WO2020000843A1 - 优化的城市轨道列车能源互联系统 - Google Patents

优化的城市轨道列车能源互联系统 Download PDF

Info

Publication number
WO2020000843A1
WO2020000843A1 PCT/CN2018/113681 CN2018113681W WO2020000843A1 WO 2020000843 A1 WO2020000843 A1 WO 2020000843A1 CN 2018113681 W CN2018113681 W CN 2018113681W WO 2020000843 A1 WO2020000843 A1 WO 2020000843A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
bus
urban rail
interconnection system
rail train
Prior art date
Application number
PCT/CN2018/113681
Other languages
English (en)
French (fr)
Inventor
李红波
张志学
黄子昊
段义隆
罗文广
梅文庆
Original Assignee
中车株洲电力机车研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车株洲电力机车研究所有限公司 filed Critical 中车株洲电力机车研究所有限公司
Priority to US17/043,731 priority Critical patent/US11594889B2/en
Publication of WO2020000843A1 publication Critical patent/WO2020000843A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/12Dynamic electric regenerative braking for vehicles propelled by dc motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • B60M3/06Arrangements for consuming regenerative power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/04Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
    • H02J3/06Controlling transfer of power between connected networks; Controlling sharing of load between connected networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4807Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode having a high frequency intermediate AC stage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/26Vehicle weight
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/30Arrangements for balancing of the load in a network by storage of energy using dynamo-electric machines coupled to flywheels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0074Plural converter units whose inputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0077Plural converter units whose outputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/225Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode comprising two stages of AC-AC conversion, e.g. having a high frequency intermediate link
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the invention relates to the technical field of urban rail transit power supply systems, in particular to an optimized urban rail train energy interconnection system.
  • the energy feeding devices of urban rail trains feed back the braking energy of the train to a 35kV medium voltage AC bus or a 400V low voltage AC bus.
  • the above methods mainly have the following problems:
  • the train's energy feeding device starts according to the DC traction network voltage threshold. Therefore, when the regenerative braking energy is not fully circulated between the trains adjacent to the line, the energy feeding device is triggered. At this time, the braking energy is forcibly fed back to the AC grid. What's more, the regenerative braking energy is adjacent to the energy.
  • the cycle between the feed system and the multi-pulse rectification system forces the starting locomotive to not only absorb braking energy but also to absorb energy from the power grid, resulting in additional power consumption of the traction system.
  • the regenerative braking energy is fed back to the AC grid. Uncontrolled, it may be transmitted to the starting locomotive through multi-pulse rectification, or it may be consumed by the auxiliary network load, so it is difficult to evaluate the energy saving situation of the energy-feeding system.
  • the power frequency transformer has no-load loss and is bulky. At the same time, there will be additional reactive power consumption when the energy is transmitted in the AC network.
  • the photovoltaic array passes through the DC-DC and DC-AC conversion links and is merged into a 35kV medium voltage network through a power frequency transformer;
  • the photovoltaic array undergoes DC-DC boost conversion and is integrated into a 1500V DC traction network.
  • Access mode 1 has high transmission efficiency in the case of long-distance energy transmission, but requires a grid-connected inverter and a grid-connected power frequency transformer. Photovoltaic energy needs to go through multiple conversion links (grid-connected inverters, grid-connected transformers, phase-shifting transformers, and multi-pulse rectifiers) to be used by locomotives. Therefore, the conversion efficiency of the system is greatly reduced.
  • Access mode 2 only requires DC-DC boost conversion, eliminating many intermediate conversion links. However, in the case of the same photovoltaic power generation, the transmission loss of this method on the line will be greater than that of access method 1.
  • the invention provides an optimized urban rail train energy interconnection system, which is used to solve the technical problem in the prior art that cannot accurately distinguish the distribution of regenerative braking energy flow.
  • the invention provides an optimized urban rail train energy interconnection system, which includes a connected DC bus and a multi-port power flow controllable energy router.
  • the multi-port power flow controllable energy router is connected to the connected DC bus and the traction DC bus respectively. Regenerative braking energy is transmitted on the traction DC bus.
  • the number of the multi-port flow-controllable energy routers is one or more, and a plurality of the multi-port flow-controllable energy routers communicate with each other.
  • the multi-port power flow controllable energy router includes a no-power compensation device, an active filter, and a regenerative braking energy feedback device.
  • it further includes a low-voltage DC bus connected to an auxiliary power unit, and each of the multi-port power flow controllable energy routers is connected to the low-voltage DC bus.
  • the connected DC bus is connected to a photovoltaic array in a photovoltaic grid-connected system through a DC / DC converter.
  • the connected DC bus is further connected to a distributed power generation system, which includes one or more of a walking power generation device, a ground source heat pump, a fuel cell, and a micro gas turbine.
  • a distributed power generation system which includes one or more of a walking power generation device, a ground source heat pump, a fuel cell, and a micro gas turbine.
  • the connected DC bus is connected to an energy storage element through an energy storage converter, and the energy storage element includes one or more of a battery, a super capacitor, and a flywheel.
  • a load unit is connected to the connected DC bus, the load unit includes an electric vehicle charging system, and the electric vehicle charging system is connected to the connected DC bus through an electric vehicle charging converter.
  • the voltage of the connected DC bus is adjusted by the multi-port power flow controllable energy router.
  • the multi-port flow-controllable energy router is further connected to an AC bus, so that the regenerative braking energy is recycled in the full-line machine shop through the AC bus.
