WO2019184846A1 - 电动汽车及电动汽车的续驶里程计算方法、装置 - Google Patents
电动汽车及电动汽车的续驶里程计算方法、装置 Download PDFInfo
- Publication number
- WO2019184846A1 WO2019184846A1 PCT/CN2019/079451 CN2019079451W WO2019184846A1 WO 2019184846 A1 WO2019184846 A1 WO 2019184846A1 CN 2019079451 W CN2019079451 W CN 2019079451W WO 2019184846 A1 WO2019184846 A1 WO 2019184846A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power battery
- electric vehicle
- ocv
- driving range
- energy consumption
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
- G01R31/3835—Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/40—Control modes
- B60L2260/50—Control modes by future state prediction
- B60L2260/52—Control modes by future state prediction drive range estimation, e.g. of estimation of available travel distance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/40—Control modes
- B60L2260/50—Control modes by future state prediction
- B60L2260/54—Energy consumption estimation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present disclosure relates to the field of electric vehicle technology, and in particular to a method for calculating a driving range of an electric vehicle, a driving range calculating device for an electric vehicle, and an electric vehicle.
- the driving range of an electric vehicle refers to the mileage that the power battery on the electric vehicle starts from the full charge state to the end of the standard test. It is an important economic indicator of the electric vehicle.
- An existing scheme for calculating the driving range is to estimate the driving range directly based on the SOC (State of Charge), and the estimated expression is as follows:
- the relationship between the SOC and the driving range is in a monotonous linear relationship, and the relationship curve is pre-existing in the BMS (Battery Management System).
- the calculation process is based on the current SOC. Driving mileage.
- Working conditions including driver's driving habits, road conditions, traffic conditions, environmental factors, etc. Under different working conditions, the driving range corresponding to the same SOC is not the same;
- Vehicle factors including car weight, extra load capacity, tire performance, vehicle transmission system transmission efficiency, motor efficiency, etc., will affect the efficiency of the conversion of power battery energy into vehicle driving range;
- the present disclosure aims to solve at least one of the technical problems in the above technology to some extent.
- the first object of the present disclosure is to propose a method for calculating the driving range of an electric vehicle to improve the calculation accuracy of the driving range.
- a second object of the present disclosure is to provide a driving range calculation device for an electric vehicle.
- a third object of the present disclosure is to propose an electric vehicle.
- the first aspect of the present disclosure provides a method for calculating a driving range of an electric vehicle, comprising the steps of: calculating energy consumption of a unit mileage of a power battery of the electric vehicle; and acquiring the power battery.
- Open circuit voltage OCV Open-Circut Voltage
- OCV Open-Circut Voltage
- battery capacity Q reference curve obtain OCV of the power battery; obtain current remaining available of the power battery according to the OCV and OCV-Q reference curves of the power battery Energy; calculating the driving range of the electric vehicle according to the energy consumption of the unit mileage of the power battery and the current remaining available energy of the power battery.
- the driving range calculation method of the electric vehicle first, the energy consumption of the power battery in the unit mileage is calculated, and then the OCV-Q reference curve is acquired, and the OCV is acquired, and then the power is obtained according to the OCV and OCV-Q reference curves.
- the remaining available energy of the battery, E remaining finally calculates the driving range of the electric vehicle based on the energy consumption of the unit mileage of the Q remaining and the power battery, and thus the calculated driving range accuracy is higher.
- the driving range calculation method of the electric vehicle according to the above embodiment of the present disclosure may further have the following additional technical features:
- the obtaining the current remaining available energy of the power battery according to the OCV of the power battery and the OCV-Q reference curve specifically includes: according to an OCV of the power battery and the OCV- Q reference curve calculation of the remaining battery power currently available capacity Q remaining; OCV is calculated based on the current battery power of the remaining available capacity Q remaining battery power and the current of the remaining available energy.
- the current remaining available energy is calculated by the following formula:
- E remaining is the current remaining available energy.
- the OCV-Q reference curve of the power battery is obtained by real-time interaction between the electric vehicle and the cloud server.
- the energy consumption per unit mileage of the power battery is calculated by the following formula:
- D std is the energy consumption per unit mileage under standard working conditions
- D is the energy consumption per unit mileage under actual working conditions
- D K-1 is the energy consumption per unit mileage of the previous moment
- ⁇ Both ⁇ and ⁇ are preset coefficients.
- the driving range calculation method of the electric vehicle further includes: determining, according to D K, whether the following formula is satisfied: 0.5D std ⁇ D K ⁇ 1.5D std ; if satisfied, calculating according to D K The driving range of the electric vehicle; if not, the D K is recalculated.
- the driving range is calculated by the following formula:
- RM is the driving range
- the second aspect of the present disclosure provides a driving range calculation device for an electric vehicle, including: a first calculation module, configured to calculate energy consumption of a unit mileage of the power battery of the electric vehicle; a first acquisition module, configured to acquire an open circuit voltage OCV-battery capacity Q reference curve of the power battery; a second acquisition module, configured to acquire an OCV of the power battery; and a third acquisition module, configured to use the power battery according to the power battery
- the OCV and OCV-Q reference curves acquire the current remaining available energy of the power battery;
- the second calculation module is configured to calculate the energy consumption according to the unit mileage of the power battery and the current remaining available energy of the power battery The driving range of electric vehicles.
- the driving range calculation device of the electric vehicle first, the energy consumption of the power battery in the unit mileage is calculated, and then the OCV-Q reference curve is acquired, and the OCV is acquired, and then the power is obtained according to the OCV and OCV-Q reference curves.
- the remaining available energy of the battery, E remaining finally calculates the driving range of the electric vehicle based on the energy consumption of the unit mileage of the Q remaining and the power battery, and thus the calculated driving range accuracy is higher.
- the driving range calculation device of the electric vehicle according to the above embodiment of the present disclosure may further have the following additional technical features:
- the third obtaining module is specifically configured to:
- the current remaining available energy is calculated by the following formula:
- E remaining is the current remaining available energy.
- the OCV-Q reference curve of the power battery is obtained by real-time interaction between the electric vehicle and the cloud server.
- the first calculation module calculates the energy consumption of the unit mileage of the power battery by the following formula:
- D std is the energy consumption per unit mileage under standard working conditions
- D is the energy consumption per unit mileage under actual working conditions
- D K-1 is the energy consumption per unit mileage of the previous moment
- ⁇ Both ⁇ and ⁇ are preset coefficients.
- the first calculating module is further configured to: determine, according to D K, whether the following formula is satisfied: 0.5D std ⁇ D K ⁇ 1.5D std ; if satisfied, calculate the electric power according to D K The driving range of the car; if not, recalculate D K .
- the second calculation module calculates the driving range by the following formula:
- RM is the driving range
- the third aspect of the present disclosure proposes an electric vehicle including the driving range calculating device of the electric vehicle of the above embodiment.
- the driving range calculation device of the electric vehicle of the above embodiment is used, and the calculated driving range accuracy is higher.
- FIG. 1 is a flow chart of a method for calculating a driving range of an electric vehicle according to an embodiment of the present disclosure
- FIG. 2 is a schematic diagram of an OVC-Q reference curve in accordance with an embodiment of the present disclosure
- FIG. 3 is a block diagram showing the structure of a driving range calculation device for an electric vehicle according to an embodiment of the present disclosure
- FIG. 4 is a structural block diagram of an electric vehicle according to an embodiment of the present disclosure.
