CN113346534B - 适用于潮流仿真计算的储能型再生能量吸收装置模拟方法 - Google Patents

适用于潮流仿真计算的储能型再生能量吸收装置模拟方法 Download PDF

Info

Publication number
CN113346534B
CN113346534B CN202110893725.8A CN202110893725A CN113346534B CN 113346534 B CN113346534 B CN 113346534B CN 202110893725 A CN202110893725 A CN 202110893725A CN 113346534 B CN113346534 B CN 113346534B
Authority
CN
China
Prior art keywords
simulation step
step length
simulation
control system
calculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110893725.8A
Other languages
English (en)
Other versions
CN113346534A (zh
Inventor
李力鹏
孔清
赵兴华
陈怀鑫
于晓杰
杨建兴
刘广欢
韩喆
张昊然
康克农
靳佩跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Railway Electrification Survey Design and Research Institute Co Ltd
Original Assignee
China Railway Electrification Survey Design and Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Railway Electrification Survey Design and Research Institute Co Ltd filed Critical China Railway Electrification Survey Design and Research Institute Co Ltd
Priority to CN202110893725.8A priority Critical patent/CN113346534B/zh
Publication of CN113346534A publication Critical patent/CN113346534A/zh
Application granted granted Critical
Publication of CN113346534B publication Critical patent/CN113346534B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/04Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
    • H02J3/06Controlling transfer of power between connected networks; Controlling sharing of load between connected networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/30Arrangements for balancing of the load in a network by storage of energy using dynamo-electric machines coupled to flywheels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Abstract

本发明提供了适用于潮流仿真计算的储能型再生能量吸收装置模拟方法,包括以下步骤:建立主电路模型,由两个支路并联形成,其中支路一由开关元件K 1 、电阻元件R、受控电压源U sc 串联形成,支路二由开关元件K 2 、受控电流源I sc 串联形成;建立控制系统计算单元,其依据仿真前设置的恒定参数和在仿真中采集的主电路模型的直流网侧电压u dc 、直流网侧输入电流i dc ,以及控制系统计算单元在上一个仿真步长输出的控制信号soc,进行每个仿真步长的计算。本发明通过建立通用性的主电路模型和控制系统计算单元,来模拟储能型再生能量吸收装置复杂的电气外特性,无需搭建含有大量电力电子器件的变换器电路,既满足了工程精度需求,又保证了仿真速度。

