WO2019184847A1 - 电动汽车及动力电池静置之后的参数更新方法、装置 - Google Patents

电动汽车及动力电池静置之后的参数更新方法、装置 Download PDF

Info

Publication number
WO2019184847A1
WO2019184847A1 PCT/CN2019/079452 CN2019079452W WO2019184847A1 WO 2019184847 A1 WO2019184847 A1 WO 2019184847A1 CN 2019079452 W CN2019079452 W CN 2019079452W WO 2019184847 A1 WO2019184847 A1 WO 2019184847A1
Authority
WO
WIPO (PCT)
Prior art keywords
power battery
soc
current
updating
battery
Prior art date
Application number
PCT/CN2019/079452
Other languages
English (en)
French (fr)
Inventor
林思岐
冯天宇
邓林旺
吕纯
杨子华
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2019184847A1 publication Critical patent/WO2019184847A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present disclosure relates to the field of electric vehicle technology, and in particular, to a parameter updating method after a power battery is stationary, a parameter updating device after the power battery is stationary, and an electric vehicle.
  • Lithium-ion battery has been widely used in electric vehicles and energy storage systems because of its high operating voltage, small size, light weight, high energy density, no memory effect, low discharge rate and long cycle life.
  • lithium-ion power batteries can enter the charge-discharge cycle without interruption, whether in electric vehicles or energy storage systems, in order to pursue the largest investment-to-return ratio.
  • some electric vehicles or energy storage systems have been put on hold for a certain period of time during operation.
  • the battery will self-discharge and attenuate during the shelving process.
  • This BMS Battery Management System
  • SOC State of Charge
  • SOH State of Health
  • SOE State of
  • Energy, energy state, SOP (State of Power), RM (emaining Mileage) are not allowed, so it brings some trouble to customers.
  • the self-discharge is mainly because the battery electrolyte has a small conductivity and will continue to discharge with a small current when it is left.
  • the battery capacity attenuation caused by this situation is reversible, and the lost part of the capacity can be recovered by charging.
  • the capacity decay is mainly due to the thickening of the SEI film (Solid Electrolyte Interface) resulting in loss of active material, which is irreversible.
  • the battery capacity has a certain degree of attenuation, and the SOH needs to be corrected to some extent, but the existing algorithm is after the power battery is left for a period of time, including when the power is reset and then re-powered. Neither will initiate the SOH correction strategy.
  • an object of the present disclosure is to provide a parameter updating method after the power battery is left to stand, and to update the state parameters of the power battery in time.
  • a second object of the present disclosure is to provide a parameter updating device after the power battery is left to stand.
  • a third object of the present disclosure is to propose an electric vehicle.
  • the first aspect of the present disclosure provides a parameter updating method after the power battery is stationary, comprising the steps of: collecting the power battery once every time the power battery is stationary; State information of the power battery; after the power battery is left to stand, acquire the number of times of wake-up of the power battery, state information corresponding to each wake-up state, and current state of charge SOC, and acquire the power battery a working mode; calculating a reference SOC of the power battery according to the number of times of being awakened and state information corresponding to each time the user is awakened; and the power according to an operating mode of the power battery and a reference SOC of the power battery The current SOC of the battery is updated.
  • the state of charge of the power battery after the end of the stationary state is calculated, that is, the reference SOC, and then the power battery is updated in time according to the current working mode of the power battery and the reference SOC.
  • the current SOC in order to reflect the real situation of the power battery as much as possible, to avoid the situation of SOC inaccuracy.
  • a second aspect of the present disclosure provides a parameter updating apparatus after the power battery is stationary, comprising: an acquisition module, configured to wake up the power battery every time the power battery is in a standstill, Acquiring state information of the power battery once; the first acquiring module is configured to acquire, after the power battery is left over, the number of times the power battery is awakened, the corresponding state information and the power a current state of charge SOC of the battery; a second acquisition module, configured to acquire an operation mode of the power battery; and a calculation module, configured to calculate, according to the number of times of being awakened and the state information corresponding to each time the device is woken up a reference SOC of the power battery; an update module, configured to update a current SOC of the power battery according to an operating mode of the power battery and a reference SOC of the power battery.
  • the parameter updating device after the power battery is in accordance with an embodiment of the present disclosure first calculates the state of charge of the power battery after the end of the stationary state, that is, refers to the SOC, and then updates the power battery in time according to the current operating mode of the power battery and the reference SOC.
  • the current SOC in order to reflect the real situation of the power battery as much as possible, to avoid the situation of SOC inaccuracy.
  • the third aspect of the present disclosure proposes an electric vehicle including the parameter updating device after the power battery of the above embodiment is placed.
  • the parameter updating device after the power battery is placed in the above embodiment can update the obtained SOC as much as possible to reflect the real situation of the power battery and avoid the occurrence of SOC inaccuracy.
  • FIG. 1 is a flowchart of a parameter updating method after a power battery is left in accordance with an embodiment of the present disclosure
  • FIG. 2 is a block diagram showing the structure of a parameter updating device after the power battery is left in accordance with the first embodiment of the present disclosure
  • FIG. 3 is a block diagram showing the structure of a parameter updating device after the power battery is left in accordance with the second embodiment of the present disclosure
  • FIG. 4 is a block diagram showing the structure of a parameter updating device after the power battery is left in accordance with the third embodiment of the present disclosure
  • FIG. 5 is a block diagram showing the structure of a parameter updating device after the power battery is left in accordance with the fourth embodiment of the present disclosure
  • FIG. 6 is a structural block diagram of a parameter updating apparatus after a power battery is left in accordance with a fifth embodiment of the present disclosure
  • FIG. 7 is a structural block diagram of an electric vehicle according to an embodiment of the present disclosure.
  • the parameter updating method after the power battery is stationary includes the following steps:
  • the wake-up rule of the power battery is preset, for example, when the power battery starts to stand, the power battery is woken up once every certain time, for example, a BMS (Battery Management System) performs the power battery with the wake-up rule. Wake up and collect state information of the power battery at each wake-up time, including voltage, current and temperature of the power battery.
  • BMS Battery Management System
  • the BMS acquires the number of times the power battery is woken up during the standing period and the state information of the power battery collected every time the user wakes up, and may also be based on The current OCV (Opening Circuit Voltage) of the power battery and the SOC-OCV curve of the power battery pre-existing in the BMS acquire the current SOC value of the power battery, and acquire the operating mode of the power battery.
  • OCV Opening Circuit Voltage
  • the reference SOC of the power battery can be calculated by the following formula (1):
  • SOC k-1 is the SOC when the power battery is awakened (k-1) times in the stationary phase
  • ⁇ SOC self-discharge k is the power battery at the kth
