WO2019184488A1 - 城市轨道交通再生制动能量回收装置的配置方法及系统 - Google Patents

城市轨道交通再生制动能量回收装置的配置方法及系统 Download PDF

Info

Publication number
WO2019184488A1
WO2019184488A1 PCT/CN2018/124317 CN2018124317W WO2019184488A1 WO 2019184488 A1 WO2019184488 A1 WO 2019184488A1 CN 2018124317 W CN2018124317 W CN 2018124317W WO 2019184488 A1 WO2019184488 A1 WO 2019184488A1
Authority
WO
WIPO (PCT)
Prior art keywords
regenerative braking
recovery device
energy recovery
braking energy
capacity
Prior art date
Application number
PCT/CN2018/124317
Other languages
English (en)
French (fr)
Inventor
张亚伟
张国红
刘陆洲
王通
任晓辉
张艳东
王昆
段鹏飞
杨现仃
刘伟
杨阳
Original Assignee
中车青岛四方车辆研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车青岛四方车辆研究所有限公司 filed Critical 中车青岛四方车辆研究所有限公司
Priority to JP2020545480A priority Critical patent/JP6937930B2/ja
Priority to KR1020207018929A priority patent/KR102213266B1/ko
Priority to MYPI2020003672A priority patent/MY183939A/en
Priority to RU2020123004A priority patent/RU2742839C1/ru
Priority to EP18913037.0A priority patent/EP3705339A4/en
Publication of WO2019184488A1 publication Critical patent/WO2019184488A1/zh
Priority to IL276454A priority patent/IL276454A/en
Priority to US17/003,910 priority patent/US11065965B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/12Dynamic electric regenerative braking for vehicles propelled by dc motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/02Electric propulsion with power supply external to the vehicle using dc motors
    • B60L9/04Electric propulsion with power supply external to the vehicle using dc motors fed from dc supply lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • B60M3/06Arrangements for consuming regenerative power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/144Demand-response operation of the power transmission or distribution network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/30Railway vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • the present application belongs to the field of urban rail transit regenerative braking energy recovery, and particularly relates to a method and system for configuring an urban rail transit regenerative braking energy recovery device.
  • Metro power consumption accounts for a large part of the subway operating costs.
  • Urban rail transit vehicles generally adopt the braking mode of “regenerative braking + resistance braking + mechanical braking”.
  • the regenerative braking converts the kinetic energy of the train into electrical energy and feeds it back to the power supply network.
  • the energy of partial regenerative braking can be adjacent on the line.
  • the vehicle absorbs. If the regenerative energy cannot be absorbed by the vehicle, the regenerative energy will be absorbed by the resistor or switched to the air brake, and the braking energy will be wasted, and the tunnel temperature rise and dust pollution will also be caused.
  • the braking energy is generally recovered by deploying a regenerative braking energy recovery device in an urban rail transit system.
  • the mainstream regenerative energy recovery methods are divided into two categories: energy-feeding and energy storage.
  • the energy-feeding type regenerative energy recovery device uses the inverter to invert the excess regenerative braking energy in the DC power supply network into an alternating current, and feeds the alternating medium voltage network through the energy-feeding transformer for other loads under the same medium-voltage network to achieve The purpose of energy saving; energy storage type regenerative energy recovery method, connecting the energy storage medium to the DC bus of the substation through the switch device and the bidirectional DC/DC converter, absorbing regenerative braking energy during train braking and releasing when the train is pulling The use of supercapacitor as an energy storage medium is more mature.
  • the regenerative braking of the subway train brings great instability to the DC power supply system of the subway.
  • the traditional energy storage type and energy-feeding type regenerative energy recovery device replace the braking resistor, respectively, using different methods to absorb the regenerative braking caused by Supply and consume unbalanced power (energy) to maintain the stability of the DC power supply system.
  • the energy storage method stores the unbalanced energy and stays in the DC system, while the energy feeding method feeds this part of the energy back to the medium voltage ring network and supplies it to other loads through the ring network. Both of these methods have their advantages and disadvantages.
  • the energy feeding device has the advantages of large capacity and small footprint.
  • the energy between the DC power supply system and the AC medium voltage ring network after the energy feeding device is added realizes the two-way flow, which complicates the complexity of the system energy flow. Due to the fluctuation of the medium voltage ring network load, in practical applications, there is still the problem of returning power to the higher voltage class power system. At the same time, since the medium voltage ring network and the DC power supply network have multiple connections, the device can be operated. There is also a circulation problem.
  • the energy storage mode interface is not related to the AC power grid, and has the effect of suppressing the network voltage drop. However, since the energy absorption is restricted by the capacity of the energy storage medium, configuring the energy storage capacity enough will greatly increase the volume and cost of the equipment.
  • the economical efficiency of the equipment is reduced, and if the capacity configuration of the regenerative energy recovery device is too small, the regenerative energy cannot be effectively absorbed during the high-power braking of the train, resulting in an increase in braking resistor consumption, which is disadvantageous for long-term energy saving; if the regenerative energy is recovered If the capacity configuration of the device is too large, the equipment purchase cost is increased, and the device capacity is idle.
  • regenerative braking energy recovery devices mainly in Beijing, Chongqing, Zhengzhou, Changsha, Chengdu and other places, but most of the lines are installed in one or several traction stations.
  • the regenerative energy recovery device is installed for the purpose of simply recovering how much energy can be recovered, without scientifically and rationally calculating the configuration of the device.
  • the purpose of the present application is to provide a method and system for configuring an urban rail transit regenerative braking energy recovery device.
  • a method for configuring an urban rail transit regenerative braking energy recovery device comprising the following steps:
  • Step S1 Firstly, the train traction simulation calculation is performed, and the train power supply simulation calculation is further performed according to the train traction simulation calculation result, the regenerative braking power S n (t) of the traction substation n is obtained, and then the regeneration according to the traction substation n is obtained.
  • the braking power S n (t) calculates the preliminary configuration capacity P n of the regenerative braking energy recovery device preset by the traction substation n, where n ⁇ ⁇ 1, 2, 3, ..., N ⁇ , N is the total Number of traction substations;
  • Step S2 According to the preliminary configuration capacity P n of the regenerative braking energy recovery device, combined with the specifications of the existing regenerative braking energy recovery device and when the regenerative braking energy recovery device fails, the adjacent regenerative braking energy recovery device can Fully absorbing the regenerative braking energy to be absorbed by the failed regenerative braking energy recovery device, and performing capacity optimization on the regenerative braking energy recovery device to obtain the regeneration corresponding to the traction substation n Optimal configuration capacity of the braking energy recovery device Q n ;
  • Step S3 configuring the total number M of installations of the regenerative braking energy recovery device according to the optimal configuration capacity Q n of the regenerative braking energy recovery device;
  • Step S4 further regenerative braking energy of the traction substation n according to the optimal configuration capacity Q n size and the total number M of installations of the regenerative braking energy recovery device and the position of the regenerative braking energy recovery device
  • the type of recycling device is configured.
  • the step S1 comprises the following steps:
  • Step S11 Train Traction Simulation Calculation: Traction simulation algorithm of traction simulation calculation module can obtain traction energy consumption-speed curve and regenerative energy-speed through vehicle information parameters, dynamic performance parameters, resistance parameters, traction characteristics and electric braking characteristic parameters curve;
  • Step S12 Train power supply simulation calculation: the power supply simulation algorithm of the power supply simulation calculation module calculates the traction energy consumption-speed curve and the regenerative energy-speed curve calculated by the traction simulation calculation module, the power supply line impedance parameter, the traction position parameter and capacity, and The regenerative braking power S n (t) of the traction substation n can be obtained by the logarithm of the departure;
  • Step S13 preliminary configuration calculation of the capacity of the regenerative braking energy recovery device: the regenerative braking energy of the traction substation n by the obtained regenerative braking power S n (t) of the traction substation n
  • the capacity of the recovery unit is initially configured.
  • the step S13 comprises the following steps:
  • Step S131 The regenerative braking power S n (t) of the traction substation n obtained according to the train power supply simulation calculation can obtain the regenerative braking power s nx (t) corresponding to the different starting interval x, wherein X ⁇ 1,2,3,...,X ⁇ , X indicates the number of departure intervals, and the departure interval x is related to the subway operation plan;
  • Step S132 Determine, according to the regenerative braking power s nx (t) at different departure intervals x, the effective value set S Tnx of the regenerative braking power in the different continuous time T corresponding to the starting interval x of the traction substation n, where T Related to the maximum running speed of the train;
  • Step S133 Find the maximum regenerative braking power effective value P nx in the different continuous time T corresponding to the departure interval x according to the effective value set S Tnx ;
  • the step S2 comprises the following steps:
  • Step S21 calculating the actual configured capacity Z n according to the preliminary configuration capacity P n of the regenerative braking energy recovery device in combination with the specifications of the existing regenerative braking energy recovery device;
  • Step S22 judging whether, when the regenerative braking energy recovery device fails, whether the adjacent regenerative braking energy recovery device can completely absorb the regenerative braking energy to be absorbed by the failed regenerative braking energy recovery device, if Absorbing, the actual configured capacity of the adjacent regenerative braking energy recovery device is an optimized configuration capacity; if not fully absorbed, the adjacent regenerative braking energy recovery device increases the multiple of the regenerative braking energy recovery device The capacity unit value is used to optimize the configured capacity.
  • the step S22 comprises the following steps:
  • Step S221 Determine, according to step S13, the preliminary configuration capacity P n corresponding to the failed regenerative braking energy recovery device, the departure interval x, and the maximum regenerative braking power effective value in different continuous time T under the corresponding departure interval x P nx , at the same time, determining the maximum regenerative braking power RMS values P (n-1)x and P (n+1)x in different consecutive time T corresponding to the starting interval x of the adjacent regenerative braking energy recovery device;
  • Step S222 determining whether Z n-1 + Z n+1 ⁇ P (n-1) x + P nx + P (n+1) x is established, and if so, adjacent traction substation n-1 and traction The actual capacity configuration Z n-1 and Z n+1 of the substation n+1 remain unchanged, if not, proceed to step S223;
  • Step S223 determining the distances L n(n-1) and L n(n+1 of the traction substation n from the adjacent traction substation n-1 and the traction substation n+1, respectively. ) in size, if L n (n-1) ⁇ L n (n + 1), then the actual capacity traction substation n + 1 n + 1 is the Z configuration increase integer multiple regenerative braking energy recovery volume units then obtain the optimal allocation of capacity value Q n + 1, the optimal allocation of traction substation capacity Q n-1, n-1 is the actual capacity of the Z n-1 configuration; if L n (n-1) ⁇ L n(n+1) , the actual capacity configuration Z n-1 of the traction substation n-1 is increased by the capacity unit value of the regenerative braking energy recovery device of the integral multiple to obtain the optimal configuration capacity Q n-1 The optimized configuration capacity Q n+1 of the traction substation n+1 is the actual capacity configuration Z n+1 .
  • the step S22 comprises the following steps:
  • Step S221 Determine preliminary configuration capacities P n-1 and P n+1 of the regenerative braking energy recovery device adjacent to the failed regenerative braking energy recovery device according to step S13, and according to step S21 The method calculates the actual configured capacity Z n-1 and Z n+1 of the two ;
  • Step S222 determining whether Z n-1 + Z n+1 ⁇ P n-1 + P n + P n+1 is established, and if so, the adjacent traction substation n-1 and the traction substation n+1 The actual capacity configuration Z n-1 and Z n+1 remain unchanged, if not, proceed to step S223;