Description

适用于潮流仿真计算的储能型再生能量吸收装置模拟方法
技术领域
本发明属于轨道交通供电系统潮流仿真计算领域,特别涉及一种适用于潮流仿真计算的储能型再生能量吸收装置模拟方法。
背景技术
目前城市轨道交通供电系统大多采用整流机组,将电能从三相交流电转换为直流电给列车供电。由于整流机组的二极管整流电路只能单向流动能量,因此列车在频繁制动时产生的大量再生制动能量将无法通过整流机组返回至供电系统上级交流网络。若列车产生的再生制动能量无法被相邻列车吸收,将被消耗在制动电阻或制动闸瓦上,造成能量浪费并导致隧道温升。
为解决上述问题,可以在城市轨道交通直流供电网(例如在牵引变电所直流母线、列车等位置)安装储能型再生能量吸收装置。如图1所示,储能型再生能量吸收装置一般包括储能元件、变换器、电压传感器、电流传感器、储能量百分比传感器等主要组成部分。储能元件可以采用超级电容、电池、飞轮等储能设备。变换器用于实现和控制轨道交通供电系统直流网与储能元件之间的双向能量流动,因此变换器的类型需与储能元件的类型相匹配。例如当储能元件采用超级电容或电池时,变换器可以采用双向DC/DC变换器实现轨道交通供电系统直流网与储能元件之间的双向能量流动。电压传感器用于采集储能型再生能量吸收装置的直流网侧电压。电流传感器用于采集储能型再生能量吸收装置的直流网侧电流。储能量百分比传感器用于采集储能元件的当前储能量百分比。
将储能型再生能量吸收装置安装于轨道交通供电系统直流网主要是为了实现节能稳压作用。当列车制动并回馈再生能量时,直流网压将上升,储能型再生能量吸收装置为充电状态,吸收列车再生能量,并抑制直流网压上升;当列车启动并吸收牵引能量时,直流网压将下降,储能型再生能量吸收装置为放电状态,释放存储的能量,并抑制直流网压下降。目前储能型再生能量吸收装置最普通采用的控制策略是基于采集的直流网侧电压、直流网侧电流、当前储能量百分比以及设置的额定功率、充电阈值、放电阈值、总储能量、充电效率、放电效率、等效内阻、储能量百分比初始值、储能量百分比上限阈值、储能量百分比下限阈值等参数,控制和切换储能型再生能量吸收装置的充放电状态,控制原理如下:
(1)当直流网侧电压小于充电阈值且大于放电阈值
储能型再生能量吸收装置为待机状态,既不充电,也不放电。
(2)当直流网侧电压不小于充电阈值
1)当前储能量百分比未达到储能量百分比上限,且输入功率未达到额定功率
储能型再生能量吸收装置为恒压充电状态,吸收能量,并将直流网压稳定在充电阈值。
2)当前储能量百分比未达到储能量百分比上限,且输入功率达到额定功率
储能型再生能量吸收装置为恒功率充电状态,吸收能量,并以额定功率进行充电,无法将直流网侧电压稳定在充电阈值。
3)当前储能量百分比达到储能量百分比上限
储能型再生能量吸收装置为待机状态,既不充电,也不放电。
(3)当直流网侧电压不大于放电阈值
1)当前储能量百分比未达到储能量百分比下限,且输出功率未达到额定功率
储能型再生能量吸收装置为恒压放电状态,释放能量,并将直流网压稳定在放电阈值。
2)当前储能量百分比未达到储能量百分比下限,且输出功率达到额定功率
储能型再生能量吸收装置为恒功率放电状态,释放能量,并以额定功率进行放电,无法将直流网侧电压稳定在放电阈值。
3)当前储能量百分比达到储能量百分比下限
储能型再生能量吸收装置为待机状态,既不充电,也不放电。
轨道交通直流供电网可能在多个位置安装多套储能型再生能量吸收装置,并可能具有不同的额定功率和控制参数。储能型再生能量吸收装置的动态特性必然影响整个直流供电网的动态特性。在对于城市轨道交通供电系统的潮流仿真计算中,各个设备和装置的模拟方法都影响仿真计算的速度和精确度。储能型再生能量吸收装置应用于轨道交通供电系统的时间较晚,其电路结构相对于供电系统的其它装置更为复杂,变换器、大量电力电子器件及其控制系统具备复杂的时变非线性特征,使储能型再生能量吸收装置模拟仿真的计算速度受到很大限制。轨道交通供电系统的潮流仿真计算,需要考虑大量的电气设备、导体和负荷,其分给储能型再生能量吸收装置的计算资源有限,而且有计算速度要求,对于储能型再生能量吸收装置建立十分详细的模型是不现实的,但是采用过于简化的模型又缺乏准确性,遗漏重要的动态特性。因此研究适用于轨道交通供电系统潮流仿真计算的储能型再生能量吸收装置广义负荷等效模型,既满足工程精度需求,又保证仿真速度,对于完善城市轨道交通供电系统的潮流仿真计算具有十分重要的意义。