- FIG. 1 is a flow chart of a method for calculating a driving range of an electric vehicle according to an embodiment of the present disclosure. As shown in FIG. 1 , the method for calculating the driving range of the electric vehicle includes the following steps:
- the energy consumption of the unit driving mileage under the standard working condition can be combined with the current working condition.
- the energy consumption per unit mileage and the energy consumption per unit mileage of the previous moment estimate the energy consumption of the unit mileage of the power battery.
- the weighting of the above three parties may be performed, and the weight coefficient is determined according to the actual situation.
- the energy consumption per unit mileage of the power battery can be calculated by the following formula (1):
- D std is the energy consumption per unit mileage under standard working conditions
- D is the energy consumption per unit mileage under actual working conditions
- D K-1 is the energy consumption per unit mileage of the previous moment
- ⁇ Both ⁇ and ⁇ are preset coefficients. It can be understood that the unit of energy consumption of each unit mileage mentioned above is kWh/Km.
- the test can be carried out in advance to test the energy consumption per unit mileage under standard working conditions and the energy consumption per unit mileage under various working conditions.
- the standard working condition can be that the electric vehicle runs at a slip ratio s, On a road surface with no slope or steep slope, and the ambient temperature is in the range of T1 to T2.
- D std in the above standard working condition, when the power battery is used for the first time and is fully charged, the energy consumption per 1Km of the electric vehicle is detected, and then D std is calculated according to the detected value, for example, the average value is taken.
- the energy consumption per unit mileage of the primary battery can be calculated using the above formula (1) every preset time t (eg, 10 min, 15 min, 20 min, etc.).
- the travel distance L, and the detected energy consumption is Q (which can be calculated according to the vehicle speed, the operating current of the power battery, the voltage of the power battery, the power of the power load, etc.), the actual situation can be obtained.
- energy consumption per unit solid unit D condition of the electric vehicle mileage Q / L
- t is the time mileage D K-1, the standard conditions of consumption units of mileage D std
- the energy consumption D K of the unit mileage at 2t can be calculated by the above formula (1).
- the values of the parameters ⁇ , ⁇ , and ⁇ can be selected according to the current actual working conditions.
- the driving habit of the user is better, that is, the rate of change of the output power of the electric vehicle is small
- D K it is determined according to D K whether the following formula is satisfied: 0.5D std ⁇ D K ⁇ 1.5D std ; if satisfied, calculate the driving range of the electric vehicle; if not, recalculate D K to avoid unintended random errors and ensure the accuracy of the driving range calculation.
- the OCV-Q reference curve of the power battery may be obtained by real-time interaction between the electric vehicle and the cloud server, or may be obtained from the BMS of the electric vehicle.
- the OCV-Q reference curve can be pre-stored in the BMS, and the OCV-Q reference curve can be obtained directly from the BMS as needed.
- the OCV-Q reference curve may be pre-stored in the cloud server, such as the OCV-Q reference curve may be stored in the cloud server by the BMS of the electric vehicle. Further, when necessary, a wireless connection can be established between the electric vehicle and the cloud server through 2G/3G/4G/5G, WIFI, etc., whereby the BMS of the electric vehicle can acquire the pre-stored OCV-Q reference curve from the cloud server.
- the OCV-Q reference curve of the power battery can be monitored and stored in real time through the BMS.
- the OCV-Q reference curve stored in the BMS and/or cloud server is updated periodically (eg, every 1 week, one month, three months, etc.).
- the OCV-Q curve for a new battery and a 1.5 year battery is shown in Figure 2.
- Figure 2 when the open circuit voltage is the same, the capacity of the battery using 1.5 years is significantly smaller than the capacity of the new battery.
- OCV can be obtained by pulse charge and discharge test, and the charge rate and pulse interval time in the test can be set as needed.
- a discharge module and a shunt can be connected in series at both ends of the power battery, and the operation of the discharge module can be controlled by a controller.
- the discharge module can be set according to the set charging rate and the pulse interval time. When the discharge module is not working, the voltage U1 at both ends of the discharge module and the current I1 of the shunt are collected; when the discharge module is in operation, the voltage U2 at both ends of the discharge module and the current I2 of the shunt are collected.
- the OCV-Q reference curve of the power battery can be queried to obtain the current remaining available capacity Q remaining of the power battery, and then the current remaining available energy E remaining of the power battery is calculated according to the current remaining available capacity Q remaining and OCV of the power battery.
- the calculation formula is specifically as follows (2):
- the energy consumption at the current time may also be obtained according to the difference between the current remaining available energy and the remaining available energy at the previous time.
- S105 Calculate the driving range of the electric vehicle according to the energy consumption of the unit mileage of the power battery and the current remaining available energy.
- the driving range can be calculated by the following formula (3):
- RM is the driving range.
- the driving range calculation method of the electric vehicle first, the energy consumption of the power battery in the unit mileage is calculated, and then the OCV-Q reference curve is acquired, and the OCV is acquired, and then the power is obtained according to the OCV and OCV-Q reference curves.
- the remaining available energy of the battery, E remaining finally calculates the driving range of the electric vehicle based on the energy consumption of the unit mileage of the Q remaining and the power battery, and thus the calculated driving range accuracy is higher.
- the cloud server to obtain the OCV-Q reference curve, it is possible to more accurately understand the driving habits of different users and the environment in which the vehicle is used, and provide a data platform for subsequent big data applications.
- the driving range calculation device 100 of the electric vehicle includes: a first calculation module 10 , a first acquisition module 20 , a second acquisition module 30 , a third acquisition module 40 , and a second calculation module 50 .
- the first calculation module 10 is configured to calculate the energy consumption of the unit mileage of the power battery.
- the energy consumption of the unit driving mileage under the standard working condition and the current working condition can be combined.
- the energy consumption of the unit mileage and the energy consumption per unit mileage of the previous time are estimated.
- the energy consumption of the unit mileage of the power battery may be weighted and summed according to the actual situation.
- the first calculation module 10 can calculate the energy consumption of the unit mileage of the power battery by the following formula (1):
- D std is the energy consumption per unit mileage under standard working conditions
- D is the energy consumption per unit mileage under actual working conditions
- D K-1 is the energy consumption per unit mileage of the previous moment
- ⁇ Both ⁇ and ⁇ are preset coefficients. It can be understood that the unit of energy consumption of each unit mileage mentioned above is kWh/Km.
- the test can be carried out in advance to test the energy consumption per unit mileage under standard working conditions and the energy consumption per unit mileage under various working conditions.
- the standard working condition can be that the electric vehicle runs at a slip ratio s, On a road surface with no slope or steep slope, and the ambient temperature is in the range of T1 to T2.
- D std in the above standard working condition, when the power battery is used for the first time and is fully charged, the energy consumption per 1Km of the electric vehicle is detected, and then D std is calculated according to the detected value, for example, the average value is taken.
- the energy consumption D K of the unit mileage at 2t can be calculated by the above formula (1).
- the values of the parameters ⁇ , ⁇ , and ⁇ can be selected according to the current actual working conditions.