  • the multi-port flow-controllable energy router can comprehensively control the source-load connected in parallel to the connected DC bus, the multi-port flow-controllable energy router can accurately distinguish the distribution of regenerative braking energy flow, thereby forming a perfect brake Energy use assessment system.
  • the multi-port power flow controllable energy router is used to reasonably configure and dispatch the energy of the entire network, and actively and regeneratively transmits the regenerative braking energy, which avoids the inefficient feed system due to the line impedance.
  • the regenerative braking energy can only be used in the vicinity of the subway. The problem of the locomotive cycle makes the regenerative braking energy circulate as much as possible in the locomotive workshop of the entire subway line, improving the utilization rate of the regenerative braking energy.
  • FIG. 1 is a schematic diagram of an optimized urban rail train energy interconnection system in an embodiment of the present invention
  • FIG. 2 is a control flowchart of a multi-port power flow controllable energy router in the implementation of the present invention
  • FIG. 3 is a topology structure diagram of a multi-port power flow controllable energy router in one embodiment of the present invention
  • FIG. 4 is a topology structure diagram of a multi-port power flow controllable energy router in another embodiment of the present invention.
  • the present invention provides an optimized urban rail train energy interconnection system, which includes a connected DC bus and a multi-port power flow controllable energy router, and the multi-port power flow controllable energy router is connected to the connected DC bus and traction DC, respectively.
  • the buses are connected for directional transmission of regenerative braking energy on the traction DC bus. Because a DC path is set, that is, the DC bus is connected, the multi-port flow-controllable energy router can actively transfer the regenerative braking energy from the connected DC bus, thereby avoiding the line impedance of the inefficient feed system in the prior art.
  • the problem that the regenerative braking energy can only be circulated between trains in the adjacent stations.
  • the regenerative braking energy can be circulated as much as possible between the trains on the entire city track. Improve the utilization of regenerative braking energy
  • the multi-port flow-controllable energy router can flexibly control and stabilize the voltage of the traction DC bus to stabilize the voltage level of 1500V or even higher to reduce the system voltage oscillation, thereby eliminating the on-board braking resistor.
  • the number of multi-port power flow controllable energy routers is one or more.
  • the number of multi-port power flow controllable energy routers is multiple (for example, at least one multi-port power flow controllable is set in each traction substation).
  • multiple multiport flow controllable energy routers communicate with each other, that is, the energy and information of each multiport flow controllable energy router can be interconnected.
  • the multi-port flow-controllable energy router includes a non-power compensation device, an active filter, and a regenerative braking energy feedback device. That is, the multi-port flow-controllable energy router has a non-power compensation function, an active filtering function, and a regenerative braking energy feedback function. , Can eliminate the power quality adjustment equipment in the traditional system, improve system economics.
  • the multi-port flow-controllable energy router has data acquisition modules, status monitoring modules, and information communication modules in addition to ports of various power systems (for example, AC, DC, or voltage levels).
  • various power systems for example, AC, DC, or voltage levels.
  • control unit in the multi-port flow-controllable energy router communicates with the central control room in the traction substation to accurately distinguish and control the distribution of regenerative braking energy flow, and further form a complete braking energy utilization evaluation system.
  • the auxiliary power system is changed from an AC system to a DC system.
  • it also includes a low-voltage DC bus connected to an auxiliary power unit, and each multi-port flow-controllable energy router is connected to the low-voltage DC bus.
  • the auxiliary power unit is connected to the low-voltage DC bus, the AC-DC conversion device at the front end of the auxiliary power unit and the power frequency transformer in parallel with the 35kV medium-voltage AC traction network can be omitted, thereby connecting energy consumption on the DC bus.
  • Nano provides more loads and controllable equipment.
  • the auxiliary power unit includes a lighting device, an air-conditioning device, an escalator and a lift, and other weak electric devices.
  • a photovoltaic grid-connected system is also connected to the connected DC bus. Specifically, it is connected to the photovoltaic array in the photovoltaic grid-connected system through a DC / DC converter. Specifically, a photovoltaic array (solar panel) is laid on the roof of a station or a vehicle depot for photovoltaic power generation, so that the energy on the connected DC bus is more diversified, that is, it includes not only regenerative braking energy, but also the aforementioned new energy.
  • the connected DC bus is also connected to a distributed power generation system, where the distributed power generation system includes, but is not limited to, one or more of a walking power generation device, a ground source heat pump, a fuel cell, and a micro gas turbine.
  • the distributed power generation system includes, but is not limited to, one or more of a walking power generation device, a ground source heat pump, a fuel cell, and a micro gas turbine.
  • energy exchange between buildings along urban rail trains can also be incorporated into distributed power generation systems.
  • the connected DC bus is connected to the energy storage element through an energy storage converter.
  • the energy storage element includes, but is not limited to, one or more of a battery, a super capacitor, and a flywheel.
  • supercapacitors or flywheels are power-type energy storage elements that can quickly absorb or release energy, and can be used to smooth the power impact of locomotive entering or exiting the subway traction power supply system (reducing the peak value of the multi-pulsation rectifier transformer in the traction network Power), and further reduce its design (overload) capacity to a certain extent; the energy density of the energy storage battery is high, and it can absorb excess regenerative braking energy or photovoltaic residual power, thereby reducing or eliminating braking resistance.
  • a load unit is connected to the connected DC bus.