目前城市轨道交通供电系统的潮流仿真计算,对于储能型再生能量吸收装置的广义负荷模拟方法基本是采用电压源加内阻的模型或纯电流源的模型进行等效,无法精确等效模拟储能型再生能量吸收装置复杂的电气外特性。
发明内容
本发明针对现有技术中存在的技术问题,提供一种适用于潮流仿真计算的储能型再生能量吸收装置模拟方法,基于储能型再生能量吸收装置的电气外特性,根据仿真前设置的恒定参数,以及仿真中实时采集的储能型再生能量吸收装置直流网侧电压u dc 、直流网侧电流i dc 、当前储能量百分比soc进行模型构建。
本发明采用的技术方案是:一种适用于潮流仿真计算的储能型再生能量吸收装置模拟方法,包括以下步骤:
S1:建立主电路模型,主电路模型由两个支路并联形成,其中支路一由开关元件K 1 、电阻元件R、受控电压源U sc 串联形成,支路二由开关元件K 2 、受控电流源I sc 串联形成;
S2:建立控制系统计算单元,其依据仿真前设置的恒定参数和在仿真中采集的主电路模型的直流网侧电压u dc 、直流网侧输入电流i dc ,以及控制系统计算单元在上一个仿真步长输出的控制信号soc,进行每个仿真步长的计算;控制系统计算单元在每个仿真步长输出的控制信号为g 1 ru sc g 2 i sc soc,其中g 1 ru sc g 2 i sc 用于控制下一个仿真步长主电路模型的开关元件K 1 、电阻元件R、受控电压源U sc 、开关元件K 2 、受控电流源I sc soc表示储能型再生能量吸收装置在当前仿真步长的储能量百分比,也用于作为下一个仿真步长控制系统计算单元的一个输入。
g 1 用于决定在下一个仿真步长主电路模型的开关元件K 1 是导通还是断开;具体的:g 1 的数值为0时,开关元件K 1 在下一个仿真步长的状态为断开;g 1 的数值为1时,开关元件K 1 在下一个仿真步长的状态为导通;g 2 用于决定在下一个仿真步长开关元件K 2 是导通还是断开;具体的:g 2 的数值为0时,开关元件K 2 在下一个仿真步长的状态为断开;g 2 的数值为1时,开关元件K 2 在下一个仿真步长的状态为导通。ru sc i sc 分别对下一个仿真步长主电路模型的电阻元件R、受控电压源U sc 、受控电流源I sc 进行赋值,具体的:r的数值为电阻元件R在下一个仿真步长的电阻值;u sc 的数值为受控电压源U sc 在下一个仿真步长的电压值;i sc 的数值为受控电流源I sc 在下一个仿步长的电流值。
控制系统计算单元在仿真前设置的恒定参数包括额定功率P r 、充电阈值U c 、放电阈值U d 、总储能量E、充电效率η c 、放电效率η d 、等效内阻R eq 、储能量百分比初始值SOC ini 、储能量百分比上限阈值SOC max 、储能量百分比下限阈值SOC min 和仿真步长时间t
步骤S2中,控制系统计算单元在每个仿真步长的计算过程,包括以下步骤。其中,soc n 表示控制系统计算单元在第n个仿真步长的计算输出socsoc n-1 表示控制系统计算单元在第n-1个仿真步长的计算输出soc
步骤1:判断
Figure 131424DEST_PATH_IMAGE001
是否成立。
若成立,主电路模型在下一个仿真步长为待机状态(状态1),控制系统计算单元输出:
Figure 325908DEST_PATH_IMAGE002
,本次仿真步长计算结束。
若不成立,进入步骤2。
步骤2:判断
Figure 542125DEST_PATH_IMAGE003
是否成立。
若成立,进入步骤3。
若不成立,进入步骤5。
步骤3:计算得到
Figure 424631DEST_PATH_IMAGE004
,并判断
Figure 714798DEST_PATH_IMAGE005
是否成立。
若成立,进入步骤4。
若不成立,主电路模型在下一个仿真步长为待机状态(状态1),控制系统计算单元输出:
Figure 657346DEST_PATH_IMAGE006
,本次仿真步长计算结束。
步骤4:判断
Figure 282231DEST_PATH_IMAGE007