- the first calculating module 10 determines whether the following is satisfied according to D K after calculating the D K Formula: 0.5D std ⁇ D K ⁇ 1.5D std ; if it is satisfied, calculate the driving range of the electric vehicle; if it is not satisfied, recalculate D K to avoid unintended random error and ensure the calculation of the driving range accuracy.
- the first obtaining module 20 is configured to obtain an open circuit voltage OCV-battery capacity Q reference curve of the power battery.
- the OCV-Q reference curve of the power battery may be obtained by real-time interaction between the electric vehicle and the cloud server, or may be obtained from the BMS of the electric vehicle.
- the OCV-Q reference curve may be pre-stored in the BMS, such that the first acquisition module 10 may obtain the OCV-Q reference curve directly from the BMS as needed.
- the OCV-Q reference curve may be pre-stored in the cloud server, such as the OCV-Q reference curve may be stored in the cloud server by the BMS of the electric vehicle. Further, when necessary, a wireless connection can be established between the electric vehicle and the cloud server through 2G/3G/4G/5G, WIFI, etc., whereby the first acquisition module 10 can acquire the pre-stored OCV-Q reference curve from the cloud server.
- the OCV-Q reference curve of the power battery can be monitored and stored in real time through the BMS.
- the OCV-Q reference curve stored in the BMS and/or cloud server is updated periodically (eg, every 1 week, one month, three months, etc.).
- the OCV-Q curve for a new battery and a 1.5 year battery is shown in Figure 2.
- Figure 2 when the open circuit voltage is the same, the capacity of the battery using 1.5 years is significantly smaller than the capacity of the new battery.
- the second acquisition module 30 is configured to acquire an OCV of the power battery.
- OCV can be obtained by pulse charge and discharge test, and the charge rate and pulse interval time in the test can be set as needed.
- a discharge module and a shunt can be connected in series at both ends of the power battery, and the operation of the discharge module can be controlled by a controller.
- the discharge module can be set according to the set charging rate and the pulse interval time. When the discharge module is not working, the voltage U1 at both ends of the discharge module and the current I1 of the shunt are collected; when the discharge module is in operation, the voltage U2 at both ends of the discharge module and the current I2 of the shunt are collected.
- the third obtaining module 40 is configured to obtain the current remaining available energy of the power battery according to the OCV and OCV-Q reference curves of the power battery.
- the third obtaining module 40 may query the OCV-Q reference curve according to the OCV of the power battery to obtain the current remaining available capacity Q remaining of the power battery, and then calculate the current remaining available energy of the power battery according to the current remaining available capacity Q remaining and OCV of the power battery. E remaining .
- the calculation formula is as follows (2):
- the second calculation module 50 is configured to calculate the driving range of the electric vehicle according to the energy consumption of the unit mileage of the power battery and the current remaining available capacity of the power battery.
- the second calculation module 50 may calculate the driving range by the following formula (3):
- RM is the driving range.
- the first calculating module 10 may be further configured to: determine whether the following formula is satisfied according to D K : 0.5D Std ⁇ D K ⁇ 1.5D std ; if satisfied, calculate the driving range of the electric vehicle according to D K ; if not, recalculate D K .
- the driving range calculation device of the electric vehicle first, the energy consumption of the power battery in the unit mileage is calculated, and then the OCV-Q reference curve is acquired, and the OCV is acquired, and then the power is obtained according to the OCV and OCV-Q reference curves.
- the remaining available energy of the battery, E remaining finally calculates the driving range of the electric vehicle based on the energy consumption of the unit mileage of the Q remaining and the power battery, and thus the calculated driving range accuracy is higher.
- the cloud server to obtain the OCV-Q reference curve, it is possible to more accurately understand the driving habits of different users and the environment in which the vehicle is used, and provide a data platform for subsequent big data applications.
- the electric vehicle 1000 includes the driving range calculating device 100 of the electric vehicle of the above embodiment.
- the driving range calculation device of the electric vehicle of the above embodiment is used, and the calculated driving range accuracy is higher, and the OCV-Q reference curve is obtained by interacting with the cloud server, which can be more accurate. Understand the driving habits of different users and the environment in which the vehicle is used, providing a data platform for subsequent big data applications.
- first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
- features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
- the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
- Any process or method description in the flowcharts or otherwise described herein may be understood to represent a module, segment or portion of code comprising one or more executable instructions for implementing the steps of a custom logic function or process.
- the scope of the preferred embodiments of the present disclosure includes additional implementations, in which the functions may be performed in a substantially simultaneous manner or in an inverse order depending on the functions involved, in the order shown or discussed. It will be understood by those skilled in the art to which the embodiments of the present disclosure pertain.
- a "computer-readable medium” can be any apparatus that can contain, store, communicate, propagate, or transport a program for use in an instruction execution system, apparatus, or device, or in conjunction with the instruction execution system, apparatus, or device.
- computer readable media include the following: electrical connections (electronic devices) having one or more wires, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
- the computer readable medium may even be a paper or other suitable medium on which the program can be printed, as it may be optically scanned, for example by paper or other medium, followed by editing, interpretation or, if appropriate, other suitable The method is processed to obtain the program electronically and then stored in computer memory.
- portions of the present disclosure can be implemented in hardware, software, firmware, or a combination thereof.
- multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
- a suitable instruction execution system For example, if implemented in hardware and in another embodiment, it can be implemented by any one or combination of the following techniques well known in the art: discrete with logic gates for implementing logic functions on data signals Logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), and the like.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
一种电动汽车的续驶里程计算方法,其中,计算方法包括以下步骤:计算电动汽车的动力电池的单位行驶里程的能耗;获取动力电池的开路电压OCv-电池容量Q参考曲线;获取动力电池的OCv;根据动力电池的OCv和OCv-Q参考曲线获取动力电池的当前剩余可用能量;根据动力电池的单位行驶里程的能耗和动力电池的当前剩余可用能量计算电动汽车的续驶里程,由此,计算得到的电动汽车的续驶里程准确性更高。还公开了一种电动汽车的续驶里程计算装置以及一种电动汽车。
Description
相关申请的交叉引用
本申请基于申请号为201810296299.8,申请日为2018年03月30日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
本公开涉及电动汽车技术领域,特别涉及一种电动汽车的续驶里程计算方法、一种电动汽车的续驶里程计算装置和一种电动汽车。
电动汽车的续驶里程是指电动汽车上的动力电池以全充状态开始到标准规定的试验结束时所走的里程,它是电动汽车重要的经济性指标。现有的一种计算续驶里程的方案是直接根据SOC(State of Charge,荷电状态)估算续驶里程,其估算表达式如下:
即认为SOC与续驶里程的关系呈现分段单调线性关系,进而将该关系曲线预存在BMS(Battery Management System,电池管理系统)中,计算过程根据当前的SOC采用直接查表的方式求得续驶里程。
但事实上,无论从理论角度还是试验角度考虑,续驶里程与SOC之间并不是单纯的线性关系。实际工况中影响续驶里程的因素有很多,主要包括:
工况:包括驾驶员的驾驶习惯、道路条件、交通状况、环境因素等,不同工况下,相同SOC对应的续驶里程并不一样;
车辆因素:包括汽车重量、额外载重量、轮胎性能、车辆传动系统的传递效率、电机效率等,都会影响动力电池能量转化为车辆续驶里程的效率;
电池内部因素:包括电池寿命、电芯温度、内阻、放电倍率等,都会影响动力电池的可用剩余容量,进而影响电动汽车的续驶里程。
发明内容
本公开旨在至少在一定程度上解决上述技术中的技术问题之一。为此,本公开的第一个目的在于提出一种电动汽车的续驶里程计算方法,以提高续驶里程的计算准确性。
本公开的第二个目的在于提出一种电动汽车的续驶里程计算装置。
本公开的第三个目的在于提出一种电动汽车。
为达到上述目的,本公开第一方面实施例提出了一种电动汽车的续驶里程计算方法,包括以下步骤:计算所述电动汽车的动力电池的单位行驶里程的能耗;获取所述动力电池的开路电压OCV(Open-Circut Voltage,开路电压)-电池容量Q参考曲线;获取所述动力电池的OCV;根据所述动力电池的OCV和OCV-Q参考曲线获取所述动力电池的当前剩余可用能量;根据所述动力电池的单位行驶里程的能耗和所述动力电池的当前剩余可用能量计算所述电动汽车的续驶里程。
根据本公开实施例的电动汽车的续驶里程计算方法,首先计算动力电池在单位行驶里程的能耗,进而获取OCV-Q参考曲线,并获取OCV,然后根据OCV和OCV-Q参考曲线得到动力电池的剩余可用能量E
remaining,最后根据Q
remaining和动力电池的单位行驶里程的能耗计算电动汽车的续驶里程,由此,计算得到的续驶里程准确性更高。
另外,根据本公开上述实施例提出的电动汽车的续驶里程计算方法还可以具有如下附加的技术特征:
根据本公开的一个实施例,所述根据所述动力电池的OCV和所述OCV-Q参考曲线获取所述动力电池的当前剩余可用能量具体包括:根据所述动力电池的OCV和所述OCV-Q参考曲线计算所述动力电池的当前剩余可用容量Q
remaining;根据所述动力电池的当前剩余可用容量Q
remaining和所述动力电池的OCV计算所述当前剩余可用能量。
根据本公开的一个实施例,通过以下公式计算所述当前剩余可用能量:
其中,E
remaining为所述当前剩余可用能量。
根据本公开的一个实施例,所述动力电池的OCV-Q参考曲线由电动汽车与云服务器实时交互获得。
根据本公开的一个实施例,通过以下公式计算所述动力电池的单位行驶里程的能耗:
D
K=αD
std+βD
实+γD
K-1,
其中,D
std为标准工况下的单位行驶里程的能耗,D
实为实际工况下的单位行驶里程的能耗,D
K-1为上一时刻的单位行驶里程的能耗,α、β、γ均为预设系数。
根据本公开的一个实施例,所述电动汽车的续驶里程计算方法,还包括:根据D
K判断 是否满足以下公式:0.5D
std<D
K<1.5D
std;如果满足,则根据D
K计算所述电动汽车的续驶里程;如果不满足,则重新计算D
K。
根据本公开的一个实施例,通过以下公式计算所述续驶里程:
其中,RM为所述续驶里程。
为达到上述目的,本公开第二方面实施例提出了一种电动汽车的续驶里程计算装置,包括:第一计算模块,用于计算所述电动汽车的动力电池的单位行驶里程的能耗;第一获取模块,用于获取所述动力电池的开路电压OCV-电池容量Q参考曲线;第二获取模块,用于获取所述动力电池的OCV;第三获取模块,用于根据所述动力电池的OCV和OCV-Q参考曲线获取所述动力电池的当前剩余可用能量;第二计算模块,用于根据所述动力电池的单位行驶里程的能耗和所述动力电池的当前剩余可用能量计算所述电动汽车的续驶里程。
根据本公开实施例的电动汽车的续驶里程计算装置,首先计算动力电池在单位行驶里程的能耗,进而获取OCV-Q参考曲线,并获取OCV,然后根据OCV和OCV-Q参考曲线得到动力电池的剩余可用能量E
remaining,最后根据Q
remaining和动力电池的单位行驶里程的能耗计算电动汽车的续驶里程,由此,计算得到的续驶里程准确性更高。
另外,根据本公开上述实施例提出的电动汽车的续驶里程计算装置还可以具有如下附加的技术特征:
根据本公开的一个实施例,所述第三获取模块,具体用于:
根据所述动力电池的OCV和所述OCV-Q参考曲线计算所述动力电池的当前剩余可用容量Q
remaining;根据所述动力电池的当前剩余可用容量Q
remaining和所述动力电池的OCV计算所述当前剩余可用能量。
根据本公开的一个实施例,通过以下公式计算所述当前剩余可用能量:
其中,E
remaining为所述当前剩余可用能量。
根据本公开的一个实施例,所述动力电池的OCV-Q参考曲线由电动汽车与云服务器实时交互获得。
根据本公开的一个实施例,所述第一计算模块通过以下公式计算所述动力电池的单位 行驶里程的能耗:
D
K=αD
std+βD
实+γD
K-1,
其中,D
std为标准工况下的单位行驶里程的能耗,D
实为实际工况下的单位行驶里程的能耗,D
K-1为上一时刻的单位行驶里程的能耗,α、β、γ均为预设系数。
根据本公开的一个实施例,所述第一计算模块,还用于:根据D
K判断是否满足以下公式:0.5D
std<D
K<1.5D
std;如果满足,则根据D
K计算所述电动汽车的续驶里程;如果不满足,则重新计算D
K。
根据本公开的一个实施例,所述第二计算模块通过以下公式计算所述续驶里程:
其中,RM为所述续驶里程。
本公开第三方面实施例提出了一种电动汽车,其包括上述实施例的电动汽车的续驶里程计算装置。
根据本公开实施例的电动汽车,采用上述实施例的电动汽车的续驶里程计算装置,计算得到的续驶里程准确性更高。
图1为根据本公开实施例的电动汽车的续驶里程计算方法的流程图;
图2为根据本公开一个实施例的OVC-Q参考曲线的示意图;
图3为根据本公开实施例的电动汽车的续驶里程计算装置的结构框图;
图4为根据本公开实施例的电动汽车的结构框图。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面结合附图来描述本公开实施例的电动汽车的续驶里程计算方法、装置和电动汽车。