  • SOC OCVk is the SOC obtained from the SOC-OCV curve when the power battery is awakened for the kth time
  • m and n are weight coefficients
  • m+n 1.
  • t is the current static accumulation time of the power battery
  • T is the temperature of the power battery collected each time the BMS wakes up the power battery.
  • the values of the weight coefficients m and n depend on the cumulative resting time of the power battery, the degree of self-discharge, the state of health, and the static voltage during the stationary phase. That is, the values of m and n in each iteration are not fixed. .
  • the current SOC of the power battery is updated according to the charging model and the reference SOC of the power battery; if the power battery enters the discharging mode, according to the discharge model and the reference of the power battery The SOC updates the current SOC of the power battery.
  • the BMS collects and records the total voltage, the total current, the cell voltage, the temperature, and the charging time of the power battery, and then estimates the charging power by the ampere-hour integration algorithm, and generates a charging curve, that is, the voltage V-charged power.
  • a charging curve that is, the voltage V-charged power.
  • the peak height of the derivative curve of the VQ Ah curve is identified and judged.
  • the charging is in the LVP (Low Voltage Platform) phase; when the BMS detects the first peak that is positive, that is, LVTP (Low Voltage Transition Point), the voltage of the power battery is V.
  • LVTP charging into MVP (Medium Voltage Platform, medium voltage level). In this process, that is, V discharge cutoff ⁇ V ⁇ V HVTP , passable Update the current SOC of the power battery.
  • the voltage of the power battery is V HVTP
  • the current SOC is higher than the second preset value such as 50%, according to the formula Calculating the current SOC of the power battery, wherein Q 0 is the total power of the power battery at the last full discharge at the same temperature, ⁇ Q is equalized as the balanced power between the single cells, and the SOC can be used according to the SOC at that time. The obtained SOC is corrected.
  • the charging curve enters the final stage, which is the HVP (High Voltage Platform) period, at which it can pass. Calculate the SOC of the power battery.
  • HVP High Voltage Platform
  • the current SOC of the power battery can be updated by the chrono integration algorithm and the reference SOC.
  • the SOC value of the power battery needs to be updated to 100%; when the voltage of the power battery reaches the cutoff voltage of the battery When the V discharge is cut off , the SOC value of the power battery needs to be updated to 0%.
  • the updating is performed according to the reference SOC according to a preset ratio. Current SOC.
  • the reference SOC is greater than the first preset voltage: when the power battery is in the charging mode, if the reference SOC is greater than the current SOC, and the difference ⁇ between the two is greater than the preset difference, then within the preset time t Every t/n time, the current SOC is updated once, the update rule is to increase ⁇ /n every time; when the power battery is in the charging mode, if the reference SOC is smaller than the current SOC, and the difference ⁇ between the two is greater than the preset For the difference, the current SOC is updated every t/n time within the preset time t, and the update rule is to reduce ⁇ /n each time.
  • the update rule is to reduce ⁇ /n each time; when the power battery is in the discharge mode, if the reference SOC is greater than the current SOC, and the difference ⁇ between the two is greater than the preset difference, then every t in the preset time t /n time, update the current SOC once, the update rule is to increase ⁇ / n each time.
  • the current SOC may be directly updated to the reference SOC, or may be according to the preset curve according to the reference SOC at a certain time (The current SOC may be updated within the preset time period, wherein the preset curve may be a smooth monotonic curve or a stepped monotonic curve.
  • the current SOC is updated according to the reference SOC, wherein the second preset threshold is less than the first preset threshold.
  • the reference SOC is in a low state (ie, the reference SOC is less than the second predetermined threshold), and the power battery is currently in the discharge mode, the current SOC is directly updated according to the reference SOC, such as the reference SOC can be used as the current SOC of the power battery, and permission is allowed at this time.
  • a SOC jump occurs to avoid over-discharge of the power battery.
  • the current SOC may be updated according to the update method in which the reference SOC is greater than the first preset threshold, or according to the above reference.
  • the update method update SOC with the SOC being less than the second preset threshold may also update the current SOC according to the preset curve, for example, the current SOC changes to the reference SOC in a monotonically decreasing or monotonically increasing quadratic curve.
  • the parameter updating method after the power battery is stationary timely updating the current SOC of the power battery according to the current working mode of the power battery and the reference SOC, thereby updating the obtained SOC to reflect the real situation of the power battery as much as possible, and avoiding SOC inaccuracy or even The situation of jumping.
  • the temperature of the power battery is also acquired; when the temperature of the power battery is less than the preset temperature threshold, the power battery is heated until the temperature of the power battery is greater than a preset.
  • the temperature threshold is updated and the battery health state SOH of the power battery is updated according to the updated SOC.
  • a temperature sensor and a heater such as a PTC heater may be disposed in the power battery, and when the temperature of the power battery is less than a preset temperature threshold, the heater may be controlled to start to heat the power battery.
  • the SOH of the power battery is updated according to the updated SOC to avoid an error phenomenon in which the SOH is first lowered and then increased.
  • the heating of the power battery and the update of the current SOC may be performed simultaneously, or the power battery may be heated after the SOC is updated.
  • the heating control is not required, and the SOH of the power battery is directly updated according to the updated SOC.
  • the power battery continues to be charged until the reference SOC of the power battery is greater than the first preset threshold, and according to The updated SOC updates the battery health state SOH of the power battery.
  • the power battery When the power battery is in the charging mode, if the reference SOC is in a low state, the power battery is continuously charged, and the reference SOC of the power battery is estimated according to the charging model in real time or at regular intervals.
  • the reference SOC is greater than the first preset threshold, the current SOC is updated according to the difference between the reference SOC and the current SOC, and the battery health state SOH of the power battery is updated according to the updated SOC.
  • the current temperature, the charge and discharge rate of the power battery are also acquired; the SOC and SOH after the power battery is updated, and the current temperature, charge and discharge rate, and the power battery are
  • the preset reference curve cluster generates the maximum discharge allowable power and the maximum charge allowable power of the power battery.
  • the reference curve cluster in the pre-existing BMS can be called to estimate the maximum power that can be released by the power battery under the current working condition and the maximum power allowed by the charging, and
  • the BMS issues a power limit command to the motor controller to control the output power, and sends a charge limit command to the OBC (On-board Charger) to control the charging power.
  • OBC On-board Charger
  • the energy state SOE of the power battery is also updated based on the updated SOC and SOH.
  • the remaining mileage is updated according to the current SOH and the ambient temperature.
  • the RM After the electric vehicle is powered on, the RM is predicted based on the current SOH, the ambient temperature, and the operating mode of the power battery for a while. It should be noted that the RM needs to be updated immediately after power-on to avoid the situation that the power consumption of the power battery is completed when the electric vehicle travels halfway.