是否成立。
若成立,主电路模型在下一个仿真步长为恒压充电状态(状态2),控制系统计算单元输出:
Figure 702848DEST_PATH_IMAGE008
,本次仿真步长计算结束。
若不成立,主电路模型在下一个仿真步长为恒功率充电状态(状态3),控制系统计算单元输出:
Figure 175418DEST_PATH_IMAGE009
Figure 960971DEST_PATH_IMAGE010
,本次仿真步长计算结束。
步骤5:计算得到
Figure 886202DEST_PATH_IMAGE011
,判断
Figure 110510DEST_PATH_IMAGE012
是否成立。
若成立,进入步骤6。
若不成立,主电路模型在下一个仿真步长为待机状态(状态1),控制系统计算单元输出:
Figure 123072DEST_PATH_IMAGE013
,本次仿真步长计算结束。
步骤6:判断
Figure 407423DEST_PATH_IMAGE014
是否成立。
若成立,主电路模型在下一个仿真步长为恒压放电状态(状态4),控制系统计算单元输出:
Figure 819949DEST_PATH_IMAGE015
,本次仿真步长计算结束。
若不成立,主电路模型在下一个仿真步长为恒功率放电状态(状态5),控制系统计算单元输出:
Figure 582369DEST_PATH_IMAGE016
Figure 701635DEST_PATH_IMAGE017
,本次仿真步长计算结束。
与现有技术相比,本发明所具有的有益效果是:
本发明提出的储能型再生能量吸收装置模拟方法,通过建立通用性的主电路模型和控制系统计算单元,来模拟储能型再生能量吸收装置复杂的电气外特性,无需搭建含有大量电力电子器件的变换器电路,既满足了工程精度需求,又保证了仿真速度。
本发明采用的主电路模型、控制系统计算单元及其仿真计算过程,通用性强、实现简单、计算精度高,可以等效模拟各种类型的储能型再生能量吸收装置,并且该建模方法也适合在各类仿真软件(如Matlab、Pscad、RT_Lab、C++等)上实现。
附图说明
图1是现有技术中储能型再生能量吸收装置示意图;
图2是本发明的储能型再生能量吸收装置的主电路模型示意图;
图3是本发明的储能型再生能量吸收装置的控制系统计算单元示意图;
图4是本发明的控制系统计算单元输入输出参数与主电路模型各元件的控制关系图;
图5是本发明的控制系统计算单元在每个仿真步长的计算原理图;
图6是本发明基于仿真软件Matlab/Simulink搭建的主电路模型示意图;
图7是本发明基于仿真软件Matlab/Simulink搭建的控制系统计算单元示意图;
图8是本发明的储能型再生能量吸收装置直流网电压仿真结果;
图9是本发明的储能型再生能量吸收装置吸收功率变化曲线仿真结果;
图10是本发明的储能型再生能量吸收装置储能量百分比仿真结果;
图11是本发明的储能型再生能量吸收装置节省能量变化曲线仿真结果。
具体实施方式
为使本领域技术人员更好的理解本发明的技术方案,下面结合附图和具体实施例对本发明作详细说明。
实施例一
本发明的实施例提供了一种适用于潮流仿真计算的储能型再生能量吸收装置模拟方法,其包括以下步骤:
S1:建立主电路模型,如图2所示,主电路模型由两个支路并联形成,其中支路一由开关元件K 1 、电阻元件R、受控电压源U sc 串联形成,支路二由开关元件K 2 、受控电流源I sc 串联形成;电压传感器采集主电路模型的直流网侧电压u dc ,电流传感器采集主电路模型的直流网侧输入电流i dc 。图2中,AB为主电路模型的两个连接端口,在轨道交通供电系统潮流仿真计算中,AB两个端口分别连接至轨道交通供电系统的正负极。