图1为根据本公开实施例的电动汽车的续驶里程计算方法的流程图。如图1所示,该电动汽车的续驶里程计算方法,包括以下步骤:
S101,计算动力电池的单位行驶里程的能耗。
在本公开的实施例中,考虑到工况、用户驾驶习惯、动力电池寿命等各种因素对车辆续驶里程的影响,可以结合标准工况下的单位行驶里程的能耗、当前工况下的单位行驶里程的能耗以及上一时刻的单位行驶里程的能耗估算动力电池的单位行驶里程的能耗,具体可以是对上述三者进行加权求和,权重系数根据实际情况而定。如可以通过以下公式(1)计算动力电池的单位行驶里程的能耗:
D
K=αD
std+βD
实+γD
K-1 (1)
其中,D
std为标准工况下的单位行驶里程的能耗,D
实为实际工况下的单位行驶里程的能耗,D
K-1为上一时刻的单位行驶里程的能耗,α、β、γ均为预设系数。可以理解,上述各单位行驶里程的能耗的单位均为kWh/Km。
可以预先进行试验,以测试得到标准工况下的单位行驶里程的能耗和多种不同工况下的单位行驶里程的能耗,如标准工况可以是电动汽车行驶在滑移率为s、无坡度或坡度很小的路面上,且环境温度处于T1~T2范围内。在测试得到D
std时,可在上述标准工况,动力电池初次使用且满电情况下,检测电动汽车每行驶1Km的能耗,进而根据检测值计算D
std,如取均值。
在电动汽车的行驶过程中,可以每隔预设时间t(如10min、15min、20min等)利用上述公式(1)计算一次动力电池的单位行驶里程的能耗。例如,在t~2t时间段,行驶距离L,检测到能耗为Q(可根据车速、动力电池的工作电流、动力电池的电压、用电负载的功率等计算得到),则可以得到该实际工况下电动汽车的单位行驶里程的能耗D
实=Q/L,t时刻的单位行驶里程的能耗为D
K-1,标准工况下的单位行驶里程的能耗为D
std,则可通过上述公式(1)计算2t时刻的单位行驶里程的能耗D
K。式中,参数α、β、γ的取值均可根据当前的实际工况进行选取,例如,当前工况为滑移率较大,坡度较小,环境温度较低,且上一时刻坡度较大为正值,则可取α<β<γ,且α+β+γ=1;如果当前工况为滑移率较大,坡度较小,环境温度较低,且D
实>D
K-1>D
std,且上一时刻坡度为负值,则可取α<γ<β,且α+β+γ=1。由此,能够提高对未来工况下单位行驶里程的能耗预测的准确性。可以理解,初始时刻的动力电池的单位行驶里程的能耗可根据D
std和D
实进行计算,即式(1)中的γ=0。
在本公开的一个具体示例中,如果用户的驾车习惯较好,即电动汽车的输出功率的变化率较小,则在计算得到D
K后,还根据D
K判断是否满足以下公式:0.5D
std<D
K<1.5D
std;如果满足,则计算电动汽车的续驶里程;如果不满足,则重新计算D
K,以避免出现非预期的随机误差,保证续驶里程计算的准确性。
S102,获取动力电池的开路电压OCV-电池容量Q参考曲线。
在本公开的实施例中,动力电池的OCV-Q参考曲线可由电动汽车与云服务器实时交互获得,也可从电动汽车的BMS中获得。
在一个示例中,OCV-Q参考曲线可预先存储在BMS中,进而在需要时,可直接从BMS中获取OCV-Q参考曲线。
在另一个示例中,OCV-Q参考曲线可预先存储在云服务器中,如可通过电动汽车的BMS将OCV-Q参考曲线存至云服务器中。进而在需要时,可在电动汽车和云服务器之间通过2G/3G/4G/5G、WIFI等建立无线连接,由此电动汽车的BMS可从云服务器获取预存的OCV-Q参考曲线。
需要说明的是,考虑到动力电池的老化等因素,为保证动力电池的OCV-Q参考曲线更贴近动力电池当前的真实状态,可通过BMS对动力电池的OCV-Q参考曲线进行实时监控和存储,以定期(如每隔1个星期、一个月、三个月等)更新BMS和/或云服务器中存储的OCV-Q参考曲线。
在一个具体示例中,新电池与使用1.5年的电池的OCV-Q曲线如图2所示。从图2中可以看出,当开路电压相同时,使用1.5年的电池的容量明显小于新电池的容量。
S103,获取动力电池的OCV。
其中,OCV可通过脉冲充放电试验获得,试验中的充电倍率、脉冲间隔时间可根据需要进行设定。
例如,可在动力电池的两端串联一放电模块和分流器,放电模块的工作与否可通过一控制器控制。其中,放电模块可根据设定的充电倍率和脉冲间隔时间进行设置。在放电模块不工作时,采集放电模块两端的电压U1和分流器的电流I1;在放电模块工作时,采集放电模块两端的电压U2和分流器的电流I2。
其中,假设动力电池的内阻为r,则有OCV=U1+I1*r和OCV=U2+I2*r成立,由此可得开路电压OCV=(U1*I2-U2*I1)/(I2-I1)。
S104,根据动力电池的OCV和OCV-Q参考曲线获取动力电池的当前剩余可用能量。
可根据动力电池的OCV查询OCV-Q参考曲线,得到动力电池的当前剩余可用容量Q
remaining,进而根据动力电池的当前剩余可用容量Q
remaining和OCV计算动力电池的当前剩余 可用能量E
remaining。
在本公开的一个实施例中,计算公式具体如下式(2):
在本公开的一个实施例中,上述步骤S101中计算动力电池的单位行驶里程的能耗时,当前时刻的能耗也可根据当前剩余可用能量与上一时刻的剩余可用能量做差求得。
S105,根据动力电池的单位行驶里程的能耗和当前剩余可用能量计算电动汽车的续驶里程。
在本公开的一个具体示例中,可通过以下公式(3)计算续驶里程:
其中,RM为续驶里程。
根据本公开实施例的电动汽车的续驶里程计算方法,首先计算动力电池在单位行驶里程的能耗,进而获取OCV-Q参考曲线,并获取OCV,然后根据OCV和OCV-Q参考曲线得到动力电池的剩余可用能量E
remaining,最后根据Q
remaining和动力电池的单位行驶里程的能耗计算电动汽车的续驶里程,由此,计算得到的续驶里程准确性更高。另外,通过与云服务器交互获得OCV-Q参考曲线,能够更加准确的了解不同用户的驾驶习惯以及车辆的使用环境,为后续大数据应用提供数据平台。
图3是根据本公开一个实施例的电动汽车的续驶里程计算装置的结构框图。如图3所示,电动汽车的续驶里程计算装置100包括:第一计算模块10、第一获取模块20、第二获取模块30、第三获取模块40和第二计算模块50。
其中,第一计算模块10用于计算动力电池的单位行驶里程的能耗。
在本公开的一个实施例中,考虑到工况、用户驾驶习惯、动力电池寿命等各种因素对车辆续驶里程的影响,可以结合标准工况下的单位行驶里程的能耗、当前工况下的单位行驶里程的能耗以及上一时刻的单位行驶里程的能耗估算动力电池的单位行驶里程的能耗,具体可以是对上述三者进行加权求和,权重系数根据实际情况而定。如第一计算模块10可通过以下公式(1)计算动力电池的单位行驶里程的能耗:
D
K=αD
std+βD
实+γD
K-1 (1)
其中,D
std为标准工况下的单位行驶里程的能耗,D
实为实际工况下的单位行驶里程的能耗,D
K-1为上一时刻的单位行驶里程的能耗,α、β、γ均为预设系数。可以理解,上 述各单位行驶里程的能耗的单位均为kWh/Km。
可以预先进行试验,以测试得到标准工况下的单位行驶里程的能耗和多种不同工况下的单位行驶里程的能耗,如标准工况可以是电动汽车行驶在滑移率为s、无坡度或坡度很小的路面上,且环境温度处于T1~T2范围内。在测试得到D
std时,可在上述标准工况,动力电池初次使用且满电情况下,检测电动汽车每行驶1Km的能耗,进而根据检测值计算D
std,如取均值。
在电动汽车的行驶过程中,可以每隔预设时间t(如10min、15min、20min等)利用上述公式(1)计算一次动力电池的单位行驶里程的能耗。例如,在t~2t时间段,行驶距离L,检测到能耗为Q,则可以得到该实际工况下电动汽车的单位行驶里程的能耗D
实=Q/L,t时刻的单位行驶里程的能耗为D
K-1,标准工况下的单位行驶里程的能耗为D
std,则可通过上述公式(1)计算2t时刻的单位行驶里程的能耗D
K。式中,参数α、β、γ的取值均可根据当前的实际工况进行选取,例如,当前工况为滑移率较大,坡度较小,环境温度较低,且上一时刻坡度较大为正值,则可取α<β<γ,且α+β+γ=1;如果当前工况为滑移率较大,坡度较小,环境温度较低,且D
实>D
K-1>D
std,且上一时刻坡度为负值,则可取α<γ<β,且α+β+γ=1。由此,能够提高对未来工况下单位行驶里程的能耗预测的准确性。可以理解,初始时刻的动力电池的单位行驶里程的能耗可根据D
std和D
实进行计算,即式(1)中的γ=0。
在本公开的一个具体示例中,如果用户的驾车习惯较好,即电动汽车的输出功率的变化率较小,则第一计算模块10在计算得到D
K后,还根据D
K判断是否满足以下公式:0.5D
std<D
K<1.5D
std;如果满足,则计算电动汽车的续驶里程;如果不满足,则重新计算D
K,以避免出现非预期的随机误差,保证续驶里程计算的准确性。
第一获取模块20用于获取动力电池的开路电压OCV-电池容量Q参考曲线。
在本公开的实施例中,动力电池的OCV-Q参考曲线可由电动汽车与云服务器实时交互获得,也可从电动汽车的BMS中获得。
在一个示例中,OCV-Q参考曲线可预先存储在BMS中,进而在需要时,第一获取模块10可直接从BMS中获取OCV-Q参考曲线。
在另一个示例中,OCV-Q参考曲线可预先存储在云服务器中,如可通过电动汽车的 BMS将OCV-Q参考曲线存至云服务器中。进而在需要时,可在电动汽车和云服务器之间通过2G/3G/4G/5G、WIFI等建立无线连接,由此第一获取模块10可从云服务器获取预存的OCV-Q参考曲线。
需要说明的是,考虑到动力电池的老化等因素,为保证动力电池的OCV-Q参考曲线更贴近动力电池当前的真实状态,可通过BMS对动力电池的OCV-Q参考曲线进行实时监控和存储,以定期(如每隔1个星期、一个月、三个月等)更新BMS和/或云服务器中存储的OCV-Q参考曲线。
在一个具体示例中,新电池与使用1.5年的电池的OCV-Q曲线如图2所示。从图2中可以看出,当开路电压相同时,使用1.5年的电池的容量明显小于新电池的容量。
第二获取模块30用于获取动力电池的OCV。
其中,OCV可通过脉冲充放电试验获得,试验中的充电倍率、脉冲间隔时间可根据需要进行设定。
例如,可在动力电池的两端串联一放电模块和分流器,放电模块的工作与否可通过一控制器控制。其中,放电模块可根据设定的充电倍率和脉冲间隔时间进行设置。在放电模块不工作时,采集放电模块两端的电压U1和分流器的电流I1;在放电模块工作时,采集放电模块两端的电压U2和分流器的电流I2。
其中,假设动力电池的内阻为r,则有OCV=U1+I1*r和OCV=U2+I2*r成立,由此可得开路电压OCV=(U1*I2-U2*I1)/(I2-I1)。
第三获取模块40用于根据动力电池的OCV和OCV-Q参考曲线获取动力电池的当前剩余可用能量。
第三获取模块40可根据动力电池的OCV查询OCV-Q参考曲线,得到动力电池的当前剩余可用容量Q
remaining,进而根据动力电池的当前剩余可用容量Q
remaining和OCV计算动力电池的当前剩余可用能量E
remaining。计算公式具体如下式(2):
第二计算模块50用于根据动力电池的单位行驶里程的能耗和动力电池的当前剩余可用容量计算电动汽车的续驶里程。
在本公开的一个具体示例中,可第二计算模块50通过以下公式(3)计算续驶里程:
其中,RM为续驶里程。
在本公开的一个具体示例中,如果用户的驾车习惯较好,即电动汽车的输出功率的变 化率较小,则第一计算模块10还可用于:根据D
K判断是否满足以下公式:0.5D
std<D
K<1.5D
std;如果满足,则根据D
K计算电动汽车的续驶里程;如果不满足,则重新计算D
K。
根据本公开实施例的电动汽车的续驶里程计算装置,首先计算动力电池在单位行驶里程的能耗,进而获取OCV-Q参考曲线,并获取OCV,然后根据OCV和OCV-Q参考曲线得到动力电池的剩余可用能量E
remaining,最后根据Q
remaining和动力电池的单位行驶里程的能耗计算电动汽车的续驶里程,由此,计算得到的续驶里程准确性更高。另外,通过与云服务器交互获得OCV-Q参考曲线,能够更加准确的了解不同用户的驾驶习惯以及车辆的使用环境,为后续大数据应用提供数据平台。
图4为根据本公开实施例的电动汽车的结构框图。如图4所示,电动汽车1000包括上述实施例的电动汽车的续驶里程计算装置100。
根据本公开实施例的电动汽车,采用上述实施例的电动汽车的续驶里程计算装置,计算得到的续驶里程准确性更高,且通过与云服务器交互获得OCV-Q参考曲线,能够更加准确的了解不同用户的驾驶习惯以及车辆的使用环境,为后续大数据应用提供数据平台。
需要说明的是,本公开实施例的电动汽车的其它构成及其作用对本领域的技术人员而言是已知的,为减少冗余,此处不做赘述。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本公开的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序, 包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本公开的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本公开的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
Claims (15)
- 一种电动汽车的续驶里程计算方法,其特征在于,包括以下步骤:计算所述电动汽车的动力电池的单位行驶里程的能耗;获取所述动力电池的开路电压OCV-电池容量Q参考曲线;获取所述动力电池的OCV;根据所述动力电池的OCV和OCV-Q参考曲线获取所述动力电池的当前剩余可用能量;根据所述动力电池的单位行驶里程的能耗和所述动力电池的当前剩余可用能量计算所述电动汽车的续驶里程。
- 如权利要求1所述的电动汽车的续驶里程计算方法,其特征在于,所述根据所述动力电池的OCV和所述OCV-Q参考曲线获取所述动力电池的当前剩余可用能量具体包括:根据所述动力电池的OCV和所述OCV-Q参考曲线计算所述动力电池的当前剩余可用容量Q remaining;根据所述动力电池的当前剩余可用容量Q remaining和所述动力电池的OCV计算所述当前剩余可用能量。
- 如权利要求1至3中任意一项所述的电动汽车的续驶里程计算方法,其特征在于,所述动力电池的OCV-Q参考曲线由电动汽车与云服务器实时交互获得。
- 如权利要求1至4中任意一项所述的电动汽车的续驶里程计算方法,其特征在于,通过以下公式计算所述动力电池的单位行驶里程的能耗:D K=αD std+βD 实+γD K-1,其中,D std为标准工况下的单位行驶里程的能耗,D 实为实际工况下的单位行驶里程的能耗,D K-1为上一时刻的单位行驶里程的能耗,α、β、γ均为预设系数。
- 如权利要求1至5中任意一项所述的电动汽车的续驶里程计算方法,其特征在于,还包括:根据D K判断是否满足以下公式:0.5D std<D K<1.5D std;如果满足,则根据D K计算所述电动汽车的续驶里程;如果不满足,则重新计算D K。
- 一种电动汽车的续驶里程计算装置,其特征在于,包括:第一计算模块,用于计算所述电动汽车的动力电池的单位行驶里程的能耗;第一获取模块,用于获取所述动力电池的开路电压OCV-电池容量Q参考曲线;第二获取模块,用于获取所述动力电池的OCV;第三获取模块,用于根据所述动力电池的OCV和OCV-Q参考曲线获取所述动力电池的当前剩余可用能量;第二计算模块,用于根据所述动力电池的单位行驶里程的能耗和所述动力电池的当前剩余可用能量计算所述电动汽车的续驶里程。
- 如权利要求8所述的电动汽车的续驶里程计算装置,其特征在于,所述第三获取模块,具体用于:根据所述动力电池的OCV和所述OCV-Q参考曲线计算所述动力电池的当前剩余可用容量Q remaining;根据所述动力电池的当前剩余可用容量Q remaining和所述动力电池的OCV计算所述当前剩余可用能量。
- 如权利要求8至10中任意一项所述的电动汽车的续驶里程计算装置,其特征在于,所述动力电池的OCV-Q参考曲线由电动汽车与云服务器实时交互获得。
- 如权利要求8至11中任意一项所述的电动汽车的续驶里程计算装置法,其特征在于,所述第一计算模块通过以下公式计算所述动力电池的单位行驶里程的能耗:D K=αD std+βD 实+γD K-1,其中,D std为标准工况下的单位行驶里程的能耗,D 实为实际工况下的单位行驶里程的能耗,D K-1为上一时刻的单位行驶里程的能耗,α、β、γ均为预设系数。
- 如权利要求8至12中任意一项所述的电动汽车的续驶里程计算装置,其特征在于,所述第一计算模块,还用于:根据D K判断是否满足以下公式:0.5D std<D K<1.5D std;如果满足,则根据D K计算所述电动汽车的续驶里程;如果不满足,则重新计算D K。
- 一种电动汽车,其特征在于,包括如权利要求8-14中任一项所述的电动汽车的续驶里程计算装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/042,780 US11904703B2 (en) | 2018-03-30 | 2019-03-25 | Electric vehicle and method and apparatus for calculating endurance mileage of electric vehicle |