  • the parameter updating method after the power battery is in a static state according to the embodiment of the present disclosure, more accurate power battery parameters can be obtained, the true value of the power battery can be better reflected, and the SOC jump is avoided while updating the parameters.
  • RM jump there will be no error phenomenon of repeated jumps, and at the same time, the phenomenon that the power battery is over-discharged is avoided, and the power battery is well protected.
  • the parameter updating device 100 after the power battery is stationary includes: an acquisition module 1, a first acquisition module 2, a second acquisition module 3, a calculation module 4, and an update module 5.
  • the collecting module 1 is configured to collect the state information of the power battery once every time the power battery is woken up during the stationary period of the power battery; the first acquiring module 2 is configured to obtain the number of times the power battery is awakened after the power battery is left stationary. Corresponding state information and the current state of charge SOC of the power battery each time the device is awakened; the second acquisition module 3 is configured to acquire an operation mode of the power battery; and the calculation module 4 is configured to correspond to the number of times of being awakened and each time the device is woken up
  • the status information calculates a reference SOC of the power battery; the update module 5 is configured to update the current SOC of the power battery according to the operating mode of the power battery and the reference SOC of the power battery.
  • the wake-up time interval of the power battery increases exponentially.
  • the calculation module 4 may calculate the reference SOC of the power battery by the following formula (1):
  • SOC k-1 is the SOC when the power battery is awakened (k-1) times in the stationary phase
  • ⁇ SOC self-discharge k is the power battery at the kth
  • SOC OCVk is the SOC obtained from the SOC-OCV curve when the power battery is awakened for the kth time
  • m and n are weight coefficients
  • m+n 1.
  • the update module 5 updates the current SOC of the power battery according to the charging model and the reference SOC of the power battery when the working mode is the charging mode; when the operating mode is the discharging mode, the power battery is based on the discharge model and the reference SOC of the power battery Current SOC update
  • the update module 5 further updates the current SOC according to the reference SOC according to the preset ratio when the reference SOC of the power battery is greater than the first preset threshold, and the difference between the reference SOC and the current SOC is greater than the preset difference;
  • the current SOC is updated according to the reference SOC, wherein the second preset threshold is smaller than the first preset threshold.
  • the parameter updating device 100 after the power battery is stationary further includes: a third acquiring module 6 and a heating module 7.
  • the third obtaining module 6 is configured to acquire the temperature of the power battery after the power battery is left to stand; and the heating module 7 is configured to heat the power battery when the temperature of the power battery is less than the preset temperature threshold.
  • the update module 5 is further configured to update the battery health state SOH of the power battery according to the updated SOC when the temperature of the power battery is greater than the preset temperature threshold.
  • the parameter updating device 100 after the power battery is stationary further includes a control module 8.
  • the control module 8 is configured to continue charging control of the power battery when the reference SOC is less than the second preset threshold and the working mode is the charging mode.
  • the update module 5 is further configured to update the battery health state SOH of the power battery according to the SOC after the update when the reference SOC of the power battery is greater than the first preset threshold.
  • the update module 5 also updates the SOE of the power battery based on the updated SOC and SOH.
  • the parameter updating device 100 after the power battery is stationary further includes a fourth acquisition module 9.
  • the fourth obtaining module 9 is configured to obtain the current SOH and the ambient temperature of the power battery after the electric vehicle is powered on.
  • the update module 5 also updates the remaining miles based on the current SOH and ambient temperature.
  • the parameter updating apparatus 100 after the power battery is stationary further includes: a fifth obtaining module 10 and a generating module 11.
  • the fifth obtaining module 10 is configured to acquire a current temperature and a charging/discharging rate of the power battery.
  • the generating module 11 is configured to generate a maximum discharge allowable power and a maximum charge allowable power of the power battery according to the updated SOC and SOH of the power battery, and the current temperature, the charge and discharge rate, and the preset reference curve cluster of the power battery.
  • the parameter updating device after the power battery is in a static state according to the embodiment of the present disclosure, more accurate power battery parameters can be obtained, the true value of the power battery can be more reflected, and the SOC jump and the RM jump are avoided while updating the parameters. In the case of the situation, there will be no error phenomenon of repeated jumps, and at the same time, the phenomenon that the power battery is over-discharged is avoided, thereby playing a good protection role for the power battery.
  • FIG. 7 is a structural block diagram of an electric vehicle according to an embodiment of the present disclosure. As shown in FIG. 7, the electric vehicle 1000 includes the parameter updating device 100 after the power battery of the above embodiment is placed.
  • the parameter updating device after the power battery is allowed to stand in the above embodiment can obtain more accurate power battery parameters, can better reflect the real value of the power battery, and avoid the parameter while updating the parameter.
  • SOC jump and RM jump there will be no error phenomenon of repeated jumps, and at the same time, the phenomenon that the power battery is over-discharged is avoided, and the power battery is well protected.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • Any process or method description in the flowcharts or otherwise described herein may be understood to represent a module, segment or portion of code comprising one or more executable instructions for implementing the steps of a custom logic function or process.
  • the scope of the preferred embodiments of the present disclosure includes additional implementations, in which the functions may be performed in a substantially simultaneous manner or in an inverse order depending on the functions involved, in the order shown or discussed. It will be understood by those skilled in the art to which the embodiments of the present disclosure pertain.
  • a "computer-readable medium” can be any apparatus that can contain, store, communicate, propagate, or transport a program for use in an instruction execution system, apparatus, or device, or in conjunction with the instruction execution system, apparatus, or device.
  • computer readable media include the following: electrical connections (electronic devices) having one or more wires, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer readable medium may even be a paper or other suitable medium on which the program can be printed, as it may be optically scanned, for example by paper or other medium, followed by editing, interpretation or, if appropriate, other suitable The method is processed to obtain the program electronically and then stored in computer memory.
  • portions of the present disclosure can be implemented in hardware, software, firmware, or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware and in another embodiment, it can be implemented by any one or combination of the following techniques well known in the art: discrete with logic gates for implementing logic functions on data signals Logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), and the like.

