET method (nitrogen gas adsorption method). Specifically, a negative electrode material is filled in a measurement cell, and a sample obtained by performing preheating treatment at 200 ° C. while vacuum degassing is used for nitrogen gas using a gas adsorption device (ASAP2010, manufactured by Shimadzu Corporation). To adsorb. A BET analysis is performed on the obtained sample by a five-point method, and a specific surface area is calculated.
  • the specific surface area of the negative electrode material is, for example, adjusted to an average particle diameter (the specific surface area tends to increase when the average particle diameter decreases, and the specific surface area tends to decrease when the average particle diameter increases). can do.
  • the method for producing a negative electrode material for a lithium ion secondary battery (hereinafter also referred to as a method for producing a negative electrode material) is a step of obtaining a mixture containing (a) a graphitizable aggregate or graphite and a graphitizable binder. And (b) graphitizing the mixture.
  • a graphitizable aggregate or graphite and a graphitizable binder are mixed to obtain a mixture.
  • aggregates that can be graphitized include coke such as fluid coke, needle coke, and mosaic coke.
  • the graphitizable aggregate or graphite is preferably a powder.
  • the particle size of the graphitizable aggregate or graphite is preferably smaller than the particle size of the flat graphite particles described above.
  • Examples of the graphitizable binder include coal-based, petroleum-based and artificial pitches and tars, thermoplastic resins, thermosetting resins, and the like.
  • the content of the graphitizable binder may be 5 to 80 parts by mass, or 10 to 80 parts by mass with respect to 100 parts by mass of the graphitizable aggregate or graphite. 15 parts by mass to 80 parts by mass.
  • Examples of the graphitization catalyst include substances having a graphitization catalytic action such as silicon, iron, nickel, titanium, boron, vanadium, and aluminum, and carbides, oxides, nitrides, and mica clay minerals of these substances.
  • the amount of the graphitization catalyst in the case of adding the graphitization catalyst is not particularly limited, but is 1 to 50 parts by mass with respect to 100 parts by mass of the aggregate of graphitizable aggregate or graphite and graphitizable binder. It may be. When the amount of the graphitization catalyst is 1 part by mass or more, the development of the graphite particle crystals is good and the charge / discharge capacity tends to be good. On the other hand, when the amount of the graphitization catalyst is 50 parts by mass or less, workability tends to be improved. In addition, graphitization can be performed at a lower temperature than when graphitization is performed without adding a graphitization catalyst, which is preferable from the viewpoint of energy cost.
  • the mixture can be graphitized by maintaining the mixture at a high temperature for a long time. From the viewpoint of sufficient crystal development and obtaining a sufficient capacity, it is preferable to hold at 2500 ° C. or higher, preferably 3000 ° C. or higher.
  • the mixture preferably contains a fluidity-imparting agent.
  • a fluidity imparting agent when molding the mixture by extrusion molding, it is preferable to include a fluidity imparting agent in order to perform molding while flowing the mixture.
  • the mixture when the mixture contains a fluidity-imparting agent, the amount of the graphitizable binder is suppressed, and improvement in battery characteristics such as initial charge / discharge efficiency of the negative electrode material can be expected.
  • the type of fluidity imparting agent is not particularly limited. Specifically, hydrocarbons such as liquid paraffin, paraffin wax, polyethylene wax, fatty acids such as stearic acid, oleic acid, erucic acid, 12 hydroxystearic acid, zinc stearate, lead stearate, aluminum stearate, calcium stearate, Fatty acid metal salts such as magnesium stearate, fatty acid amides such as stearic acid amide, oleic acid amide, erucic acid amide, methylene bis stearic acid amide, ethylene bis stearic acid amide, fatty acid such as stearic acid monoglyceride, stearyl stearate, hydrogenated oil
  • hydrocarbons such as liquid paraffin, paraffin wax, polyethylene wax, fatty acids such as stearic acid, oleic acid, erucic acid, 12 hydroxystearic acid, zinc stearate, lead stearate, aluminum stearate, calcium
  • the amount is not particularly limited.
  • the content of the fluidity-imparting agent with respect to the entire mixture may be 0.1% by mass to 20% by mass, 0.5% by mass to 10% by mass, or 0.5% by mass to 5% by mass. It may be mass%.
  • the method of mixing the graphitizable aggregate or graphite and the graphitizable binder can be performed using a kneader or the like. Mixing may be performed at a temperature above the softening point of the binder. Specifically, it may be 50 ° C. to 300 ° C. when the graphitizable binder is pitch, tar or the like, and may be 20 ° C. to 100 ° C. when it is a thermosetting resin. .
  • step (b) the mixture obtained in step (a) is graphitized.
  • the graphitizable component in the mixture is graphitized.
  • the graphitization is preferably performed in an atmosphere in which the mixture is not easily oxidized. Examples thereof include a method of heating in a nitrogen atmosphere, argon gas, or vacuum.
  • the temperature at the time of graphitization is not particularly limited as long as the graphitizable component can be graphitized. For example, it may be 1500 ° C. or higher, 2000 ° C. or higher, 2500 ° C. or higher, or 2800 ° C. or higher.
  • the upper limit of the temperature is not particularly limited, but may be 3200 ° C. or less, for example. When the temperature is 1500 ° C. or higher, the crystal changes.
  • the method for producing a negative electrode material is at least one selected from the group consisting of (c) a step of forming a mixture and (d) a step of heat-treating the mixture between step (a) and step (b). May be included.
  • the molding technique in the step (c) is not particularly limited.
  • the mixture may be pulverized and placed in a container such as a mold. Or you may shape
  • the bulk density increases, so that the packing amount of the graphitization furnace increases, energy efficiency increases, and graphitization can be performed with energy saving.
  • the molding reduces the distance between the catalyst particles and the aggregate that can be graphitized, and the graphitization reaction proceeds in a short time, leading to further energy savings. The environmental load involved can be reduced.
  • the loss caused by sublimation of the graphitization catalyst without being used in the graphitization reaction can be reduced as a result of the catalyst utilization efficiency being increased by increasing the bulk density by molding and controlling the distance between particles to be short. it can.
  • the presence / absence of molding of the mixture, the bulk density after molding, the type and content of the graphitization catalyst, the temperature and time of the graphitization treatment, etc. the development of graphite crystals can be freely controlled.
  • Heat treatment of the mixture in step (d) is preferable from the viewpoint of removing volatile components contained in the mixture and suppressing gas generation during graphitization in step (b).
  • the heat treatment is more preferably performed after the mixture is formed in the step (c).
  • the heat treatment is preferably performed at a temperature at which volatile components contained in the mixture are removed, and may be performed at 500 ° C. to 1000 ° C., for example.
  • the obtained graphitized product may be pulverized and adjusted in particle size so as to have a desired particle size.
  • Isotropic pressure treatment may be performed on the graphitized product after graphitization and pulverization.
  • Examples of the method for the isotropic pressure treatment include a method in which a graphitized product after pulverization is filled in a container made of rubber and the container is sealed, and then the container is subjected to isotropic pressure treatment with a press. .
  • the isotropic pressure-treated graphitized material is aggregated and solidified, it can be crushed with a cutter mill or the like and sized with a sieve or the like.
  • the method described above is an example of a method for producing a negative electrode material. You may manufacture a negative electrode material by methods other than the above.
  • the negative electrode material slurry for a lithium ion secondary battery of the present disclosure (hereinafter also referred to as negative electrode material slurry) includes the above-described negative electrode material, an organic binder, and a solvent.
  • organic binder there is no particular limitation on the organic binder.
  • styrene-butadiene rubber a polymer compound containing ethylenically unsaturated carboxylic acid ester (methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, hydroxyethyl (meth) acrylate, etc.) as a polymerization component
  • Polymer compounds containing ethylenically unsaturated carboxylic acids (acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, etc.) as polymerization components
  • polyvinylidene fluoride polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile
  • Polymer compounds such as polyimide and polyamideimide.
  • (meth) acrylate means either or both of methacrylate and acrylate.
  • the solvent there is no particular limitation on the solvent.
  • water, an organic solvent, or a mixture thereof can be used.
  • the organic solvent include N-methylpyrrolidone, dimethylacetamide, dimethylformamide, and ⁇ -butyrolactone.
  • the negative electrode material slurry may contain a thickener for adjusting the viscosity, if necessary.
  • a thickener for adjusting the viscosity, if necessary.
  • the thickener include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, polyacrylic acid and its salt, oxidized starch, phosphorylated starch, and casein.
  • the negative electrode material slurry may contain a conductive aid as necessary.
  • a conductive aid examples include carbon black, graphite, graphene, acetylene black, carbon nanotubes, conductive oxides, conductive nitrides, and the like.
  • a negative electrode for a lithium ion secondary battery of the present disclosure (hereinafter also referred to as a negative electrode) includes a current collector and a negative electrode material layer including the above-described negative electrode material formed on the current collector.
  • the material and shape of the current collector are not particularly limited.
  • materials such as strip-shaped foils, strip-shaped punched foils, strip-shaped meshes made of metals or alloys such as aluminum, copper, nickel, titanium, and stainless steel can be used.
  • porous materials such as porous metal (foamed metal) and carbon paper can be used.
  • the method for forming the negative electrode material layer including the negative electrode material on the current collector is not particularly limited. For example, it can be performed by a known method such as a metal mask printing method, electrostatic coating method, dip coating method, spray coating method, roll coating method, doctor blade method, gravure coating method, or screen printing method.