S2:建立控制系统计算单元,如图3所示,其依据仿真前设置的恒定参数和在仿真中采集的主电路模型的直流网侧电压u dc 、直流网侧输入电流i dc ,以及控制系统计算单元在上一个仿真步长输出的控制信号soc,进行每个仿真步长的计算。控制系统计算单元输出的控制信号为g 1 ru sc g 2 i sc socg 1 用于决定在下一个仿真步长主电路模型的开关元件K 1 是导通还是断开,r用于决定在下一个仿真步长电阻元件R的电阻值,u sc 用于决定在下一个仿真步长受控电压源U sc 的电压值,g 2 用于决定在下一个仿真步长开关元件K 2 是导通还是断开,i sc 用于决定在下一个仿真步长受控电流源I sc 的电流值,soc用于作为下一个仿真步长控制系统计算单元的一个输入。soc n 表示控制系统计算单元在第n个仿真步长的计算输出socsoc n-1 表示控制系统计算单元在第n-1个仿真步长的计算输出soc,也是控制系统计算单元在第n个仿真步长的计算输入soc。控制系统计算单元在仿真前设置的恒定参数包括额定功率P r 、充电阈值U c 、放电阈值U d 、总储能量E、充电效率η c 、放电效率η d 、等效内阻R eq 、储能量百分比初始值SOC ini 、储能量百分比上限阈值SOC max 、储能量百分比下限阈值SOC min 和仿真步长时间tg 1 g 2 的数值为0或1;具体的:g 1 的数值为0时,开关元件K 1 在下一个仿真步长的状态为断开;g 1 的数值为1时,开关元件K 1 在下一个仿真步长的状态为导通;g 2 的数值为0时,开关元件K 2 在下一个仿真步长的状态为断开;g 2 的数值为1时,开关元件K 2 在下一个仿真步长的状态为导通。ru sc i sc 分别对电阻元件R、受控电压源U sc 、受控电流源I sc 赋值,具体的:r的数值为电阻元件R在下一个仿真步长的电阻值;u sc 的数值为受控电压源U sc 在下一个仿真步长的电压值;i sc 的数值为受控电流源I sc 在下一个仿真步长的电流值。
如图4所示,通过虚线连接给出了在仿真中控制系统计算单元的输入输出参数与主电路模型各元件的控制关系。
控制系统计算单元在每个仿真步长的计算过程,如图5所示,包括以下步骤:
步骤1:判断
Figure 156887DEST_PATH_IMAGE018
是否成立。
若成立,主电路模型在下一个仿真步长为待机状态(状态1),控制系统计算单元输出:
Figure 56710DEST_PATH_IMAGE019
,本次仿真步长计算结束。
若不成立,进入步骤2。
步骤2:判断
Figure 809771DEST_PATH_IMAGE020
是否成立。
若成立,进入步骤3。
若不成立,进入步骤5。
步骤3:计算得到
Figure 845860DEST_PATH_IMAGE021
,判断
Figure 472014DEST_PATH_IMAGE022
是否成立。
若成立,进入步骤4。
若不成立,主电路模型在下一个仿真步长为待机状态(状态1),控制系统计算单元输出:
Figure 796816DEST_PATH_IMAGE023
,本次仿真步长计算结束。
步骤4:判断
Figure 901038DEST_PATH_IMAGE024
是否成立。
若成立,主电路模型在下一个仿真步长为恒压充电状态(状态2),控制系统计算单元输出:
Figure 57213DEST_PATH_IMAGE025
,本次仿真步长计算结束。
若不成立,主电路模型在下一个仿真步长为恒功率充电状态(状态3),控制系统计算单元输出:
Figure 542683DEST_PATH_IMAGE026
Figure 151519DEST_PATH_IMAGE027
,本次仿真步长计算结束。
步骤5:计算得到
Figure 325011DEST_PATH_IMAGE028
,判断
Figure 273376DEST_PATH_IMAGE029
是否成立。
若成立,进入步骤6。
若不成立,主电路模型在下一个仿真步长为待机状态(状态1),控制系统计算单元输出:
Figure 241332DEST_PATH_IMAGE030
,本次仿真步长计算结束。
步骤6:判断
Figure 337464DEST_PATH_IMAGE031
是否成立。
若成立,主电路模型在下一个仿真步长为恒压放电状态(状态4),控制系统计算单元输出:
Figure 783489DEST_PATH_IMAGE032
,本次仿真步长计算结束。
若不成立,主电路模型在下一个仿真步长为恒功率放电状态(状态5),控制系统计算单元输出:
Figure 101206DEST_PATH_IMAGE033
Figure 240064DEST_PATH_IMAGE034