Abstract

一种动力电池静置之后的参数更新方法参数更新方法,包括以下步骤:在动力电池静置期间,每唤醒一次动力电池,采集一次动力电池的状态信息;在动力电池静置结束之后,获取动力电池的被唤醒次数、每次被唤醒时对应的状态信息和当前荷电状态SOC,并获取动力电池的工作模式;根据被唤醒次数和每次被唤醒时对应的状态信息计算动力电池的参考SOC;根据动力电池的工作模式和动力电池的参考SOC对动力电池的当前SOC进行更新。由此,更新得到的动力电池的SOC,能尽可能反应动力电池真实情况,避免出现SOC不准确的情况。还涉及一种动力电池静置之后的参数更新的装置和电动汽车。

Description

电动汽车及动力电池静置之后的参数更新方法、装置
相关申请的交叉引用
本申请基于申请号为201810278615.9,申请日为2018年03月30日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及电动汽车技术领域,特别涉及一种动力电池静置之后的参数更新方法、一种动力电池静置之后的参数更新装置和一种电动汽车。
背景技术
由于锂离子动力电池具有工作电压高、体积小、质量轻、能量密度高、无记忆效应、放电率低、循环寿命长等优点,现已普遍应用在电动汽车和储能系统上。
理想情况下,锂离子动力电池无论是电动汽车还是储能系统上都能够不间断的进入充放电循环,以追求最大的投资收益比。而实际情况,也有部分电动汽车或者储能系统在运行过程中出现一定时间的搁置,搁置过程会发生电池的自放电和衰减,而这个搁置过程以及搁置后重新上电时,BMS(Battery Management System,电池管理系统)都没有启动电池参数修正策略,所以导致长时间搁置再重新上电之后经常出现SOC(State of Charge,荷电状态)、SOH(State of Health,健康状态)、SOE(State of Energy,能量状态)、SOP(State of Power,功率状态)、RM(emaining Mileage,剩余里程)不准的情况,故给客户带来一定困扰。
相关技术中,在对SOC进行修正时,存在满电修正和馈电修正两种修正策略,即当检测到电池电压达到满电或放电截止电压时,分别将SOC修正为100%和0%。而实际上这种修正更多的是为了满足仪表显示SOC的视觉感受,而不是真正意义上的将SOC修正的更加准确。
另外,动力电池在静置一段时间之后,会出现一定程度的自放电和容量衰减。自放电主要是因为电池电解液电导率较小,静置时会以较小的电流持续放电,这种情况造成的电池容量衰减是可逆的,是可以通过充电将损失的部分容量加以恢复。容量衰减主要是因为SEI膜(Solid Electrolyte Interface,固体电解质膜)增厚导致活性物质损失,其是不可逆的。
因此,动力电池在静置一段时间之后,电池容量出现了一定程度的衰减,需要对SOH进行一定程度的修正,但现有算法在动力电池静置一段时间之后,包括静置后重新上电时 都不会启动SOH修正策略。
由此,动力电池在静置一段时间之后,如果SOC、SOH都未得到及时修正,相应的SOE和RM无法得到修正,于是此时随着动力电池放电,会出现较大概率的SOC跳变、RM也会出现不准的情况。
发明内容
本公开旨在至少在一定程度上解决上述技术中的技术问题之一。为此,本公开的一个目的在于提出一种动力电池静置之后的参数更新方法,以及时更新动力电池的状态参数。
本公开的第二个目的在于提出一种动力电池静置之后的参数更新装置。
本公开的第三个目的在于提出一种电动汽车。
为达到上述目的,本公开第一方面实施例提出了一种动力电池静置之后的参数更新方法,包括以下步骤:在所述动力电池静置期间,每唤醒一次所述动力电池,采集一次所述动力电池的状态信息;在所述动力电池静置结束之后,获取所述动力电池的被唤醒次数、每次被唤醒时对应的状态信息和当前荷电状态SOC,并获取所述动力电池的工作模式;根据所述被唤醒次数和所述每次被唤醒时对应的状态信息计算所述动力电池的参考SOC;根据所述动力电池的工作模式和所述动力电池的参考SOC对所述动力电池的当前SOC进行更新。
根据本公开实施例的动力电池静置之后的参数更新方法,首先计算动力电池在静置结束之后的荷电状态,即参考SOC,进而根据动力电池的当前工作模式和参考SOC及时更新动力电池的当前SOC,以尽可能反应动力电池真实情况,避免出现SOC不准确的情况。
为达到上述目的,本公开第二方面实施例提出了一种动力电池静置之后的参数更新装置,包括:采集模块,用于在所述动力电池静置期间,每唤醒一次所述动力电池,采集一次所述动力电池的状态信息;第一获取模块,用于在所述动力电池静置结束之后,获取所述动力电池的被唤醒次数、每次被唤醒时对应的状态信息和所述动力电池的当前荷电状态SOC;第二获取模块,用于获取所述动力电池的工作模式;计算模块,用于根据所述被唤醒次数和所述每次被唤醒时对应的状态信息计算所述动力电池的参考SOC;更新模块,用于根据所述动力电池的工作模式和所述动力电池的参考SOC对所述动力电池的当前SOC进行更新。
根据本公开实施例的动力电池静置之后的参数更新装置,首先计算动力电池在静置结束之后的荷电状态,即参考SOC,进而根据动力电池的当前工作模式和参考SOC及时更新动力电池的当前SOC,以尽可能反应动力电池真实情况,避免出现SOC不准确的情况。
本公开第三方面实施例提出了一种电动汽车,其包括上述实施例的动力电池静置之后 的参数更新装置。
根据本公开实施例的电动汽车,采用上述实施例的动力电池静置之后的参数更新装置,更新得到的SOC能够尽可能反应动力电池真实情况,避免出现SOC不准确的情况。
附图说明
图1为根据本公开一个实施例的动力电池静置之后的参数更新方法的流程图;
图2为根据本公开第一个实施例的动力电池静置之后的参数更新装置的结构框图;
图3为根据本公开第二个实施例的动力电池静置之后的参数更新装置的结构框图;
图4为根据本公开第三个实施例的动力电池静置之后的参数更新装置的结构框图;
图5为根据本公开第四个实施例的动力电池静置之后的参数更新装置的结构框图;
图6为根据本公开第五个实施例的动力电池静置之后的参数更新装置的结构框图;
图7为根据本公开实施例的电动汽车的结构框图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面结合附图来描述本公开实施例的动力电池静置之后的参数更新方法、装置和电动汽车。
图1为根据本公开一个实施例的动力电池静置之后的参数更新方法的流程图。如图1所示,该动力电池静置之后的参数更新方法,包括以下步骤:
S101,在动力电池静置期间,每唤醒一次动力电池,采集一次动力电池的状态信息。
其中,预先设置动力电池的唤醒规律,例如,在动力电池开始静置时,每隔一定时间如一天唤醒一次动力电池,进而BMS(Battery management System,电池管理系统)以该唤醒规律对动力电池进行唤醒,并采集每次唤醒时刻的动力电池的状态信息,包括动力电池的电压、电流和温度等。
唤醒规律还可以是,对动力电池的唤醒时间间隔呈指数变化。例如,t=a*b x,其中,t是唤醒时间间隔,a、b是预设参数,为常数,x为唤醒次数,即动力电池静置a*b时间后,BMS对动力电池进行一次唤醒,如果电池继续静置,则间隔a*b 2时间后,BMS对电池进行唤醒,以此类推,第k次唤醒与第(k-1)次唤醒之间的时间间隔为a*b k
S102,在动力电池静置结束之后,获取动力电池的被唤醒次数、每次被唤醒时对应的状态信息和当前荷电状态SOC,并获取动力电池的工作模式。