  • a known method such as a metal mask printing method, electrostatic coating method, dip coating method, spray coating method, roll coating method, doctor blade method, gravure coating method, or screen printing method.
  • a known method such as a roll, a press, or a combination thereof.
  • the negative electrode obtained by forming the negative electrode material layer on the current collector may be subjected to heat treatment.
  • the heat treatment may be performed in an inert atmosphere such as helium, argon, nitrogen, or a vacuum atmosphere in order to prevent oxidation of the current collector during the treatment.
  • the negative electrode Before the heat treatment, the negative electrode may be pressed (pressure treatment).
  • the electrode density can be adjusted by the pressure treatment.
  • the electrode density may be 1.5g / cm 3 ⁇ 1.9g / cm 3, may be 1.6g / cm 3 ⁇ 1.8g / cm 3. As the electrode density is higher, the volume capacity is improved, and the adhesion of the negative electrode material layer to the current collector tends to be improved.
  • the lithium ion secondary battery of the present disclosure has a positive electrode, an electrolyte, and the negative electrode described above. You may have members other than these as needed.
  • a configuration in which at least a negative electrode and a positive electrode are arranged to face each other with a separator interposed therebetween, and an electrolytic solution containing an electrolyte is injected can be used.
  • the positive electrode can be obtained by forming a positive electrode layer on the current collector surface in the same manner as the negative electrode.
  • a material such as a strip foil, strip punched foil, strip mesh, or the like made of a metal or an alloy such as aluminum, titanium, or stainless steel can be used.
  • the positive electrode material used for the positive electrode layer is not particularly limited.
  • metal compounds, metal oxides, metal sulfides, and conductive polymer materials that can be doped or intercalated with lithium ions can be given.
  • lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), and their double oxides (LiCo x Ni y Mn z O 2 , x + y + z 1, 0 ⁇ x , 0 ⁇ y; LiNi 2-x Mn x O 4 , 0 ⁇ x ⁇ 2), lithium manganese spinel (LiMn 2 O 4 ), lithium vanadium compound, V 2 O 5 , V 6 O 13 , VO 2 , MnO 2 , TiO 2 , MoV 2 O 8 , TiS 2 , V 2 S 5 , VS 2 , MoS 2 , MoS 3 , Cr 3 O 8 , Cr 2 O 5 .
  • a nickel-cobalt-aluminum (NCA) positive electrode material can also be suitably used.
  • separator examples include non-woven fabrics, cloths, microporous films, and combinations thereof whose main components are polyolefins such as polyethylene and polypropylene.
  • main components are polyolefins such as polyethylene and polypropylene.
  • lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 , ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, fluoroethylene carbonate, cyclopentanone, sulfolane, 3 -Methyl sulfolane, 2,4-dimethyl sulfolane, 3-methyl-1,3-oxazolidine-2-one, ⁇ -butyrolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl propyl carbonate Butylethyl carbonate, dipropyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxy
  • the form of the lithium ion secondary battery is not particularly limited, and examples include a paper battery, a button battery, a coin battery, a stacked battery, a cylindrical battery, and a square battery.
  • the negative electrode material for lithium ion secondary batteries can be applied to all electrochemical devices such as hybrid capacitors using a charging / discharging mechanism in addition to lithium ion secondary batteries to insert and desorb lithium ions. It is.
  • Negative electrode material 1 Mosaic coke having a volume average particle size of 17 ⁇ m (38 parts by mass), natural graphite containing spherical graphite and scaly graphite having a volume average particle size of 22 ⁇ m, and a softening point of 110.
  • the tar pitch binder at 30 ° C. (30 parts by mass), stearic acid (2 parts by mass) as a fluidity-imparting agent, and silicon carbide (10 parts by mass) as a graphitization catalyst are at or above the temperature at which the binder dissolves.
  • the mixture was obtained by heating and kneading at 150 ° C. Next, the obtained mixture was extruded to obtain a molded product.
  • This molding was graphitized by heat treatment up to a maximum temperature of 2500 ° C. or higher.
  • the graphite material obtained by subjecting the obtained graphitized product to isotropic secondary treatment, pulverization and sieving and having an average diameter of 23 ⁇ m was used as the negative electrode material 1.
  • Negative electrode material 2 average particles obtained in the same manner as the negative electrode material 1 except that the raw material coke was needle coke having a volume average particle diameter of 10 ⁇ m (65 parts by mass) and no natural graphite and graphitization catalyst were used. Graphite secondary particles with a diameter of 22 ⁇ m
  • Negative electrode material 3 Graphite secondary particles having a volume average particle diameter of 20 ⁇ m obtained in the same manner as the negative electrode material 1 except that the graphitization catalyst was changed to silicon dioxide (10 parts by mass).
  • Negative electrode material 4 mixture of negative electrode material C2 (80 parts by mass) and negative electrode material 1 (20 parts by mass)
  • Negative electrode material 5 mixture of negative electrode material C2 (70 parts by mass) and negative electrode material 1 (30 parts by mass)
  • Negative electrode material 6 The same amount of raw material coke as mosaic coke with a volume average particle diameter of 5 ⁇ m, 16 ⁇ m by crushing after graphitization, and obtained in the same manner as negative electrode material 1 except that isotropic secondary treatment is not performed Graphite secondary particles having a volume average particle diameter of 16 ⁇ m
  • Negative electrode material 7 Graphite secondary particles having a volume average particle diameter of 16 ⁇ m obtained in the same manner as the negative electrode material 6 except that the heat-kneaded mixture is not used as a molded product.
  • Negative electrode material 8 ... Negative electrode material 6 (98 mass) Part) and tar pitch (2 parts by mass) having a softening point temperature of 90 ° C. and steamed at 1025 ° C. to obtain secondary graphite particles bonded with amorphous carbon having an average particle size of 18 ⁇ m.
  • the negative electrode material 8 was observed with a transmission electron microscope (TEM), and it was confirmed that amorphous carbon was present inside and outside the graphite secondary particles.
  • TEM transmission electron microscope
  • Negative electrode material 9 Mixture of negative electrode material C2 (70 parts by mass) and negative electrode material 8 (30 parts by mass)
  • Negative electrode material 10 Negative electrode material C1 (30 parts by mass), negative electrode material C6 (30 parts by mass), and negative electrode material 8 (30 (Mass parts) and a mixture of flat graphite particles (10 mass parts) having a volume average particle diameter of 3 ⁇ m (volume average particle diameter of 14.3 ⁇ m) Negative electrode material 11 ...
  • Mixture of negative electrode material 5 (90 parts by mass) and high-crystalline scaly graphite particles (10 parts by mass) graphitized at 2000 ° C.
  • Negative electrode material C1 High tap density (0.95 g / cm 3 ) spherical natural graphite particles (90 parts by mass) having a volume average particle diameter of 16 ⁇ m and tar pitch (10 parts by mass) having a softening point temperature of 90 ° C. are mixed. A negative electrode material having a volume average particle size of 18 ⁇ m obtained by steaming at °C. The negative electrode material C1 was observed with a transmission electron microscope (TEM), and it was confirmed that amorphous carbon was present on the surface of the spherical natural graphite particles.
  • TEM transmission electron microscope
  • Negative electrode material C2 Negative electrode material having a volume average particle diameter of 16 ⁇ m obtained in the same manner as the negative electrode material C1, except that the spherical natural graphite particles have a low tap density (0.89 g / cm 3 ).
  • Negative electrode material C3 Negative electrode Mixture of material C2 (90 parts by mass) and negative electrode material 1 (10 parts by mass) Negative electrode material C4 ... Mixture of negative electrode material C2 (90 parts by mass) and negative electrode material 8 (10 parts by mass) Negative electrode material C5 ...
  • Negative electrode material C6 Spherical natural graphite particles have a volume average particle diameter of 10.0 ⁇ m and a high tap density (0.95 g / cm 3 ).
  • Negative electrode material C6 Negative electrode material 8 (20 parts by mass) Negative electrode material having a volume average particle diameter of 11 ⁇ m obtained in the same manner as the material C1
  • a negative electrode was produced using the produced negative electrode material. Specifically, water is added to 98 parts by mass of the negative electrode material, 1 part by mass of styrene butadiene rubber (BM-400B, manufactured by Nippon Zeon Co., Ltd.), and 1 part by mass of carboxymethyl cellulose (CMC2200, manufactured by Daicel Corporation) to form a slurry. Was made. This slurry was applied to a current collector (copper foil having a thickness of 10 ⁇ m) and dried in the air at 110 ° C. for 1 hour to prepare a negative electrode before a press test. Subsequently, the negative electrode after the press test was produced by integrating the coating material (active material) under a predetermined electrode density (1.70 g / cm 3 ) by a roll press.
  • BM-400B styrene butadiene rubber
  • CMC2200 carboxymethyl cellulose
  • the negative electrode obtained above metallic lithium as the positive electrode, ethylene carbonate / ethyl methyl carbonate (3/7 volume ratio) and vinylene carbonate (0.5% by mass) containing 1.0M LiPF 6 as the electrolyte solution ), A polyethylene microporous film having a thickness of 25 ⁇ m as a separator, and a 2016 type coin cell prepared using a copper plate having a thickness of 230 ⁇ m as a spacer.
  • discharge capacity maintenance rate The discharge capacity retention rate was 40 cycles of charge / discharge under the same conditions as above, and the ratio (%) of the discharge capacity value at the 40th cycle to the initial discharge capacity value. The results are shown in Table 1.
  • Discharge load characteristics Discharge capacity at 6th cycle (2.5C) ⁇ Discharge capacity at 3rd cycle (0.08C) ⁇ 100
  • the lithium ion secondary battery produced using the negative electrode material having a value C obtained in the press test of 5.5 or less is a negative electrode in which the value C obtained in the press test exceeds 5.5.
  • Both the initial efficiency and the evaluation of the discharge capacity maintenance rate after 40 cycles were better than those of the lithium ion secondary battery produced using the material. From the above results, it was found that the charge / discharge efficiency was maintained even when the negative electrode material having a value C of 5.5 or less obtained in the press test was densified.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