  • Step S223 determining distances L n(n-1) and L n(n+1 of the traction substation n from the adjacent traction substation n-1 and the traction substation n+1, respectively. ) in size, if L n (n-1) ⁇ L n (n + 1), then the actual capacity traction substation n + 1 n + 1 is the Z configuration increase integer multiple regenerative braking energy recovery volume units then obtain the optimal allocation of capacity value Q n + 1, the optimal allocation of traction substation capacity Q n-1, n-1 is the actual capacity of the Z n-1 configuration; if L n (n-1) ⁇ L n(n+1) , the actual capacity configuration Z n-1 of the traction substation n-1 is increased by the capacity unit value of the regenerative braking energy recovery device of the integral multiple to obtain the optimal configuration capacity Q n-1 The optimized configuration capacity Q n+1 of the traction substation n+1 is the actual capacity configuration Z n+1 .
  • the step S3 comprises the following steps:
  • Step S31 determining whether the optimized configuration capacity Q n of the regenerative braking energy recovery device corresponding to the traction substation n is less than twice the capacity unit value of the regenerative braking energy recovery device, and if so, the traction change The electric station n cancels the installation of the regenerative braking energy recovery device; if not, the traction substation n installs the regenerative braking energy recovery device according to the optimal configuration capacity Q n ;
  • Step S32 Determine the total number M of installations of the actual regenerative braking energy recovery device and the total configured capacity of the actual regenerative braking energy recovery device according to the determination result of step S31. Where Q n does not include an optimized configuration capacity of less than twice the capacity of the regenerative braking energy recovery device capacity unit.
  • the step S3 comprises the following steps:
  • Step S31 determining whether the optimal configuration capacity Q n of the regenerative braking energy recovery device corresponding to the traction substation n is smaller than the capacity unit value of the regenerative braking energy recovery device, and if so, the traction substation n De-installing the regenerative braking energy recovery device; if not, the traction substation n installs the regenerative braking energy recovery device according to an optimized configuration capacity Q n ;
  • Step S32 Determine the total number M of installations of the actual regenerative braking energy recovery device and the total configured capacity of the actual regenerative braking energy recovery device according to the determination result of step S31. Where Q n does not include an optimized configuration capacity that is less than the capacity of the regenerative braking energy recovery device.
  • the step S4 comprises the following steps:
  • Step S41 Find the average capacity of the regenerative braking energy recovery device according to the calculation result of step S32. /M;
  • Step S42 determining whether the traction substation n is adjacent to the main substation, and if so, the regenerative braking energy recovery device corresponding to the traction substation n is configured as an energy storage unit, and if not, Then executing step S43;
  • Step S43 determining the optimal allocation of capacity traction regenerative braking energy recovery device of substation n Q n is less than the average capacity of E, and if yes, the regenerative braking energy recovery device n traction substation configured to reservoir The energy unit; if not, the regenerative braking energy recovery device of the traction substation n is configured as a power feeding unit.
  • the vehicle information parameter includes a vehicle type, a grouping and a load, the power performance parameter including an acceleration and a deceleration of the vehicle, the resistance parameter including a starting resistance and a basic resistance, the traction characteristic parameter including a traction force,
  • the electric brake characteristic parameters include the electric braking force.
  • the adjacent regenerative braking energy recovery device doubles the capacity unit value.
  • a configuration system for an urban rail transit regenerative braking energy recovery device uses the above configuration method:
  • the configuration system includes a preliminary configuration unit, a capacity optimization configuration unit, a total installation unit, and a type configuration unit;
  • the preliminary configuration unit is configured to perform a train traction simulation calculation, further perform a train power supply simulation calculation according to the train traction simulation calculation result, and obtain a regenerative braking power S n (t) of the traction substation n, and then according to the traction substation
  • the regenerative braking power S n (t) of n calculates the preliminary configuration capacity P n of the regenerative braking energy recovery device preset by the traction substation n , where n ⁇ ⁇ 1, 2, 3, ..., N ⁇ , N
  • the capacity optimization configuration unit is configured to combine the specifications of the existing regenerative braking energy recovery device with the regenerative braking energy recovery device according to the preliminary configuration capacity P n of the regenerative braking energy recovery device In the case of failure, the adjacent regenerative braking energy recovery device can fully absorb the regenerative braking energy to be absorbed by the failed regenerative braking energy recovery device, and optimize the capacity of the regenerative braking energy recovery
  • the total installation unit is configured to configure the total number M of installations of the regenerative braking energy recovery device according to an optimized configuration capacity Q n of the regenerative braking energy recovery device;
  • the type configuration unit is configured to further describe the traction substation n according to an optimized configuration capacity Q n size and a total number M of installations of the regenerative braking energy recovery device and a position of the regenerative braking energy recovery device
  • the type of regenerative braking energy recovery device is configured.
  • the configuration method of the urban rail transit regenerative braking energy recovery device of the present application makes the regenerative braking energy of the train during the braking process by rationally configuring the capacity and quantity of the regenerative braking energy recovery device of the traction substation It can be fully absorbed, greatly reducing the energy consumption of the braking resistor, achieving better energy saving effect while avoiding the idle waste of the regenerative braking energy recovery device, reducing the purchase cost of the device, and recovering the energy through the regenerative braking.
  • a reasonable configuration of the type of device can avoid the deficiencies of a single regenerative braking energy recovery device.
  • the configuration method of the urban rail transit regenerative braking energy recovery device of the present application through the calculation and analysis of the traction of the train and the calculation and analysis of the power supply, combined with the train line conditions, the driving plan and other factors, the regenerative braking energy recovery device is reasonably arranged on the entire line. Taking full account of the capacity absorption of the adjacent regenerative braking energy recovery device, the influence of a set of device failure factors, further optimizing the capacity of the regenerative braking energy recovery device, and establishing a set of urban rail transit full-line regenerative energy recovery device The capacity configuration and optimization system achieves better regenerative braking energy recovery.
  • FIG. 1 is a flow chart showing the configuration of an urban rail transit regenerative braking energy recovery device according to an embodiment of the present application
  • FIG. 2 is a flow chart of preliminary configuration of capacity of an urban rail transit regenerative braking energy recovery device according to an embodiment of the present application
  • FIG. 3 is a flow chart of step S13 of Figure 2;
  • FIG. 4 is a flow chart of capacity optimization configuration of an urban rail transit regenerative braking energy recovery device according to an embodiment of the present application
  • FIG. 5 is a flow chart showing the number and type configuration of an urban rail transit regenerative braking energy recovery device according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of a configuration system of an urban rail transit regenerative braking energy recovery device according to an embodiment of the present application.
  • the present application provides a method for configuring an urban rail transit regenerative braking energy recovery device, and the method for configuring the urban rail transit regenerative braking energy recovery device includes the following steps:
  • Step S1 Firstly, the train traction simulation calculation is performed, and the train power supply simulation calculation is further performed according to the train traction simulation calculation result, the regenerative braking power S n (t) of the traction substation n is obtained, and then the regeneration according to the traction substation n is obtained.
  • the braking power S n (t) calculates the preliminary configuration capacity P n of the regenerative braking energy recovery device preset by the traction substation n, where n ⁇ ⁇ 1, 2, 3, ..., N ⁇ , N is the total Number of traction substations;
  • Step S2 According to the preliminary configuration capacity P n of the regenerative braking energy recovery device, combined with the specifications of the existing regenerative braking energy recovery device and when the regenerative braking energy recovery device fails, the adjacent regenerative braking energy recovery device can Fully absorbing the regenerative braking energy to be absorbed by the failed regenerative braking energy recovery device, and performing capacity optimization on the regenerative braking energy recovery device to obtain the regeneration corresponding to the traction substation n Optimal configuration capacity of the braking energy recovery device Q n ;
  • Step S3 configuring the total number M of installations of the regenerative braking energy recovery device according to the optimal configuration capacity Q n of the regenerative braking energy recovery device;
  • Step S4 further regenerative braking energy of the traction substation n according to the optimal configuration capacity Q n size and the total number M of installations of the regenerative braking energy recovery device and the position of the regenerative braking energy recovery device
  • the type of recycling device is configured.
  • a set of the regenerative braking energy recovery device is installed in each of the traction substations, and the method for configuring the urban rail transit regenerative braking energy recovery device of the present application is adopted by the traction substation.
  • the reasonable configuration of the capacity and quantity of the regenerative braking energy recovery device enables the regenerative braking energy of the train during the braking process to be fully absorbed, thereby greatly reducing the energy consumption of the braking resistor and achieving better
  • the energy saving effect avoids the idle waste of the regenerative braking energy recovery device and reduces the purchase cost of the device, and the single regenerative braking energy recovery device can be avoided by rationally configuring the type of the regenerative braking energy recovery device.
  • the step S1 includes the following steps:
  • Step S11 Train Traction Simulation Calculation:
  • the traction simulation algorithm of the traction simulation calculation module can obtain the traction energy consumption-speed curve and the regenerative braking through the vehicle information parameter, the dynamic performance parameter, the resistance parameter, the traction characteristic and the electric braking characteristic parameter.
  • the resistance parameter includes a starting resistance and a basic resistance; the traction characteristic parameter includes a traction force; and the electric braking characteristic parameter includes an electric braking force.
  • the above simulation output can be realized by using the existing urban rail transit traction calculation software or the developed special software, and the output of each curve can be realized, which will not be described in detail herein.
  • Step S12 Train power supply simulation calculation: the power supply simulation algorithm of the power supply simulation calculation module preferably calculates the obtained traction energy consumption-speed curve and the regenerative braking energy-speed curve combined with the power supply line impedance parameter by the traction simulation calculation module,
  • the regenerative braking power S n (t) of the traction substation n can be obtained by parameters such as the position parameter and the capacity of the traction and the number of departures;
  • the existing urban rail traction power supply simulation analysis software includes EMM of Carnegie-Mellon University, SINANET of ELBAS, OPEN TRACK & POWER NET, RAILPOWER of Balfour Beatty, and URTPS of urban rail transit traction power supply.
  • Step S13 preliminary configuration calculation of the capacity of the regenerative braking energy recovery device: the regenerative system of the traction substation n by the obtained regenerative braking power S n (t) of the traction substation n
  • the capacity of the dynamic energy recovery device is initially configured.
  • the step S13 includes the following steps:
  • Step S131 The regenerative braking power S n (t) of each of the traction substations obtained according to the train power supply simulation calculation can obtain the regenerative braking power s nx (t) corresponding to the different departure intervals x, wherein X ⁇ 1,2,3,...,X ⁇ , X represents the number of departure intervals x, and the departure interval x is related to the subway operation plan;