在动力电池静置结束并重新进入工作模式(包括充电模式、放电模式)时,BMS获取动力电池在静置期间被唤醒的次数和每次被唤醒时采集的动力电池的状态信息,还可根据动力电池的当前OCV(Opening Circuit Voltage,开路电压)和预存在BMS中的该动力电池的SOC-OCV曲线获取动力电池的当前SOC值,以及获取动力电池的工作模式。
S103,根据被唤醒次数和每次被唤醒时对应的状态信息计算动力电池的参考SOC。
在本公开的一个示例中,可通过如下公式(1)计算所述动力电池的参考SOC:
参考SOC=SOC k=m*(SOC k-1+ΔSOC 自放电k)+n*SOC OCVk  (1)
其中,k为动力电池在静置期间的累积被唤醒次数,SOC k-1为动力电池在静置阶段第(k-1)次被唤醒时的SOC,ΔSOC 自放电k为动力电池在第k次被唤醒时自放电导致的SOC变化量,SOC OCVk为动力电池第k次被唤醒时根据SOC-OCV曲线得到的SOC,m、n为权重系数,且m+n=1。
其中,BMS可根据公式SOC i=m*(SOC i-1+ΔSOC 自放电(i-1,i))+n*SOC OCVi依次计算第一次-第k次被唤醒时的SOC值,其中,i=1,2,…,k。从该式中可以看出,动力电池第i次被唤醒时的SOC可根据第(i-1)次被唤醒时的SOC计算得到,i=1时,上式中的SOC 0即为动力电池静置开始时刻的SOC值。
需要说明的是,式(1)中的ΔSOC 自放电可以是在实验室条件下获得并预先存储在BMS中,其可通过式ΔSOC 自放电=f(SOH、T、t、SOC 0)获得,其中,t为动力电池的当前静置累积时间,T为每次BMS唤醒动力电池时采集到的动力电池的温度。权重系数m、n的取值取决于动力电池的累积静置时间、自放电程度、健康状态、静置阶段时的静态电压,即,每次迭代运算中的m、n的取值并不固定。
S104,根据动力电池的工作模式和动力电池的参考SOC对动力电池的当前SOC进行更新。
在动力电池静置结束之后,如果动力电池进入充电模式,则根据充电模型和动力电池的参考SOC对动力电池的当前SOC进行更新;如果动力电池进入放电模式,则根据放电模型和动力电池的参考SOC对动力电池的当前SOC进行更新。
在本公开的一个实施例中,如果动力电池的参考SOC小于第一预设值如20%,且动力电池进入充电模式,如电动汽车连接外部充电装置进行恒流充电,充电倍率小于预设倍率,则BMS对动力电池总电压、总电流、单体电压、温度、充电时间进行采集和记录,进而通过安时积分算法,对当充电电量进行估算,并生成充电曲线即电压V-充入电量Q Ah曲线。
对V-Q Ah曲线的导数曲线的峰高进行识别和判断。充电开始阶段,充电处于LVP(Low Voltage Platform,低电压平台)期;当BMS检测到第一个峰值为正的拐点即LVTP(Low  Voltage Transition Point,低电压拐点)时,动力电池的电压为V LVTP,充电进入MVP(Medium Voltage Platform,中电压平)。在该过程中,即V 放电截止<V<V HVTP,可通过式
Figure PCTCN2019079452-appb-000001
更新动力电池的当前SOC。
当检测到第二个拐点,即HVTP(High Voltage Transition Point,高电压拐点)时,动力电池的电压为V HVTP,当前SOC高于第二预设值如50%,根据公式
Figure PCTCN2019079452-appb-000002
计算动力电池的当前SOC,其中,Q 0是在相同温度下上一次满放时动力电池的总电量,ΔQ 均衡为单体电池间的均衡电量,且根据该时刻的SOC可对安时积分法得到的SOC进行修正。
随着充电的持续进行,充电曲线进入最后阶段,即HVP(High Voltage Platform,高电压平台)期,在该阶段可通过式
Figure PCTCN2019079452-appb-000003
计算动力电池的SOC。
整个充电阶段,基于充电模型和参考SOC更新当前SOC的公式如下:
Figure PCTCN2019079452-appb-000004
需要说明的是,在充电模式下对HVTP点的当前SOC进行更新时,如果HVTP点计算得到的SOC值与根据按时积分法计算得到的SOC之间的差值大于一阈值,则更新逐步分段进行,以避免出现SOC跳变。
如果动力电池进入放电模式,则可通过安时积分算法和参考SOC更新动力电池的当前SOC。
另外,可以理解,当动力电池满电时,即动力电池的电压达到电池的满电电压V 充电截止时,需将动力电池的SOC值更新至100%;当动力电池的电压达到电池的截止电压V 放电截止时,需将动力电池的SOC值更新至0%。
在本公开的一个实施例中,如果动力电池的参考SOC大于第一预设阈值,且参考SOC和当前SOC之间的差值大于预设差值,则按照预设比例根据参考SOC更新所述当前SOC。
在参考SOC大于第一预设电压的前提下:当动力电池处于充电模式时,如果参考SOC 大于当前SOC,且两者之间的差值Δ大于预设差值,则在预设时间t内每隔t/n时间,对当前SOC更新一次,更新规律为每次增加Δ/n;当动力电池处于充电模式时,如果参考SOC小于当前SOC,且两者之间的差值Δ大于预设差值,则在预设时间t内每隔t/n时间,对当前SOC更新一次,更新规律为每次减少Δ/n。当动力电池处于放电模式时,如果参考SOC小于当前SOC,且两者之间的差值Δ大于预设差值,则在预设时间t内每隔t/n时间,对当前SOC更新一次,更新规律为每次减少Δ/n;当动力电池处于放电模式时,如果参考SOC大于当前SOC,且两者之间的差值Δ大于预设差值,则在预设时间t内每隔t/n时间,对当前SOC更新一次,更新规律为每次增加Δ/n。
如果参考SOC大于第一预设阈值,且与当前SOC之间的差值小于等于预设差值,则可直接将当前SOC更新为参考SOC,也可按照预设曲线根据参考SOC在一定时间(该时间可小于预设时间)内对当前SOC进行更新,其中,预设曲线可以是平滑单调曲线,也可以是阶梯状单调曲线。
在本公开的一个实施例中,如果动力电池的参考SOC小于第二预设阈值,且工作模式为放电模式,则根据参考SOC更新当前SOC,其中,第二预设阈值小于第一预设阈值。
如果参考SOC处于低态(即参考SOC小于第二预设阈值),且动力电池当前处于放电模式,则直接根据参考SOC更新当前SOC,如可将参考SOC作为动力电池的当前SOC,此时允许出现SOC跳变,以避免出现动力电池过放现象。
需要说明的是,当动力电池的参考SOC大于等于第二预设阈值且小于第一预设阈值时,可按照上述参考SOC大于第一预设阈值的更新方法更新当前SOC,也可按照上述参考SOC小于第二预设阈值的更新方法更新SOC,还可按照预设曲线更新当前SOC,如当前SOC以单调递减或单调递增的二次曲线变化至参考SOC。
该动力电池静置之后的参数更新方法,根据动力电池的当前工作模式和参考SOC及时更新动力电池的当前SOC,由此更新得到的SOC能尽可能反应动力电池真实情况,避免出现SOC不准确甚至跳变的情况。
在本公开的一个实施例中,在动力电池静置结束之后,还获取动力电池的温度;当动力电池的温度小于预设温度阈值时,对动力电池进行加热,直至动力电池的温度大于预设温度阈值,并根据更新之后的SOC对动力电池的电池健康状态SOH进行更新。
可以在动力电池中设置温度传感器和加热器如PTC加热器,当动力电池的温度小于预设温度阈值时,可控制加热器启动,以对动力电池进行加热。当动力电池的温度大于预设温度阈值时,根据更新之后的SOC对动力电池的SOH进行更新,以避免出现SOH先降低后升高的错误现象。其中,对动力电池的加热和对当前SOC的更新可以是同时进行的,也可以是在更新SOC之后,对动力电池进行加热。