EP19774736.3A EP3760469A4 (en) | 2018-03-30 | 2019-03-25 | ELECTRIC VEHICLE AND METHOD AND DEVICE FOR CALCULATING THE KILOMETER READING FOR IT |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810296299.8 | 2018-03-30 | ||
CN201810296299.8A CN110549904B (zh) | 2018-03-30 | 2018-03-30 | 电动汽车及电动汽车的续驶里程计算方法、装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019184846A1 true WO2019184846A1 (zh) | 2019-10-03 |
Family
ID=68059510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/079451 WO2019184846A1 (zh) | 2018-03-30 | 2019-03-25 | 电动汽车及电动汽车的续驶里程计算方法、装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11904703B2 (zh) |
EP (1) | EP3760469A4 (zh) |
CN (1) | CN110549904B (zh) |
WO (1) | WO2019184846A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110726566A (zh) * | 2019-10-23 | 2020-01-24 | 重庆长安汽车股份有限公司 | 电动车续航里程的估算方法 |
CN113459821A (zh) * | 2020-03-31 | 2021-10-01 | 北京新能源汽车股份有限公司 | 一种提升车辆行驶里程的方法、装置、车辆及设备 |
CN113895307A (zh) * | 2021-11-24 | 2022-01-07 | 中国第一汽车股份有限公司 | 一种剩余里程的确定方法、装置、电动汽车及介质 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111645566B (zh) * | 2020-01-08 | 2022-05-17 | 摩登汽车有限公司 | 电动车的续航里程计算方法、装置、整车控制器及电动车 |
CN111452619B (zh) * | 2020-01-22 | 2021-09-14 | 北京理工大学 | 电动车辆在线能耗预测方法及系统 |
CN111579997B (zh) * | 2020-04-30 | 2023-04-11 | 浙江零跑科技股份有限公司 | 一种电动汽车动力电池冻结能量估计方法 |
CN111775771B (zh) * | 2020-06-18 | 2023-03-31 | 合肥国轩高科动力能源有限公司 | 一种新能源电动汽车续航预警方法 |
CN113682161B (zh) * | 2021-09-29 | 2023-09-22 | 中汽创智科技有限公司 | 一种混动汽车的燃料电池控制方法、装置、设备及介质 |
CN113733985A (zh) * | 2021-09-30 | 2021-12-03 | 奇瑞新能源汽车股份有限公司 | 电动汽车的充电保护方法、装置及电动汽车 |
CN114179618A (zh) * | 2021-10-09 | 2022-03-15 | 恒大新能源汽车投资控股集团有限公司 | 车辆里程试验方法及装置、计算机可读存储介质 |
CN114013285B (zh) * | 2021-11-08 | 2023-11-21 | 北京理工新源信息科技有限公司 | 一种电动汽车实际续驶里程评估方法 |
CN114056187B (zh) * | 2021-12-13 | 2024-04-05 | 爱驰汽车有限公司 | 车辆续航里程计算方法、装置、设备及存储介质 |
CN114407680B (zh) * | 2021-12-31 | 2024-03-01 | 柳州柳工挖掘机有限公司 | 一种电动挖掘机剩余行驶里程的估算方法 |
CN114407663A (zh) * | 2022-02-24 | 2022-04-29 | 厦门金龙联合汽车工业有限公司 | 基于容耗的电动车剩余里程估算方法 |
CN114889492B (zh) * | 2022-05-09 | 2024-06-18 | 潍柴动力股份有限公司 | 一种电动汽车续航里程估算方法、装置、系统和存储介质 |
CN114932842B (zh) * | 2022-07-21 | 2022-11-29 | 深圳市今朝时代股份有限公司 | 基于数据分析的电动汽车电池管理系统及方法 |
CN115946572B (zh) * | 2022-11-21 | 2023-06-30 | 上海玫克生储能科技有限公司 | 电池模组的容量计算及补电控制方法、系统、设备和介质 |
CN116160859A (zh) * | 2023-02-24 | 2023-05-26 | 一汽奔腾轿车有限公司 | 一种电动汽车放电评估系统、方法、装置、上位机及介质 |
CN116559576B (zh) * | 2023-07-10 | 2023-09-15 | 中汽研新能源汽车检验中心(天津)有限公司 | 一种用于纯电汽车三电及热系统的能耗台架试验方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101142542A (zh) * | 2005-03-17 | 2008-03-12 | Lg化学株式会社 | 利用Ah计数和OCV滞后作用在电池中实现电量算法核实状态的参考值的方法 |
CN102358190A (zh) * | 2011-09-08 | 2012-02-22 | 重庆长安汽车股份有限公司 | 一种基于公里电耗的纯电动汽车剩余里程估算方法 |
CN105459842A (zh) * | 2015-11-19 | 2016-04-06 | 安徽师范大学 | 电动汽车续航里程的估算方法 |
WO2016198674A1 (en) * | 2015-06-12 | 2016-12-15 | Ecole Nationale De L'aviation Civile | Activity based resource management system |
CN107406004A (zh) * | 2015-01-13 | 2017-11-28 | 沃尔沃汽车公司 | 用于确定车辆中的电池的能量状态的值的方法及设备 |
CN107757527A (zh) * | 2017-09-19 | 2018-03-06 | 华晨汽车集团控股有限公司 | 一种汽车用数显蓄电池及控制方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011156776A2 (en) * | 2010-06-10 | 2011-12-15 | The Regents Of The University Of California | Smart electric vehicle (ev) charging and grid integration apparatus and methods |
JP5282789B2 (ja) | 2011-01-11 | 2013-09-04 | 株式会社デンソー | リチウムイオン二次電池の電池容量検出装置 |
JP6136950B2 (ja) | 2014-01-24 | 2017-05-31 | トヨタ自動車株式会社 | 走行可能距離算出システム |
US20170212203A1 (en) | 2016-01-22 | 2017-07-27 | Ovonic Battery Company, Inc. | Method of calibrating state-of-charge in a rechargeable battery |
CN105904981A (zh) * | 2016-04-07 | 2016-08-31 | 北京现代汽车有限公司 | 一种电动汽车续航里程估计控制方法、装置及整车控制器 |