直径15mmの円柱型の空間に充填した3.0gの試料を10mm/minの速度でプレスしたときに、密度が1.35g/cmとなるときの圧力A(kN/cm)と、密度が1.70g/cmとなるときの圧力B(kN/cm)とから下記式で得られる値Cが5.5以下である、リチウムイオン二次電池用負極材。 C=(圧力B-圧力A)/(1.70-1.35)

Description

リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
 本発明は、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池に関する。
 リチウムイオン二次電池は、ニッケル・カドミウム電池、ニッケル・水素電池、鉛蓄電池等の他の二次電池に比べてエネルギー密度が高いため、ノートパソコン、携帯電話等の携帯電化製品用の電源として広く用いられている。また、比較的小型の電化製品のみならず、電気自動車、蓄電用電源等へのリチウムイオン二次電池の利用の拡大が近年著しい。
 リチウムイオン二次電池の用途の多様化に伴い、リチウムイオン二次電池の小型化、高容量化、高入出力化、コスト低減等の要求を実現するために負極のいっそうの高密度化が求められている。特に電気自動車や蓄電用電源として用いるリチウムイオン二次電池は大型であり、総エネルギーは極めて大きくなるため、安全性の確保と省スペース化の両立が難しく、この対策が広く求められている。
 リチウムイオン二次電池の負極の材料として広く用いられている天然黒鉛等の黒鉛粒子は形状が扁平であるため、負極としたときのかさ密度が小さい。また、これを用いて作製した負極は高密度化のためにプレスすると粒子が集電体面に平行な方向に沿って配向しやすく、電極表面側から集電体側への電解液の浸透性が低下する等の問題が生じる場合がある。そこで、扁平な黒鉛粒子を球形化して密度を高めた炭素材料(球状黒鉛)がリチウムイオン二次電池の高密度化に対応した負極材料として用いられている(例えば、特許文献1参照)。
特開2004-196609号公報
 球状黒鉛は扁平な黒鉛粒子を球状化する過程で高密度化されるため、これを用いることで高密度の負極を製造することができる。一方、球状黒鉛を用いて作製した負極をさらにプレスすると、これを用いた電池の充放電効率が低下する場合があることが本発明者らの検討により明らかとなった。この理由としては、プレス圧が加えられることで球状黒鉛又は球状黒鉛を被覆する非晶質炭素層に亀裂が生じ、副反応の活性点が増えることが考えられる。従って、高容量な粒子を塗布した負極電極を高密度化した際でも、負極粒子が圧壊されて不要な反応活性点が増えない負極の開発が望まれている。
 近年、負極に求められる高密度化の水準が高まる傾向にあることからプレス圧のさらなる増大も予想され、負極の高密度化を追求しつつも充放電効率等の電池性能の低下を抑制できる技術の重要性がより高まっている。
 本発明は上記事情に鑑み、高密度化と充放電効率の維持を両立しうるリチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池を提供することを課題とする。
 前記課題を解決するための具体的手段には以下の実施態様が含まれる。
<1>直径15mmの円柱型の空間に充填した3.0gの試料を10mm/minの速度でプレスしたときに、密度が1.35g/cmとなるときの圧力A(kN/cm)と、密度が1.70g/cmとなるときの圧力B(kN/cm)とから下記式で得られる値Cが5.5以下である、リチウムイオン二次電池用負極材。
 C=(圧力B-圧力A)/(1.70-1.35)
<2>複数の扁平状の黒鉛粒子が主面が非平行となるように集合又は結合した状態の粒子を含む、<1>に記載のリチウムイオン二次電池用負極材。
<3>吸油量が50ml/100g以上である、<1>又は<2>に記載のリチウムイオン二次電池用負極材。
<4>体積平均粒子径が5μm~40μmである、<1>~<3>のいずれか1項に記載のリチウムイオン二次電池用負極材。
<5>比表面積が1.0m/g~10m/gである、<1>~<4>のいずれか1項に記載のリチウムイオン二次電池用負極材。
<6>(a)黒鉛化可能な骨材又は黒鉛と、黒鉛化可能なバインダーとを含む混合物を得る工程と、(b)前記混合物を黒鉛化する工程と、を含む、<1>~<5>のいずれか1項に記載のリチウムイオン二次電池用負極材の製造方法。
<7><1>~<5>のいずれか1項に記載のリチウムイオン二次電池用負極材と、有機結着剤と、溶媒とを含むリチウムイオン二次電池用負極材スラリー。
<8>集電体と、前記集電体上に形成された<1>~<5>のいずれか1項に記載のリチウムイオン二次電池用負極材を含む負極材層と、を有するリチウムイオン二次電池用負極。
<9>正極と、電解質と、<8>に記載のリチウムイオン二次電池用負極と、を有するリチウムイオン二次電池。
 本発明によれば、高密度化と充放電効率の維持を両立しうるリチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池が提供される。
プレス試験で使用した装置の構成を示す概略断面図である。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合、原理的に明らかに必須であると考えられる場合等を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
<リチウムイオン二次電池用負極材>
 本開示のリチウムイオン二次電池用負極材(以下、単に負極材とも称する)は、直径15mmの円柱型の空間に充填した3.0gの試料を10mm/minの速度でプレスしたときに、密度が1.35g/cmとなるときの圧力A(kN/cm)と、密度が1.70g/cmとなるときの圧力B(kN/cm)とから下記式で得られる値Cが5.5以下である。
 C=(圧力B-圧力A)/(1.70-1.35)
 本発明者らの検討により、上記測定条件で試料の密度を1.35g/cmにするために加える圧力と1.70g/cmにするために加える圧力の差が一定の値以下である負極材は、高密度化と充放電効率の維持を両立しうることがわかった。その理由は必ずしも明らかではないが、所望の密度を得るために必要なプレス圧が比較的小さいためにプレスによる負極材への負荷が軽減されるため、亀裂等が発生しにくく、新生面による副反応の発生が抑制されていることが考えられる。
 高密度化と良好な充放電効率の維持を両立する観点からは、上記式で得られる値Cが5.0以下であることが好ましく、4.5以下であることがより好ましい。
 値Cの算出に用いる負極材の圧力A(kN/cm)と圧力B(kN/cm)を測定する具体的な方法は、特に制限されない。例えば、図1に示すような構成の装置を用いて、下記の手法で測定することができる。
 直径15mmの金型に試料を3.0g充填し、オートグラフ(例えば、株式会社島津製作所製)を用いて定速10mm/minの速度で圧縮する。この圧縮の際に、試料底面からプレス面までの距離を測定し、これに金型の底面積(1.767cm)を乗じて得られる試料の体積から加圧中の密度を算出する。オートグラフのプレスハンマはロードセルを取り付けて、所定の密度に達したときの加圧力を計測する。
 負極材は、上述した条件を満たすものであれば特に制限されないが、炭素材料であることが好ましい。負極材が炭素材料である場合、炭素材料のみであっても、異元素が含まれていてもよい。炭素材料としては鱗状、土状、球状等の天然黒鉛、人造黒鉛などの黒鉛、非晶質炭素、カーボンブラック、繊維状炭素、ナノカーボンなどが挙げられる。負極材に含まれる炭素材料は、1種のみでも2種以上の組み合わせであってもよい。
 また、負極材はリチウムイオンを吸蔵・放出可能な元素を含む粒子を含有してもよい。リチウムイオンを吸蔵・放出可能な元素としては、特に限定されないが、例えば、Si、Sn、Ge、In等が挙げられる。
 負極材は、複数の扁平状の黒鉛粒子が、それぞれの主面が非平行となるように集合又は結合した状態の粒子(以下、黒鉛二次粒子とも称する)を含むものであってもよい。負極材が黒鉛二次粒子の状態であると、負極材が球状黒鉛である場合に比べ、上記条件でプレスしたときの値Cが小さい傾向にある。これは、黒鉛二次粒子を構成する複数の扁平状の黒鉛粒子の間に存在する空隙によってプレス時に加える圧力が個々の黒鉛粒子に与える影響が軽減され、黒鉛粒子の破壊、亀裂の発生等が生じにくいためと考えられる。
 扁平状の黒鉛粒子とは、形状に異方性を有する非球状の黒鉛粒子である。扁平状の黒鉛粒子としては、鱗状、鱗片状、一部塊状等の形状を有する黒鉛粒子が挙げられる。
 扁平状の黒鉛粒子は、長軸方向の長さをA、短軸方向の長さをBとしたときに、A/Bで表されるアスペクト比が、例えば、1.2~20であることが好ましく、1.3~10であることがより好ましい。アスペクト比が1.2以上であると、粒子間の接触面積が増加して、導電性がより向上する傾向にある。アスペクト比が20以下であると、リチウムイオン二次電池の急速充放電特性等の入出力特性がより向上する傾向にある。
 アスペクト比は、黒鉛粒子を顕微鏡で観察し、任意に100個の黒鉛粒子を選択してそれぞれのA/Bを測定し、それらの測定値の算術平均値をとったものである。アスペクト比の観察において、長軸方向の長さA及び短軸方向の長さBは、以下のようにして測定される。すなわち、顕微鏡を用いて観察される黒鉛粒子の投影像において、黒鉛粒子の外周に外接する平行な2本の接線であって、その距離が最大となる接線a1及び接線a2を選択して、この接線a1及び接線a2の間の距離を長軸方向の長さAとする。また、黒鉛粒子の外周に外接する平行な2本の接線であって、その距離が最小となる接線b1及び接線b2を選択して、この接線b1及び接線b2の間の距離を短軸方向の長さBとする。
 本開示において複数の扁平状の黒鉛粒子の「主面が非平行である」とは、複数の扁平状の黒鉛粒子の最も断面積の大きい面(主面)が一定方向に揃っていないことをいう。複数の扁平状の黒鉛粒子の主面が互いに非平行であるか否かは、顕微鏡観察により確認することができる。複数の扁平状の黒鉛粒子が、主面が互いに非平行な状態で集合又は結合していることにより、扁平状の黒鉛粒子の負極内での主面の配向性の高まりが抑制され、導電が維持され、充電に伴う負極の膨張が抑制され、リチウムイオン二次電池のサイクル特性が向上する傾向にある。
 なお、黒鉛二次粒子は、複数の扁平状の黒鉛粒子が、それぞれの主面が平行となるように集合又は結合した状態の構造を部分的に含んでいてもよい。
 黒鉛二次粒子において扁平状の黒鉛粒子が集合又は結合しているか否かは、例えば、走査型電子顕微鏡による観察により確認することができる。