可以理解,如果动力电池的温度大于等于预设温度阈值,则无需加热控制,直接根据更新之后的SOC对动力电池的SOH进行更新。
在本公开的另一个实施例中,如果参考SOC小于第二预设阈值,且工作模式为充电模式,则对动力电池继续进行充电,直至动力电池的参考SOC大于第一预设阈值,并根据更新之后的SOC对动力电池的电池健康状态SOH进行更新。
当动力电池处于充电模式时,如果参考SOC处于低态,则对动力电池继续进行充电,并实时或每隔一定时间根据充电模型估算动力电池的参考SOC。当参考SOC大于第一预设阈值时,根据参考SOC和当前SOC之间的差值对当前SOC进行更新,并根据更新之后的SOC对动力电池的电池健康状态SOH进行更新。
在本公开的一个实施例中,在动力电池静置结束之后,还获取动力电池的当前温度、充放电倍率;根据动力电池更新后的SOC和SOH、以及动力电池的当前温度、充放电倍率和预设的参考曲线簇生成动力电池的最大放电允许功率和最大充电允许功率。
在对SOC和SOH更新之后,可结合当前动力电池的温度、充放电倍率,调用预存在BMS中参考曲线簇,估算当前工况下动力电池可放出的最大功率和充电允许的最大功率,并由BMS发出功率限制命令给电机控制器以控制输出功率,发送充电限制命令给OBC(On-board Charger,车载充电机)以控制充电功率。
在本公开的另一个实施例中,在对SOC和SOH更新之后,还根据更新之后的SOC和SOH对动力电池的能量状态SOE进行更新。
在本公开的一个实施例中,当电动汽车上电之后,获取动力电池的当前SOH、环境温度;根据当前SOH和环境温度对剩余里程进行更新。
在电动汽车上电之后,即根据当前SOH、环境温度以及动力电池近一段时间的工作模式来预测RM。需要说明的是,RM需上电之后立即更新,以避免出现电动汽车行驶到半路时动力电池能量消耗完毕的情况。
综上,根据本公开实施例的动力电池静置之后的参数更新方法,可以得到更加准确的动力电池参数,更能体现动力电池的真实值,且在更新参数的同时避免了出现SOC跳变和RM跳变的情况,也不会出现反复跳变的错误现象,同时还避免了动力电池出现过放等现象,从而对动力电池起到了很好的保护作用。
图2为根据本公开一个实施例的动力电池静置之后的参数更新装置。如图2所示,该动力电池静置之后的参数更新装置100包括:采集模块1、第一获取模块2、第二获取模块3、计算模块4和更新模块5。
其中,采集模块1用于在动力电池静置期间,每唤醒一次动力电池,采集一次动力电池的状态信息;第一获取模块2用于在动力电池静置结束之后,获取动力电池的被唤醒次 数、每次被唤醒时对应的状态信息和动力电池的当前荷电状态SOC;第二获取模块3用于获取动力电池的工作模式;计算模块4用于根据被唤醒次数和每次被唤醒时对应的状态信息计算动力电池的参考SOC;更新模块5用于根据动力电池的工作模式和动力电池的参考SOC对动力电池的当前SOC进行更新。
在本公开的一个实施例中,动力电池的被唤醒时间间隔呈指数增长。
在本公开的一个示例中,计算模块4可通过如下公式(1)计算动力电池的参考SOC:
参考SOC=SOC k=m*(SOC k-1+ΔSOC 自放电k)+n*SOC OCVk  (1)
其中,k为动力电池在静置期间的累积被唤醒次数,SOC k-1为动力电池在静置阶段第(k-1)次被唤醒时的SOC,ΔSOC 自放电k为动力电池在第k次被唤醒时自放电导致的SOC变化量,SOC OCVk为动力电池第k次被唤醒时根据SOC-OCV曲线得到的SOC,m、n为权重系数,且m+n=1。
更新模块5在工作模式为充电模式时,根据充电模型和动力电池的参考SOC对动力电池的当前SOC进行更新;在工作模式为放电模式时,根据放电模型和动力电池的参考SOC对动力电池的当前SOC进行更新
更新模块5还在动力电池的参考SOC大于第一预设阈值,且参考SOC和当前SOC之间的差值大于预设差值时,按照预设比例根据参考SOC更新当前SOC;在动力电池的参考SOC小于第二预设阈值,且工作模式为放电模式时,根据参考SOC更新当前SOC,其中,第二预设阈值小于第一预设阈值。
在本公开的一个实施例中,如图3所示,动力电池静置之后的参数更新装置100还包括:第三获取模块6和加热模块7。
其中,第三获取模块6用于在动力电池静置结束之后,获取动力电池的温度;加热模块7用于在动力电池的温度小于预设温度阈值时,对动力电池进行加热。
在该实施例中,更新模块5还用于在动力电池的温度大于预设温度阈值时,根据更新之后的SOC对动力电池的电池健康状态SOH进行更新。
在本公开的一个实施例中,如图4所示,动力电池静置之后的参数更新装置100还包括控制模块8。
其中,控制模块8用于在参考SOC小于第二预设阈值,且工作模式为充电模式时,对动力电池继续进行充电控制。
在该实施例中,更新模块5还用于在动力电池的参考SOC大于第一预设阈值时,根据更新之后的SOC对动力电池的电池健康状态SOH进行更新。
更新模块5还根据更新之后的SOC和SOH对动力电池的SOE进行更新。
在本公开的一个实施例中,如图5所示,动力电池静置之后的参数更新装置100还包 括第四获取模块9。
其中,第四获取模块9用于在电动汽车上电之后,获取动力电池的当前SOH、环境温度。
在该实施例中,更新模块5还根据当前SOH和环境温度对剩余里程进行更新。
在本公开的一个实施例中,如图6所示,动力电池静置之后的参数更新装置100还包括:第五获取模块10和生成模块11。
其中,第五获取模块10用于获取动力电池的当前温度、充放电倍率。生成模块11用于根据动力电池更新后的SOC和SOH、以及动力电池的当前温度、充放电倍率和预设的参考曲线簇生成动力电池的最大放电允许功率和最大充电允许功率。
需要说明的是,本公开实施例的动力电池静置之后的参数更新装置的其它具体实施方式可参见本公开上述实施动力电池静置之后的参数更新方法的具体实施方式,为减少冗余,此处不做赘述。
根据本公开实施例的动力电池静置之后的参数更新装置,可以得到更加准确的动力电池参数,更能体现动力电池的真实值,且在更新参数的同时避免了出现SOC跳变和RM跳变的情况,也不会出现反复跳变的错误现象,同时还避免了动力电池出现过放等现象,从而对动力电池起到了很好的保护作用。
图7为根据本公开实施例的电动汽车的结构框图。如图7所示,该电动汽车1000包括上述实施例的动力电池静置之后的参数更新装置100。
根据本公开实施例的电动汽车,采用上述实施例的动力电池静置之后的参数更新装置,可以得到更加准确的动力电池参数,更能体现动力电池的真实值,且在更新参数的同时避免了出现SOC跳变和RM跳变的情况,也不会出现反复跳变的错误现象,同时还避免了动力电池出现过放等现象,从而对动力电池起到了很好的保护作用。
需要说明的是,本公开实施例的电动汽车的其它构成及其作用对本领域的技术人员而言是已知的,为减少冗余,此处不做赘述。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者 隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本公开的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本公开的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本公开的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。