,本次仿真步长计算结束。
实施例二
本实施例基于仿真软件Matlab/ Simulink,阐明适用于轨道交通供电系统潮流仿真计算的储能型再生能量吸收装置的模拟仿真方法。本实施例的步骤如下:
步骤1:建立通用性的主电路模型和控制系统计算单元。主电路模型采用Matlab/Simulink自带模块库里的开关、电阻、受控电压源、受控电流源、电压采集表计、电流采集表计等元件进行搭建,如图6所示。控制系统计算单元采用Matlab/ Simulink自带模块库里的嵌入式函数模块进行搭建,如图7所示。按照本发明所述的控制系统计算单元的输入输出参数与主电路模型各元件的控制关系,将控制系统计算单元的输入输出参数和主电路模型各元件进行连接。
步骤2:在Matlab/ Simulink搭建的控制系统计算单元里采用软件自身的程序语言进行编程,实现本发明所述的控制系统计算单元工作原理。
步骤3:将主电路模型的AB两个端口分别连接至轨道交通供电系统模型的直流网侧正负极。
基于上述步骤搭建的主电路模型和控制系统计算单元进行仿真,设定储能型再生能量吸收装置仿真的恒定参数如下:额定功率P r 为4MW、充电阈值U c 为840V、放电阈值U d 为810V、总储能量E为4kWh、充电效率η c 为0.95、放电效率η d 为0.95、等效内阻R eq 为2mΩ、储能量百分比初始值SOC ini 为0.5、储能量百分比上限阈值SOC max 为1、储能量百分比下限阈值SOC min 为0.25、仿真步长时间t为0.04s。
仿真结果如图8-11所示。下面对仿真结果中的部分时刻进行分析。
当仿真时间为58s时,直流网压u dc 为821V,
Figure 823492DEST_PATH_IMAGE035
成立,储能型再生能量吸收装置模型根据控制系统计算单元工作原理为状态1(待机状态),既不充电也不放电,因此储能型再生能量吸收装置模型功率为0,储能量百分比soc将维持不变;
当仿真时间为40s时,直流网压u dc 为840V,储能型再生能量吸收装置功率
Figure 10890DEST_PATH_IMAGE036
为1.586MW,储能型再生能量吸收装置储能量百分比soc为0.406,
Figure 996164DEST_PATH_IMAGE037
不成立,
Figure 991408DEST_PATH_IMAGE038
成立,
Figure 62133DEST_PATH_IMAGE039
成立,
Figure 53222DEST_PATH_IMAGE040
成立,储能型再生能量吸收装置模型根据控制系统计算单元工作原理为状态2(恒压充电状态),因此储能型再生能量吸收装置模型将直流网侧电压维持在U c ,并且功率为正(即为充电状态),储能量百分比soc将增大;
当仿真时间为70s时,直流网压u dc 为810V,储能型再生能量吸收装置功率
Figure 893002DEST_PATH_IMAGE041
为-0.312MW,储能型再生能量吸收装置储能量百分比soc为0.677,
Figure 373662DEST_PATH_IMAGE042
不成立,
Figure 853054DEST_PATH_IMAGE043
不成立,
Figure 710152DEST_PATH_IMAGE044
成立,
Figure 404438DEST_PATH_IMAGE045
成立,储能型再生能量吸收装置模型根据控制系统计算单元工作原理为状态4(恒压放电状态),因此储能型再生能量吸收装置模型将直流网侧电压维持在U d ,并且功率为负(即为放电状态),储能量百分比soc将减小。
从仿真结果可以看出,本实施例搭建的储能型再生能量吸收装置仿真模型,实现简单、计算精度高,可以等效模拟储能型再生能量吸收装置复杂的电气外特性,满足工程精度需求。
以上通过实施例对本发明进行了详细说明,但所述内容仅为本发明的示例性实施例,不能被认为用于限定本发明的实施范围。本发明的保护范围由权利要求书限定。凡利用本发明所述的技术方案,或本领域的技术人员在本发明技术方案的启发下,在本发明的实质和保护范围内,设计出类似的技术方案而达到上述技术效果的,或者对申请范围所作的均等变化与改进等,均应仍归属于本发明的专利涵盖保护范围之内。