CN106207288B (zh) * | 2016-09-23 | 2019-08-20 | 法法汽车(中国)有限公司 | 用于电芯均衡的方法 |
CN107192914B (zh) * | 2017-04-18 | 2019-11-22 | 宁德时代新能源科技股份有限公司 | 锂离子动力电池内短路检测方法 |
CN107696896A (zh) * | 2017-09-29 | 2018-02-16 | 江西江铃集团新能源汽车有限公司 | 电动汽车续驶里程估算方法 |
-
2018
- 2018-03-30 CN CN201810296299.8A patent/CN110549904B/zh active Active
-
2019
- 2019-03-25 WO PCT/CN2019/079451 patent/WO2019184846A1/zh unknown
- 2019-03-25 EP EP19774736.3A patent/EP3760469A4/en active Pending
- 2019-03-25 US US17/042,780 patent/US11904703B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101142542A (zh) * | 2005-03-17 | 2008-03-12 | Lg化学株式会社 | 利用Ah计数和OCV滞后作用在电池中实现电量算法核实状态的参考值的方法 |
CN102358190A (zh) * | 2011-09-08 | 2012-02-22 | 重庆长安汽车股份有限公司 | 一种基于公里电耗的纯电动汽车剩余里程估算方法 |
CN107406004A (zh) * | 2015-01-13 | 2017-11-28 | 沃尔沃汽车公司 | 用于确定车辆中的电池的能量状态的值的方法及设备 |
WO2016198674A1 (en) * | 2015-06-12 | 2016-12-15 | Ecole Nationale De L'aviation Civile | Activity based resource management system |
CN105459842A (zh) * | 2015-11-19 | 2016-04-06 | 安徽师范大学 | 电动汽车续航里程的估算方法 |
CN107757527A (zh) * | 2017-09-19 | 2018-03-06 | 华晨汽车集团控股有限公司 | 一种汽车用数显蓄电池及控制方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3760469A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110726566A (zh) * | 2019-10-23 | 2020-01-24 | 重庆长安汽车股份有限公司 | 电动车续航里程的估算方法 |
CN110726566B (zh) * | 2019-10-23 | 2021-04-06 | 重庆长安汽车股份有限公司 | 电动车续航里程的估算方法 |
CN113459821A (zh) * | 2020-03-31 | 2021-10-01 | 北京新能源汽车股份有限公司 | 一种提升车辆行驶里程的方法、装置、车辆及设备 |
CN113459821B (zh) * | 2020-03-31 | 2024-04-09 | 北京新能源汽车股份有限公司 | 一种提升车辆行驶里程的方法、装置、车辆及设备 |
CN113895307A (zh) * | 2021-11-24 | 2022-01-07 | 中国第一汽车股份有限公司 | 一种剩余里程的确定方法、装置、电动汽车及介质 |
Also Published As
Publication number | Publication date |
---|---|
US20210016664A1 (en) | 2021-01-21 |
EP3760469A4 (en) | 2021-04-28 |
CN110549904B (zh) | 2021-07-09 |
US11904703B2 (en) | 2024-02-20 |
EP3760469A1 (en) | 2021-01-06 |
CN110549904A (zh) | 2019-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019184846A1 (zh) | 电动汽车及电动汽车的续驶里程计算方法、装置 | |
EP3369604B1 (en) | Method and system for estimating remaining range of electric car, and electric car | |
US10415986B2 (en) | Route-based distance to empty calculation for a vehicle | |
US10703219B2 (en) | Vehicle battery charge setpoint control | |
CN103344919B (zh) | 一种校准锂离子动力电池soc的方法 | |
CN110549900B (zh) | 电动汽车及动力电池静置之后的参数更新方法、装置 | |
US8872518B2 (en) | Determining the state of-charge of batteries via selective sampling of extrapolated open circuit voltage | |
CN108819722A (zh) | 一种电动汽车续航里程预估方法 | |
CN111497679A (zh) | 一种纯电动汽车能耗监测优化方法及系统 | |
US20120290235A1 (en) | Systems and methods for determining the state of charge of a battery utilizing confidence values | |
US20140005855A1 (en) | Device and method for calculating a remaining mileage of an electric vehicle | |
CN110957544B (zh) | 锂离子电池的控制装置、锂离子电池的控制方法及存储介质 | |
US20170101026A1 (en) | Method for estimating the autonomy of an electric or hybrid vehicle | |
KR20160004077A (ko) | 배터리의 상태를 추정하는 방법 및 장치 | |
KR102057311B1 (ko) | 배터리의 충전-종료 시각을 추정하기 위한 시스템 및 방법 | |
KR20140100086A (ko) | 배터리 관리 시스템 및 그 구동방법 | |
US10830824B2 (en) | System and a method for determining state-of-charge of a battery | |
KR20150126208A (ko) | 배터리 관리 장치 | |
KR102676220B1 (ko) | 배터리 상태를 측정하는 방법 및 장치 | |
JP7038530B2 (ja) | デバイス状態検知装置、電源システムおよび自動車 | |
CN110077274B (zh) | 一种物流电动车可行驶距离的估算方法、装置及设备 | |
KR100836391B1 (ko) | 하이브리드 전기자동차용 배터리의 잔존용량 추정방법 | |
CN113665431A (zh) | 电动汽车的剩余续航里程估算方法及装置 | |
JP4190766B2 (ja) | 車両に搭載された蓄電池の残存容量推定方法と装置 | |
JP2009126278A (ja) | 車載二次電池の内部状態検出装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19774736 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019774736 Country of ref document: EP Effective date: 20200929 |