Claims (20)

  1. 一种动力电池静置之后的参数更新方法,其特征在于,包括以下步骤:
    在所述动力电池静置期间,每唤醒一次所述动力电池,采集一次所述动力电池的状态信息;
    在所述动力电池静置结束之后,获取所述动力电池的被唤醒次数、每次被唤醒时对应的状态信息和当前荷电状态SOC,并获取所述动力电池的工作模式;
    根据所述被唤醒次数和所述每次被唤醒时对应的状态信息计算所述动力电池的参考SOC;
    根据所述动力电池的工作模式和所述动力电池的参考SOC对所述动力电池的当前SOC进行更新。
  2. 如权利要求1所述的动力电池静置之后的参数更新方法,其特征在于,所述根据所述被唤醒次数和所述每次被唤醒时对应的状态信息计算所述动力电池的参考SOC,包括:
    通过如下公式计算所述动力电池的参考SOC:
    参考SOC=SOC k=m*(SOC k-1+ΔSOC 自放电k)+n*SOC OCVk
    其中,k为所述动力电池在静置期间的累积被唤醒次数,SOC k-1为所述动力电池在静置阶段第(k-1)次被唤醒时的SOC,ΔSOC 自放电k为所述动力电池在第k次被唤醒时自放电导致的SOC变化量,SOC OCVk为所述动力电池第k次被唤醒时根据SOC-OCV曲线得到的SOC,m、n为权重系数,且m+n=1。
  3. 如权利要求1或2所述的动力电池静置之后的参数更新方法,其特征在于,所述动力电池的被唤醒时间间隔呈指数增长。
  4. 如权利要求1至3中任意一项所述的动力电池静置之后的参数更新方法,其特征在于,所述根据所述动力电池的工作模式和所述动力电池的参考SOC对所述动力电池的当前SOC进行更新,包括:
    当所述工作模式为充电模式时,根据充电模型和所述动力电池的参考SOC对所述动力电池的当前SOC进行更新;
    当所述工作模式为放电模式时,根据放电模型和所述动力电池的参考SOC对所述动力电池的当前SOC进行更新。
  5. 如权利要求1至4中任意一项所述的动力电池静置之后的参数更新方法,其特征在于,所述根据所述动力电池的工作模式和所述动力电池的参考SOC对所述动力电池的当前SOC进行更新,还包括:
    如果所述动力电池的参考SOC大于第一预设阈值,且所述参考SOC和当前SOC之间的差值大于预设差值,则按照预设比例根据所述参考SOC更新所述当前SOC;
    如果所述动力电池的参考SOC小于第二预设阈值,且所述工作模式为放电模式,则根据所述参考SOC更新所述当前SOC,其中,所述第二预设阈值小于所述第一预设阈值。
  6. 如权利要求1至5中任意一项所述的动力电池静置之后的参数更新方法,其特征在于,还包括:
    在所述动力电池静置结束之后,获取所述动力电池的温度;
    当所述动力电池的温度小于预设温度阈值时,对所述动力电池进行加热,直至所述动力电池的温度大于所述预设温度阈值,并根据更新之后的SOC对所述动力电池的电池健康状态SOH进行更新。
  7. 如权利要求1至5中任意一项所述的动力电池静置之后的参数更新方法,其特征在于,还包括:
    如果所述参考SOC小于所述第二预设阈值,且所述工作模式为充电模式,则对所述动力电池继续进行充电,直至所述动力电池的参考SOC大于所述第一预设阈值,并根据更新之后的SOC对所述动力电池的电池健康状态SOH进行更新。
  8. 如权利要求1至7中任意一项所述的动力电池静置之后的参数更新方法,其特征在于,还包括:
    根据更新之后的SOC和SOH对所述动力电池的能量状态SOE进行更新。
  9. 如权利要求1至8中任意一项所述的动力电池静置之后的参数更新方法,其特征在于,还包括:
    当电动汽车上电之后,获取所述动力电池的当前SOH、环境温度;
    根据所述当前SOH和所述环境温度对剩余里程进行更新。
  10. 如权利要求1至7中任意一项所述的动力电池静置之后的参数更新方法,其特征在于,还包括:
    在所述动力电池静置结束之后,获取所述动力电池的当前温度、充放电倍率;
    根据所述动力电池更新后的SOC和SOH、以及所述动力电池的当前温度、充放电倍率和预设的参考曲线簇生成所述动力电池的最大放电允许功率和最大充电允许功率。
  11. 一种动力电池静置之后的参数更新装置,其特征在于,包括:
    采集模块,用于在所述动力电池静置期间,每唤醒一次所述动力电池,采集一次所述动力电池的状态信息;
    第一获取模块,用于在所述动力电池静置结束之后,获取所述动力电池的被唤醒次数、每次被唤醒时对应的状态信息和所述动力电池的当前荷电状态SOC;
    第二获取模块,用于获取所述动力电池的工作模式;
    计算模块,用于根据所述被唤醒次数和所述每次被唤醒时对应的状态信息计算所述动力电池的参考SOC;
    更新模块,用于根据所述动力电池的工作模式和所述动力电池的参考SOC对所述动力电池的当前SOC进行更新。
  12. 如权利要求11所述的动力电池静置之后的参数更新装置,其特征在于,所述计算模块,具体用于:
    通过如下公式计算所述动力电池的参考SOC:
    参考SOC=SOC k=m*(SOC k-1+ΔSOC 自放电k)+n*SOC OCVk
    其中,k为所述动力电池在静置期间的累积被唤醒次数,SOC k-1为所述动力电池在静置阶段第(k-1)次被唤醒时的SOC,ΔSOC 自放电k为所述动力电池在第k次被唤醒时自放电导致的SOC变化量,SOC OCVk为所述动力电池第k次被唤醒时根据SOC-OCV曲线得到的SOC,m、n为权重系数,且m+n=1。
  13. 如权利要求11或12所述的动力电池静置之后的参数更新装置,其特征在于,所述动力电池的被唤醒时间间隔呈指数增长。
  14. 如权利要求11至13中任意一项所述的动力电池静置之后的参数更新装置,其特征在于,所述更新模块,具体用于:
    在所述工作模式为充电模式时,根据充电模型和所述动力电池的参考SOC对所述动力电池的当前SOC进行更新;
    在所述工作模式为放电模式时,根据放电模型和所述动力电池的参考SOC对所述动力电池的当前SOC进行更新
  15. 如权利要求11至14中任意一项所述的动力电池静置之后的参数更新装置,其特征在于,所述更新模块,具体还用于:
    在所述动力电池的参考SOC大于第一预设阈值,且所述参考SOC和当前SOC之间的差值大于预设差值时,按照预设比例根据所述参考SOC更新所述当前SOC;
    在所述动力电池的参考SOC小于第二预设阈值,且所述工作模式为放电模式时,根据所述参考SOC更新所述当前SOC,其中,所述第二预设阈值小于所述第一预设阈值。
  16. 如权利要求11至15中任意一项所述的动力电池静置之后的参数更新装置,其特征在于,还包括:
    第三获取模块,用于在所述动力电池静置结束之后,获取所述动力电池的温度;
    加热模块,用于在所述动力电池的温度小于预设温度阈值时,对所述动力电池进行加热;
    其中,所述更新模块还用于在所述动力电池的温度大于所述预设温度阈值时,根据更新之后的SOC对所述动力电池的电池健康状态SOH进行更新。
  17. 如权利要求11至15中任意一项所述的动力电池静置之后的参数更新装置,其特征在于,还包括:
    控制模块,用于在所述参考SOC小于所述第二预设阈值,且所述工作模式为充电模式时,对所述动力电池继续进行充电控制;
    其中,所述更新模块还用于在所述动力电池的参考SOC大于所述第一预设阈值时,根据更新之后的SOC对所述动力电池的电池健康状态SOH进行更新。
  18. 如权利要求11至17中任意一项所述的动力电池静置之后的参数更新装置,其特征在于,所述更新模块,还用于:
    根据更新之后的SOC和SOH对所述动力电池的能量状态SOE进行更新。
  19. 如权利要求11至18中任意一项所述的动力电池静置之后的参数更新装置,其特征在于,还包括:
    第四获取模块,用于在电动汽车上电之后,获取所述动力电池的当前SOH、环境温度,其中,所述更新模块还用于根据所述当前SOH和所述环境温度对剩余里程进行更新。
    第五获取模块,用于在所述动力电池静置结束之后,获取所述动力电池的当前温度、充放电倍率;
    生成模块,用于根据所述动力电池更新后的SOC和SOH、以及所述动力电池的当前温度、充放电倍率和预设的参考曲线簇生成所述动力电池的最大放电允许功率和最大充电允许功率。
  20. 一种电动汽车,其特征在于,包括如权利要求11-19中任一项所述的动力电池静置之后的参数更新装置。
PCT/CN2019/079452 2018-03-30 2019-03-25 电动汽车及动力电池静置之后的参数更新方法、装置 WO2019184847A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810278615.9 2018-03-30
CN201810278615.9A CN110549900B (zh) 2018-03-30 2018-03-30 电动汽车及动力电池静置之后的参数更新方法、装置