  • starting interval refers to the departure time interval of the last train and the next train, in seconds or minutes.
  • x in the "starting interval x" takes a different value, that is, “departure interval 1", “departure interval 2", ... “departure interval X” refers to a different departure interval, and can also be understood as "the first type of departure” Interval", “second type of departure interval”, ... "Xth type of departure interval”, different departure intervals x have different departure intervals.
  • Step S132 Calculate, according to the regenerative braking power s nx (t) at different departure intervals x, the effective value set S Tnx of the regenerative braking power in the different continuous time T corresponding to the traction substation n.
  • T is related to the maximum running speed of the train;
  • the effective value of the traction substation n for regenerative braking power in the continuous time T is:
  • the continuous time T is related to the maximum running speed of the train, and is generally 15 to 35 s. Therefore, the effective value set S Tnx of the regenerative braking power in the different continuous time T corresponding to the starting interval x of the traction substation n is formed.
  • the continuous time T can be understood as the feedback time of the regenerative braking energy. The higher the maximum running speed of the train, the longer the brake braking time is required under the same braking force, so the feedback time of the regenerative braking energy is longer.
  • the continuous time T is positively correlated with the train brake stop time and is related to the maximum running speed of the train.
  • Step S133 Determine, according to the set of effective values S Tnx , a maximum regenerative braking power effective value P nx in a different continuous time T corresponding to the departure interval x;
  • the difference of the departure interval x directly affects the distribution of the regenerative braking energy on the entire line; considering the regenerative system in the continuous time T
  • the dynamic power RMS value s nx , T is selected according to the actual train maximum speed, which directly affects the regenerative braking energy of the bicycle braking process. Consideration of the departure interval x and the continuous time T assures the practical feasibility and scientific nature of the capacity configuration of the regenerative energy recovery device.
  • the step S2 includes the following steps:
  • Step S21 calculating the actual configured capacity Z n according to the preliminary configuration capacity P n of the regenerative braking energy recovery device in combination with the specifications of the existing regenerative braking energy recovery device;
  • the capacity of the existing regenerative braking energy recovery device is generally 500 kW, and the capacity of a single set of the regenerative braking energy recovery device is generally 0.5 MW / 1 MW / 1.5 MW / 2 MW / 2.5.
  • the capacity conversion principle follows the principle of rounding. For example, if the initial configuration capacity is 2.665MW, it will be converted to 2.5MW. If the initial configuration capacity is 2.825MW, it will be converted to 3MW.
  • Step S22 judging whether, when the regenerative braking energy recovery device fails, whether the adjacent regenerative braking energy recovery device can completely absorb the regenerative braking energy to be absorbed by the failed regenerative braking energy recovery device, if Absorbing, the actual configured capacity of the adjacent regenerative braking energy recovery device is an optimized configuration capacity; if not fully absorbed, the regenerative braking energy recovery device adjacent to the regenerative braking energy recovery device increases the multiple of the regenerative braking energy recovery device The capacity unit value is used to determine the optimal configuration capacity of the adjacent regenerative braking energy recovery device.
  • the optimized configuration capacity of the adjacent regenerative braking energy recovery device can fully absorb the regenerative braking energy to be absorbed by the failed regenerative braking energy recovery device.
  • step S22 includes the following steps:
  • Step S221 Determine, according to step S13, the preliminary configuration capacity P n corresponding to the failed regenerative braking energy recovery device, the departure interval x, and the maximum regenerative braking power effective value in different continuous time T under the corresponding departure interval x P nx , at the same time, determining the maximum regenerative braking power RMS values P (n-1)x and P (n+1)x in different consecutive time T corresponding to the starting interval x of the adjacent regenerative braking energy recovery device;
  • Step S222 determining whether Z n-1 + Z n+1 ⁇ P (n-1) x + P nx + P (n+1) x is established, and if so, adjacent traction substation n-1 and traction The actual capacity configuration Z n-1 and Z n+1 of the substation n+1 remain unchanged, if not, proceed to step S223;
  • Step S223 determining distances L n(n-1) and L n(n+1 of the traction substation n from the adjacent traction substation n-1 and the traction substation n+1, respectively. ) in size, if L n (n-1) ⁇ L n (n + 1), then the actual capacity traction substation n + 1 n + 1 is the Z configuration increase integer multiple regenerative braking energy recovery volume units then obtain the optimal allocation of capacity value Q n + 1, the optimal allocation of traction substation capacity Q n-1, n-1 is the actual capacity of the Z n-1 configuration; if L n (n-1) ⁇ L n(n+1) , the actual capacity configuration Z n-1 of the traction substation n-1 is increased by the capacity unit value of the regenerative braking energy recovery device of the integral multiple to obtain the optimal configuration capacity Q n-1 The optimized configuration capacity Q n+1 of the traction substation n+1 is the actual capacity configuration Z n+1 .
  • the adjacent regenerative braking energy recovery device is increased by 0.5 MW, and the folding capacity is finely adjusted. If it is too large, the idleness of the device capacity is wasted.
  • step S22 In order to explain step S22 more clearly, the following steps S221-S223 are replaced by the following manners, specifically:
  • Step S221 Determine preliminary configuration capacities P n-1 and P n+1 of the regenerative braking energy recovery device adjacent to the failed regenerative braking energy recovery device according to step S13, and according to step S21 The method calculates the actual configured capacity Z n-1 and Z n+1 of the two ;
  • Step S222 determining whether Z n-1 + Z n+1 ⁇ P n-1 + P n + P n+1 is established, and if so, the adjacent traction substation n-1 and the traction substation n+1 The actual capacity configuration Z n-1 and Z n+1 remain unchanged, if not, proceed to step S223;
  • Step S223 determining distances L n(n-1) and L n(n+1 of the traction substation n from the adjacent traction substation n-1 and the traction substation n+1, respectively. ) in size, if L n (n-1) ⁇ L n (n + 1), then the actual capacity traction substation n + 1 n + 1 is the Z configuration increase integer multiple regenerative braking energy recovery volume units then obtain the optimal allocation of capacity value Q n + 1, the optimal allocation of traction substation capacity Q n-1, n-1 is the actual capacity of the Z n-1 configuration; if L n (n-1) ⁇ L n(n+1) , the actual capacity configuration Z n-1 of the traction substation n-1 is increased by the capacity unit value of the regenerative braking energy recovery device of the integral multiple to obtain the optimal configuration capacity Q n-1 The optimized configuration capacity Q n+1 of the traction substation n+1 is the actual capacity configuration Z n+1 .
  • the traction substation n takes values from 1 to N, and the optimal arrangement capacities Q 1 to Q N of the regenerative braking energy recovery devices of the respective traction substations can be calculated.
  • the adjacent regenerative braking energy recovery device is increased by 0.5 MW, and the folding capacity is finely adjusted. If it is too large, the idleness of the device capacity is wasted.
  • the sudden failure condition of the actual operation of the regenerative braking energy recovery device is considered, and the power of the failed regenerative braking energy recovery device is shared by the adjacent regenerative braking energy recovery device.
  • the capability is calculated, and the capacity of the adjacent regenerative braking energy recovery device with insufficient sharing capacity is appropriately increased, and the regenerative braking energy recovery device device in the adjacent regenerative braking energy recovery device is selected to be the closest regenerative system.
  • the dynamic energy recovery device increases the capacity and ensures the maximum capacity sharing of the power of the failed device.
  • the increased capacity selection of 0.5MW fully considers the actual engineering experience and cost, and achieves better regenerative braking energy recovery.
  • the step S3 includes the following steps:
  • Step S31 determining whether the optimized configuration capacity Q n of the regenerative braking energy recovery device corresponding to the traction substation n is less than twice the capacity unit value of the regenerative braking energy recovery device (ie, preferably 1 MW), If yes, the traction substation n cancels the installation of the regenerative braking energy recovery device; if not, the traction substation n installs the regenerative braking energy recovery device according to the optimally configured capacity Q n ;
  • the above step S31 can be adjusted as needed. For example, to further improve the recovered regenerative braking energy, it is determined whether the optimized configuration capacity Q n of the regenerative braking energy recovery device corresponding to the traction substation n is smaller than the regenerative system.
  • the capacity unit value of the dynamic energy recovery device ie, 0.5 MW
  • the traction substation n cancels the installation of the regenerative braking energy recovery device; if not, the traction substation n is installed and regenerated according to the optimally configured capacity Q n Brake energy recovery device;
  • Step S32 Determine the actual total number M of installations of the regenerative braking energy recovery device and the actual total configuration capacity of the regenerative braking energy recovery device according to the determination result of step S31.
  • Q n does not include an optimized configuration capacity of less than twice the regenerative braking energy recovery device capacity unit value or the double regenerative braking energy recovery device capacity unit value according to step S31.
  • step S4 includes the following steps:
  • Step S41 Find the average capacity of the regenerative braking energy recovery device according to the calculation result of step S32. /M;
  • Step S42 determining whether the traction substation n is adjacent to the main substation, and if so, the regenerative braking energy recovery device corresponding to the traction substation n is configured as an energy storage unit, and if not, Then executing step S43;
  • Step S43 the determination of the traction substation capacity n regenerative braking energy recovery Optimization of n is less than the average capacity Q E, and if yes, the traction substation regenerative braking energy recovery n
  • the device is configured as an energy storage unit; if not, the regenerative braking energy recovery device of the traction substation n is configured as a feedable unit.
  • the deficiencies of the single regenerative braking energy recovery device can be avoided by rationally configuring the type of regenerative braking energy recovery device.
  • an embodiment of the present application further provides a configuration system for an urban rail transit regenerative braking energy recovery device, where the configuration system uses the above configuration method:
  • the configuration system includes a preliminary configuration unit, a capacity optimization configuration unit, a total installation configuration unit, and a type configuration unit.
  • the preliminary configuration unit includes a traction simulation calculation module for performing traction simulation calculation and a train power supply for performing train power supply simulation calculation. Simulation calculation module;
  • the preliminary configuration unit is configured to perform a train traction simulation calculation, further perform a train power supply simulation calculation according to the train traction simulation calculation result, and obtain a regenerative braking power S n (t) of the traction substation n, and then according to the traction substation
  • the regenerative braking power S n (t) of n calculates the preliminary configuration capacity P n of the regenerative braking energy recovery device preset by the traction substation n , where n ⁇ ⁇ 1, 2, 3, ..., N ⁇ , N
  • the capacity optimization configuration unit is configured to combine the specifications of the existing regenerative braking energy recovery device with the regenerative braking energy recovery device according to the preliminary configuration capacity P n of the regenerative braking energy recovery device In the case of failure, the adjacent regenerative braking energy recovery device can fully absorb the regenerative braking energy to be absorbed by the failed regenerative braking energy recovery device, and optimize the capacity of the regenerative braking energy recovery
  • the total installation unit is configured to configure the total number M of installations of the regenerative braking energy recovery device according to an optimized configuration capacity Q n of the regenerative braking energy recovery device;
  • the type configuration unit is configured to further describe the traction substation n according to an optimized configuration capacity Q n size and a total number M of installations of the regenerative braking energy recovery device and a position of the regenerative braking energy recovery device
  • the type of regenerative braking energy recovery device is configured.