 本開示において複数の扁平状の黒鉛粒子が「集合又は結合している状態」とは、2個以上の扁平状の黒鉛粒子が集合又は結合している状態をいう。「結合」とは、互いの粒子が直接又は炭素物質を介して、化学的に結合している状態をいう。「集合」とは、互いの粒子が化学的に結合してはいないが、有機バインダー又はその形状等に起因して、集合体としての形状を保っている状態をいう。扁平状の黒鉛粒子は、炭素物質を介して集合又は結合していてもよい。炭素物質としては、例えば、タール、ピッチ等の環状及び鎖状の少なくともどちらか一方の分子構造が含まれる有機結着剤が加熱処理されて得られる炭素物質が挙げられる。炭素物質としては非晶質炭素、黒鉛等が挙げられ特に制限されないが、機械的な強度の観点からは、1000℃前後で加熱された硬質な非晶質炭素よりも、結晶性が急速に発達し始める2000℃以上の高温で黒鉛化した黒鉛炭素で結合されることが好ましい。黒鉛炭素で結合されている場合の方が、黒鉛二次粒子中で扁平状の黒鉛粒子が動きやすく、プレス圧力を逃がし易い傾向にある。
 扁平状の黒鉛粒子の平均粒子径は、集合又は結合のし易さの観点から、例えば、1μm~50μmであることが好ましく、1μm~25μmであることがより好ましく、1μm~15μmであることが更に好ましい。扁平状の黒鉛粒子の平均粒子径は、レーザー回折粒度分布測定装置により測定することができ、体積基準の粒度分布において小径側からの積算が50%となるときの粒子径(D50)である。
 扁平状の黒鉛粒子及びその原料は特に制限されず、人造黒鉛、鱗状天然黒鉛、鱗片状天然黒鉛、コークス、樹脂、タール、ピッチ等が挙げられる。これらの中でも、人造黒鉛、天然黒鉛、又はコークスから得られる黒鉛は結晶度が高く軟質な粒子となるため、負極の高密度化がし易くなる傾向にある。
 負極材は、球状の黒鉛粒子を含むものであってもよい。球状黒鉛は圧壊され難く、この球状黒鉛はプレスに対する支柱の役割を果たし、球状黒鉛の周囲に比較的大きな空隙が残り、リチウムイオンが正極-負極を移動する際のバイパスになり、充放電特性が向上する場合がある。
 球状の黒鉛粒子としては、球状人造黒鉛、球状天然黒鉛等が挙げられる。球状の黒鉛粒子は、上述した黒鉛二次粒子に含まれている(すなわち、扁平状の黒鉛粒子と球状の黒鉛粒子とが集合又は結合して黒鉛二次粒子を形成している)状態であってもよく、黒鉛二次粒子と混合された状態であってもよい。
 球状の黒鉛粒子の平均粒子径は、例えば、1μm~50μmであることが好ましく、1μm~25μmであることがより好ましく、1μm~15μmであることが更に好ましい。扁平状の黒鉛粒子の平均粒子径は、扁平状の黒鉛粒子と同様に、レーザー回折粒度分布測定装置により測定することができ、体積基準の粒度分布において小径側からの積算が50%となるときの粒子径(D50)である。
 負極材が黒鉛二次粒子と、球状の黒鉛粒子とを含む場合としては、黒鉛二次粒子と球状の黒鉛粒子とが混合された状態、黒鉛二次粒子と球状の黒鉛粒子とが結合した状態(以下、複合粒子とも称する)等が挙げられる。複合粒子としては、例えば、黒鉛二次粒子と球状の黒鉛粒子とが有機物の炭化物を介して結合した状態の粒子が挙げられる。
 円形度の高い球状の黒鉛は、プレスによる圧力で粒子が回転しても粒子厚み(つまり電極中では電極表面からプレスされるので、集電体方向への球状黒鉛粒子1個当たりの深さ)は、ほぼ変わらない。一方で、扁平状の1次粒子はプレスの圧力を逃がす為に回転して集電体方向への厚み(深さ)が小さくなり、電極表面近傍の密度が集電体近傍の密度に比べて高くなる場合がある。負極材に円形度の高い球状黒鉛を適度に配合すると、電極をプレスする際に電極表面から集電体方向への密度ムラを抑制する働きがあることが、本発明者らによって分っている。密度ムラが抑制されることで、電極表面の電解液が均等に粒子周囲に存在することになり、急速充放電等の負荷特性が向上する効果が得られる。一方、負極材中の球状黒鉛の含有割合が大きいほど加圧後密度が小さくなると同時に吸油量が少なくなる傾向にあるため、球状黒鉛の量は所望の加圧後密度及び給油量を考慮して設定することが好ましい。
(平均粒子径)
 負極材の平均粒子径は、例えば、5μm~40μmであることが好ましく、8μm~30μmであることがより好ましく、10μm~25μmであることが更に好ましい。平均粒子径は、例えば、レーザー回折・散乱法により測定される体積平均粒子径であってもよい。具体的には、レーザー回折粒度分布測定装置を用いて測定される体積基準の粒度分布において小径側からの積算が50%となるときの粒子径(D50)であってもよい。
 負極材を用いて電極(負極)を製造した場合の平均粒子径の測定方法としては、試料電極を作製し、その電極をエポキシ樹脂に埋め込んだ後、鏡面研磨して電極断面を走査型電子顕微鏡(例えば、株式会社キーエンス製、「VE-7800」)で観察する方法、イオンミリング装置(例えば、株式会社日立ハイテクノロジー製、「E-3500」)を用いて電極断面を作製して走査型電子顕微鏡(例えば、株式会社キーエンス製、「VE-7800」)で測定する方法等が挙げられる。この場合の平均粒子径は、観察される粒子から任意に選択した100個の粒子径の中央値である。
 上記試料電極は、例えば、負極材98質量部、バインダーとしてのスチレンブタジエン樹脂1質量部、及び増粘剤としてのカルボキシメチルセルロース1質量部の混合物を固形分として、該混合物の25℃における粘度が1500mPa・s~2500mPa・sとなるように水を添加して分散液を作製し、前記分散液を厚さが10μmの銅箔上に70μm程度の厚み(塗工時)になるように塗工後、120℃で1時間乾燥させることによって作製することができる。
(吸油量)
 負極材の吸油量は、例えば、50ml/100g以上であることが好ましく、50ml/100g~120ml/100gであることがより好ましく、55ml/100g~110ml/100gであることが更に好ましい。吸油量は、負極材中の空隙の割合を示す指標である。負極材の吸油量が50ml/100g以上であると、電極プレス時の圧力を緩衝する粒子内空隙が充分存在し、1.7g/cm以上の高電極密度にする際に黒鉛結晶が壊裂するのが抑制され、電池にした際に諸特性が良好に維持される傾向にある。高い容量を求めない場合は、高電極密度にする必要がないので、これには制限されない。負極材の吸油量が120mL/100g以下であると、目的のスラリー粘度に調整するために必要とする水を少なくでき、電極乾燥時のエネルギー消費を節約できる。
 本開示において、負極材の吸油量は、JIS K6217-4:2008「ゴム用カーボンブラック‐基本特性‐第4部:オイル吸収量の求め方」に記載の試薬液体としてフタル酸ジブチル(DBP)ではなく、亜麻仁油(例えば、関東化学株式会社製)を使用することにより測定することができる。具体的には、対象粉末に定速度ビュレットで亜麻仁油を滴定し、粘度特性変化をトルク検出器から測定する。発生した最大トルクの70%のトルクに対応する、対象粉末の単位質量当りの亜麻仁油の添加量を、吸油量(ml/100g)とする。測定器としては、例えば、株式会社あさひ総研の吸収量測定装置を用いることができる。
(配向性)
 負極材の配向性は、負極に含まれる負極材の粒子の配向の度合いを示す指標である。配向性が小さいことは、負極材の粒子がランダムな方向を向いていることを意味する。すなわち、プレス時の圧力によって黒鉛粒子が集電体の面に沿って配向するのが抑制されていることを意味する。
 本開示において、負極の配向性は、CuKα線をX線源とするX線回折装置を用いて求める。具体的には、試料のX線回折パターンを測定し、回折角2θ=26°~27°付近に検出される炭素(002)面回折ピークと、回折角2θ=70°~80°付近に検出される炭素(110)面回折ピークとの強度から下記式(1)により求める。
 (002)面回折ピーク強度/(110)面回折ピーク強度 ・・・・式(1)
(比表面積)
 負極材の比表面積は、負極材と電解液との界面の面積を示す指標である。比表面積の値が小さいほど、負極材と電解液との界面の面積が大きくなりすぎず、電解液の分解反応の反応場の増加が抑制されてガス発生が抑制され、且つ、初回充放電効率が良好となる傾向にある。また、比表面積の値が大きいほど、単位面積あたりにかかる電流密度が急上昇しにくく、負荷が軽減されるため、充放電効率、充電受入性、急速充放電特性等が良好となる傾向にある。
 負極材の比表面積は、特に限定されるものではないが、例えば、1.0m/g~10m/gであることが好ましく、1.5m/g~8.0m/gであることがより好ましい。
 負極材の比表面積の測定は、BET法(窒素ガス吸着法)で行うことができる。具体的には、負極材を測定セルに充填し、真空脱気しながら200℃で加熱前処理を行って得た試料に、ガス吸着装置(ASAP2010、株式会社島津製作所製)を用いて窒素ガスを吸着させる。得られた試料について5点法でBET解析を行い、比表面積を算出する。
 負極材の比表面積は、例えば、平均粒子径を調整(平均粒子径を小さくすると比表面積が大きくなる傾向にあり、平均粒子径を大きくすると比表面積が小さくなる傾向にある)により所望の範囲とすることができる。
<リチウムイオン二次電池用負極材の製造方法>
 前記リチウムイオン二次電池用負極材の製造方法(以下、負極材の製造方法とも称する)は、(a)黒鉛化可能な骨材又は黒鉛と、黒鉛化可能なバインダーとを含む混合物を得る工程と、(b)前記混合物を黒鉛化する工程と、を含む。
 工程(a)では、黒鉛化可能な骨材又は黒鉛と、黒鉛化可能なバインダーとを混合して混合物を得る。必要に応じ、黒鉛化触媒、流動性付与剤等を添加してもよい。
 黒鉛化可能な骨材としては、フルードコークス、ニードルコークス、モザイクコークス等のコークスを挙げることができる。また、天然黒鉛、人造黒鉛等の既に黒鉛である骨材を使用してもよい。前記黒鉛化可能な骨材又は黒鉛は、粉末であることが好ましい。黒鉛化可能な骨材又は黒鉛の粒子径は、上述した扁平状の黒鉛粒子の粒子径より小さいことが好ましい。
 黒鉛化可能なバインダーとしては、石炭系、石油系、人造等のピッチ及びタール、熱可塑性樹脂、熱硬化性樹脂などが挙げられる。
 黒鉛化可能なバインダーの含有率は、前記黒鉛化可能な骨材又は黒鉛100質量部に対し、5質量部~80質量部であってもよく、10質量部~80質量部であってもよく、15質量部~80質量部であってもよい。
 黒鉛化触媒としては、ケイ素、鉄、ニッケル、チタン、ホウ素、バナジウム、アルミニウム等の黒鉛化触媒作用を有する物質、これらの物質の炭化物、酸化物、窒化物、雲母質粘土鉱物などが挙げられる。