Publications (1)

Publication Number Publication Date
WO2019184847A1 true WO2019184847A1 (zh) 2019-10-03

Family

ID=68062491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079452 WO2019184847A1 (zh) 2018-03-30 2019-03-25 电动汽车及动力电池静置之后的参数更新方法、装置

Country Status (2)

Country Link
CN (1) CN110549900B (zh)
WO (1) WO2019184847A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112858924A (zh) * 2019-11-28 2021-05-28 比亚迪股份有限公司 动力电池剩余能量估算方法、装置、车辆及存储介质

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111060828B (zh) * 2019-12-30 2022-01-11 华人运通(江苏)技术有限公司 一种电池状态监控方法和装置
CN113016116A (zh) * 2020-05-07 2021-06-22 深圳市大疆创新科技有限公司 供电电路、电源装置、移动平台和剩余电量的调节方法
CN112531824A (zh) * 2020-06-22 2021-03-19 江苏时代新能源科技有限公司 电池监测方法、电池监测装置以及直流降压设备
CN112078426B (zh) * 2020-09-02 2023-06-30 北京牛电科技有限责任公司 一种电池电量确定方法、装置、设备及存储介质
CN113466720B (zh) * 2021-07-06 2022-11-22 上汽大众动力电池有限公司 一种实车锂电池漏电流检测方法
KR20230098290A (ko) * 2021-09-08 2023-07-03 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 파워 배터리 충전 방법 및 배터리 관리 시스템
CN114114040A (zh) * 2021-12-09 2022-03-01 重庆金康赛力斯新能源汽车设计院有限公司 一种电池包的soc修正方法、装置和计算机设备
CN116930779A (zh) * 2022-03-29 2023-10-24 比亚迪股份有限公司 电池容量确定方法和装置、存储介质、以及电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105745811A (zh) * 2014-10-21 2016-07-06 株式会社Lg化学 用于校正电池soc的系统和方法
CN106154176A (zh) * 2016-07-01 2016-11-23 宁德时代新能源科技股份有限公司 一种电池 soc 的检测方法及装置
CN106314167A (zh) * 2015-06-26 2017-01-11 北汽福田汽车股份有限公司 动力电池的监控系统、控制方法及车辆
CN106985698A (zh) * 2017-04-25 2017-07-28 深圳市沃特玛电池有限公司 一种电池管理系统
US20170343612A1 (en) * 2016-05-26 2017-11-30 Samsung Electronics Co., Ltd. Method for estimating state of charge of a battery and battery managing apparatus
CN107499136A (zh) * 2016-06-14 2017-12-22 福特全球技术公司 基于低电压系统参数的高电压充电器的可变唤醒

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5350067B2 (ja) * 2009-04-28 2013-11-27 本田技研工業株式会社 電源システム
US8423215B2 (en) * 2010-08-10 2013-04-16 Tesla Motors, Inc. Charge rate modulation of metal-air cells as a function of ambient oxygen concentration
CN102958118A (zh) * 2011-08-24 2013-03-06 中兴通讯股份有限公司 参数更新方法及装置
CN104281502A (zh) * 2014-09-22 2015-01-14 宇龙计算机通信科技(深圳)有限公司 基于通信终端的非易失参数的恢复和/或更新方法及系统
CN105922873B (zh) * 2016-05-18 2018-05-04 北京新能源汽车股份有限公司 车辆及用于车辆的低压蓄电池的充电控制方法和系统
CN106926732A (zh) * 2017-04-07 2017-07-07 重庆长安汽车股份有限公司 纯电动车辆的剩余里程预估方法、预估控制器和预估系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105745811A (zh) * 2014-10-21 2016-07-06 株式会社Lg化学 用于校正电池soc的系统和方法
CN106314167A (zh) * 2015-06-26 2017-01-11 北汽福田汽车股份有限公司 动力电池的监控系统、控制方法及车辆
US20170343612A1 (en) * 2016-05-26 2017-11-30 Samsung Electronics Co., Ltd. Method for estimating state of charge of a battery and battery managing apparatus
CN107499136A (zh) * 2016-06-14 2017-12-22 福特全球技术公司 基于低电压系统参数的高电压充电器的可变唤醒
CN106154176A (zh) * 2016-07-01 2016-11-23 宁德时代新能源科技股份有限公司 一种电池 soc 的检测方法及装置
CN106985698A (zh) * 2017-04-25 2017-07-28 深圳市沃特玛电池有限公司 一种电池管理系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112858924A (zh) * 2019-11-28 2021-05-28 比亚迪股份有限公司 动力电池剩余能量估算方法、装置、车辆及存储介质
CN112858924B (zh) * 2019-11-28 2023-06-13 比亚迪股份有限公司 动力电池剩余能量估算方法、装置、车辆及存储介质

Also Published As

Publication number Publication date
CN110549900B (zh) 2021-06-18
CN110549900A (zh) 2019-12-10

Similar Documents

Publication Publication Date Title
WO2019184847A1 (zh) 电动汽车及动力电池静置之后的参数更新方法、装置
JP6622448B2 (ja) バッテリ管理システムおよびその駆動方法
CN107991623B (zh) 一种考虑温度和老化程度的电池安时积分soc估计方法
WO2019184846A1 (zh) 电动汽车及电动汽车的续驶里程计算方法、装置
US10345390B2 (en) Method and apparatus for correcting error occurring in estimation of battery life
JP7140316B2 (ja) 二次電池のステップ充電制御装置及び方法
KR20140100086A (ko) 배터리 관리 시스템 및 그 구동방법
US10401435B2 (en) Tracking fading battery capacity in a plugged-in portable electronic device
CN105467325A (zh) 电池容量退化解决的方法和系统
JP5619744B2 (ja) 蓄電デバイスの状態検知方法及びその装置
KR20150137678A (ko) 배터리 관리 방법 및 장치
JP6863560B2 (ja) バッテリー抵抗推定装置及び方法
JP5535968B2 (ja) 充電率推定装置、充電率推定方法、及びプログラム
CN111308357B (zh) 电池容量估算方法、电池管理系统、车辆及存储介质
KR20140139322A (ko) 배터리 관리 시스템 및 그 구동방법
KR101748642B1 (ko) 이차 전지의 출력 조정 장치 및 방법
CN113125978B (zh) 一种电动自行车用锂电池soc测量方法
JP2004022322A (ja) 二次電池の残存容量推定装置および残存容量推定方法
CN104166097A (zh) 电池的电量量测方法
KR20210149760A (ko) 배터리의 충전 상태를 초기화하는 방법
CN113910976B (zh) 电动汽车的动力电池控制方法、装置及电动汽车
CN114552039A (zh) 一种电池常带电自保养的控制方法及常带电自保养的电池
KR101467363B1 (ko) 배터리의 soc 추정 방법 및 장치
KR101342529B1 (ko) 전력 저장 장치의 제어기, 제어 방법 및 컴퓨터로 판독가능한 기록 매체
CN116995782B (zh) 一种电池的被动均衡方法、系统、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776096

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19776096

Country of ref document: EP

Kind code of ref document: A1