  • the load unit includes an electric vehicle charging system, and the electric vehicle charging system is connected to the connected DC bus through an electric vehicle charging converter. That is to say, electric vehicles and rail transit are combined to form the energy interconnection of public transportation, which maximizes the energy efficiency of the transportation system.
  • the regenerative braking energy of trains arriving at a station is actively guided to the trains at an station (for example, station Ai) through a multi-port flow-controllable energy router to provide starting power to the train.
  • the multi-port flow-controllable energy router can guide the regenerative braking energy according to the principle of "close-to-far” or "as-demanded”, thereby Avoids the problem that the regenerative braking energy can only be circulated between trains at nearby stations due to line impedance, so that the regenerative braking energy is circulated between trains on the entire subway line as much as possible, which improves the utilization rate of regenerative braking energy .
  • the regenerative braking energy of the urban rail train energy interconnection system of the present invention can be directionally controlled, the line has no reactive power loss, and it does not need to be equipped with a grid-connected power frequency transformer.
  • the multi-port flow-controllable energy router controls the regenerative braking energy as follows:
  • the first step is to determine whether the regenerative braking energy can be circulated between the trains on the whole line. If so, the regenerative braking energy can be circulated between the trains on the whole line and turn to the second step; if not, go to the third step;
  • the second step is to determine whether there is any remaining regenerative braking energy after cycling between the trains on the entire line. If so, the remaining energy is directed to the energy storage element or the auxiliary power system; if not, go to the fourth step;
  • the third step is to judge whether the energy generated by the new energy (such as photovoltaic surplus power) can be circulated between the trains on the entire line. If so, the energy generated by the new energy is circulated between the trains on the entire line. If not, the process ends.
  • the energy generated by the new energy such as photovoltaic surplus power
  • the fourth step is to judge whether the energy generated by the new energy is left after circulating between the trains on the whole line. If so, the remaining energy is introduced into the auxiliary power system, the energy storage element or the load unit. If not, the process ends.
  • the regenerative braking energy of trains, auxiliary power such as cold, heat, and lighting of traction substations, as well as photovoltaic, energy storage, and electric vehicle charging and interconnection are interconnected through a multi-port flow-controllable energy router, thereby forming a centralized source (such as Braking energy, new energy)-grid (eg, DC grid)-charge (eg, electric vehicle charging system)-storage (eg, energy storage element)-controlled (eg, central control room) urban rail train system energy internet system .
  • a centralized source such as Braking energy, new energy
  • -grid eg, DC grid
  • charge eg, electric vehicle charging system
  • storage eg, energy storage element
  • urban rail train system energy internet system e.g, central control room
  • the multi-port power flow controllable energy router is used to rationally configure and dispatch the energy of the entire network, and to absorb the regenerative energy (including regenerative braking energy and energy generated by new energy) in the nearest system to reduce energy transmission loss and improve energy efficiency. Utilization.
  • the voltage of the connected DC bus is adjusted by a multi-port flow-controllable energy router to keep the voltage of the connected DC bus at a suitable voltage level, such as 1500V, 2000V, 6000V, and so on.
  • the multi-port flow-controllable energy router is further connected to the AC bus, so that the regenerative braking energy is recycled in the full-line machine shop through the AC bus.
  • the multi-port flow-controllable energy router is based on an MMC topology.
  • the front end of the multi-port flow-controllable energy router topology uses a three-phase MMC converter to connect to a 35kV power grid to convert AC power to DC medium-voltage DC power; then, single-phase MMC converts medium-voltage DC power to high voltage. High-frequency AC power, the electric energy is transmitted to the 1500V DC traction network and the low-voltage 400V AC / DC auxiliary power network through a high-frequency isolation transformer.
  • each sub-module of the MMC can be in the form of a full bridge or a half-bridge, and the DC bus of the sub-module is connected in parallel with a super capacitor or an energy storage battery, which can realize distributed storage of regenerative braking energy or new energy energy. And according to the actual needs, the stored energy can be released to the equipment that needs electricity to stabilize the impact of the locomotive pulse power on the system.
  • the 1500V DC traction power grid is coupled to the low-voltage 400V AC / DC auxiliary power grid through the transformer windings, so that the regenerative braking energy of the locomotive can be transmitted from the 1500V traction grid to the auxiliary power grid.
  • the energy of the 1500V DC traction network and the low-voltage auxiliary power grid can also be transmitted to the 35kV power grid through a multi-port power flow controllable energy router.
  • the multi-port flow-controllable energy router is based on a CHB + LLC topology.
  • the multi-port flow-controllable energy router topology uses a three-phase cascade H-bridge topology, which is connected to a 35kV power grid to convert AC power to DC power; the DC side of each heavy H-bridge is connected to an LLC resonant converter. Converts its DC voltage to the DC voltage level required by the load.
  • the above topology is connected in series with the input terminal of the 35kV power grid, and the output terminal is connected in parallel with a 1500V DC traction network.
  • the output voltage is adjustable to supply power to the low-voltage auxiliary power grid.
  • the regenerative braking energy of the locomotive can be transmitted from the 35kV power grid to the 1500V DC traction network, or from the 1500V DC traction network to the 35kV power network.
  • the topology of the multi-port power flow controllable energy router in the above embodiment uses an isolation transformer, and of course, other topological structures without an isolation transformer that have a bidirectional current conversion function may also be used.
  • the topology of a multi-port flow-controllable energy router can also adopt a network topology that has bidirectionally controllable energy and multiple ports.
  • a four-quadrant converter topology a four-quadrant converter variant topology, One of the deformed topology of a level converter, a three-level converter, a dual active bridge (DAB) and a dual active bridge (DAB).
  • DAB dual active bridge
  • DAB dual active bridge

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种优化的城市轨道列车能源互联系统,涉及城市轨道交通供电技术领域,用于解决无法准确区分再生制动能量潮流分配情况的技术问题。该系统包括连通直流母线以及多端口潮流可控能量路由器,由于多端口潮流可控能量路由器可以综合控制并联在连通直流母线上的源-荷,因此多端口潮流可控能量路由器能够准确区分再生制动能量潮流分配情况,从而形成完善的制动能量利用评估体系。

Description

优化的城市轨道列车能源互联系统
相关申请的交叉引用
本申请要求享有于2018年06月29日提交的名称为“优化的城市轨道列车能源互联系统”的中国专利申请CN201810701547.2的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本发明涉及城市轨道交通供电系统技术领域,特别地涉及一种优化的城市轨道列车能源互联系统。
背景技术
目前城市轨道列车(例如地铁)的能馈装置都是将列车的制动能量回馈到35kV中压交流母线或400V低压交流母线,上述方式主要存在以下问题:
由于城市轨道交通采用直流牵引供电方式,因此列车的能馈装置依据直流牵引网电压阈值启动。因此存在线路临近列车间再生制动能量还未充分循环时,能馈装置就被触发,此时制动能量被强行回馈到交流电网的情况;更有甚者,再生制动能量在相邻能馈系统和多脉波整流系统间循环,迫使将要的启动机车非但不能吸收制动能量反而要从电网吸收能量,造成牵引系统额外的电能消耗;另外,再生制动能量回馈到交流电网后,潮流不受控,可能通过多脉动整流传送给启动机车利用,也可能被辅助网络负荷消耗,因此难以评估能馈系统的节能情况。
此外,现有的能馈系统大多通过工频变压器接入交流网,工频变压器存在空载损耗,且体积庞大,同时能量在交流网中传递时会有额外的无功消耗。
从另一方面来说,城市轨道交通虽然是一种较为绿色的出行方式,但当前其消耗的电能多为煤电。随着国家环保力度的加强,地铁作为城市用电大户,必将增加其绿色电能占比。因此,当前有人提出了绿色车站概念,利用车站或车辆段屋顶铺设太阳能电池板进行光伏发电。目前光伏发电利用主要有自发自用和余电 上网两种方式。但考虑光伏补贴退坡政策,以及光伏发电成本的降低,自发自用成为光伏发电利用的主要形式。随着光伏电厂规模扩增,辅助系统难以消纳所有的光伏电能,可以将光伏电能并入牵引电网。通过合理的容量配置和选址,可以一定程度上减小牵引供电系统变压器的设计(过载)容量。
光伏并入牵引电网有两种方式:
1.光伏阵列经过DC-DC和DC-AC变换环节,通过工频变压器并入35kV中压网络;
2.光伏阵列经过DC-DC升压变换,并入1500V直流牵引网。
接入方式1在长距离传输能量情况下传输效率高,但需要并网逆变器和并网工频变压器。光伏电能需要经由多个变换环节(并网逆变器、并网变压器、移相变压器、多脉波整流器)才能被机车利用。因此系统转换效率降低较多。
接入方式2只需要DC-DC升压变换,省去了很多中间变换环节。但在同样光伏发电量情况下,该方式在线路上的传输损耗会比接入方式1的大。
因此现有的两种光伏并入牵引电网的方式存在转换效率降低以及传送损耗较大的缺陷。
另外,当前城市轨道交通系统负荷较为稳定,缺少可调负荷,难以实现地铁系统能源的优化调度。
发明内容
本发明提供一种优化的城市轨道列车能源互联系统,用于解决现有技术中存在的无法准确区分再生制动能量潮流分配情况的技术问题。
本发明提供一种优化的城市轨道列车能源互联系统,包括连通直流母线以及多端口潮流可控能量路由器,所述多端口潮流可控能量路由器分别与所述连通直流母线以及牵引直流母线相连,用于定向传送所述牵引直流母线上的再生制动能量。
在一个实施方式中,所述多端口潮流可控能量路由器的数量为一个或多个,其中,多个所述多端口潮流可控能量路由器之间相互通信。
在一个实施方式中,所述多端口潮流可控能量路由器包括无功率补偿装置、有源滤波器和再生制动能量回馈装置。
在一个实施方式中,还包括连接有辅助用电单元的低压直流母线,每个所述多端口潮流可控能量路由器均与所述低压直流母线相连。
在一个实施方式中,所述连通直流母线通过DC/DC变换器与光伏并网系统中的光伏阵列相连。
在一个实施方式中,所述连通直流母线还与分布式发电系统相连,所述分布式发电系统包括步行发电装置、地源热泵、燃料电池以及微型燃气轮机中的一种或几种。
在一个实施方式中,所述连通直流母线通过储能变换器与储能元件相连,所述储能元件包括蓄电池、超级电容和飞轮中的一种或几种。
在一个实施方式中,所述连通直流母线上连接有负荷单元,所述负荷单元包括电动汽车充电系统,所述电动汽车充电系统通过电动汽车充电变换器与所述连通直流母线相连。