 黒鉛化触媒を添加する場合の黒鉛化触媒の量は特に制限されないが、黒鉛化可能な骨材又は黒鉛と黒鉛化可能なバインダーとの合計量100質量部に対して1質量部~50質量部であってもよい。黒鉛化触媒は、その量が1質量部以上であると、黒鉛質粒子の結晶の発達が良好であり、充放電容量が良好となる傾向にある。一方、黒鉛化触媒の量が50質量部以下であると、作業性が良好となる傾向がある。また、黒鉛化触媒を添加せずに黒鉛化を行う場合に比べて低い温度で黒鉛化することができ、エネルギーコストの観点から好ましい。
 混合物に黒鉛化触媒を添加しない場合は、例えば、混合物を高温で長時間保持することで黒鉛化することができる。結晶の発達を充分にし、充分な容量を得る観点からは、2500℃以上、好ましくは3000℃以上で保持することが好ましい。
 混合物を成形しやすくする観点からは、混合物は流動性付与剤を含むことが好ましい。特に、混合物の成形を押出成形により行う場合は、混合物を流動させながら成形を行うために、流動性付与剤を含むことが好ましい。さらに、混合物が流動性付与剤を含むことは黒鉛化可能なバインダーの量を抑えることにつながり、負極材の初回充放電効率等の電池特性の改善も期待できる。
 流動性付与剤の種類は特に制限されない。具体的には、流動パラフィン、パラフィンワックス、ポリエチレンワックス等の炭化水素、ステアリン酸、オレイン酸、エルカ酸、12ヒドロキシステアリン酸等の脂肪酸、ステアリン酸亜鉛、ステアリン酸鉛、ステアリン酸アルミニウム、ステアリン酸カルシウム、ステアリン酸マグネシウム等の脂肪酸金属塩、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド等の脂肪酸アミド、ステアリン酸モノグリセリド、ステアリルステアレート、硬化油等の脂肪酸エステル、ステアリルアルコール等の高級アルコールなどが挙げられる。これらの中でも、負極材の性能に影響を与えにくく、常温で固体であるため取扱いやすく、工程(a)で溶融するために均一に分散し、黒鉛化処理までの過程で消失し、安価であることから、脂肪酸が好ましく、ステアリン酸がより好ましい。
 混合物が流動性付与剤を含む場合、その量は特に制限されない。例えば、混合物全体に対する流動性付与剤の含有率は0.1質量%~20質量%であってもよく、0.5質量%~10質量%であってもよく、0.5質量%~5質量%であってもよい。
 黒鉛化可能な骨材又は黒鉛と黒鉛化可能なバインダーの混合方法には特に制限はない。例えば、ニーダー等を用いて行うことができる。混合はバインダーの軟化点以上の温度で行ってもよい。具体的には、黒鉛化可能なバインダーがピッチ、タール等である場合には50℃~300℃であってもよく、熱硬化性樹脂である場合には20℃~100℃であってもよい。
 工程(b)では、工程(a)で得た混合物を黒鉛化する。これにより、混合物中の黒鉛化可能な成分が黒鉛化される。黒鉛化は、混合物が酸化し難い雰囲気で行うことが好ましく、例えば、窒素雰囲気中、アルゴンガス中、又は真空中で加熱する方法が挙げられる。黒鉛化の際の温度は、黒鉛化可能な成分を黒鉛化できる温度であれば特に制限されない。例えば1500℃以上であってもよく、2000℃以上であってもよく、2500℃以上であってもよく、2800℃以上であってもよい。前記温度の上限は特に制限されないが、例えば3200℃以下であってもよい。前記温度が1500℃以上であると結晶の変化が生じる。前記温度が2000℃以上であると黒鉛の結晶の発達が良好となり、2500℃以上であるとリチウムイオンをより多く吸蔵することができる高容量な黒鉛結晶に発達し、焼成後に残存する黒鉛化触媒の量が少なく灰分量の増加が抑制される傾向にある。いずれの場合も充放電容量及び電池のサイクル特性が良好となる傾向にある。一方、黒鉛化の際の温度が3200℃以下であると、黒鉛の一部が昇華するのを抑制できる。
 負極材の製造方法は、前記工程(a)と前記工程(b)との間に、(c)混合物を成形する工程及び(d)前記混合物を熱処理する工程からなる群より選ばれる少なくとも一つを含んでもよい。
 工程(c)における成形の手法は、特に制限されない。例えば、混合物を粉砕し、これを金型等の容器に入れて行ってもよい。あるいは、混合物が流動性を保っている状態で押出成形を行って成形してもよい。
 混合物を成形することにより、かさ密度が高くなるため、黒鉛化炉の詰め量が上昇し、エネルギー効率が上昇して省エネルギーで黒鉛化することができる。さらに混合物が黒鉛化触媒を含む場合には、成形することによって触媒粒子と黒鉛化可能な骨材との距離が近くなり、黒鉛化反応が短時間で進行し更なる省エネルギー化に繋がり、生産に関わる環境負荷を低減することができる。また、黒鉛化触媒が黒鉛化反応に使用されないで昇華されることで生じるロスも、成形によりかさ密度を上げて粒子間距離を短く制御することで触媒利用効率が上昇する結果、低減することができる。
 混合物の成形の有無、成形後のかさ密度、黒鉛化触媒の種類とその含有量、黒鉛化処理の温度と時間等を調整することで、自由に黒鉛結晶の発達を制御することができる。
 工程(d)において混合物を熱処理することは、混合物に含まれる揮発性成分を除去し、工程(b)の黒鉛化の際のガス発生を抑制する観点から好ましい。熱処理は、工程(c)において混合物を成形した後に行うことがより好ましい。熱処理は、混合物に含まれる揮発性成分が除去される温度で行うことが好ましく、例えば500℃~1000℃で行ってもよい。
 得られた黒鉛化物は、所望の粒子径となるように粉砕及び粒度調整を行ってもよい。
 黒鉛化及び粉砕後の黒鉛化物に対し、等方性加圧処理を行ってもよい。前記等方性加圧処理の方法としては、例えば、粉砕後の黒鉛化物をゴム製等の容器に充填し、密封したのちに前記容器をプレス機で等方性加圧処理する方法が挙げられる。等方性加圧処理された黒鉛化物が凝集し固まってしまった場合は、カッターミル等で解砕し、篩等で整粒することができる。
 上記に述べた方法は、負極材の製造方法の一例である。上記以外の方法によって負極材を製造してもよい。
(リチウムイオン二次電池用負極材スラリー)
 本開示のリチウムイオン二次電池用負極材スラリー(以下、負極材スラリーとも称する)は、上述した負極材と、有機結着剤と、溶媒とを含む。
 有機結着剤に特に制限はない。例えば、スチレン-ブタジエンゴム、エチレン性不飽和カルボン酸エステル(メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート等)を重合成分とする高分子化合物、エチレン性不飽和カルボン酸(アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等)を重合成分とする高分子化合物、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロロヒドリン、ポリホスファゼン、ポリアクリロニトリル、ポリイミド、ポリアミドイミドなどの高分子化合物が挙げられる。本開示において(メタ)アクリレートは、メタアクリレートとアクリレートのいずれか又は両方を意味する。
 溶媒に特に制限はない。例えば、水、有機溶剤又はこれらの混合物が挙げられる。有機溶媒としては、N-メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、γ-ブチロラクトン等が挙げられる。
 負極材スラリーは、必要に応じて、粘度を調整するための増粘剤を含んでもよい。増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸及びその塩、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。
 負極材スラリーは、必要に応じて、導電助剤を含んでいてもよい。導電助剤としては、カーボンブラック、グラファイト、グラフェン、アセチレンブラック、カーボンナノチューブ、導電性を示す酸化物、導電性を示す窒化物等が挙げられる。
(リチウムイオン二次電池用負極)
 本開示のリチウムイオン二次電池用負極(以下、負極とも称する)は、集電体と、集電体上に形成された上述した負極材を含む負極材層と、を有する。
 集電体の材質及び形状は特に制限されない。例えば、アルミニウム、銅、ニッケル、チタン、ステンレス鋼等の金属又は合金からなる帯状箔、帯状穴開け箔、帯状メッシュ等の材料を用いることができる。また、ポーラスメタル(発泡メタル)、カーボンペーパー等の多孔性材料も使用可能である。
 負極材を含む負極材層を集電体上に形成する方法は特に限定されない。例えば、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法等の公知の方法により行うことができる。上記負極材層と集電体とを一体化する場合は、ロール、プレス、これらの組み合わせ等の公知の方法により行うことができる。
 負極材層を集電体上に形成して得られた負極は、熱処理を施してもよい。熱処理することにより負極材層に含まれる溶媒が除去され、バインダーの硬化による高強度化が進み、粒子間及び粒子と集電体間の密着性を向上できる。熱処理は、処理中の集電体の酸化を防ぐため、ヘリウム、アルゴン、窒素等の不活性雰囲気中又は真空雰囲気中で行ってもよい。
 熱処理を行う前に、前記負極をプレス(加圧処理)してもよい。加圧処理することにより電極密度を調整することができる。前記電極密度は1.5g/cm~1.9g/cmであってもよく、1.6g/cm~1.8g/cmであってもよい。電極密度が高いほど体積容量が向上し、集電体への負極材層の密着性が向上する傾向がある。
(リチウムイオン二次電池)
 本開示のリチウムイオン二次電池は、正極と、電解質と、上述した負極とを有する。必要に応じ、これら以外の部材を有していてもよい。リチウムイオン二次電池としては、例えば、少なくとも負極と正極とがセパレータを介して対向するように配置され、電解質を含む電解液が注入された構成とすることができる。
 正極は、負極と同様にして、集電体表面上に正極層を形成することで得ることができる。集電体としては、アルミニウム、チタン、ステンレス鋼等の金属又は合金からなる帯状箔、帯状穴開け箔、帯状メッシュ等の材料を用いることができる。
 正極層に用いる正極材料は、特に制限されない。例えば、リチウムイオンをドーピング又はインターカレーションすることが可能な金属化合物、金属酸化物、金属硫化物、及び導電性高分子材料が挙げられる。さらには、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、及びこれらの複酸化物(LiCoNiMn、x+y+z=1、0<x、0<y;LiNi2-xMn、0<x≦2)、リチウムマンガンスピネル(LiMn)、リチウムバナジウム化合物、V、V13、VO、MnO、TiO、MoV、TiS、V、VS、MoS、MoS、Cr、Cr、オリビン型LiMPO(M:Co、Ni、Mn、Fe)、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセン等の導電性ポリマー、多孔質炭素などを単独で又は2種以上を組み合わせて使用することができる。中でも、ニッケル酸リチウム(LiNiO)及びその複酸化物(LiCoNiMn、x+y+z=1、0<x、0<y;LiNi2-xMn、0<x≦2)は、容量が高いために正極材料として好適である。さらなる高容量化の観点から、ニッケル・コバルト・アルミニウム(NCA)正極材料も好適に用いることができる。
 セパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルム及びそれらの組み合わせが挙げられる。なお、リチウムイオン二次電池が正極と負極とが接触しない構造を有する場合は、セパレータを使用する必要はない。
 電解液としては、LiClO、LiPF、LiAsF、LiBF、LiSOCF等のリチウム塩を、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、フルオロエチレンカーボネート、シクロペンタノン、スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン、3-メチル-1,3-オキサゾリジン-2-オン、γ-ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、ブチルメチルカーボネート、エチルプロピルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、酢酸メチル、酢酸エチル等の単体又は2成分以上の混合物の非水系溶剤に溶解した、いわゆる有機電解液を使用することができる。なかでも、フルオロエチレンカーボネートを含有する電解液は、負極材の表面に安定なSEI(固体電解質界面)を形成する傾向があり、サイクル特性が著しく向上するために好適である。
 リチウムイオン二次電池の形態は特に限定されず、ペーパー型電池、ボタン型電池、コイン型電池、積層型電池、円筒型電池、角型電池等が挙げられる。また、前記リチウムイオン二次電池用負極材は、リチウムイオン二次電池以外にもリチウムイオンを挿入脱離することを充放電機構とする、ハイブリッドキャパシタ等の電気化学装置全般に適用することが可能である。
 以下、実施例に基づき上記実施形態をより具体的に説明するが、上記実施形態は下記の実施例に制限するものではない。
(1)負極材としては、下記のものを用いた。
 負極材1…体積平均粒子径が17μmのモザイクコークス(38質量部)と、体積平均粒子径が22μmの球状黒鉛と鱗片状黒鉛が含まれている天然黒鉛(20質量部)と、軟化点110℃のタールピッチバインダー(30質量部)と、流動性付与剤としてのステアリン酸(2質量部)と、黒鉛化触媒としての炭化ケイ素(10質量部)とを、バインダーが溶解する温度以上である150℃で加熱捏和して混合物を得た。次いで、得られた混合物を押出成形して、成形物を得た。この成形物を最高温度2500℃以上まで加熱処理して黒鉛化した。得られた黒鉛化物に対し、等方性二次処理、粉砕及び篩分けを行って得られた、平均径が23μmの黒鉛二次粒子を負極材1とした。
 負極材2…原料コークスを体積平均粒子径が10μmのニードルコークス(65質量部)とし、天然黒鉛及び黒鉛化触媒を使用しなかったこと以外は負極材1と同様にして得られた、平均粒子径が22μmの黒鉛二次粒子
 負極材3…黒鉛化触媒を二酸化ケイ素(10質量部)に変更したこと以外は負極材1と同様にして得られた、体積平均粒子径が20μmの黒鉛二次粒子
 負極材4…負極材C2(80質量部)と負極材1(20質量部)の混合物
 負極材5…負極材C2(70質量部)と負極材1(30質量部)の混合物
 負極材6…原料コークスを同量の体積平均粒子径が5μmのモザイクコークスとし、黒鉛化後の解砕で16μmとし、等方性二次処理を実施しない以外は負極材1と同様にして得られた、体積平均粒子径が16μmの黒鉛二次粒子
 負極材7…加熱捏和した混合物を成形物にしないこと以外は、負極材6と同様にして得られた、体積平均粒子径が16μmの黒鉛二次粒子
 負極材8…負極材6(98質量部)と軟化点温度90℃のタールピッチ(2質量部)を混合し、1025℃で蒸焼きにして得られた、平均粒子径が18μmの非晶質炭素が結合した黒鉛二次粒子。負極材8を透過型電子顕微鏡(TEM)で観察し、黒鉛二次粒子の内外に非晶質炭素が存在していることを確認した。
 負極材9…負極材C2(70質量部)と負極材8(30質量部)の混合物
 負極材10…負極材C1(30質量部)と負極材C6(30質量部)と負極材8(30質量部)と体積平均粒子径3μmの扁平状黒鉛粒子(10質量部) の混合物(体積平均粒子径14.3μm)
 負極材11…負極材5(90質量部)と体積平均粒子径11μmの2000℃以上で黒鉛化された高結晶鱗片状黒鉛粒子(10質量部)の混合物(体積平均粒子径17.3μm) 
 なお、負極材1~11について、走査型電子顕微鏡(SEM)観察を行ったところ、複数の扁平状の黒鉛粒子が、それぞれの主面が非平行となるように集合又は結合した状態の粒子を含んでいた。
 負極材C1…体積平均粒子径が16μmの高タップ密度(0.95g/cm)球状天然黒鉛粒子(90質量部)と軟化点温度90℃のタールピッチ(10質量部)を混合し、1025℃で蒸焼きにして得た、体積平均粒子径が18μmの負極材。負極材C1を透過型電子顕微鏡(TEM)で観察し、球状天然黒鉛粒子の表面に非晶質炭素が存在していることを確認した。
 負極材C2…球状天然黒鉛粒子が低タップ密度(0.89g/cm)であること以外は、負極材C1と同様にして得た、体積平均粒子径が16μmの負極材
 負極材C3…負極材C2(90質量部)と負極材1(10質量部)の混合物
 負極材C4…負極材C2(90質量部)と負極材8(10質量部)の混合物
 負極材C5…負極材C2(80質量部)と負極材8(20質量部)の混合物
 負極材C6…球状天然黒鉛粒子が体積平均粒子径10.0μmで、高タップ密度(0.95g/cm)であること以外は、負極材C1と同様にして得た、体積平均粒子径が11μmの負極材
(吸油量、配向性、比表面積の測定)
 各負極材について、上述した方法で吸油量(ml/100g)、配向性及び比表面積(m/g)を測定した。配向と比表面積の測定は、オートグラフによるプレス試験前と試験後にそれぞれ実施した。結果を表に示す。
(プレス試験)
 各負極材について、プレス試験を行った。
 具体的には、直径15mmの金型に試料を3.0g充填し、オートグラフ(株式会社島津製作所製)を用いて定速10mm/minの速度で圧縮した。この圧縮の際に、試料底面からプレス面までの距離を測定し、これに金型の底面積(1.767cm)を乗じて得られる試料の体積から加圧中の密度を算出した。オートグラフのプレスハンマはロードセルを取り付けて、所定の密度に達したときの加圧力を計測した。試料の密度が1.35g/cmとなったときの圧力Aと、密度が1.70g/cmとなったときの圧力Bと、これらから得られる値C=(圧力B-圧力A)/(1.70-1.35)を表1に示す。
(配向進行)
 プレスによる負極材の配向の進行の度合いの指標として、プレス試験後の負極材について測定した配向性aをプレス試験前の負極材について測定した配向性bで除した値(a/b)を計算した。結果を表1に示す。
(2)負極の作製と評価
 作製した負極材を用いて負極を作製した。具体的には、負極材98質量部、スチレンブタジエンゴム(BM-400B、日本ゼオン株式会社製)1質量部、及びカルボキシメチルセルロース(CMC2200、株式会社ダイセル製)1質量部に、水を加えてスラリーを作製した。このスラリーを集電体(厚さ10μmの銅箔)に塗布し、110℃で1時間大気中で乾燥しプレス試験前の負極を作製した。次いで、ロールプレスにて塗布物質(活物質)が所定の電極密度(1.70g/cm)となる条件で一体化してプレス試験後の負極を作製した。
(3)評価用セルの作製と評価
 作製した負極を用いて作製した評価用セルについて充電容量及び放電容量を測定し、初回充放電効率を算出した。結果を表1に示す。
 評価用セルとしては、上記で得られた負極、正極として金属リチウム、電解液として1.0M LiPFを含むエチレンカーボネート/エチルメチルカーボネート(3/7体積比)とビニレンカーボネート(0.5質量%)の混合液、セパレータとして厚さ25μmのポリエチレン製微孔膜、及びスペーサーとして厚さ230μmの銅板を用いて作製した2016型コインセルを使用した。
(充電容量及び放電容量)
 充放電容量(初回充放電容量)の測定は、試料質量:15.4mg、電極面積:1.54cm、測定温度:25℃、充電条件:定電流充電0.434mA、定電圧充電0V(Li/Li)、カット電流0.043mA、放電条件:定電流放電0.434mA、カット電圧1.5V(Li/Li)、休止時間:充放電切替毎に30分の条件で行った。放電容量の測定は、上記充電条件及び放電条件により行った。結果を表1に示す。
(初回効率)
 初回効率は、測定された充電容量(Ah/kg)の値に対する放電容量(Ah/kg)の値の割合(%)とした。結果を表1に示す。
(放電容量維持率)
 放電容量維持率は、上記と同じ条件で40サイクルの充放電を行い、初回の放電容量の値に対する40サイクル目の放電容量の値の割合(%)とした。結果を表1に示す。
(放電負荷特性)
 放電負荷特性は、初回充放電容量の測定と同じ条件で3サイクル後に、4サイクル目1.0C(5.42mA)、5サイクル目2.0C(10.85mA)、6サイクル目2.5C(13.56mA)の定電流、カット電圧1.5Vの放電条件により行った。充電条件等は、終始同条件で行った。放電負荷特性(%)を下記式より求めた。結果を表1に示す。
 放電負荷特性=6サイクル目(2.5C)の放電容量÷3サイクル目(0.08C)の放電容量×100
(不可逆容量増加)
 プレスによる負極材の劣化の指標として、下記式により不可逆容量増加(Ah/kg)を算出した。結果を表1に示す。
 不可逆容量増加=((プレス試験後の充電容量―プレス試験後の放電容量)-(プレス試験前の充電容量-プレス試験前の放電容量)
Figure JPOXMLDOC01-appb-T000001
 表に示すように、プレス試験において得られた値Cが5.5以下である負極材を用いて作製したリチウムイオン二次電池は、プレス試験において得られた値Cが5.5を超える負極材を用いて作製したリチウムイオン二次電池に比べて初回効率、40サイクル後の放電容量維持率の評価がともに良好であった。
 以上の結果から、プレス試験において得られた値Cが5.5以下である負極材は高密度化しても良好な充放電効率が維持されることがわかった。

Claims (9)

  1.  直径15mmの円柱型の空間に充填した3.0gの試料を10mm/minの速度でプレスしたときに、密度が1.35g/cmとなるときの圧力A(kN/cm)と、密度が1.70g/cmとなるときの圧力B(kN/cm)とから下記式で得られる値Cが5.5以下である、リチウムイオン二次電池用負極材。
     C=(圧力B-圧力A)/(1.70-1.35)
  2.  複数の扁平状の黒鉛粒子が主面が非平行となるように集合又は結合した状態の粒子を含む、請求項1に記載のリチウムイオン二次電池用負極材。
  3.  吸油量が50ml/100g以上である、請求項1又は請求項2に記載のリチウムイオン二次電池用負極材。
  4.  体積平均粒子径が5μm~40μmである、請求項1~請求項3のいずれか1項に記載のリチウムイオン二次電池用負極材。
  5.  比表面積が1.0m/g~10m/gである、請求項1~請求項4のいずれか1項に記載のリチウムイオン二次電池用負極材。
  6.  (a)黒鉛化可能な骨材又は黒鉛と、黒鉛化可能なバインダーとを含む混合物を得る工程と、(b)前記混合物を黒鉛化する工程と、を含む、請求項1~請求項5のいずれか1項に記載のリチウムイオン二次電池用負極材の製造方法。
  7.  請求項1~請求項5のいずれか1項に記載のリチウムイオン二次電池用負極材と、有機結着剤と、溶媒とを含むリチウムイオン二次電池用負極材スラリー。
  8.  集電体と、前記集電体上に形成された請求項1~請求項5のいずれか1項に記載のリチウムイオン二次電池用負極材を含む負極材層と、を有するリチウムイオン二次電池用負極。
  9.  正極と、電解質と、請求項8に記載のリチウムイオン二次電池用負極と、を有するリチウムイオン二次電池。
PCT/JP2018/012983 2018-03-28 2018-03-28 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池 WO2019186829A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/042,171 US20210083288A1 (en) 2018-03-28 2018-03-28 Negative electrode material for lithium ion secondary battery, production method for negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2020508662A JP7238884B2 (ja) 2018-03-28 2018-03-28 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
PCT/JP2018/012983 WO2019186829A1 (ja) 2018-03-28 2018-03-28 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
EP18911585.0A EP3780182A4 (en) 2018-03-28 2018-03-28 NEGATIVE ELECTRODE MATERIAL FOR LITHIUM ION SECONDARY BATTERY, METHOD FOR PRODUCING THE NEGATIVE ELECTRODE MATERIAL FOR LITHIUM ION SECONDARY BATTERY, NEGATIVELEKTRODENMATERIALSCHLÄMME FOR LITHIUM-ION SECONDARY BATTERY, NEGATIVE ELECTRODE FOR LITHIUM-ION SEKUNDÄBATTERIE AND LITHIUM-ION SECONDARY BATTERY
TW108110804A TW201943131A (zh) 2018-03-28 2019-03-27 鋰離子二次電池用負極材料、鋰離子二次電池用負極材料的製造方法、鋰離子二次電池用負極材料漿料、鋰離子二次電池用負極及鋰離子二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/012983 WO2019186829A1 (ja) 2018-03-28 2018-03-28 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池

Publications (1)

Publication Number Publication Date
WO2019186829A1 true WO2019186829A1 (ja) 2019-10-03

Family

ID=68058111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012983 WO2019186829A1 (ja) 2018-03-28 2018-03-28 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池

Country Status (5)

Country Link
US (1) US20210083288A1 (ja)
EP (1) EP3780182A4 (ja)
JP (1) JP7238884B2 (ja)
TW (1) TW201943131A (ja)
WO (1) WO2019186829A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022518315A (ja) * 2020-01-02 2022-03-15 寧徳新能源科技有限公司 負極及び当該負極を含む電気化学装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116759574B (zh) * 2023-08-16 2024-01-26 深圳海辰储能控制技术有限公司 一种负极材料、负极极片及其制备方法、锂电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083587A (ja) * 1996-12-26 2002-03-22 Hitachi Chem Co Ltd リチウム二次電池用負極
JP2004196609A (ja) 2002-12-19 2004-07-15 Jfe Chemical Corp 複合黒鉛質粒子の製造方法、複合黒鉛質粒子、リチウムイオン二次電池負極材及びリチウムイオン二次電池
JP2009245613A (ja) * 2008-03-28 2009-10-22 Hitachi Chem Co Ltd リチウムイオン二次電池負極用炭素材料、それを用いたリチウムイオン二次電池用負極合剤及びリチウムイオン二次電池
JP2013211254A (ja) * 2012-03-02 2013-10-10 Jfe Chemical Corp リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2017045574A (ja) * 2015-08-25 2017-03-02 三菱化学株式会社 炭素材、及び、非水系二次電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1798790A4 (en) 2004-08-30 2009-07-15 Mitsubishi Chem Corp NEGATIVE ELECTRODE MATERIAL FOR NONAQUEOUS SECONDARY CELLS, NEGATIVE ELECTRODE FOR NONAQUEOUS SECONDARY CELLS, AND NONAQUEOUS SECONDARY CELL
JP6087648B2 (ja) 2012-05-14 2017-03-01 Jfeケミカル株式会社 複合黒鉛質材料及びその製造方法、リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極並びにリチウムイオン二次電池
JP5937438B2 (ja) * 2012-06-29 2016-06-22 トヨタ自動車株式会社 非水電解質二次電池の製造方法
JP6256742B2 (ja) * 2013-09-18 2018-01-10 トヨタ自動車株式会社 非水電解質二次電池の製造方法
WO2015147012A1 (ja) 2014-03-25 2015-10-01 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
CN104091934B (zh) * 2014-07-17 2017-06-06 深圳市贝特瑞新能源材料股份有限公司 一种多元复合负极材料、其制备方法及包含其的锂离子电池
JP6555051B2 (ja) * 2015-09-25 2019-08-07 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP6402957B2 (ja) * 2015-10-05 2018-10-10 株式会社豊田自動織機 電極表面に被膜を具備する二次電池の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083587A (ja) * 1996-12-26 2002-03-22 Hitachi Chem Co Ltd リチウム二次電池用負極
JP2004196609A (ja) 2002-12-19 2004-07-15 Jfe Chemical Corp 複合黒鉛質粒子の製造方法、複合黒鉛質粒子、リチウムイオン二次電池負極材及びリチウムイオン二次電池
JP2009245613A (ja) * 2008-03-28 2009-10-22 Hitachi Chem Co Ltd リチウムイオン二次電池負極用炭素材料、それを用いたリチウムイオン二次電池用負極合剤及びリチウムイオン二次電池
JP2013211254A (ja) * 2012-03-02 2013-10-10 Jfe Chemical Corp リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2017045574A (ja) * 2015-08-25 2017-03-02 三菱化学株式会社 炭素材、及び、非水系二次電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Carbon Black for Rubber-Basic Characteristics-Part 4: Determination of Oil Absorption Capacity", JIS K, 2008, pages 6217 - 4
See also references of EP3780182A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022518315A (ja) * 2020-01-02 2022-03-15 寧徳新能源科技有限公司 負極及び当該負極を含む電気化学装置
JP7261868B2 (ja) 2020-01-02 2023-04-20 寧徳新能源科技有限公司 負極及び当該負極を含む電気化学装置

Also Published As

Publication number Publication date
TW201943131A (zh) 2019-11-01
EP3780182A1 (en) 2021-02-17
JPWO2019186829A1 (ja) 2021-04-01
EP3780182A4 (en) 2021-03-17
JP7238884B2 (ja) 2023-03-14
US20210083288A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
US10601044B2 (en) Negative electrode material for lithium-ion secondary battery, method for manufacturing negative electrode material for lithium-ion secondary battery, negative electrode material slurry for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP6555051B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP6555050B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP7238884B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP7226559B2 (ja) リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法
JP2017016774A (ja) リチウムイオン二次電池負極及び二次電池
JP7272350B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP7371689B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2020113425A (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP7226558B2 (ja) リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法
JP7238885B2 (ja) リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911585

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020508662

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018911585

Country of ref document: EP

Effective date: 20201028