Abstract

一种城市轨道交通再生制动能量回收装置的配置方法及系统,依次包括以下步骤:首先计算出牵引变电所n预设的再生制动能量回收装置的初步配置容量P n,其次求得再生制动能量回收装置的优化配置容量Q n;进而对再生制动能量回收装置的安装总数M进行配置;最后对再生制动能量回收装置的类型进行配置。

Description

城市轨道交通再生制动能量回收装置的配置方法及系统 技术领域
本申请属于城市轨道交通再生制动能量回收领域,尤其涉及一种城市轨道交通再生制动能量回收装置的配置方法及系统。
背景技术
地铁运营成本中地铁电能消耗占很大部分。城市轨道交通车辆普遍采用“再生制动+电阻制动+机械制动”的制动方式,再生制动将列车动能转换成电能反馈至供电网,部分再生制动的能量可以被线路上相邻车辆吸收。如再生能量不能被临车吸收,再生能量将被电阻吸收或切换为空气制动,制动能量将被白白浪费,同时还会带来隧道温升和粉尘污染等问题。为了提高列车再生制动利用率,减少运营电能消耗,降低运营成本,同时减少大气污染,一般采用在城市轨道交通系统中配置再生制动能量回收装置的方式回收利用制动能量。目前主流的再生能量回收方式分为能馈型和储能型两大类。
能馈型再生能量回收装置利用逆变器将直流供电网中多余的再生制动能量逆变成交流电,并通过能馈变压器反馈交流中压网络,供同一中压电网下其他负载应用,达到节能的目的;储能型再生能量回收方式,将储能介质通过开关设备和双向DC/DC变换器与变电所直流母线相连,在列车制动时吸收再生制动能量并在列车牵引时放出,其采用超级电容作为储能介质的吸收方式应用较为成熟。
地铁列车再生制动给地铁直流供电系统带来了极大的不稳定性,传统储能型和能馈型再生能量回收装置替代制动电阻,分别利用不同的方法,吸收由再生制动引起的供给与消耗不平衡功率(能量),维持直流供电系统稳定。储能方式将不平衡能量存储起来留在了直流系统中,而能馈方式则将这部分能量反馈回中压环网,通过环网提供给其他负荷。这两种方式均有其优势,也存在着不足。能馈装置有容量大、占地空间小等优点。加入能馈装置后直流供电系统与交流中压环网之间的能量实现双向流动,加剧了系统能量流动的复杂性。由于中压环网负荷仍存在波动,在实际应用中,仍存在着向更高电压等级电力系统返送电的问题,同时由于中压环网与直流供电网存在多处连通,能馈装置工作时还存在环流问题。而储能方式接口简单不与交流电网发生关系,并有抑制网压跌落的效果,但由于能量吸收受到储能介质容量的制约,配置足够多的储能容量会大幅度提高设备体积与成本,降低设备的经济性,且,如果再生能量回收装置的容量配置过小,则在列车大功率制动时不能有效的吸收再生能量,造成制动电阻消耗增多,不利于长期节能;如果再生能量回收装置的容量配置过大,则增加了设备购置成本,造成装置容量闲置浪费。
目前,全国有超过20条地铁线路安装了再生制动能量回收装置,主要集中在北京、重庆、郑州、长沙、成都等地,但大部分线路都是在某一个或某几个牵引所内安装了再生能量回收装置,安装的目的只是单纯的能回收多少能量就回收多少,未对装置的配置进行科学合理的计算。目前针对整条地铁线路的再生制动能量回收装置的计算配置尚没有科学系统的计算方法。
鉴于此,有必要提供一种能够合理配置城市轨道交通再生制动能量回收装置的城市轨道交通再生制动能量回收装置的配置系统及方法。
发明内容
针对现有技术存在的不足,本申请的目的在于提供一种城市轨道交通再生制动能量回收装置的配置方法及系统。
为了达到上述目的,本申请采用的技术方案为:
一种城市轨道交通再生制动能量回收装置的配置方法,所述城市轨道交通再生制动能量回收装置的配置方法依次包括以下步骤:
步骤S1:首先进行列车牵引仿真计算,根据列车牵引仿真计算结果进一步进行列车供电仿真计算,求出牵引变电所n的再生制动功率S n(t),然后根据牵引变电所n的再生制动功率S n(t)计算出牵引变电所n预设的再生制动能量回收装置的初步配置容量P n,其中n∈{1,2,3,…,N},N为总的牵引变电所个数;
步骤S2:依据再生制动能量回收装置的初步配置容量P n,结合现有再生制动能量回收装置的规格及当再生制动能量回收装置在失效情况下,相邻再生制动能量回收装置能够充分吸收该失效的所述再生制动能量回收装置所要吸收的再生制动能量,对所述再生制动能量回收装置进行容量优化配置,求得所述牵引变电所n所对应的所述再生制动能量回收装置的优化配置容量Q n
步骤S3:依据再生制动能量回收装置的优化配置容量Q n大小对所述再生制动能量回收装置的安装总数M进行配置;
步骤S4:依据优化配置容量Q n大小和所述再生制动能量回收装置的安装总数M及所述再生制动能量回收装置的位置进一步对所述牵引变电所n的所述再生制动能量回收装置的类型进行配置。
作为优选,所述步骤S1包括以下步骤:
步骤S11:列车牵引仿真计算:牵引仿真计算模块的牵引仿真算法通过车辆信息参数、动力性能参数、阻力参数、牵引特性及电制动特性参数可求得牵引能耗-速度曲线及再生能量 -速度曲线;
步骤S12:列车供电仿真计算:供电仿真计算模块的供电仿真算法通过牵引仿真计算模块计算求得的牵引能耗-速度曲线及再生能量-速度曲线结合供电线路阻抗参数、牵引所位置参数和容量及发车对数可求得所述牵引变电所n的再生制动功率S n(t);
步骤S13:再生制动能量回收装置容量初步配置计算:通过求得的所述牵引变电所n的再生制动功率S n(t)对所述牵引变电所n的所述再生制动能量回收装置的容量进行初步配置。
作为优选,所述步骤S13包括以下步骤:
步骤S131:根据列车供电仿真计算求得的所述牵引变电所n的再生制动功率S n(t)可得不同发车间隔x下所对应的再生制动功率s nx(t),其中,x∈{1,2,3,…,X},X表示发车间隔个数,发车间隔x与地铁运行计划有关;
步骤S132:根据不同发车间隔x下的再生制动功率s nx(t)求所述牵引变电所n对应发车间隔x下不同连续时间T内再生制动功率的有效值集合S Tnx,其中T与列车最高运行速度有关;
步骤S133:根据有效值集合S Tnx求得对应发车间隔x下不同连续时间T内的最大再生制动功率有效值P nx
步骤S134:求所述牵引变电所n对应的所述再生制动能量回收装置的初步配置容量P n,其中,P n=Max{P n1,P n2,...,P nx,...,P nX}。
作为优选,所述步骤S2包括以下步骤:
步骤S21:根据所述再生制动能量回收装置的初步配置容量P n结合现有再生制动能量回收装置的规格折算出实际配置容量Z n
步骤S22:判断当再生制动能量回收装置在失效情况下,相邻再生制动能量回收装置是否能够完全吸收该失效的所述再生制动能量回收装置所要吸收的再生制动能量,若能够完全吸收,则相邻所述再生制动能量回收装置的实际配置容量即为优化配置容量;若不能完全吸收,则相邻所述再生制动能量回收装置增加整倍数的再生制动能量回收装置的容量单元值求得优化配置容量。
作为优选,所述步骤S22包括以下步骤:
步骤S221:根据步骤S13求出该失效的所述再生制动能量回收装置所对应的初步配置容量P n、发车间隔x及对应发车间隔x下不同连续时间T内的最大再生制动功率有效值P nx,同时求出相邻所述再生制动能量回收装置对应发车间隔x下不同连续时间T内的最大再生制动功率有效值P (n-1)x和P (n+1)x
步骤S222:判断Z n-1+Z n+1≥P (n-1)x+P nx+P (n+1)x是否成立,若成立,则相邻牵引变电所n-1及牵引变电所n+1的实际容量配置Z n-1和Z n+1保持不变,若不成立,则执行步骤S223;
步骤S223:判断所述牵引变电所n分别与相邻所述牵引变电所n-1及所述牵引变电所n+1的距离L n(n-1)和L n(n+1)的大小,若L n(n-1)≥L n(n+1),则所述牵引变电所n+1的实际容量配置Z n+1增加整倍数的再生制动能量回收装置的容量单元值进而求得优化配置容量Q n+1,所述牵引变电所n-1的优化配置容量Q n-1即为实际容量配置Z n-1;若L n(n-1)≤L n(n+1),则所述牵引变电所n-1的实际容量配置Z n-1增加整倍数的再生制动能量回收装置的容量单元值进而求得优化配置容量Q n-1,所述牵引变电所n+1的优化配置容量Q n+1即为实际容量配置Z n+1
作为优选,所述步骤S22包括以下步骤:
步骤S221:根据步骤S13求出与该失效的所述再生制动能量回收装置相邻的所述再生制动能量回收装置的初步配置容量P n-1和P n+1,并且根据步骤S21的方法折算出两者的实际配置容量Z n-1和Z n+1
步骤S222:判断Z n-1+Z n+1≥P n-1+P n+P n+1是否成立,若成立,则相邻牵引变电所n-1及牵引变电所n+1的实际容量配置Z n-1和Z n+1保持不变,若不成立,则执行步骤S223;
步骤S223:判断所述牵引变电所n分别与所述相邻牵引变电所n-1及所述牵引变电所n+1的距离L n(n-1)和L n(n+1)的大小,若L n(n-1)≥L n(n+1),则所述牵引变电所n+1的实际容量配置Z n+1增加整倍数的再生制动能量回收装置的容量单元值进而求得优化配置容量Q n+1,所述牵引变电所n-1的优化配置容量Q n-1即为实际容量配置Z n-1;若L n(n-1)≤L n(n+1),则所述牵引变电所n-1的实际容量配置Z n-1增加整倍数的再生制动能量回收装置的容量单元值进而求得优化配置容量Q n-1,所述牵引变电所n+1的优化配置容量Q n+1即为实际容量配置Z n+1
作为优选,所述步骤S3包括以下步骤:
步骤S31:判断所述牵引变电所n所对应的所述再生制动能量回收装置的优化配置容量Q n是否小于两倍的再生制动能量回收装置的容量单元值,若是,则该牵引变电所n取消安装所述再生制动能量回收装置;若否,则该牵引变电所n按照优化配置容量Q n安装所述再生制动能量回收装置;
步骤S32:根据步骤S31的判断结果求出实际的再生制动能量回收装置的安装总数M和实际的再生制动能量回收装置总配置容量
Figure PCTCN2018124317-appb-000001
其中Q n不包括小于两倍的再生制动能量回收装置容量单元值的优化配置容量。
作为优选,所述步骤S3包括以下步骤:
步骤S31:判断所述牵引变电所n所对应的所述再生制动能量回收装置的优化配置容量Q n是否小于再生制动能量回收装置的容量单元值,若是,则该牵引变电所n取消安装所述再生制动能量回收装置;若否,则该牵引变电所n按照优化配置容量Q n安装所述再生制动能量 回收装置;
步骤S32:根据步骤S31的判断结果求出实际的再生制动能量回收装置的安装总数M和实际的再生制动能量回收装置总配置容量
Figure PCTCN2018124317-appb-000002
其中Q n不包括小于再生制动能量回收装置容量单元值的优化配置容量。
作为优选,所述步骤S4包括以下步骤:
步骤S41:根据步骤S32的计算结果求出所述再生制动能量回收装置的平均容量
Figure PCTCN2018124317-appb-000003
/M;
步骤S42:判断所述牵引变电所n是否与主变电所相邻,若是,则所述牵引变电所n所对应的所述再生制动能量回收装置配置为储能单元,若否,则执行步骤S43;
步骤S43:判断所述牵引变电所n的再生制动能量回收装置的优化配置容量Q n是否小于平均容量E,若是,则所述牵引变电所n的再生制动能量回收装置配置为储能单元;若否,则所述牵引变电所n的再生制动能量回收装置配置为能馈单元。
作为优选,所述车辆信息参数包括车辆型式、编组及载荷,所述动力性能参数包括车辆的加速度和减速度,所述阻力参数包括启动阻力和基本阻力,所述牵引特性参数包括牵引力,所述电制动特性参数包括电制动力。
作为优选,所述步骤22中相邻再生制动能量回收装置增加一倍的容量单元值。
一种城市轨道交通再生制动能量回收装置的配置系统,所述配置系统使用上述的配置方法:
该配置系统包括初步配置单元、容量优化配置单元、安装总数配置单元以及类型配置单元;
所述初步配置单元用以进行列车牵引仿真计算,根据列车牵引仿真计算结果进一步进行列车供电仿真计算,求出牵引变电所n的再生制动功率S n(t),然后根据牵引变电所n的再生制动功率S n(t)计算出牵引变电所n预设的再生制动能量回收装置的初步配置容量P n,其中n∈{1,2,3,…,N},N为总的牵引变电所个数;所述容量优化配置单元用以依据再生制动能量回收装置的初步配置容量P n结合现有再生制动能量回收装置的规格及当再生制动能量回收装置在失效情况下,相邻再生制动能量回收装置能够充分吸收该失效的所述再生制动能量回收装置所要吸收的再生制动能量对所述再生制动能量回收装置进行容量优化配置,求得所述牵引变电所n所对应的所述再生制动能量回收装置的优化配置容量Q n
所述安装总数配置单元用以依据再生制动能量回收装置的优化配置容量Q n大小对所述 再生制动能量回收装置的安装总数M进行配置;
所述类型配置单元用以依据优化配置容量Q n大小和所述再生制动能量回收装置的安装总数M及所述再生制动能量回收装置的位置进一步对所述牵引变电所n的所述再生制动能量回收装置的类型进行配置。
与现有技术相比,本申请的优点和积极效果在于:
1、本申请的城市轨道交通再生制动能量回收装置的配置方法通过对牵引变电所的再生制动能量回收装置的容量及数量的合理配置,使得列车在制动过程中的再生制动能量可以被充分吸收,极大的减少了制动电阻的能量消耗,实现了较好的节能效果同时避免了再生制动能量回收装置的闲置浪费减少了设备的购置成本,通过对再生制动能量回收装置类型的合理配置可以避免单一再生制动能量回收装置的不足。
2、本申请的城市轨道交通再生制动能量回收装置的配置方法通过对列车的牵引计算分析和供电计算分析,结合列车线路条件、行车计划等因素在全线路上合理配置再生制动能量回收装置,并充分考虑了相邻再生制动能量回收装置的容量吸收情况,某套装置失效因素的影响,对再生制动能量回收装置的容量进行进一步优化配置,建立一套城市轨道交通全线再生能量回收装置的容量配置及优化体系,实现更优的再生制动能量回收效果。
附图说明
图1为本申请实施例城市轨道交通再生制动能量回收装置的配置流程图;
图2为本申请实施例所述城市轨道交通再生制动能量回收装置容量初步配置流程图;
图3为图2中步骤S13的流程图;
图4为本申请实施例所述城市轨道交通再生制动能量回收装置容量优化配置流程图;
图5为本申请实施例所述城市轨道交通再生制动能量回收装置数量及类型配置流程图;
图6为本申请实施例所述城市轨道交通再生制动能量回收装置的配置系统示意图。
具体实施方式
下面,通过示例性的实施方式对本申请进行具体描述。然而应当理解,在没有进一步叙述的情况下,一个实施方式中的元件、结构和特征也可以有益地结合到其他实施方式中。
如图1所示,本申请提出一种城市轨道交通再生制动能量回收装置的配置方法,所述城市轨道交通再生制动能量回收装置的配置方法依次包括以下步骤:
步骤S1:首先进行列车牵引仿真计算,根据列车牵引仿真计算结果进一步进行列车供电 仿真计算,求出牵引变电所n的再生制动功率S n(t),然后根据牵引变电所n的再生制动功率S n(t)计算出牵引变电所n预设的再生制动能量回收装置的初步配置容量P n,其中n∈{1,2,3,…,N},N为总的牵引变电所个数;
步骤S2:依据再生制动能量回收装置的初步配置容量P n,结合现有再生制动能量回收装置的规格及当再生制动能量回收装置在失效情况下,相邻再生制动能量回收装置能够充分吸收该失效的所述再生制动能量回收装置所要吸收的再生制动能量,对所述再生制动能量回收装置进行容量优化配置,求得所述牵引变电所n所对应的所述再生制动能量回收装置的优化配置容量Q n
步骤S3:依据再生制动能量回收装置的优化配置容量Q n大小对所述再生制动能量回收装置的安装总数M进行配置;
步骤S4:依据优化配置容量Q n大小和所述再生制动能量回收装置的安装总数M及所述再生制动能量回收装置的位置进一步对所述牵引变电所n的所述再生制动能量回收装置的类型进行配置。
其中,优选地,每个所述牵引变电所内安装一套所述再生制动能量回收装置,本申请的所述城市轨道交通再生制动能量回收装置的配置方法通过对所述牵引变电所的所述再生制动能量回收装置的容量及数量的合理配置,使得列车在制动过程中的再生制动能量可以被充分吸收,极大的减少了制动电阻的能量消耗,实现了较好的节能效果同时避免了所述再生制动能量回收装置的闲置浪费减少了设备的购置成本,通过对所述再生制动能量回收装置的类型的合理配置可以避免单一所述再生制动能量回收装置存在的不足。
如图2所示,所述步骤S1包括以下步骤:
步骤S11:列车牵引仿真计算:牵引仿真计算模块的牵引仿真算法通过车辆信息参数、动力性能参数、阻力参数、牵引特性及电制动特性参数可求得包括牵引能耗-速度曲线、再生制动能量-速度曲线、速度-运行时间曲线及再生制动能量-速度曲线等特性曲线;其中所述车辆信息参数包括车辆型式、编组及载荷;所述动力性能参数包括车辆的加速度和减速度;所述阻力参数包括启动阻力和基本阻力;所述牵引特性参数包括牵引力;所述电制动特性参数包括电制动力。
以上借助现有的城市轨道交通牵引计算软件或开发的专用软件进行牵引仿真计算,可以实现上述各曲线的输出,此处不作详述。
步骤S12:列车供电仿真计算:供电仿真计算模块的供电仿真算法优选通过牵引仿真计算模块计算求得的所述牵引能耗-速度曲线及所述再生制动能量-速度曲线结合供电线路阻抗参数、牵引所位置参数和容量及发车对数等参数可求得所述牵引变电所n的再生制动功率 S n(t);
以上可借助现有的城市轨道交通供电计算软件或联合开发的专用软件进行供电仿真计算,此处不作详述。
现有的城市轨道牵引供电仿真分析软件有Carnegie-Mellon大学的EMM,ELBAS公司的SINANET,OPEN TRACK&POWER NET,Balfour Beatty公司的RAILPOWER,城市轨道交通牵引供电仿真软件URTPS等。
步骤S13:再生制动能量回收装置容量初步配置计算:通过求得的所述牵引变电所n的所述再生制动功率S n(t)对所述牵引变电所n的所述再生制动能量回收装置的容量进行初步配置。
如图3所示,所述步骤S13包括以下步骤:
步骤S131:根据列车供电仿真计算求得的各所述牵引变电所的再生制动功率S n(t)可得不同发车间隔x下所对应的再生制动功率s nx(t),其中,x∈{1,2,3,…,X},X表示发车间隔x个数,发车间隔x与地铁运行计划有关;
需要说明的是,“发车间隔”是指上一班次列车与下一班次列车的发车时间间隔,以秒或分钟为单位。发车间隔的值越小,发车频次越高,国内城市轨道交通列车的发车间隔从两分钟至十几分钟不等。“发车间隔x”中的x取不同值时,即“发车间隔1”、“发车间隔2”、……“发车间隔X”,是指不同的发车间隔,也可以理解为“第一种发车间隔”、“第二种发车间隔”、……“第X种发车间隔”,不同的发车间隔x具有不同的发车间隔值。
本步骤中,每设定一种发车间隔x,进行一次列车供电仿真计算,可得不同发车间隔x下所对应的再生制动功率s nx(t)。
步骤S132:根据不同发车间隔x下的所述再生制动功率s nx(t)求所述牵引变电所n对应发车间隔x下不同连续时间T内再生制动功率的有效值集合S Tnx,其中T与列车最高运行速度有关;
其中,在发车间隔x下,所述牵引变电所n在连续时间T内再生制动功率的有效值为:
Figure PCTCN2018124317-appb-000004
式中,连续时间T与列车的最高运行速度有关,一般为15~35s,因此形成所述牵引变电所n对应发车间隔x下不同连续时间T内再生制动功率的有效值集合S Tnx。此处,连续时间T可以理解为再生制动能量的反馈时间。列车最高运行速度越高,则在同样制动力情况下,制动停车所需的时间约长,因此再生制动能量的反馈时间越长。连续时间T与列车制动停车时间正相关,与列车最高运行速度相关。
步骤S133:根据所述有效值集合S Tnx求得对应发车间隔x下不同连续时间T内的最大再生制动功率有效值P nx
步骤S134:求所述牵引变电所n对应的所述再生制动能量回收装置的初步配置容量P n,其中,P n=Max{P n1,P n2,...,P nx,...,P nX}。
在所述再生能量回收装置容量初步配置中,考虑了发车间隔x的影响,发车间隔x的不同直接影响整条线路上的再生制动能量分布情况;考虑了连续时间T内的所述再生制动功率有效值s nx,T的选择依据实际列车最高车速,直接影响单车制动过程的再生制动能量的多少。对发车间隔x和连续时间T的考虑保证了所述再生能量回收装置容量配置的实际可行性和科学性。
如图4所示,所述步骤S2包括以下步骤:
步骤S21:根据所述再生制动能量回收装置的初步配置容量P n结合现有再生制动能量回收装置的规格折算出实际配置容量Z n
基于实际生产制造和行业标准,现有所述再生制动能量回收装置的容量单元值一般为500kW,单套所述再生制动能量回收装置容量一般为0.5MW/1MW/1.5MW/2MW/2.5MW/3MW/3.5MW/4MW,容量折算原则遵循就近舍入原则,例如初步配置容量为2.665MW,则折算为2.5MW,如初步配置容量为2.825MW,则折算为3MW。
步骤S22:判断当再生制动能量回收装置在失效情况下,相邻再生制动能量回收装置是否能够完全吸收该失效的所述再生制动能量回收装置所要吸收的再生制动能量,若能够完全吸收,则相邻所述再生制动能量回收装置的实际配置容量即为其优化配置容量;若不能完全吸收,则相邻所述再生制动能量回收装置增加整倍数的再生制动能量回收装置的容量单元值,求得相邻再生制动能量回收装置的优化配置容量。该相邻再生制动能量回收装置的优化配置容量则可完全吸收该失效的所述再生制动能量回收装置所要吸收的再生制动能量。
继续参见图4,所述步骤S22包括以下步骤:
步骤S221:根据步骤S13求出该失效的所述再生制动能量回收装置所对应的初步配置容量P n、发车间隔x及对应发车间隔x下不同连续时间T内的最大再生制动功率有效值P nx,同时求出相邻所述再生制动能量回收装置对应发车间隔x下不同连续时间T内的最大再生制动功率有效值P (n-1)x和P (n+1)x
步骤S222:判断Z n-1+Z n+1≥P (n-1)x+P nx+P (n+1)x是否成立,若成立,则相邻牵引变电所n-1及牵引变电所n+1的实际容量配置Z n-1和Z n+1保持不变,若不成立,则执行步骤S223;
步骤S223:判断所述牵引变电所n分别与所述相邻牵引变电所n-1及所述牵引变电所n+1的距离L n(n-1)和L n(n+1)的大小,若L n(n-1)≥L n(n+1),则所述牵引变电所n+1的实际容量配置Z n+1 增加整倍数的再生制动能量回收装置的容量单元值进而求得优化配置容量Q n+1,所述牵引变电所n-1的优化配置容量Q n-1即为实际容量配置Z n-1;若L n(n-1)≤L n(n+1),则所述牵引变电所n-1的实际容量配置Z n-1增加整倍数的再生制动能量回收装置的容量单元值进而求得优化配置容量Q n-1,所述牵引变电所n+1的优化配置容量Q n+1即为实际容量配置Z n+1。增加整数倍容量单元值后的优化配置容量Q n+1或Q n-1可完全吸收该失效的所述再生制动能量回收装置所要吸收的再生制动能量。
优选地,相邻所述再生制动能量回收装置增加0.5MW,对折算容量进行微调,如果太大会造成装置容量的闲置浪费。
为了更清楚地对步骤S22进行说明,以下对上述步骤S221-S223换一种表述方式,具体为:
步骤S221:根据步骤S13求出与该失效的所述再生制动能量回收装置相邻的所述再生制动能量回收装置的初步配置容量P n-1和P n+1,并且根据步骤S21的方法折算出两者的实际配置容量Z n-1和Z n+1
步骤S222:判断Z n-1+Z n+1≥P n-1+P n+P n+1是否成立,若成立,则相邻牵引变电所n-1及牵引变电所n+1的实际容量配置Z n-1和Z n+1保持不变,若不成立,则执行步骤S223;
步骤S223:判断所述牵引变电所n分别与所述相邻牵引变电所n-1及所述牵引变电所n+1的距离L n(n-1)和L n(n+1)的大小,若L n(n-1)≥L n(n+1),则所述牵引变电所n+1的实际容量配置Z n+1增加整倍数的再生制动能量回收装置的容量单元值进而求得优化配置容量Q n+1,所述牵引变电所n-1的优化配置容量Q n-1即为实际容量配置Z n-1;若L n(n-1)≤L n(n+1),则所述牵引变电所n-1的实际容量配置Z n-1增加整倍数的再生制动能量回收装置的容量单元值进而求得优化配置容量Q n-1,所述牵引变电所n+1的优化配置容量Q n+1即为实际容量配置Z n+1。增加整数倍容量单元值后的优化配置容量Q n+1或Q n-1可完全吸收该失效的所述再生制动能量回收装置所要吸收的再生制动能量。
通过以上步骤S221-S223,牵引变电所n从1~N取值,可以计算获得各牵引变电所的再生制动能量回收装置的优化配置容量Q 1~Q N
优选地,相邻所述再生制动能量回收装置增加0.5MW,对折算容量进行微调,如果太大会造成装置容量的闲置浪费。
在再生能量回收装置容量优化配置中,考虑了所述再生制动能量回收装置实际运行的突发失效情况,对相邻所述再生制动能量回收装置分担该失效再生制动能量回收装置功率的能力进行核算,对分担能力不足的相邻所述再生制动能量回收装置适当增加容量,选择相邻再生制动能量回收装置中距离失效的所述再生制动能量回收装置装置距离最近的再生制动能量 回收装置增加容量,保证了对失效装置功率的最大能力分担。同时增加的容量选择0.5MW充分考虑了实际工程经验和成本,实现较好的再生制动能量回收的效果。
如图5所示,所述步骤S3包括以下步骤:
步骤S31:判断所述牵引变电所n所对应的所述再生制动能量回收装置的优化配置容量Q n是否小于两倍的再生制动能量回收装置的容量单元值(即优选为1MW),若是,则该牵引变电所n取消安装再生制动能量回收装置;若否,则该牵引变电所n按照优化配置容量Q n安装再生制动能量回收装置;
上述步骤S31可根据需要进行调整,例如为进一步提高所回收的再生制动能量,判断所述牵引变电所n所对应的所述再生制动能量回收装置的优化配置容量Q n是否小于再生制动能量回收装置的容量单元值(即0.5MW),若是,则该牵引变电所n取消安装再生制动能量回收装置;若否,则该牵引变电所n按照优化配置容量Q n安装再生制动能量回收装置;
步骤S32:根据步骤S31的判断结果求出实际的所述再生制动能量回收装置的安装总数M和实际的所述再生制动能量回收装置总配置容量
Figure PCTCN2018124317-appb-000005
其中Q n根据步骤S31,不包括小于两倍的再生制动能量回收装置容量单元值或一倍再生制动能量回收装置容量单元值的优化配置容量。
参见图5,所述步骤S4包括以下步骤:
步骤S41:根据步骤S32的计算结果求出所述再生制动能量回收装置的平均容量
Figure PCTCN2018124317-appb-000006
/M;
步骤S42:判断所述牵引变电所n是否与主变电所相邻,若是,则所述牵引变电所n所对应的所述再生制动能量回收装置配置为储能单元,若否,则执行步骤S43;
步骤S43:判断所述牵引变电所n的所述再生制动能量回收装置的优化配置容量Q n是否小于平均容量E,若是,则所述牵引变电所n的所述再生制动能量回收装置配置为储能单元;若否,则所述牵引变电所n的所述再生制动能量回收装置配置为能馈单元。
通过对所述再生制动能量回收装置类型的合理配置可以避免单一再生制动能量回收装置的不足。
参见图6,本申请实施例还提供了一种城市轨道交通再生制动能量回收装置的配置系统,所述配置系统使用上述的配置方法:
该配置系统包括初步配置单元、容量优化配置单元、安装总数配置单元以及类型配置单元,所述初步配置单元包括用以进行牵引仿真计算的牵引仿真计算模块及用以进行列车供电 仿真计算的列车供电仿真计算模块;
所述初步配置单元用以进行列车牵引仿真计算,根据列车牵引仿真计算结果进一步进行列车供电仿真计算,求出牵引变电所n的再生制动功率S n(t),然后根据牵引变电所n的再生制动功率S n(t)计算出牵引变电所n预设的再生制动能量回收装置的初步配置容量P n,其中n∈{1,2,3,…,N},N为总的牵引变电所个数;所述容量优化配置单元用以依据再生制动能量回收装置的初步配置容量P n结合现有再生制动能量回收装置的规格及当再生制动能量回收装置在失效情况下,相邻再生制动能量回收装置能够充分吸收该失效的所述再生制动能量回收装置所要吸收的再生制动能量对所述再生制动能量回收装置进行容量优化配置,求得所述牵引变电所n所对应的所述再生制动能量回收装置的优化配置容量Q n
所述安装总数配置单元用以依据再生制动能量回收装置的优化配置容量Q n大小对所述再生制动能量回收装置的安装总数M进行配置;
所述类型配置单元用以依据优化配置容量Q n大小和所述再生制动能量回收装置的安装总数M及所述再生制动能量回收装置的位置进一步对所述牵引变电所n的所述再生制动能量回收装置的类型进行配置。

Claims (12)

  1. 一种城市轨道交通再生制动能量回收装置的配置方法,其特征在于:所述城市轨道交通再生制动能量回收装置的配置方法依次包括以下步骤:
    步骤S1:首先进行列车牵引仿真计算,根据列车牵引仿真计算结果进一步进行列车供电仿真计算,求出牵引变电所n的再生制动功率S n(t),然后根据牵引变电所n的再生制动功率S n(t)计算出牵引变电所n预设的再生制动能量回收装置的初步配置容量P n,其中n∈{1,2,3,…,N},N为总的牵引变电所个数;
    步骤S2:依据再生制动能量回收装置的初步配置容量P n,结合现有再生制动能量回收装置的规格及当再生制动能量回收装置在失效情况下,相邻再生制动能量回收装置能够充分吸收该失效的所述再生制动能量回收装置所要吸收的再生制动能量,对所述再生制动能量回收装置进行容量优化配置,求得所述牵引变电所n所对应的所述再生制动能量回收装置的优化配置容量Q n
    步骤S3:依据再生制动能量回收装置的优化配置容量Q n大小对所述再生制动能量回收装置的安装总数M进行配置;
    步骤S4:依据优化配置容量Q n大小和所述再生制动能量回收装置的安装总数M及所述再生制动能量回收装置的位置进一步对所述牵引变电所n的所述再生制动能量回收装置的类型进行配置。
  2. 根据权利要求1所述的城市轨道交通再生制动能量回收装置的配置方法,其特征在于:所述步骤S1包括以下步骤:
    步骤S11:列车牵引仿真计算:牵引仿真计算模块的牵引仿真算法通过车辆信息参数、动力性能参数、阻力参数、牵引特性及电制动特性参数可求得牵引能耗-速度曲线及再生能量-速度曲线;
    步骤S12:列车供电仿真计算:供电仿真计算模块的供电仿真算法通过牵引仿真计算模块计算求得的牵引能耗-速度曲线及再生能量-速度曲线结合供电线路阻抗参数、牵引所位置参数和容量及发车对数可求得所述牵引变电所n的再生制动功率S n(t);
    步骤S13:再生制动能量回收装置容量初步配置计算:通过求得的所述牵引变电所n的再生制动功率S n(t)对所述牵引变电所n的所述再生制动能量回收装置的容量进行初步配置。
  3. 根据权利要求2所述的城市轨道交通再生制动能量回收装置的配置方法,其特征在于:所述步骤S13包括以下步骤:
    步骤S131:根据列车供电仿真计算求得的所述牵引变电所n的再生制动功率S n(t)可得不同发车间隔x下所对应的再生制动功率s nx(t),其中,x∈{1,2,3,…,X},X表示发车间隔个数, 发车间隔x与地铁运行计划有关;
    步骤S132:根据不同发车间隔x下的再生制动功率s nx(t)求所述牵引变电所n对应发车间隔x下不同连续时间T内再生制动功率的有效值集合S Tnx,其中T与列车最高运行速度有关;
    步骤S133:根据有效值集合S Tnx求得对应发车间隔x下不同连续时间T内的最大再生制动功率有效值P nx
    步骤S134:求所述牵引变电所n对应的所述再生制动能量回收装置的初步配置容量P n,其中,P n=Max{P n1,P n2,...,P nx,...,P nX}。
  4. 根据权利要求3所述的城市轨道交通再生制动能量回收装置的配置方法,其特征在于:所述步骤S2包括以下步骤:
    步骤S21:根据所述再生制动能量回收装置的初步配置容量P n结合现有再生制动能量回收装置的规格折算出实际配置容量Z n
    步骤S22:判断当再生制动能量回收装置在失效情况下,相邻再生制动能量回收装置是否能够完全吸收该失效的所述再生制动能量回收装置所要吸收的再生制动能量,若能够完全吸收,则相邻所述再生制动能量回收装置的实际配置容量即为优化配置容量;若不能完全吸收,则相邻所述再生制动能量回收装置增加整倍数的再生制动能量回收装置的容量单元值求得优化配置容量。
  5. 根据权利要求4所述的城市轨道交通再生制动能量回收装置的配置方法,其特征在于:所述步骤S22包括以下步骤:
    步骤S221:根据步骤S13求出该失效的所述再生制动能量回收装置所对应的初步配置容量P n、发车间隔x及对应发车间隔x下不同连续时间T内的最大再生制动功率有效值P nx,同时求出相邻所述再生制动能量回收装置对应发车间隔x下不同连续时间T内的最大再生制动功率有效值P (n-1)x和P (n+1)x
    步骤S222:判断Z n-1+Z n+1≥P (n-1)x+P nx+P (n+1)x是否成立,若成立,则相邻牵引变电所n-1及牵引变电所n+1的实际容量配置Z n-1和Z n+1保持不变,若不成立,则执行步骤S223;
    步骤S223:判断所述牵引变电所n分别与相邻所述牵引变电所n-1及所述牵引变电所n+1的距离L n(n-1)和L n(n+1)的大小,若L n(n-1)≥L n(n+1),则所述牵引变电所n+1的实际容量配置Z n+1增加整倍数的再生制动能量回收装置的容量单元值进而求得优化配置容量Q n+1,所述牵引变电所n-1的优化配置容量Q n-1即为实际容量配置Z n-1;若L n(n-1)≤L n(n+1),则所述牵引变电所n-1的实际容量配置Z n-1增加整倍数的再生制动能量回收装置的容量单元值进而求得优化配置容量Q n-1,所述牵引变电所n+1的优化配置容量Q n+1即为实际容量配置Z n+1
  6. 根据权利要求4所述的城市轨道交通再生制动能量回收装置的配置方法,其特征在于:所述步骤S22包括以下步骤:
    步骤S221:根据步骤S13求出与该失效的所述再生制动能量回收装置相邻的所述再生制动能量回收装置的初步配置容量P n-1和P n+1,并且根据步骤S21的方法折算出两者的实际配置容量Z n-1和Z n+1
    步骤S222:判断Z n-1+Z n+1≥P n-1+P n+P n+1是否成立,若成立,则相邻牵引变电所n-1及牵引变电所n+1的实际容量配置Z n-1和Z n+1保持不变,若不成立,则执行步骤S223;
    步骤S223:判断所述牵引变电所n分别与所述相邻牵引变电所n-1及所述牵引变电所n+1的距离L n(n-1)和L n(n+1)的大小,若L n(n-1)≥L n(n+1),则所述牵引变电所n+1的实际容量配置Z n+1增加整倍数的再生制动能量回收装置的容量单元值进而求得优化配置容量Q n+1,所述牵引变电所n-1的优化配置容量Q n-1即为实际容量配置Z n-1;若L n(n-1)≤L n(n+1),则所述牵引变电所n-1的实际容量配置Z n-1增加整倍数的再生制动能量回收装置的容量单元值进而求得优化配置容量Q n-1,所述牵引变电所n+1的优化配置容量Q n+1即为实际容量配置Z n+1
  7. 根据权利要求1所述的城市轨道交通再生制动能量回收装置的配置方法,其特征在于:所述步骤S3包括以下步骤:
    步骤S31:判断所述牵引变电所n所对应的所述再生制动能量回收装置的优化配置容量Q n是否小于两倍的再生制动能量回收装置的容量单元值,若是,则该牵引变电所n取消安装所述再生制动能量回收装置;若否,则该牵引变电所n按照优化配置容量Q n安装所述再生制动能量回收装置;
    步骤S32:根据步骤S31的判断结果求出实际的再生制动能量回收装置的安装总数M和实际的再生制动能量回收装置总配置容量
    Figure PCTCN2018124317-appb-100001
    其中Q n不包括小于两倍的再生制动能量回收装置容量单元值的优化配置容量。
  8. 根据权利要求1所述的城市轨道交通再生制动能量回收装置的配置方法,其特征在于:所述步骤S3包括以下步骤:
    步骤S31:判断所述牵引变电所n所对应的所述再生制动能量回收装置的优化配置容量Q n是否小于再生制动能量回收装置的容量单元值,若是,则该牵引变电所n取消安装所述再生制动能量回收装置;若否,则该牵引变电所n按照优化配置容量Q n安装所述再生制动能量回收装置;
    步骤S32:根据步骤S31的判断结果求出实际的再生制动能量回收装置的安装总数M和 实际的再生制动能量回收装置总配置容量
    Figure PCTCN2018124317-appb-100002
    其中Q n不包括小于再生制动能量回收装置容量单元值的优化配置容量。
  9. 根据权利要求7或8所述的城市轨道交通再生制动能量回收装置的配置方法,其特征在于:所述步骤S4包括以下步骤:
    步骤S41:根据步骤S32的计算结果求出所述再生制动能量回收装置的平均容量
    Figure PCTCN2018124317-appb-100003
    /M;
    步骤S42:判断所述牵引变电所n是否与主变电所相邻,若是,则所述牵引变电所n所对应的所述再生制动能量回收装置配置为储能单元,若否,则执行步骤S43;
    步骤S43:判断所述牵引变电所n的再生制动能量回收装置的优化配置容量Q n是否小于平均容量E,若是,则所述牵引变电所n的再生制动能量回收装置配置为储能单元;若否,则所述牵引变电所n的再生制动能量回收装置配置为能馈单元。
  10. 根据权利要求2所述的城市轨道交通再生制动能量回收装置的配置方法,其特征在于:所述车辆信息参数包括车辆型式、编组及载荷,所述动力性能参数包括车辆的加速度和减速度,所述阻力参数包括启动阻力和基本阻力,所述牵引特性参数包括牵引力,所述电制动特性参数包括电制动力。
  11. 根据权利要求4所述的城市轨道交通再生制动能量回收装置的配置方法,其特征在于:所述步骤22中相邻再生制动能量回收装置增加一倍的容量单元值。
  12. 一种城市轨道交通再生制动能量回收装置的配置系统,其特征在于:所述配置系统使用如权利要求1至11任一项的配置方法:
    该配置系统包括初步配置单元、容量优化配置单元、安装总数配置单元以及类型配置单元;
    所述初步配置单元用以进行列车牵引仿真计算,根据列车牵引仿真计算结果进一步进行列车供电仿真计算,求出牵引变电所n的再生制动功率S n(t),然后根据牵引变电所n的再生制动功率S n(t)计算出牵引变电所n预设的再生制动能量回收装置的初步配置容量P n,其中n∈{1,2,3,…,N},N为总的牵引变电所个数;所述容量优化配置单元用以依据再生制动能量回收装置的初步配置容量P n结合现有再生制动能量回收装置的规格及当再生制动能量回收装置在失效情况下,相邻再生制动能量回收装置能够充分吸收该失效的所述再生制动能量回收装置所要吸收的再生制动能量对所述再生制动能量回收装置进行容量优化配置,求得所述牵引变电所n所对应的所述再生制动能量回收装置的优化配置容量Q n
    所述安装总数配置单元用以依据再生制动能量回收装置的优化配置容量Q n大小对所述再生制动能量回收装置的安装总数M进行配置;
    所述类型配置单元用以依据优化配置容量Q n大小和所述再生制动能量回收装置的安装总数M及所述再生制动能量回收装置的位置进一步对所述牵引变电所n的所述再生制动能量回收装置的类型进行配置。
PCT/CN2018/124317 2018-03-30 2018-12-27 城市轨道交通再生制动能量回收装置的配置方法及系统 WO2019184488A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2020545480A JP6937930B2 (ja) 2018-03-30 2018-12-27 都市鉄道輸送における回生制動エネルギー回収装置を構成するための方法およびシステム
KR1020207018929A KR102213266B1 (ko) 2018-03-30 2018-12-27 도시 철도 교통 회생 제동 에너지 회수 장치의 배치 방법 및 시스템
MYPI2020003672A MY183939A (en) 2018-03-30 2018-12-27 Method and system for configuring regenerative braking energy recovery devices in urban rail transit
RU2020123004A RU2742839C1 (ru) 2018-03-30 2018-12-27 Способ и система конфигурирования устройств регенерации энергии рекуперативного торможения для городских железнодорожных перевозок
EP18913037.0A EP3705339A4 (en) 2018-03-30 2018-12-27 CONFIGURATION PROCESS AND SYSTEM FOR REGENERATIVE BRAKING ENERGY RECYCLING DEVICES FOR URBAN RAIL TRANSPORTATION
IL276454A IL276454A (en) 2018-03-30 2020-08-03 Configuration method and system for braking energy recycling devices in urban rail trains
US17/003,910 US11065965B2 (en) 2018-03-30 2020-08-26 Method and system for configuring regenerative braking energy recovery devices in urban rail transit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810290381.X 2018-03-30
CN201810290381.XA CN108437806B (zh) 2018-03-30 2018-03-30 城市轨道交通再生制动能量回收装置的配置系统及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/003,910 Continuation US11065965B2 (en) 2018-03-30 2020-08-26 Method and system for configuring regenerative braking energy recovery devices in urban rail transit

Publications (1)

Publication Number Publication Date
WO2019184488A1 true WO2019184488A1 (zh) 2019-10-03

Family

ID=63198164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124317 WO2019184488A1 (zh) 2018-03-30 2018-12-27 城市轨道交通再生制动能量回收装置的配置方法及系统

Country Status (9)

Country Link
US (1) US11065965B2 (zh)
EP (1) EP3705339A4 (zh)
JP (1) JP6937930B2 (zh)
KR (1) KR102213266B1 (zh)
CN (1) CN108437806B (zh)
IL (1) IL276454A (zh)
MY (1) MY183939A (zh)
RU (1) RU2742839C1 (zh)
WO (1) WO2019184488A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112590867A (zh) * 2020-12-21 2021-04-02 中车青岛四方车辆研究所有限公司 基于车车通信的城轨列车群速度优化方法及系统
CN113752898A (zh) * 2020-06-04 2021-12-07 株洲变流技术国家工程研究中心有限公司 一种纯电动车辆的电池容量确定方法及相关装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108437806B (zh) * 2018-03-30 2019-09-13 中车青岛四方车辆研究所有限公司 城市轨道交通再生制动能量回收装置的配置系统及方法
CN109116752A (zh) * 2018-08-31 2019-01-01 北京交通大学 一种城市轨道交通的动模仿真系统及控制方法
CN109449963B (zh) * 2018-12-19 2021-11-19 南京亚派科技股份有限公司 一种混合型再生电能吸收利用装置的容量配置与控制方法
CN109733201B (zh) * 2019-01-16 2021-10-19 重庆交通大学 城轨列车再生制动能量吸收利用系统的控制方法
CN111806241B (zh) * 2020-06-28 2022-02-18 同济大学 一种轨道交通列车再生电能回收空间确定方法
CN113054751B (zh) * 2021-03-25 2022-07-15 北京交通大学 基于信息交互的城轨交通车地储能系统协调优化方法
CN113381426B (zh) * 2021-07-16 2022-09-02 盾石磁能科技有限责任公司 飞轮储能装置的容量配置方法、终端及存储介质
CN113346534B (zh) * 2021-08-05 2021-11-23 中铁电气化勘测设计研究院有限公司 适用于潮流仿真计算的储能型再生能量吸收装置模拟方法
CN113743828B (zh) * 2021-09-23 2023-04-07 西南交通大学 一种城市轨道交通运行调度方法及系统
CN114537150B (zh) * 2022-01-25 2023-09-12 兰州交通大学 高速铁路长大坡道再生制动能量混合储能优化配置方法
CN115085295B (zh) * 2022-07-27 2022-11-18 深圳量云能源网络科技有限公司 一种基于变流器能量管理的无功调节方法及系统
CN115600458A (zh) * 2022-10-11 2023-01-13 苏州大学(Cn) 一种计及三维地系统的杂散电流动态分布计算方法
CN115675191B (zh) * 2023-01-04 2023-03-21 新誉轨道交通科技有限公司 一种车地联控能量管理方法、系统、设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD261485A3 (de) * 1986-11-26 1988-11-02 Elektroprojekt Anlagenbau Veb Schaltungsanordnung zur energieversorgung von fahrnetzen fuer elektrische gleichstromtriebfahrzeuge mit netzbremseinrichtungen
CN101353020A (zh) * 2007-04-25 2009-01-28 阿尔斯通运输股份有限公司 回收轨道车辆制动能量的系统、变电站、方法和轨道车辆
CN108437806A (zh) * 2018-03-30 2018-08-24 中车青岛四方车辆研究所有限公司 城市轨道交通再生制动能量回收装置的配置系统及方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH580263A5 (zh) * 1973-12-18 1976-09-30 Pretema Ag
CH594849A5 (zh) 1975-04-16 1978-01-31 Wunderlin Willy
JP4184879B2 (ja) * 2003-07-03 2008-11-19 株式会社日立製作所 鉄道車両駆動システム
WO2005084335A2 (en) * 2004-03-01 2005-09-15 Railpower Technologies Corp. Cabless hybrid locomotive
JP5525492B2 (ja) * 2011-07-21 2014-06-18 株式会社日立製作所 鉄道き電システム
JP6054122B2 (ja) * 2012-09-28 2016-12-27 株式会社東芝 鉄道電力管理装置
NO20130229A1 (no) * 2013-02-12 2014-01-20 Maintech As Innretning for energiforsyning av tog
CN103419680B (zh) * 2013-07-29 2015-08-19 华北电力大学(保定) 一种基于分布式电源的直流牵引供电系统
CN103840477B (zh) * 2014-01-03 2015-09-23 南车株洲电力机车研究所有限公司 电气化铁路牵引供电储能装置及其方法
JP6363465B2 (ja) * 2014-10-21 2018-07-25 株式会社東芝 蓄電装置
CN104580356B (zh) * 2014-11-24 2018-04-06 中车青岛四方机车车辆股份有限公司 列车车间信号传输方法及装置
JP6539043B2 (ja) * 2014-12-26 2019-07-03 株式会社日立製作所 鉄道き電システム及び鉄道き電制御方法
FR3031849B1 (fr) * 2015-01-16 2017-02-17 Alstom Transp Tech Convertisseur d'alimentation reseau et/ou de sous-station de recuperation de l'energie de freinage
US10730405B2 (en) * 2015-08-27 2020-08-04 Mitsubishi Electric Corporation Station building auxiliary power unit for efficient use of regenerative power
CN105774569B (zh) * 2016-03-11 2017-11-10 中车青岛四方车辆研究所有限公司 集成储能装置充放电控制的轨道车辆牵引逆变系统及方法
RU2636847C1 (ru) * 2016-08-03 2017-11-28 Илья Александрович Кондрашов Тяговая подстанция постоянного тока с инерционным накопителем энергии
CN106080215B (zh) * 2016-08-23 2019-05-21 中车青岛四方机车车辆股份有限公司 一种轨道交通制动能回收利用系统及混合动力轨道交通
CN206031089U (zh) * 2016-08-26 2017-03-22 比亚迪股份有限公司 用于牵引列车的再生能量吸收储能装置
CN107380187B (zh) * 2016-11-28 2019-12-03 盾石磁能科技有限责任公司 轨道交通再生制动能量综合回收利用装置及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD261485A3 (de) * 1986-11-26 1988-11-02 Elektroprojekt Anlagenbau Veb Schaltungsanordnung zur energieversorgung von fahrnetzen fuer elektrische gleichstromtriebfahrzeuge mit netzbremseinrichtungen
CN101353020A (zh) * 2007-04-25 2009-01-28 阿尔斯通运输股份有限公司 回收轨道车辆制动能量的系统、变电站、方法和轨道车辆
CN108437806A (zh) * 2018-03-30 2018-08-24 中车青岛四方车辆研究所有限公司 城市轨道交通再生制动能量回收装置的配置系统及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3705339A4 *
XIA, HUAN: "Hierarchical Control and Capacity Allocation Optimization of Supercapacitor Energy Storage System for Urban Rail Transit", DOCTORAL DISSERTATION, 15 November 2017 (2017-11-15), pages 1 - 169, XP009520890, ISSN: 1674-022X *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113752898A (zh) * 2020-06-04 2021-12-07 株洲变流技术国家工程研究中心有限公司 一种纯电动车辆的电池容量确定方法及相关装置
CN112590867A (zh) * 2020-12-21 2021-04-02 中车青岛四方车辆研究所有限公司 基于车车通信的城轨列车群速度优化方法及系统
CN112590867B (zh) * 2020-12-21 2022-05-27 中车青岛四方车辆研究所有限公司 基于车车通信的城轨列车群速度优化方法及系统

Also Published As

Publication number Publication date
MY183939A (en) 2021-03-17
IL276454A (en) 2020-09-30
JP6937930B2 (ja) 2021-09-22
RU2742839C1 (ru) 2021-02-11
US11065965B2 (en) 2021-07-20
KR102213266B1 (ko) 2021-02-08
JP2021508645A (ja) 2021-03-11
KR20200088899A (ko) 2020-07-23
US20200391596A1 (en) 2020-12-17
CN108437806B (zh) 2019-09-13
CN108437806A (zh) 2018-08-24
EP3705339A4 (en) 2021-01-27
EP3705339A1 (en) 2020-09-09

Similar Documents

Publication Publication Date Title
WO2019184488A1 (zh) 城市轨道交通再生制动能量回收装置的配置方法及系统
CN101376344B (zh) 地铁供电系统的多目标综合控制节能方法
WO2021003799A1 (zh) 一种电气化铁路的能量协调系统
CN103311950B (zh) 城市轨道列车再生制动能量吸收利用系统及方法
CN202488178U (zh) 基于直流母线的光伏储能电动汽车充电站系统
WO2020000843A1 (zh) 优化的城市轨道列车能源互联系统
CN107689459B (zh) 一种有轨电车用燃料电池阵列系统的效率优化控制方法
CN108032862B (zh) 一种内燃动车组混合供电动力系统及供电方法
JP2008193817A (ja) 磁気エネルギー回生スイッチを用いた交流/直流電力変換装置
CN102651554B (zh) 含储能的光伏系统接入城轨牵引网的控制方法及装置
CN103840450A (zh) 用于电气化铁路的电能调节装置及其方法
CN109080464B (zh) 轨道车辆主电路拓扑结构及供电方法
Shen et al. Study of trackside photovoltaic power integration into the traction power system of suburban elevated urban rail transit line
CN104527960A (zh) 船舶制动能量控制系统及能量控制方法
CN106099978A (zh) 用于无功补偿的地铁制动能量回馈装置、控制方法
CN103978902A (zh) 一种ss3型电力机车辅助变流系统
CN108539772B (zh) 城市轨道交通再生制动能量控制分配系统及方法
Lamedica et al. Application of battery auxiliary substations in 3kV railway systems
CN109768721A (zh) 一种智能化能量双向流动的三电平变流器控制方法
CN104467004A (zh) 新能源汽车电机测试电源
CN113263920A (zh) 电气化铁路车载混合式储能系统及其能量管理方法
CN104836252A (zh) 一种城市轨道交通中压逆变型再生电能利用装置
CN109649222B (zh) 城轨列车再生能量综合利用系统及其控制方法
CN201201523Y (zh) 一种轨道交通车辆制动能量回收装置
CN110492756A (zh) 一种内燃机车用牵引-辅助变流器及变流柜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913037

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018913037

Country of ref document: EP

Effective date: 20200605

ENP Entry into the national phase

Ref document number: 20207018929

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020545480

Country of ref document: JP

Kind code of ref document: A