在一个实施方式中,所述连通直流母线的电压由所述多端口潮流可控能量路由器进行调节。
在一个实施方式中,所述多端口潮流可控能量路由器还与交流母线相连,使再生制动能量通过交流母线在全线路机车间循环利用。
与现有技术相比,本发明的优点在于:
(1)由于多端口潮流可控能量路由器可以综合控制并联在连通直流母线上的源-荷,因此多端口潮流可控能量路由器能够准确区分再生制动能量潮流分配情况,从而形成完善的制动能量利用评估体系。
(2)通过多端口潮流可控能量路由器对全网能量进行合理的配置和调度,将再生制动能量主动定向传送,避免了无能馈系统因线路阻抗原因,再生制动能量只能在临近地铁站机车循环的问题,从而使得再生制动能量尽可能在地铁全线机车间循环,提高再生制动能量的利用率。
附图说明
在下文中将基于实施例并参考附图来对本发明进行更详细的描述。
图1为本发明的实施例中优化的城市轨道列车能源互联系统的原理示意图;
图2是本发明的实施中多端口潮流可控能量路由器的控制流程图;
图3是本发明的其中一个实施例中多端口潮流可控能量路由器的拓扑结构图;
图4是本发明的另一个实施例中多端口潮流可控能量路由器的拓扑结构图。
具体实施方式
下面将结合附图对本发明作进一步说明。
如图1所示,本发明提供了一种优化的城市轨道列车能源互联系统,其包括连通直流母线以及多端口潮流可控能量路由器,多端口潮流可控能量路由器分别与连通直流母线以及牵引直流母线相连,用于定向传送牵引直流母线上的再生制动能量。由于设置了一个直流通路,即连通直流母线,使通过多端口潮流可控能量路由器可以将再生制动能量主动由连通直流母线进行定向传送,从而避免了现有技术中无能馈系统因线路阻抗原因而导致的再生制动能量只能在临近站点内的列车间循环的问题,通过多端口潮流可控能量路由器的定向传送,使得再生制动能量尽可能在城市轨道的全线列车间循环,由此提高再生制动能量的利用率
另外通过将多端口潮流可控能量路由器可将牵引直流母线的电压灵活控制和稳定1500V甚至更高的电压水平,以减小系统电压振荡,从而取消车载制动电阻。
在一个实施例中,多端口潮流可控能量路由器的数量为一个或多个,当多端口潮流可控能量路由器的数量为多个(例如每个牵引变电站内均至少设置一个多端口潮流可控能量路由器的情况)时,多个多端口潮流可控能量路由器之间相互通信,即每个多端口潮流可控能量路由器的能量和信息均能够实现互联。
多端口潮流可控能量路由器包括无功率补偿装置、有源滤波器和再生制动能量回馈装置,即多端口潮流可控能量路由器具有无功率补偿功能、有源滤波功能和再生制动能量回馈功能,可以取消传统系统中的电能质量调节设备,提高系统经济性。
多端口潮流可控能量路由器除了具有各种电源制式(例如,交流、直流或电压等级)端口之外,还具有数据采集模块、状态监控模块和信息通信模块。
另外,多端口潮流可控能量路由器中的控制单元与牵引变电站内的中控室相 互通讯,从而准确区分并控制再生制动能量潮流分配情况,并进一步形成完善的制动能量利用评估体系。
在一个实施例中,将辅助用电系统从交流系统变为直流系统。具体来说,还包括连接有辅助用电单元的低压直流母线,每个多端口潮流可控能量路由器均与低压直流母线相连。由于辅助用电单元与低压直流母线相连,因此能够省略辅助用电单元前端的AC-DC变换装置以及与35kV中压交流牵引网并联的工频变压器等零部件,从而连通直流母线上的能源消纳提供更多的负荷和可控设备。
其中,辅助用电单元包括照明装置、空调装置、扶梯及升降机以及其他弱电装置。
连通直流母线上还连接有光伏并网系统,具体来说,通过DC/DC变换器与光伏并网系统中的光伏阵列相连。具体地,利用车站或车辆段屋顶铺设光伏阵列(太阳能电池板)进行光伏发电,从而使连通直流母线上的能量更多样化,即其不仅包括再生制动能量,还包括上述例如光伏电能的新能源。
进一步地,连通直流母线还与分布式发电系统相连,其中,分布式发电系统包括但不限于步行发电装置、地源热泵、燃料电池以及微型燃气轮机中的一种或几种。
另外,城市轨道列车沿线楼宇间的能量交换也可纳入分布式发电系统中。
连通直流母线通过储能变换器与储能元件相连,其中,储能元件包括但不限于蓄电池、超级电容和飞轮中的一种或几种。
其中,超级电容或飞轮为功率型储能元件,可以快速吸收或释放能量,可以用来平滑机车进站或出站时对地铁牵引供电系统的功率冲击(减小牵引网多脉动整流变压器的峰值功率),进而一定程度上减小其设计(过载)容量;储能电池的能量密度高,可以较多地吸收富余的再生制动能量或光伏余电,从而减小或消除制动电阻。
连通直流母线上连接有负荷单元,负荷单元包括电动汽车充电系统,电动汽车充电系统通过电动汽车充电变换器与连通直流母线相连。即将电动汽车和轨道交通联合起来形成公共交通的能源互联,使得交通系统能源利用效益最大化。
如图1所示,通过多端口潮流可控能量路由器将进站(例如,A1站点)列 车的再生制动能量主动导向出站(例如,Ai站点)列车,向其提供启动功率。
需要说明的是,上述的Ai站点为全线列车的任意一个站点,因此多端口潮流可控能量路由器能够按照“先近后远”或者“按需分配”的原则将再生制动能量进行导向,从而避免了无能馈系统因线路阻抗原因而使再生制动能量只能在临近站点的列车间循环的问题,从而使得再生制动能量尽可能在地铁全线列车间循环,提高再生制动能量的利用率。
因此,本发明的城市轨道列车能源互联系统与传统配置有能馈装置的地铁系统相比,再生制动能量可以进行定向控制,线路无功损耗,且无需配备并网工频变压器。
如图2所示,多端口潮流可控能量路由器对再生制动能量的控制方式如下:
第一步,判断再生制动能量是否能在全线路列车间循环,若是,则使再生制动能量在全线路列车间循环,并转向第二步;若否,转入第三步;
第二步,判断再生制动能量在全线路列车间循环后是否还有剩余,若是,则将剩余能量导入储能元件或辅助用电系统;若否,转入第四步;
第三步,判断新能源产生的能量(如,光伏余电)是否能在全线路列车间循环,若是,则使新能源产生的能量在全线路列车间循环,若否,则结束。
第四步,判断新能源产生的能量在全线路列车间循环后是否还有剩余,若是,则将剩余能量导入辅助用电系统、储能元件或负荷单元,若否,则结束。
由此,通过多端口潮流可控能量路由器将列车再生制动能量、牵引变电站的冷、热、照明等辅助用电以及光伏、储能、电动汽车充电互联,从而组建了集源(如,再生制动能量、新能源)-网(如,直流电网)-荷(如,电动汽车充电系统)-储(如,储能元件)-控(如,中控室)的城市轨道列车系统能源互联网系统。通过多端口潮流可控能量路由器对全网能量进行合理的配置和调度,就近消纳系统中的再生能量(包括再生制动能量和新能源产生的能量),以减少能源传输损耗,提高能源的利用率。
连通直流母线的电压由多端口潮流可控能量路由器进行调节,使连通直流母线的电压保持在合适的电压等级,例如1500V、2000V、6000V等。
在一个可选的实施例中,多端口潮流可控能量路由器还与交流母线相连,使再生制动能量通过交流母线在全线路机车间循环利用。
可选地,在本发明的一个实施例中,多端口潮流可控能量路由器基于MMC的拓扑结构。
具体地,如图3所示,多端口潮流可控能量路由器拓扑前端利用三相MMC变换器与35kV电网相连,将交流电转换成直流中压直流电;然后通过单相MMC将中压直流电转化成高频交流电,通过高频隔离变压器将电能传递给1500V直流牵引网和低压400V交直流辅助用电网络。
其中,MMC的每个子模块可以采用全桥或半桥形式,子模块直流母线并联超级电容或储能电池,即可以实现进行再生制动能量或新能源能量的分散式存储。并且根据实际需要可以将存储的能量释放给需要用电设备,以平稳机车脉冲功率对系统的冲击。
另外,1500V直流牵引电网通过变压器绕组与低压400V交直流辅助用电网耦合,可以实现机车的再生制动能量由1500V牵引网向辅助用电网传送。当然1500V直流牵引网以及低压辅助电网的能量也可以通过多端口潮流可控能量路由器传送到35kV电网。
可选地,在本发明的一个实施例中,多端口潮流可控能量路由器基于CHB+LLC的拓扑结构。
具体地,如图4所示,多端口潮流可控能量路由器拓扑采用三相级联H桥拓扑,与35kV电网相连,将交流电转换成直流电;每一重H桥直流侧接入LLC谐振变换器,将其直流电压变换为负荷所需要的直流电压等级。
在本实施例中,上述拓扑结构与35kV电网输入端采用串联的方式,输出端并联方式为1500V直流牵引网。输出端电压可调,给低压辅助电网供电。同样的,机车的再生制动能量可以从35kV电网向1500V直流牵引网传送,也可以从1500V直流牵引网向35kV电网传送。需要说明的是,为了提高安全性,上述实施例中多端口潮流可控能量路由器的拓扑结构中采用了隔离变压器,当然也可采用其他双向变流功能的不带隔离变压器的拓扑结构。
此外,多端口潮流可控能量路由器的拓扑结构还可采用满足能量双向可控且 具备多种端口的网络拓扑结构,例如,采用四象限变换器拓扑结构、四象限变换器的变形拓扑结构、三电平变换器、三电平变换器的变形拓扑结构、双主动桥(DAB)以及双主动桥(DAB)的变形拓扑结构中的一种。
虽然已经参考优选实施例对本发明进行了描述,但在不脱离本发明的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本发明并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (10)

  1. 一种优化的城市轨道列车能源互联系统,其特征在于,包括连通直流母线以及多端口潮流可控能量路由器,所述多端口潮流可控能量路由器分别与所述连通直流母线以及牵引直流母线相连,用于定向传送所述牵引直流母线上的再生制动能量。
  2. 根据权利要求1所述的优化的城市轨道列车能源互联系统,其特征在于,所述多端口潮流可控能量路由器的数量为一个或多个,其中,多个所述多端口潮流可控能量路由器之间相互通信。
  3. 根据权利要求2所述的优化的城市轨道列车能源互联系统,其特征在于,所述多端口潮流可控能量路由器包括无功率补偿装置、有源滤波器和再生制动能量回馈装置。
  4. 根据权利要求1-3中任一项所述的优化的城市轨道列车能源互联系统,其特征在于,还包括连接有辅助用电单元的低压直流母线,每个所述多端口潮流可控能量路由器均与所述低压直流母线相连。
  5. 根据权利要求1-3中任一项所述的优化的城市轨道列车能源互联系统,其特征在于,所述连通直流母线通过DC/DC变换器与光伏并网系统中的光伏阵列相连。
  6. 根据权利要求1-3中任一项所述的优化的城市轨道列车能源互联系统,其特征在于,所述连通直流母线还与分布式发电系统相连,所述分布式发电系统包括步行发电装置、地源热泵、燃料电池以及微型燃气轮机中的一种或几种。
  7. 根据权利要求1-3中任一项所述的优化的城市轨道列车能源互联系统,其特征在于,所述连通直流母线通过储能变换器与储能元件相连,所述储能元件包括蓄电池、超级电容和飞轮中的一种或几种。
  8. 根据权利要求1-3中任一项所述的优化的城市轨道列车能源互联系统,其特征在于,所述连通直流母线上连接有负荷单元,所述负荷单元包括电动汽车充电系统,所述电动汽车充电系统通过电动汽车充电变换器与所述连通直流母线相连。
  9. 根据权利要求1-3中任一权利要求所述的优化的城市轨道列车能源互联系统,其特征在于,所述连通直流母线的电压由所述多端口潮流可控能量路由器进 行调节。
  10. 根据权利要求1-3中任一权利要求所述的优化的城市轨道列车能源互联系统,其特征在于,所述多端口潮流可控能量路由器还与交流母线相连,使再生制动能量通过交流母线在全线路机车间循环利用。
PCT/CN2018/113681 2018-06-29 2018-11-02 优化的城市轨道列车能源互联系统 WO2020000843A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/043,731 US11594889B2 (en) 2018-06-29 2018-11-02 Optimized energy interconnection system for urban railway train

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810701547.2 2018-06-29
CN201810701547.2A CN110654241B (zh) 2018-06-29 2018-06-29 优化的城市轨道列车能源互联系统

Publications (1)

Publication Number Publication Date
WO2020000843A1 true WO2020000843A1 (zh) 2020-01-02

Family

ID=68985470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113681 WO2020000843A1 (zh) 2018-06-29 2018-11-02 优化的城市轨道列车能源互联系统

Country Status (3)

Country Link
US (1) US11594889B2 (zh)
CN (1) CN110654241B (zh)
WO (1) WO2020000843A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111509771A (zh) * 2020-04-21 2020-08-07 西安许继电力电子技术有限公司 地铁再生制动能量回馈装置自适应回馈控制方法和装置
CN113595397A (zh) * 2021-07-02 2021-11-02 南京南瑞继保电气有限公司 一种具有高频均压汇集母线的多端口能量路由器
CN114611334A (zh) * 2022-05-10 2022-06-10 中国能源建设集团湖南省电力设计院有限公司 一种多座牵引变电站共同影响下的负序分量评估方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112350326B (zh) * 2020-10-23 2023-08-11 株洲中车时代电气股份有限公司 轨道交通牵引供电系统及其控制方法、系统及相关组件
CN112895986B (zh) * 2021-03-15 2022-06-24 西南交通大学 一种新能源发电单元接入的牵引供电系统
CN112803582B (zh) * 2021-03-23 2022-11-15 西南交通大学 一种交直流混联地铁供电系统及其协调控制方法
CN113054751B (zh) * 2021-03-25 2022-07-15 北京交通大学 基于信息交互的城轨交通车地储能系统协调优化方法
CN112994106B (zh) * 2021-03-30 2022-05-10 西南交通大学 一种用于高铁的再生制动能量管理方法
CN113479117B (zh) * 2021-09-08 2021-11-23 西南交通大学 一种分布式发电牵引网列车运行状态辨识系统及辨识方法
CN114362163B (zh) * 2022-01-12 2023-05-12 西南交通大学 一种可再生能源微网供电的铁路能量路由调控方法
CN115000995B (zh) * 2022-04-15 2023-01-24 西南交通大学 一种牵引供电有功功率融通系统及其控制方法
CN115663887B (zh) * 2022-10-14 2023-07-25 上海交通大学 基于轻量化轨道运载系统的能源互联网系统及运行方法
CN115800350B (zh) * 2023-02-08 2023-05-12 通号(长沙)轨道交通控制技术有限公司 轨道交通车辆及其再生制动能量综合利用装置、方法
CN116667360B (zh) * 2023-07-31 2024-03-26 南方电网数字电网研究院有限公司 一种配用电弹性电能路由系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102616145A (zh) * 2012-03-29 2012-08-01 青岛易特优电子有限公司 一种电动汽车再生制动能量储存装置
US20140210263A1 (en) * 2013-01-28 2014-07-31 Hon Hai Precision Industry Co., Ltd. Data center and power supply system thereof
CN106058844A (zh) * 2016-08-01 2016-10-26 西北工业大学 一种用于直流微网的多端口能量路由器
CN106911130A (zh) * 2017-05-05 2017-06-30 广东工业大学 一种能量路由器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102358191A (zh) * 2011-08-05 2012-02-22 惠州市标顶空压技术有限公司 新型城市轨道交通再生电能回收系统
EP2672601A1 (fr) * 2012-06-05 2013-12-11 Siemens SAS Réseau d'alimentation électrique lié à un système de transport
KR101437349B1 (ko) * 2013-03-12 2014-09-04 한국철도기술연구원 다기능 에너지저장장치 기반의 철도연계형 전기자동차 충전전력 시스템
CN103296695A (zh) * 2013-05-24 2013-09-11 上海电机学院 一种基于储能架构的微型电网系统及其储能方法
US20150027837A1 (en) * 2013-07-29 2015-01-29 Electro-Motive Diesel, Inc. Rail system having an energy exchange station
CN103434421B (zh) * 2013-07-29 2015-10-21 华北电力大学(保定) 一种基于新能源的混合双向互动式直流牵引供电系统
CN107848432B (zh) * 2015-07-10 2021-07-23 Lg伊诺特有限公司 用于对电动车辆充电的装置和方法
CN205846737U (zh) * 2016-06-06 2016-12-28 同济大学 一种利用列车再生制动能的电动汽车储能式服务站
JP6921631B2 (ja) * 2017-06-07 2021-08-18 株式会社東芝 電源システム
CN108116455B (zh) * 2017-12-07 2020-05-08 交控科技股份有限公司 城市轨道交通综合节能系统及基于该系统的综合节能方法
CN107953803B (zh) * 2017-12-25 2023-04-18 西南交通大学 一种中压柔性直流牵引供电系统及其控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102616145A (zh) * 2012-03-29 2012-08-01 青岛易特优电子有限公司 一种电动汽车再生制动能量储存装置
US20140210263A1 (en) * 2013-01-28 2014-07-31 Hon Hai Precision Industry Co., Ltd. Data center and power supply system thereof
CN106058844A (zh) * 2016-08-01 2016-10-26 西北工业大学 一种用于直流微网的多端口能量路由器
CN106911130A (zh) * 2017-05-05 2017-06-30 广东工业大学 一种能量路由器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111509771A (zh) * 2020-04-21 2020-08-07 西安许继电力电子技术有限公司 地铁再生制动能量回馈装置自适应回馈控制方法和装置
CN113595397A (zh) * 2021-07-02 2021-11-02 南京南瑞继保电气有限公司 一种具有高频均压汇集母线的多端口能量路由器
CN114611334A (zh) * 2022-05-10 2022-06-10 中国能源建设集团湖南省电力设计院有限公司 一种多座牵引变电站共同影响下的负序分量评估方法

Also Published As

Publication number Publication date
US11594889B2 (en) 2023-02-28
CN110654241A (zh) 2020-01-07
US20210039500A1 (en) 2021-02-11
CN110654241B (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
WO2020000843A1 (zh) 优化的城市轨道列车能源互联系统
Brenna et al. The Evolution of Railway Power Supply Systems Toward Smart Microgrids: The concept of the energy hub and integration of distributed energy resources
CN109572491B (zh) 一种电气化铁路牵引网供电构造及其控制方法
CN110829435B (zh) 一种电气化铁路储能式牵引供电系统及其控制方法
CN109606208B (zh) 一种离网铁路牵引供电系统及调控方法
US20160159250A1 (en) A renewable energy-based hybrid bi-directionally interactive DC traction power supply system
CN111775782B (zh) 一种电气化铁路牵引应急保障供电系统及控制方法
CN102651554B (zh) 含储能的光伏系统接入城轨牵引网的控制方法及装置
CN110460077A (zh) 一种用于城轨牵引网的新能源供电系统及控制方法
Hinz et al. Impact and opportunities of medium-voltage DC grids in urban railway systems
Yu et al. A novel renewable microgrid-enabled metro traction power system—concepts, framework, and operation strategy
CN110649623A (zh) 一种用于铁路牵引网的能量利用系统
CN106099978A (zh) 用于无功补偿的地铁制动能量回馈装置、控制方法
Yang et al. An overview on braking energy regeneration technologies in Chinese urban railway transportation
CN109353367A (zh) 基于飞轮储能和电阻制动的再生能量回收系统及控制方法
CN203358381U (zh) 一种双向互动式直流牵引供电系统
Kaleybar et al. Sustainable Electrified Transportation Systems: Integration of EV and E-bus Charging Infrastructures to Electric Railway Systems
Yuan et al. Recent research progress and application of energy storage system in electrified railway
CN109038630B (zh) 一种具有储能辅助服务功能的电铁供电系统及控制方法
CN113381429B (zh) 一种轨道交通柔性供电装置及协调控制方法
Kumar et al. Investigation on recuperation of regenerative braking energy using ESS in (urban) rail transit system
Li et al. Application of energy storage system in rail transit: A review
Yu et al. A novel DC microgrid-enabled metro traction power system
CN209454601U (zh) 一种离网铁路牵引供电系统
CN209505511U (zh) 一种电气化铁路牵引网供电构造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18925029

Country of ref document: EP

Kind code of ref document: A1