Claims (2)

1.适用于潮流仿真计算的储能型再生能量吸收装置模拟方法,其特征在于:包括以下步骤:
S1:建立主电路模型,主电路模型由两个支路并联形成,其中支路一由开关元件K 1 、电阻元件R、受控电压源U sc 串联形成,支路二由开关元件K 2 、受控电流源I sc 串联形成;
S2:建立控制系统计算单元,其依据仿真前设置的恒定参数和在仿真中采集的主电路模型的直流网侧电压u dc 、直流网侧输入电流i dc ,以及控制系统计算单元在上一个仿真步长输出的控制信号soc,进行每个仿真步长的计算;控制系统计算单元在每个仿真步长输出的控制信号为g 1 ru sc g 2 i sc soc,其中,g 1 用于决定在下一个仿真步长主电路模型的开关元件K 1 是导通还是断开;g 2 用于决定在下一个仿真步长开关元件K 2 是导通还是断开;ru sc i sc 分别对下一个仿真步长主电路模型的电阻元件R、受控电压源U sc 、受控电流源I sc 进行赋值,soc表示储能型再生能量吸收装置在当前仿真步长的储能量百分比,也用于作为下一个仿真步长控制系统计算单元的一个输入;
仿真前设置的恒定参数包括额定功率P r 、充电阈值U c 、放电阈值U d 、总储能量E、充电效率η c 、放电效率η d 、等效内阻R eq 、储能量百分比初始值SOC ini 、储能量百分比上限阈值SOC max 、储能量百分比下限阈值SOC min 和仿真步长时间t
步骤S2中,控制系统计算单元在每个仿真步长的计算过程,包括以下步骤:其中,soc n 表示控制系统计算单元在第n个仿真步长的计算输出socsoc n-1 表示控制系统计算单元在第n-1个仿真步长的计算输出soc
步骤1:判断
Figure 360821DEST_PATH_IMAGE001
是否成立,
若成立,主电路模型在下一个仿真步长为待机状态,控制系统计算单元输出:
Figure 277961DEST_PATH_IMAGE002
,本次仿真步长计算结束,
若不成立,进入步骤2;
步骤2:判断
Figure 120015DEST_PATH_IMAGE003
是否成立,
若成立,进入步骤3;
若不成立,进入步骤5;
步骤3:计算得到
Figure 515225DEST_PATH_IMAGE004
判断
Figure 391914DEST_PATH_IMAGE005
是否成立,
若成立,进入步骤4;
若不成立,主电路模型在下一个仿真步长为待机状态,控制系统计算单元输出:
Figure 214376DEST_PATH_IMAGE006
,本次仿真步长计算结束,
步骤4:判断
Figure 606043DEST_PATH_IMAGE007
是否成立,
若成立,主电路模型在下一个仿真步长为恒压充电状态,控制系统计算单元输出:
Figure 804944DEST_PATH_IMAGE008
Figure 473822DEST_PATH_IMAGE009
,本次仿真步长计算结束,
若不成立,主电路模型在下一个仿真步长为恒功率充电状态,控制系统计算单元输出:
Figure 529503DEST_PATH_IMAGE010
,本次仿真步长计算结束,
步骤5:计算得到
Figure 283832DEST_PATH_IMAGE011
判断
Figure 20844DEST_PATH_IMAGE012
是否成立,
若成立,进入步骤6;
若不成立,主电路模型在下一个仿真步长为待机状态,控制系统计算单元输出:
Figure 668863DEST_PATH_IMAGE013
,本次仿真步长计算结束,
步骤6:判断
Figure 163954DEST_PATH_IMAGE014
是否成立,
若成立,主电路模型在下一个仿真步长为恒压放电状态,控制系统计算单元输出:
Figure 405580DEST_PATH_IMAGE015
,本次仿真步长计算结束,
若不成立,主电路模型在下一个仿真步长为恒功率放电状态,控制系统计算单元输出:
Figure 743020DEST_PATH_IMAGE016
,本次仿真步长计算结束。
2.如权利要求1所述的适用于潮流仿真计算的储能型再生能量吸收装置模拟方法,其特征在于:
g 1 的数值为0时,开关元件K 1 在下一个仿真步长的状态为断开;g 1 的数值为1时,开关元件K 1 在下一个仿真步长的状态为导通;
g 2 的数值为0时,开关元件K 2 在下一个仿真步长的状态为断开;g 2 的数值为1时,开关元件K 2 在下一个仿真步长的状态为导通;
r的数值为电阻元件R在下一个仿真步长的电阻值;
u sc 的数值为受控电压源U sc 在下一个仿真步长的电压值;
i sc 的数值为受控电流源I sc 在下一个仿真步长的电流值。
CN202110893725.8A 2021-08-05 2021-08-05 适用于潮流仿真计算的储能型再生能量吸收装置模拟方法 Active CN113346534B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110893725.8A CN113346534B (zh) 2021-08-05 2021-08-05 适用于潮流仿真计算的储能型再生能量吸收装置模拟方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110893725.8A CN113346534B (zh) 2021-08-05 2021-08-05 适用于潮流仿真计算的储能型再生能量吸收装置模拟方法

Publications (2)

Publication Number Publication Date
CN113346534A CN113346534A (zh) 2021-09-03
CN113346534B true CN113346534B (zh) 2021-11-23

Family

ID=77480694

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110893725.8A Active CN113346534B (zh) 2021-08-05 2021-08-05 适用于潮流仿真计算的储能型再生能量吸收装置模拟方法

Country Status (1)

Country Link
CN (1) CN113346534B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105844993A (zh) * 2016-05-18 2016-08-10 中国商用飞机有限责任公司北京民用飞机技术研究中心 一种能量回馈型飞机电气负载模拟方法和装置
CN106655196A (zh) * 2017-02-15 2017-05-10 河海大学 一种轨道交通的供电网潮流计算方法
CN108437806A (zh) * 2018-03-30 2018-08-24 中车青岛四方车辆研究所有限公司 城市轨道交通再生制动能量回收装置的配置系统及方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110874064B (zh) * 2020-01-17 2020-05-15 西南交通大学 一种高速铁路牵引网-多车耦合系统半实物仿真实验系统
CN112886570A (zh) * 2021-01-18 2021-06-01 湖南大学 一种高速铁路牵引供电系统综合负荷等效建模方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105844993A (zh) * 2016-05-18 2016-08-10 中国商用飞机有限责任公司北京民用飞机技术研究中心 一种能量回馈型飞机电气负载模拟方法和装置
CN106655196A (zh) * 2017-02-15 2017-05-10 河海大学 一种轨道交通的供电网潮流计算方法
CN108437806A (zh) * 2018-03-30 2018-08-24 中车青岛四方车辆研究所有限公司 城市轨道交通再生制动能量回收装置的配置系统及方法

Also Published As

Publication number Publication date
CN113346534A (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
Chen et al. Design and implementation of energy management system with fuzzy control for DC microgrid systems
Wang et al. A comparative study of power allocation strategies used in fuel cell and ultracapacitor hybrid systems
CN103954917B (zh) 一种单体电池测试模拟装置及实现方法
Hamidi et al. EV charging station integrating renewable energy and second-life battery
CN105514968B (zh) 一种基于升降压式和隔离型dc/dc电路的直流电力弹簧拓扑及其控制方法
CN102654565A (zh) 一种电池模拟方法及模拟器
CN104600731B (zh) 一种用于光储系统削峰填谷的储能系统控制方法
CN110350518B (zh) 一种用于调峰的电网储能容量需求评估方法及系统
CN105373009A (zh) 一种再生能源系统模拟测试与半实物仿真系统
CN106655233A (zh) 一种电池二次阶梯利用系统
CN105098923B (zh) 一种可实现电池均衡的电池组充电方法
CN103558478B (zh) 一种微电网变换器硬件在回路系统测试平台
CN113346534B (zh) 适用于潮流仿真计算的储能型再生能量吸收装置模拟方法
CN106059041A (zh) 一种风光储数据检测与管理系统
CN206609930U (zh) 充电桩回馈老化检测装置
CN105515032A (zh) 智能微网储能控制方法
CN113852079A (zh) 适用于潮流仿真计算的逆变回馈型再生装置模拟方法
CN205882727U (zh) 家用光伏储能电能控制器
CN109065955A (zh) 一种锂电池及其检测方法
CN110602231B (zh) 配网网格边缘代理系统和基于其的配电网分级管理系统
CN104158246B (zh) 一种风电储能运行控制方法
CN112736948A (zh) 一种充电站中储能系统的功率调节方法及装置
CN110460236A (zh) 一种燃料电池汽车功率系统模拟平台及方法
CN206117260U (zh) 一种多通道能量双向控制电路
CN214674491U (zh) 一种节能型充放电装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant