WO2019183875A1 - 晶体振荡器、振荡频率的调整方法 - Google Patents

晶体振荡器、振荡频率的调整方法 Download PDF

Info

Publication number
WO2019183875A1
WO2019183875A1 PCT/CN2018/081052 CN2018081052W WO2019183875A1 WO 2019183875 A1 WO2019183875 A1 WO 2019183875A1 CN 2018081052 W CN2018081052 W CN 2018081052W WO 2019183875 A1 WO2019183875 A1 WO 2019183875A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
crystal
circuit
oscillation
frequency control
Prior art date
Application number
PCT/CN2018/081052
Other languages
English (en)
French (fr)
Inventor
张孟文
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2018/081052 priority Critical patent/WO2019183875A1/zh
Priority to CN201880000277.0A priority patent/CN110692193B/zh
Priority to EP18875012.9A priority patent/EP3567719B1/en
Priority to US16/408,464 priority patent/US10879917B2/en
Publication of WO2019183875A1 publication Critical patent/WO2019183875A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/24Automatic control of frequency or phase; Synchronisation using a reference signal directly applied to the generator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • H03B5/36Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator active element in amplifier being semiconductor device
    • H03B5/366Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator active element in amplifier being semiconductor device and comprising means for varying the frequency by a variable voltage or current
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/02Details
    • H03B5/06Modifications of generator to ensure starting of oscillations
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/01Details
    • H03K3/012Modifications of generator to improve response time or to decrease power consumption
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/027Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
    • H03K3/03Astable circuits
    • H03K3/0307Stabilisation of output, e.g. using crystal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2200/00Indexing scheme relating to details of oscillators covered by H03B
    • H03B2200/0002Types of oscillators
    • H03B2200/0012Pierce oscillator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2200/00Indexing scheme relating to details of oscillators covered by H03B
    • H03B2200/006Functional aspects of oscillators
    • H03B2200/0068Frequency or FM detection
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2200/00Indexing scheme relating to details of oscillators covered by H03B
    • H03B2200/006Functional aspects of oscillators
    • H03B2200/0094Measures to ensure starting of oscillations

Definitions

  • the embodiments of the present invention relate to the field of circuit technologies, and in particular, to a crystal oscillator and a method for adjusting an oscillation frequency.
  • a crystal oscillator also known as a quartz resonator, is called a crystal oscillator, and is made of a quartz crystal piece having a piezoelectric effect.
  • This quartz crystal flake generates mechanical vibration when subjected to an applied alternating electric field.
  • the frequency of the alternating electric field is the same as the natural frequency of the quartz crystal, the vibration becomes very strong, which is the reaction of the crystal resonance characteristic.
  • the crystal oscillator naturally starts to oscillate for a long period of time. According to statistics, it usually takes more than 1000 cycles, which results in a slower start-up speed.
  • one of the technical problems solved by the embodiments of the present application is to provide a crystal oscillator and an adjustment method of an oscillation frequency for overcoming or alleviating the above-mentioned defects in the prior art.
  • the embodiment of the present application provides a crystal oscillator, including: a first oscillation circuit, a frequency control circuit, and a crystal, wherein the first oscillation circuit is configured to output a first driving signal having a first oscillation frequency to drive the crystal,
  • the frequency control circuit is configured to determine a frequency control amount according to a characteristic that the first driving signal drives an electrical signal flowing through the crystal, and adjust the first oscillation frequency according to the frequency control amount.
  • the frequency control circuit is configured to determine the frequency control amount according to a characteristic that the first driving signal drives a current flowing through the crystal.
  • the frequency control circuit is further configured to determine the frequency control amount according to an envelope frequency of the electrical signal flowing through the crystal by the first driving signal.
  • the method further includes: a conversion circuit, configured to convert the first oscillation frequency into a first control signal, and convert the frequency control quantity into a frequency control signal
  • the frequency control circuit is further configured to adjust the first oscillation frequency according to the first control signal and the frequency control signal.
  • the frequency control circuit is further configured to determine an injection control signal according to the first control signal and the frequency control signal, and obtain an adjusted according to the injection control signal.
  • the first oscillation frequency is further configured to determine an injection control signal according to the first control signal and the frequency control signal, and obtain an adjusted according to the injection control signal.
  • the first oscillation frequency is further configured to determine an injection control signal according to the first control signal and the frequency control signal, and obtain an adjusted according to the injection control signal.
  • the method further includes: a first detecting circuit, configured to detect an electrical signal flowing through the crystal.
  • the method further includes: a second detecting circuit, configured to detect a feature of the electrical signal flowing through the crystal.
  • the frequency control circuit is further configured to determine a frequency control amount according to a change trend of a characteristic of an electrical signal flowing through the crystal according to the first driving signal.
  • an absolute value of a difference between the first oscillation frequency and a resonant frequency of the crystal is greater than a set threshold, decreasing the frequency control amount to reduce The first oscillation frequency; or, if the absolute value of the difference between the first oscillation frequency and the resonant frequency of the crystal is less than a set threshold, increasing the frequency control amount to increase the first Oscillation frequency.
  • the method further includes a second oscillating circuit connected across the crystal, the second oscillating circuit configured to use the resonant frequency of the crystal at the first oscillating frequency
  • the crystal oscillator is oscillated when matched.
  • the second oscillation circuit in the process of adjusting the first oscillation frequency, is in a closed state; and the first oscillation frequency matches a resonance frequency of the crystal.
  • the first oscillating circuit and the frequency control circuit are in a closed state.
  • the electrical signal flowing through the crystal is characterized by an envelope frequency.
  • An embodiment of the present application provides a method for adjusting an oscillation frequency, including:
  • the first oscillation frequency is adjusted according to the frequency control amount.
  • the method further includes:
  • adjusting the first oscillation frequency according to the frequency control quantity comprises: adjusting the first oscillation frequency according to the first control signal and the frequency control signal.
  • adjusting the first oscillating frequency according to the first control signal and the frequency control signal comprises: determining an injection according to the first control signal and the frequency control signal And controlling the signal to obtain the adjusted first oscillation frequency according to the injection control signal.
  • the method further includes: detecting an electrical signal flowing through the crystal, and/or detecting a characteristic of an electrical signal flowing through the crystal.
  • determining a frequency control quantity according to a characteristic that the first driving signal drives an electrical signal flowing through the crystal includes: driving the crystal through the crystal according to the first driving signal The trend of the characteristic of the electrical signal determines the amount of frequency control.
  • the frequency control amount is decreased to enable Lowering the first oscillation frequency; if the absolute value of the difference between the first oscillation frequency and the resonant frequency of the crystal is less than a set threshold, increasing the frequency control amount to increase the first oscillation frequency.
  • the method further includes: oscillating the crystal oscillator when the first oscillation frequency matches a resonant frequency of the crystal.
  • the second oscillating circuit is turned off during the adjusting of the first oscillating frequency; when the first oscillating frequency matches the resonant frequency of the crystal, The first oscillating circuit and the frequency control circuit are turned off.
  • the first oscillating circuit outputs a first driving signal having a first oscillating frequency to drive the crystal
  • the frequency control circuit drives the flow according to the first driving signal.
  • the characteristic of the electrical signal of the crystal determines the frequency control amount, and adjusts the first oscillation frequency according to the frequency control amount.
  • FIG. 1 is a schematic structural diagram of an equivalent circuit of a crystal in the first embodiment of the present application.
  • FIG. 2 is a schematic diagram of a schematic model of a crystal oscillator in Embodiment 2 of the present application;
  • Embodiment 3 is a schematic diagram of current flowing through a crystal in Embodiment 3 of the present application.
  • Embodiment 4 is a schematic structural view of a crystal oscillator in Embodiment 4 of the present application.
  • FIG. 5 is a schematic structural diagram of a crystal oscillator according to Embodiment 5 of the present application.
  • FIG. 6 is a schematic structural diagram of a crystal oscillation circuit according to Embodiment 6 of the present application.
  • FIG. 7 is a schematic diagram of a resonant current when the first oscillating frequency and the resonant frequency are identical or approximately identical in Embodiment 7 of the present application;
  • Embodiment 8 is a schematic flowchart of a method for adjusting an oscillation frequency according to Embodiment 8 of the present application.
  • Embodiment 9 is a schematic flowchart of a method for adjusting an oscillation frequency in Embodiment 9 of the present application.
  • FIG. 10 is a schematic flowchart diagram of a method for adjusting an oscillation frequency in Embodiment 10 of the present application.
  • FIG. 1 is a schematic diagram showing the structure of an equivalent circuit of a crystal in the first embodiment of the present invention; as shown in FIG. 1, in the embodiment, the reason why the crystal oscillator of the crystal oscillator has a long oscillation period is long according to the equivalent circuit of the crystal. Detailed analysis.
  • the equivalent circuit of the crystal includes a series branch and a parallel branch.
  • the series branch includes a series resistor R S , an inductor L S and a capacitor C S
  • the parallel branch includes a capacitor C connected in parallel with the series branch.
  • the input current of the crystal is I t
  • the resonant current I S exists in its series branch
  • the glitch current I P exists in the parallel branch. Since the capacitance C P is much larger than the capacitance C S , the crystal oscillation circuit including the crystal has a longer start-up period, that is, the start-up speed is slower.
  • the embodiment of the present application provides two solutions.
  • a relatively large voltage step is injected into both ends of the crystal.
  • the transistor such as a MOS transistor
  • the core oscillation circuit also called a crystal oscillation circuit
  • the initial energy is high, and the transistor itself is resistant.
  • the limited pressure capability results in an upper limit of the voltage step excitation, which limits the final injection effect of the method.
  • the ratio of the inductive reactance and its equivalent loss resistance (called the Q value) exhibited by the series branch in the crystal equivalent circuit is very high, which means the frequency selective bandwidth of the crystal resonator. It is very narrow, but due to the influence of process, temperature and power supply voltage, the center frequency of the relaxation oscillation circuit will change greatly, so that the oscillation frequency of the relaxation oscillation circuit is hard to approach the resonance frequency.
  • FIG. 2 is a schematic diagram showing a schematic model of a crystal oscillator according to Embodiment 2 of the present application; as shown in FIG. 2, a brief model of the crystal oscillator includes two amplifiers and a crystal, and an oscillation frequency is f i at the leftmost amplifier end.
  • the drive signal, while detecting the current flowing through the crystal is shown in Figure 3.
  • 3 is a schematic diagram of current flowing through a crystal in the third embodiment of the present application; in combination with the above FIG. 1, the current flowing through the crystal includes a resonant current I S and a glitch current I P .
  • the drive signal with the oscillation frequency f i is divided into step signals with a time interval of 1/f i , and finally the crystal
  • the current of the series branch in the equivalent circuit i.e., the resonant current I S
  • the resonant current I S is a superposition of the responses of a series of step signals in the LCR circuit.
  • the resonance current I S just happens to have the minimum or maximum value of the amplitude superposition, and the time interval between the maximum value and the minimum value is 1/f i and 1/ The least common multiple of f s , thus forming the envelope of the sine wave
  • the method includes: a first oscillating circuit, a frequency control circuit, and a crystal, wherein the first oscillating circuit is configured to have an output a first driving signal of a first oscillation frequency to drive the crystal, or is also referred to as injecting energy into the crystal; the frequency control circuit is configured to drive an electrical signal flowing through the crystal according to the first driving signal.
  • the feature determines a frequency control amount and adjusts the first oscillation frequency according to the frequency control amount.
  • the frequency control circuit is further configured to determine a frequency control quantity according to a characteristic that the first driving signal drives a current flowing through the crystal, that is, the foregoing electrical signal flowing through the crystal may be a current flowing through the crystal. , such as resonant current.
  • the frequency control circuit is further configured to determine a frequency control amount according to an envelope frequency of the electrical signal flowing through the crystal according to the first driving signal.
  • the first oscillating circuit may specifically be the above-mentioned relaxation oscillating circuit (also referred to as a tunable oscillating circuit).
  • the first oscillation frequency may be a default frequency at which the relaxation oscillation circuit supplies a driving signal to the crystal, and the frequency control circuit performs the default frequency according to the frequency control amount. Adjusting so that the first oscillation frequency approaches the resonance frequency of the crystal in FIG. 4, and obtains the first first oscillation frequency. If the first first oscillation frequency is still not close to the resonance frequency of the crystal, the second adjustment is performed first.
  • the relaxation oscillation circuit provides the frequency of the drive signal as the first first oscillation frequency, and so on, until finally determining the first oscillation frequency as close as possible to the resonance frequency of the crystal to make the crystal oscillator fast Start up.
  • the adjustable oscillating circuit can be a Voltage Controlled Oscillator (VCO) or a Digital Controlled Oscillator (DCO).
  • the crystal oscillator further includes: a conversion circuit
  • the conversion circuit is configured to convert the first oscillation frequency into a first control signal, and convert the frequency control amount into a frequency control signal.
  • the first control signal and the frequency control signal may be current signals, and may also be digital signals.
  • the conversion circuit may specifically include an analog-to-digital conversion unit and a fast Fourier transform unit, where the analog-to-digital conversion unit is specifically configured to convert the first oscillation frequency into a first control signal, and a fast Fourier transform.
  • the unit is specifically configured to convert the frequency control amount into a frequency control signal.
  • the conversion circuit may be integrated with the frequency control circuit, or the function of the conversion circuit may be directly integrated in the frequency control circuit; or the conversion circuit may be integrated with the second detection circuit, or the conversion circuit will be The function is directly integrated in the second detection circuit.
  • the frequency control circuit is further configured to adjust the first oscillation frequency according to the first control signal and the frequency control signal.
  • the frequency control circuit is further configured to determine an injection control signal according to the first control signal and the frequency control signal, and adjust a first oscillation frequency according to the injection control signal, thereby obtaining The resonant frequency is as close as possible to the first oscillating frequency to achieve fast oscillating of the crystal oscillator.
  • the crystal oscillator further includes: a first detecting circuit, such as a resistor, wherein the first detecting circuit is configured to detect an electrical signal flowing through the crystal.
  • the first detection circuit may also only implement the function of electrical signal detection.
  • the first detection circuit may also be referred to as an electrical signal detection circuit.
  • the first detection circuit can play other functions in addition to the function of electrical signal detection, and the switching of the electrical signal detection function and other functions can be changed by the switching of the switching device.
  • the circuit structure of the first detection circuit is implemented.
  • the crystal oscillator further includes: a second detecting circuit, such as a diode or an active envelope detecting circuit, wherein the second detecting circuit is configured to detect a characteristic of an electrical signal flowing through the crystal.
  • the second detection circuit may also implement only the function of feature detection.
  • the second detection circuit may also be referred to as a feature detection circuit.
  • the second detecting circuit can play other functions in addition to the function of feature detection, and the switching of the feature detecting function and other functions can be changed by the switch of the switching device.
  • the circuit structure of the detection circuit is implemented.
  • the frequency control circuit is further configured to determine a frequency control amount according to a change trend of a characteristic of an electrical signal flowing through the crystal according to the first driving signal, and adjust according to the frequency control amount.
  • the first oscillation frequency is further configured to determine a frequency control amount according to a change trend of a characteristic of an electrical signal flowing through the crystal according to the first driving signal, and adjust according to the frequency control amount.
  • the absolute value of the difference between the first oscillation frequency and the resonant frequency of the crystal is greater than a set threshold, decreasing the frequency control amount when determining the adjusted first oscillation frequency Decrease the first oscillation frequency; if the absolute value of the difference between the first oscillation frequency and the resonant frequency of the crystal is less than a set threshold, increase the said first oscillation frequency after determining the adjusted The frequency control amount is to increase the first oscillation frequency.
  • the envelope frequency is the absolute value of the difference between the first oscillation frequency and the resonance frequency. Therefore, if the envelope frequency is greater than the set threshold, the control signal obtained by converting the currently detected envelope frequency is subtracted from the first control signal to obtain a frequency control signal, and the first oscillating circuit continues to adjust according to the frequency control signal. The magnitude of the first oscillation frequency. If the envelope frequency is less than the set threshold, the control signal obtained by converting the currently detected envelope frequency is added with the first control signal to obtain a frequency control signal, and the first oscillating circuit continues to adjust the first according to the frequency control signal. The size of an oscillating frequency. The technical process herein is repeated until the envelope frequency is equal to the set threshold and the first oscillation frequency is considered to be as close as possible to the resonant frequency of the crystal.
  • the above-described technical processing for determining the difference between the first oscillation frequency and the resonance frequency can be performed by a processor or an MCU or a DSP.
  • the processor may be integrated on the frequency control circuit or may be separated from the frequency control circuit.
  • the threshold may have an upper limit and a lower limit. If the envelope frequency is greater than a set upper threshold, the control signal obtained by converting the currently detected envelope frequency is subtracted from the first control signal to obtain a frequency control. a signal; if the envelope frequency is less than a set lower threshold, the control signal obtained by converting the currently detected envelope frequency is added to the first control signal to obtain a frequency control signal.
  • FIG. 6 is a schematic structural diagram of a crystal oscillator according to Embodiment 6 of the present application; as shown in FIG. 6, the method includes: including the first oscillation circuit, the frequency control circuit, the crystal, the conversion circuit, the first detection circuit, and the second detection.
  • the crystal oscillator further includes a second oscillating circuit, wherein the second oscillating circuit is configured to oscillate the crystal oscillator when the first oscillating frequency matches the resonant frequency of the crystal .
  • the second oscillating circuit may be referred to as a core oscillating circuit or a crystal oscillating circuit, which may specifically be a pierce or a santos Equal oscillation circuit.
  • the second oscillation circuit in the process of adjusting the first oscillation frequency, is in a closed state; when the first oscillation frequency matches a resonance frequency of the crystal, for example, two The first oscillating circuit and the frequency control circuit are in a closed state. If a conversion circuit, a first detection circuit, a second detection circuit, etc. are also included, these circuits are also in a closed state, that is, the other circuits in the crystal oscillator are in a closed state except for the crystal and the second oscillation circuit.
  • the following describes how to control the first oscillating circuit, the frequency control circuit, the conversion circuit, the first detecting circuit, and the second detecting circuit to be in an operating state, and the second oscillating circuit is in a closed state, and how to control the first oscillating circuit, the frequency control circuit, The crystal, the conversion circuit, the first detection circuit, and the second detection circuit are in a closed state, and the second oscillation circuit is in an active state.
  • the state control signals run, _run, tri are introduced, and the state control signals run, _run, and tri are assigned values to control whether the corresponding circuit is in the off state or the active state. That is, it can be understood that the first state control signal run, the second state control signal _run, the third state control signal tri are introduced to control whether the corresponding circuit is in the off state or the working state, and the first state control signal controls the second oscillating circuit. Whether it is in an active state or a closed state, the second state control signal controls whether the first oscillation circuit, the frequency control circuit, the conversion circuit, the first detection circuit, and the second detection circuit are in an active state or a closed state. Additionally, the third state control signal cooperates with the second state control signal to control whether the conversion circuit is in an active state or an off state.
  • the state control signal run is set to 0, so that the second oscillation circuit is in the off state, and the state control signal _run is set to 1, the first oscillation circuit, the frequency control circuit, the conversion circuit, the first detection circuit, The second detection circuit is in an active state.
  • the state control signal tri is set to 0, the frequency control circuit drives the crystal with a driving signal having a default frequency, that is, the first oscillation frequency is the default frequency, and the conversion circuit needs When the conversion is performed, the state control signal tri is set to 1 to start the conversion process.
  • the first oscillation frequency is adjusted until the first obtained oscillation frequency is completely consistent or nearly identical to the resonance frequency.
  • the state control signal run is set to 1
  • the second oscillation circuit is in the working state
  • the state control signal _run is set to 0
  • the first oscillation circuit, the frequency control circuit, the conversion circuit, the first detection circuit, and the second detection circuit are The off state, when in the off state, the state control signal tri can be defaulted.
  • FIG. 7 is a schematic diagram of a resonant current when the first oscillating frequency is consistent or approximately the same as the resonant frequency in the seventh embodiment of the present application; when the first oscillating frequency and the resonant frequency are completely identical or approximately identical, for example, the threshold value of 0 indicates complete agreement. If it is not 0, it means that it is approximately the same, so that the vibration can be quickly realized. With respect to FIG. 3, it is possible to enter the start-up state by a plurality of indications of the above-mentioned envelope frequencies, that is, to enter the state shown in FIG.
  • the division of the circuit structure is only an example.
  • the functions of the first detection circuit, the second detection circuit, and the conversion circuit may be integrated in the first oscillation circuit.
  • a frequency control circuit or the like may be integrated in the first oscillation circuit.
  • the first detection circuit, the second detection circuit, and the like are integrated in the frequency control circuit. Therefore, the division of the circuit structure is not particularly limited, and the division of the circuit structure is mainly considered by the implementation of the above-described technical processing.
  • FIG. 8 is a schematic flowchart of a method for adjusting an oscillation frequency according to Embodiment 8 of the present application; corresponding to the crystal oscillator of FIG. 4, as shown in FIG.
  • the crystal is driven with a first driving signal having the default frequency when the crystal oscillator is first turned on, or may be referred to as driving the crystal with a first driving signal having a default first oscillation frequency.
  • the default frequency is adjusted by the relationship between the envelope frequency and the set threshold to obtain the first first oscillation frequency. If the first first oscillating frequency and the resonant frequency obtained do not meet the purpose of fast oscillating, when the first oscillating frequency is adjusted for the second time, the crystal is driven by the driving signal having the first first oscillating frequency. Similarly, until the final first oscillation frequency is determined to be the same as or similar to the resonant frequency of the crystal, in order to achieve the purpose of fast oscillation of the crystal oscillator.
  • the execution body of step S801 in this embodiment may be the first oscillation circuit described above.
  • the electrical signal can be a current
  • the characteristic can be an envelope frequency
  • the execution body of the step S802 may be a frequency control circuit.
  • the execution body of the step S802 may be a frequency control circuit.
  • FIG. 9 is a schematic flowchart of a method for adjusting an oscillation frequency according to Embodiment 9 of the present application; as shown in FIG. 9, the method includes:
  • S902 Determine a frequency control quantity according to a characteristic that the first driving signal drives an electrical signal flowing through the crystal;
  • Steps S901 and S902 can be referred to the related description of FIG. 7 described above.
  • step S903 the process of converting the frequency into the control signal in step S903 can be referred to the embodiment of FIG. 5 described above.
  • S904 may specifically include: determining an injection control signal according to the first control signal and the frequency control signal, and obtaining the adjusted first oscillation frequency according to the injection control signal.
  • the method further includes: detecting an electrical signal flowing through the crystal, and/or detecting a characteristic of an electrical signal flowing through the crystal.
  • the detection of the electrical signal can be implemented by the first detection circuit described above, and the detection of the feature can be implemented by the second detection circuit.
  • the step S904 may include: determining a frequency control amount according to a change trend of a characteristic of an electrical signal flowing through the crystal according to the first driving signal, and adjusting the first oscillation frequency according to the frequency control amount. . Specifically, if an absolute value of a difference between the first oscillation frequency and a resonant frequency of the crystal is greater than a set threshold, decreasing the frequency control amount to decrease when determining the adjusted first oscillation frequency The first oscillation frequency; if the absolute value of the difference between the first oscillation frequency and the resonant frequency of the crystal is less than a set threshold, increasing the frequency control when determining the adjusted first oscillation frequency The amount is increased to increase the first oscillation frequency.
  • step S904 For a detailed description or explanation of step S904, reference may be made to the description of the embodiment of FIG. 3 and the embodiment of FIG.
  • FIG. 10 is a schematic flowchart of a method for adjusting an oscillation frequency in Embodiment 10 of the present application; as shown in FIG. 10, it includes:
  • S1002 Determine a frequency control quantity according to a characteristic that the first driving signal drives an electrical signal flowing through the crystal, and adjust the first oscillation frequency according to the frequency control quantity.
  • S1003 Start the crystal oscillator when the first oscillation frequency matches the resonant frequency of the crystal.
  • the second oscillation circuit in the process of adjusting the first oscillation frequency in the above steps S1001-S1002, the second oscillation circuit is turned off; when the first oscillation frequency matches the resonance frequency in step S1003, the The first oscillation circuit and the frequency control circuit are described.
  • the so-called off state in the above embodiment includes a shutdown state in which the power is turned off, and a standby state in which the power is turned on.
  • the first oscillating circuit may be a vacuum oscillator (VCO) or a numerically controlled oscillator (DCO).
  • VCO vacuum oscillator
  • DCO numerically controlled oscillator
  • the first oscillating circuit outputs a first driving signal having a first oscillating frequency to drive the crystal
  • the frequency control circuit drives the flow according to the first driving signal.
  • the characteristic of the electrical signal of the crystal determines the frequency control amount, and adjusts the first oscillation frequency according to the frequency control amount.
  • the technical solution in the above embodiment can also be applied to various occasions where the vibration can be controlled according to actual needs, for example, the starting speed of the crystal oscillator can be arbitrarily controlled.
  • the crystal vibration device and the method for adjusting the oscillation frequency of the above embodiments can be applied to specific electronic devices, such as mobile phones, wristbands, earphones, etc., such as a fingerprint module, a heart rate detection module, and the like.
  • the device embodiments described above are merely illustrative, wherein the modules described as separate components may or may not be physically separate, and the components displayed as modules may or may not be physical modules, ie may be located A place, or it can be distributed to multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without deliberate labor.
  • a machine-readable medium includes read only memory (ROM), random access memory (RAM), magnetic disk storage media, optical storage media, flash storage media, electrical, optical, acoustic, or other forms of propagation signals (eg, carrier waves) , an infrared signal, a digital signal, etc., etc., the computer software product comprising instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the various embodiments or portions of the embodiments described Methods.
  • ROM read only memory
  • RAM random access memory
  • magnetic disk storage media e.g., magnetic disks, magnetic disk storage media, optical storage media, flash storage media, electrical, optical, acoustic, or other forms of propagation signals (eg, carrier waves) , an infrared signal, a digital signal, etc., etc.
  • the computer software product comprising instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the various embodiments or portions of the embodiment
  • embodiments of the embodiments of the present application can be provided as a method, apparatus (device), or computer program product. Therefore, the embodiments of the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware. Moreover, embodiments of the present application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • Embodiments of the present application are described with reference to flowchart illustrations and/or block diagrams of methods, apparatus, and computer program products according to embodiments of the present application. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

一种晶体振荡器、振荡频率的调整方法,晶体振荡器包括:第一振荡电路、频率控制电路以及晶体,第一振荡电路输出具有第一振荡频率的第一驱动信号以驱动所述晶体,所述频率控制电路根据所述第一驱动信号驱动下流过所述晶体的电信号的特征确定频率控制量,并根据所述频率控制量调整所述第一振荡频率,当应用到使得晶体振荡器快速起振的场合时,可以缩短晶体振荡器自然起振的周期,加快起振速度。

Description

晶体振荡器、振荡频率的调整方法 技术领域
本申请实施例涉及电路技术领域,尤其涉及一种晶体振荡器、振荡频率的调整方法。
背景技术
晶体振荡器又名石英谐振器,简称晶振,是利用具有压电效应的石英晶体片制成。这种石英晶体薄片受到外加交变电场的作用时会产生机械振动,当交变电场的频率与石英晶体的固有频率相同时,振动便变得很强烈,这就是晶体谐振特性的反应。利用这种特性,就可以用石英谐振器取代LC(线圈和电容)谐振回路、滤波器等。
但是,通常晶体振荡器自然起振的周期较长,据统计通常需要1000个周期以上,也就是导致起振速度较慢。
发明内容
有鉴于此,本申请实施例所解决的技术问题之一在于提供一种晶体振荡器、振荡频率的调整方法,用以克服或者缓解现有技术中的上述缺陷。
本申请实施例提供一种晶体振荡器,其包括:第一振荡电路、频率控制电路以及晶体,所述第一振荡电路用于输出具有第一振荡频率的第一驱动信号以驱动所述晶体,所述频率控制电路用于根据所述第一驱动信号驱动下流过所述晶体的电信号的特征确定频率控制量,并根据所述频率控制量调整所述第一振荡频率。
可选地,在本申请的一实施例中,所述频率控制电路用于根据所述第一驱动信号驱动下流过所述晶体的电流的特征确定所述频率控制量。
可选地,在本申请的一实施例中,所述频率控制电路进一步用于根据所述第一驱动信号驱动下流过所述晶体的电信号的包络频率确定所述频率控制量。
可选地,在本申请的一实施例中,还包括:转换电路,所述转换电路用于将所述第一振荡频率转换为第一控制信号、将所述频率控制量转换为频率控制信号,所述频率控制电路进一步用于根据所述第一控制信号和所述频率控制信 号调整所述第一振荡频率。
可选地,在本申请的一实施例中,所述频率控制电路进一步用于根据所述第一控制信号和所述频率控制信号确定注入控制信号,并根据所述注入控制信号得到调整后的所述第一振荡频率。
可选地,在本申请的一实施例中,还包括:第一检测电路,所述第一检测电路用于对流过所述晶体的电信号进行检测。
可选地,在本申请的一实施例中,还包括:第二检测电路,所述第二检测电路用于对流过所述晶体的电信号的特征进行检测。
可选地,在本申请的一实施例中,所述频率控制电路进一步用于根据所述第一驱动信号驱动下流过所述晶体的电信号的特征的变化趋势确定频率控制量。
可选地,在本申请的一实施例中,若所述第一振荡频率与所述晶体的谐振频率之间差值的绝对值大于设定的阈值,则减小所述频率控制量以降低所述第一振荡频率;或者,若所述第一振荡频率与所述晶体的谐振频率之间差值的绝对值小于设定的阈值,则增加所述频率控制量以增大所述第一振荡频率。
可选地,在本申请的一实施例中,还包括跨接在所述晶体两端第二振荡电路,所述第二振荡电路用于在所述第一振荡频率与所述晶体的谐振频率匹配时使所述晶体振荡器起振。
可选地,在本申请的一实施例中,在调整所述第一振荡频率的过程中,所述第二振荡电路处于关闭状态;在所述第一振荡频率与所述晶体的谐振频率匹配时,所述第一振荡电路、频率控制电路处于关闭状态。
可选地,在本申请的一实施例中,流过所述晶体的电信号的特征为包络频率。
本申请实施例提供一种振荡频率的调整方法,其包括:
以具有第一振荡频率的第一驱动信号驱动晶体;
根据所述第一驱动信号驱动下流过所述晶体的电信号的特征确定频率控制量;
根据所述频率控制量调整所述第一振荡频率。
可选地,在本申请的一实施例中,还包括:
将所述第一振荡频率转换为第一控制信号、将所述频率控制量转换为频率控制信号;
对应地,根据所述频率控制量调整所述第一振荡频率包括:根据所述第一控制信号和所述频率控制信号调整所述第一振荡频率。
可选地,在本申请的一实施例中,根据所述第一控制信号和所述频率控制信号调整所述第一振荡频率包括:根据所述第一控制信号和所述频率控制信号确定注入控制信号,根据所述注入控制信号得到调整后的所述第一振荡频率。
可选地,在本申请的一实施例中,还包括:对流过所述晶体的电信号进行检测,和/或,对流过所述晶体的电信号的特征进行检测。
可选地,在本申请的一实施例中,根据所述第一驱动信号驱动下流过所述晶体的电信号的特征确定频率控制量包括:根据所述第一驱动信号驱动下流过所述晶体的电信号的特征的变化趋势确定频率控制量。
可选地,在本申请的一实施例中,若所述第一振荡频率与所述晶体的谐振频率之间差值的绝对值大于设定的阈值,则减小所述频率控制量以使降低所述第一振荡频率;若所述第一振荡频率与所述晶体的谐振频率之间差值的绝对值小于设定的阈值,则增加所述频率控制量以增大所述第一振荡频率。
可选地,在本申请的一实施例中,还包括:在所述第一振荡频率与所述晶体的谐振频率匹配时使所述晶体振荡器起振。
可选地,在本申请的一实施例中,在调整所述第一振荡频率的过程中,关闭所述第二振荡电路;在所述第一振荡频率与所述晶体的谐振频率匹配时,关闭所述第一振荡电路、频率控制电路。
本申请实施例提供的上述技术方案中,由于第一振荡电路输出具有第一振荡频率的第一驱动信号驱动以所述晶体,所述频率控制电路根据所述第一驱动信号驱动下流过所述晶体的电信号的特征确定频率控制量,并根据所述频率控制量调整所述第一振荡频率,当应用到使得晶体振荡器快速起振的场合时,可以缩短了晶体振荡器自然起振的周期,加快了起振速度。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本申请实施例的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1为本申请实施例一中晶体的等效电路结构示意图;
图2为本申请实施例二中晶体振荡器的简要模型示意图;
图3为本申请实施例三中流过晶体的电流示意图;
图4为本申请实施例四中晶体振荡器的结构示意图;
图5为本申请实施例五中晶体振荡器的结构示意图;
图6为本申请实施例六中晶体振荡电路的结构示意图;
图7为本申请实施例七中第一振荡频率与谐振频率一致或者近似一致时谐振电流的示意图;
图8为本申请实施例八中振荡频率的调整方法的流程示意图;
图9为本申请实施例九中振荡频率的调整方法的流程示意图;
图10为本申请实施例十中振荡频率的调整方法的流程示意图。
具体实施方式
实施本申请实施例的任一技术方案必不一定需要同时达到以上的所有优点。
为了使本领域的人员更好地理解本申请实施例中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请实施例一部分实施例,而不是全部的实施例。基于本申请实施例中的实施例,本领域普通技术人员所获得的所有其他实施例,都应当属于本申请实施例保护的范围。
下面结合本申请实施例附图进一步说明本申请实施例具体实现。
图1为本申请实施例一中晶体的等效电路结构示意图;如图1所示,本实施例中,根据晶体的等效电路对包括该晶体的晶体振荡器起振周期较长的原因进行详细分析。
如图1所示,晶体的等效电路包括串联支路和并联支路,串联支路包括串联的电阻R S、电感L S和电容C S,并联支路包括与串联支路并联的电容C P,晶体的输入电流为I t,在其串联支路中存在谐振电流I S,并联支路中存在毛刺电流I P。由于电容C P远远大于电容C S,从而导致包括该晶体的晶体振荡电路起振周期较长,也就是导致起振速度较慢。
为解决上述图1所示晶体导致的晶体振荡器起振周期较长的缺陷,本申请实施例提供了两种解决方案,第一种解决方案中,给晶体两端注入一个比较大的电压阶跃激励;第二种解决方案中,用一个振荡频率比较接近谐振频率的张弛振荡电路(或者可调振荡电路)给晶体提供驱动信号或者又称之为持续注入能量。
但是,对于第一种解决方案来说,由于核心振荡电路(又称之为晶体振荡 电路)里面的晶体管(比如MOS管)因为要大的阶跃电压才能让初始能量高,而该晶体管本身耐压能力有限,导致电压阶跃激励存在幅度上限,从而限制了该方法的最终注入效果。
而对于第二种解决方案来说,由于晶体等效电路中串联支路所呈现的感抗与其等效损耗电阻之比(称之为Q值)非常高,意味着晶体谐振器的选频带宽非常窄,但是由于工艺、温度、电源电压的影响,导致张弛振荡电路的中心频率会发生比较大的变化,从而使得张弛振荡电路的振荡频率很难接近谐振频率。
图2为本申请实施例二中晶体振荡器的简要模型示意图;如图2所示,晶体振荡器的简要模型中包括两个放大器以及一个晶体,在最左端的放大器端施加振荡频率为f i的驱动信号,而检测流过晶体的电流如图3所示。图3为本申请实施例三中流过晶体的电流示意图;结合上述图1所示,流过晶体的电流包括谐振电流I S、毛刺电流I P。而对于毛刺电流I P来说,由于在并联支路中只有一个电容C P,该电容C P两端会产生C P·dV/dt的突变电流,即毛刺电流I P。而对于串联支路来说,其实际上为LCR电路,因此该支路中电流对晶体两极的电压响应(谐振电流I S)为一个减幅振荡的正弦波,由于该串联支路的Q值非常高,所以在成百甚至上千个周期后谐振电流I S衰减非常小。
但是,再参见图3,在时域上,由于振荡频率f i与谐振频率f s往往不一致,将振荡频率为f i的驱动信号分为时间间隔为1/f i的阶跃信号,最终晶体等效电路中的串联支路的电流(即谐振电流I S)就是该LCR电路中一系列阶跃信号的响应的叠加。由于振荡频率f i与谐振频率f s不同,因此在一些时间点,谐振电流I S正好出现幅度叠加的最小值或者最大值,最大值与最小值的时间间隔即为1/f i和1/f s的最小公倍数,从而形成正弦波的包络|。
基于上述图1-图3的分析,下述实施例将对本申请实施例的晶体振荡器、振荡频率频率的调整方法等做示例性说明。
图4为本申请实施例四中晶体振荡器的结构示意图;如图4所示,本实施例中其包括:第一振荡电路、频率控制电路以及晶体,所述第一振荡电路用于输出具有第一振荡频率的第一驱动信号以驱动所述晶体,或者又称之为向所述晶体注入能量;所述频率控制电路用于根据所述第一驱动信号驱动下流过所述晶体的电信号的特征确定频率控制量,并根据所述频率控制量调整所述第一振荡频率。
本实施例中,所述频率控制电路进一步用于根据所述第一驱动信号驱动下 流过所述晶体的电流的特征确定频率控制量,即前述流过晶体的电信号可以是流过晶体的电流,比如谐振电流。
在另一实施例中,所述频率控制电路进一步用于根据所述第一驱动信号驱动下流过所述晶体的电信号的包络频率确定频率控制量。
本实施例中,所述第一振荡电路具体可以为上述张弛振荡电路(又称为可调振荡电路)。在上述晶体振荡器刚上电工作时,所述第一振荡频率可以为所述张弛振荡电路给所述晶体提供驱动信号的默认频率,而通过频率控制电路根据频率控制量对所述默认频率进行调整使得该第一振荡频率趋近图4中晶体的谐振频率,得到首个第一振荡频率,若该首个第一振荡频率与晶体的谐振频率仍然不接近时,进入第二次调整第一振荡频率的处理过程,所述张弛振荡电路提供驱动信号的频率为首个第一振荡频率,以此类推,直至最后确定出与晶体的谐振频率尽可能接近的第一振荡频率以使得晶体振荡器快速起振。具体地,所述可调振荡电路可为压控制振荡器(Voltage Controlled Oscillator,简称VCO)或者数控振荡器(Digital Controlled Oscillator,简称DCO)。
图5为本申请实施例五中晶体振荡器的结构示意图;如图5所示,除了包括上述第一振荡电路、频率控制电路以及晶体外,本实施例中,晶体振荡器还包括:转换电路,所述转换电路用于将所述第一振荡频率转换为第一控制信号、将所述频率控制量转换为频率控制信号。所述第一控制信号、频率控制信号可以为电流信号,还可以为数字信号。
本实施例中,所述转换电路具体可以包括模数转换单元以及快速傅里叶变换单元,模数转换单元具体用于将所述第一振荡频率转换为第一控制信号,快速傅里叶变换单元具体用于将所述频率控制量转换为频率控制信号。
需要说明的是,转换电路可以与频率控制电路集成在一起,或者,将转换电路的功能直接集成在频率控制电路中;或者,将转换电路与第二检测电路集成在一起,或者,将转换电路的功能直接集成在第二检测电路中。当然,也可以将转换电路包括的一部分单元集成在第二检测电路中,而将另外一部分单元集成在频率控制电路中。
本实施例中,所述频率控制电路进一步用于根据所述第一控制信号和所述频率控制信号调整所述第一振荡频率。
具体地,本实施例中,所述频率控制电路进一步用于根据所述第一控制信号和所述频率控制信号确定注入控制信号,并根据所述注入控制信号调整第一 振荡频率,从而得到与所述谐振频率尽可能接近时的第一振荡频率以实现晶体振荡器的快速起振。
进一步地,本实施例中,晶体振荡器还包括:第一检测电路,比如一电阻,所述第一检测电路用于对流过所述晶体的电信号进行检测。在一些具体应用场景中,第一检测电路也可以仅仅实现电信号检测的功能,此时,该第一检测电路又可称之为电信号检测电路。当然,如果在另外一些具体应用场景中,第一检测电路除了要起到电信号检测的作用外,还可以起到其他作用,而电信号检测作用和其他作用的切换可通过开关器件的开关改变第一检测电路的电路结构来实现。
进一步地,本实施例中,晶体振荡器还包括:第二检测电路,比如二极管或者有源包络检波电路,所述第二检测电路用于对流过所述晶体的电信号的特征进行检测。在一些具体应用场景中,第二检测电路也可以仅仅实现特征检测的功能,此时,该第二检测电路又可称之为特征检测电路。当然,如果在另外一些具体应用场景中,第二检测电路除了要起到特征检测的作用外,还可以起到其他作用,而特征检测作用和其他作用的切换可通过开关器件的开关改变第二检测电路的电路结构来实现。
具体地,本实施例中,所述频率控制电路进一步用于根据所述第一驱动信号驱动下流过所述晶体的电信号的特征的变化趋势确定频率控制量,并根据所述频率控制量调整所述第一振荡频率。
可选地,若所述第一振荡频率与所述晶体的谐振频率之间差值的绝对值大于设定的阈值,则在确定调整后的第一振荡频率时减小所述频率控制量以减小所述第一振荡频率;若所述第一振荡频率与所述晶体的谐振频率之间差值的绝对值小于设定的阈值,则在确定调整后的第一振荡频率时增加所述频率控制量以增大所述第一振荡频率。
结合上述图3所示,包络频率为第一振荡频率与谐振频率之间差值的绝对值。因此,若该包络频率大于设定的阈值,将当前检测到的包络频率进行转换得到的控制信号减去第一控制信号得到频率控制信号,第一振荡电路根据该频率控制信号继续调整所述第一振荡频率的大小。若该包络频率小于设定的阈值,将当前检测到的包络频率进行转换得到的控制信号加上第一控制信号得到频率控制信号,第一振荡电路根据该频率控制信号继续调整所述第一振荡频率的大小。不断重复此处的技术处理过程,直至包络频率等于设定的阈值即可认为第一振荡频率与所述晶体的谐振频率尽可能接近。
上述确定第一振荡频率与谐振频率之间差值的技术处理可由处理器或者MCU或者DSP执行。在具体实现时,可以将处理器集成在频率控制电路上,也可以与频率控制电路分立。
在另外一实施例中,上述阈值可以具有上限和下限,若该包络频率大于设定的阈值上限,将当前检测到的包络频率进行转换得到的控制信号减去第一控制信号得到频率控制信号;若该包络频率小于设定的阈值下限,将当前检测到的包络频率进行转换得到的控制信号加上第一控制信号得到频率控制信号。
图6为本申请实施例六中晶体振荡器的结构示意图;如图6所示,其包括:除了包括上述第一振荡电路、频率控制电路、晶体、转换电路、第一检测电路、第二检测电路外,本实施例中,晶体振荡器还包括第二振荡电路,所述第二振荡电路用于在所述第一振荡频率与所述晶体的谐振频率匹配时使所述晶体振荡器起振。
本实施例中,第二振荡电路若仅仅起到使得所述晶体振荡器起振的作用,则该第二振荡电路又可称之为核心振荡电路或者晶体振荡电路,其具体可为pierce或者santos等振荡电路。
可选地,在本实施例中,在调整所述第一振荡频率的过程中,所述第二振荡电路处于关闭状态;在所述第一振荡频率与所述晶体的谐振频率匹配时比如两者完全一致或者近似一致,所述第一振荡电路、频率控制电路处于关闭状态。若还包括转换电路、第一检测电路、第二检测电路等,则这些电路也处于关闭状态,即除了晶体和第二振荡电路外,晶体振荡器中的其他电路处于关闭状态。
下面说明如何控制第一振荡电路、频率控制电路、转换电路、第一检测电路、第二检测电路处于工作状态,而第二振荡电路处于关闭状态,以及如何控制第一振荡电路、频率控制电路、晶体、转换电路、第一检测电路、第二检测电路处于关闭状态,而第二振荡电路处于工作状态。
为此,引入状态控制信号run、_run、tri,通过对该状态控制信号run、_run、tri赋值从而控制对应电路的处于关闭还是工作状态。即,又可理解为引入了第一状态控制信号run、第二状态控制信号_run、第三状态控制信号tri从而控制对应电路的处于关闭还是工作状态,第一状态控制信号控制第二振荡电路是处于工作状态还是关闭状态,第二状态控制信号控制第一振荡电路、频率控制电路、转换电路、第一检测电路、第二检测电路是处于工作状态还是关闭状态。另外,第三状态控制信号与所述第二状态控制信号配合控制转换电路处于工作 状态还是关闭状态。
具体地,在起始状态,状态控制信号run置0,使得第二振荡电路处于关闭状态,而状态控制信号_run置1,第一振荡电路、频率控制电路、转换电路、第一检测电路、第二检测电路处于工作状态。另外,在转换电路处于工作状态时,状态控制信号tri置为0,则频率控制电路以具有默认频率的驱动信号驱动所述晶体,即此时第一振荡频率为默认频率,而在转换电路需要进行转换时,将状态控制信号tri置为1启动转换处理过程。同时参照上述包络频率与设定阈值的关系,对第一振荡频率进行调整直至最后得到的第一振荡频率与谐振频率完全一致或者接近一致。此时,将状态控制信号run置1,第二振荡电路处于工作状态,而状态控制信号_run置0,第一振荡电路、频率控制电路、转换电路、第一检测电路、第二检测电路处于关闭状态,当处于关闭状态时,状态控制信号tri可以缺省。
图7为本申请实施例七中第一振荡频率与谐振频率一致或者近似一致时谐振电流的示意图;当第一振荡频率和谐振频率完全一致或者近似一致时,比如上述阈值为0表示完全一致,若非0时,表示近似一致,从而可快速的实现起振。相对于图3来说,可能经过多个上述包络频率的示意才能进入起振状态,即进入图7所示的状态。
上述实施例中,电路结构的划分仅仅示例,在实现过程中,第一振荡电路中可能集成有第一检测电路、第二检测电路、转换电路的功能。另外,第一振荡电路中还可能集成有频率控制电路等。或者,第一检测电路、第二检测电路等集成在频率控制电路中,因此,电路结构的划分并不做特别限定,主要以上述技术处理的实现进行电路结构的划分考虑。
图8为本申请实施例八中振荡频率的调整方法的流程示意图;对应上述图4的晶体振荡器,如图8所示其包括:
S801、以具有第一振荡频率的第一驱动信号驱动所述晶体;
如前所述,在晶体振荡器首次启动时以具有所述默认频率的第一驱动信号驱动所述晶体,或者可称之为以具有默认的第一振荡频率的第一驱动信号驱动所述晶体。通过上述包络频率与设定阈值的关系对该默认频率进行调整得到首个第一振荡频率。而若得到的首个第一振荡频率与谐振频率不符合快速起振目 的的话,在第二次调整第一振荡频率时,以具有首个第一振荡频率的驱动信号驱动所述晶体,以此类推,直至确定出的最后的第一振荡频率与晶体的谐振频率一致或者尽可能近似,以实现符合晶体振荡器快速起振的目的。
如前所述,本实施例中步骤S801的执行主体可以为上述第一振荡电路。
S802、根据所述第一驱动信号驱动下流过所述晶体的电信号的特征确定频率控制量,并根据所述频率控制量调整所述第一振荡频率。
如前所述,电信号可以为电流,特征具体可以为包络频率。
本实施例中,所述步骤S802的执行主体可以为频率控制电路,详细描述或者解释可参见上述图4的记载。
图9为本申请实施例九中振荡频率的调整方法的流程示意图;如图9所示,其包括:
S901、以具有第一振荡频率的第一驱动信号驱动所述晶体;
S902、根据所述第一驱动信号驱动下流过所述晶体的电信号的特征确定频率控制量;
步骤S901、S902可参见上述图7的相关记载。
S903、将所述第一振荡频率转换为第一控制信号、将所述频率控制量转换为频率控制信号;
本实施例中,步骤S903将频率转换为控制信号的过程可参见上述图5实施例记载。
S904、根据所述第一控制信号和所述频率控制信号调整第一振荡频率。
本实施例中,S904可以具体包括:根据所述第一控制信号和所述频率控制信号确定注入控制信号,并根据所述注入控制信号得到调整后的所述第一振荡频率。
本实施例中,在步骤S901和步骤S902之间还可以包括:对流过所述晶体的电信号进行检测,和/或,对流过所述晶体的电信号的特征进行检测。对电信号的检测可通过上述第一检测电路实现,对特征的检测可通过上述第二检测电路实现。
具体地,在步骤S904中可以包括:根据所述第一驱动信号驱动下流过所述晶体的电信号的特征的变化趋势确定频率控制量,并根据所述频率控制量调整所述第一振荡频率。具体地,若所述第一振荡频率与所述晶体的谐振频率之间差值的绝对值大于设定的阈值,则在确定调整后的第一振荡频率时减小所述 频率控制量以降低所述第一振荡频率;若所述第一振荡频率与所述晶体的谐振频率之间差值的绝对值小于设定的阈值,则在确定调整后的第一振荡频率时增加所述频率控制量以增大所述第一振荡频率。
步骤S904的详细说明或者解释可参见上述图3实施例和图5实施例的记载。
图10为本申请实施例十中振荡频率的调整方法的流程示意图;如图10所示其包括:
S1001、以具有第一振荡频率的第一驱动信号驱动所述晶体;
S1002、根据所述第一驱动信号驱动下流过所述晶体的电信号的特征确定频率控制量,并根据所述频率控制量调整所述第一振荡频率。
S1003、在所述第一振荡频率与所述晶体的谐振频率匹配时使所述晶体振荡器起振。
本实施例中,在上述步骤S1001-S1002调整所述第一振荡频率的过程中,关闭所述第二振荡电路;在步骤S1003在所述第一振荡频率与所述谐振频率匹配时,关闭所述第一振荡电路、频率控制电路。
需要说明的是,上述实施例中所谓的关闭状态包括:切断电源的关机状态,以及接通电源的待机状态。
另外,上述实施例中,第一振荡电路可以为压空振荡器(VCO)也可以是数控振荡器(DCO)。
本申请实施例提供的上述技术方案中,由于第一振荡电路输出具有第一振荡频率的第一驱动信号以驱动所述晶体,所述频率控制电路根据所述第一驱动信号驱动下流过所述晶体的电信号的特征确定频率控制量,并根据所述频率控制量调整所述第一振荡频率,当应用到使得晶体振荡器快速起振的场合时,可以缩短了晶体振荡器自然起振的周期,加快了起振速度。
上述实施例中技术方案也可以应用到根据实际需求,应用到各种起振可控的场合中,比如可以任意控制晶体振荡器的起振速度。
本申请上述实施例的晶体振动装置、振荡频率的调整方法可以应用于具体的电子装置,比如手机、手环、耳机等,再比如指纹模组、心率检测模组等。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的 模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,所述计算机可读记录介质包括用于以计算机(例如计算机)可读的形式存储或传送信息的任何机制。例如,机器可读介质包括只读存储器(ROM)、随机存取存储器(RAM)、磁盘存储介质、光存储介质、闪速存储介质、电、光、声或其他形式的传播信号(例如,载波、红外信号、数字信号等)等,该计算机软件产品包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
本领域的技术人员应明白,本申请实施例的实施例可提供为方法、装置(设备)、或计算机程序产品。因此,本申请实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请实施例是参照根据本申请实施例的方法、装置(设备)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使 得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
最后应说明的是:以上实施例仅用以说明本申请实施例的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (20)

  1. 一种晶体振荡器,其特征在于,包括:第一振荡电路、频率控制电路以及晶体,所述第一振荡电路用于输出具有第一振荡频率的第一驱动信号以驱动所述晶体,所述频率控制电路用于根据所述第一驱动信号驱动下流过所述晶体的电信号的特征确定频率控制量,并根据所述频率控制量调整所述第一振荡频率。
  2. 根据权利要求1所述的晶体振荡器,其特征在于,所述频率控制电路用于根据所述第一驱动信号驱动下流过所述晶体的电流的特征确定所述频率控制量。
  3. 根据权利要求1所述的晶体振荡器,其特征在于,所述频率控制电路进一步用于根据所述第一驱动信号驱动下流过所述晶体的电信号的包络频率确定所述频率控制量。
  4. 根据权利要求1所述的晶体振荡器,其特征在于,还包括:转换电路,所述转换电路用于将所述第一振荡频率转换为第一控制信号、将所述频率控制量转换为频率控制信号,所述频率控制电路进一步用于根据所述第一控制信号和所述频率控制信号调整所述第一振荡频率。
  5. 根据权利要求4所述的晶体振荡器,其特征在于,所述频率控制电路进一步用于根据所述第一控制信号和所述频率控制信号确定注入控制信号,并根据所述注入控制信号得到调整后的所述第一振荡频率。
  6. 根据权利要求1所述的晶体振荡器,其特征在于,还包括:第一检测电路,所述第一检测电路用于对流过所述晶体的电信号进行检测。
  7. 根据权利要求1所述的晶体振荡装置,其特征在于,还包括:第二检测电路,所述第二检测电路用于对流过所述晶体的电信号的特征进行检测。
  8. 根据权利要求1所述的晶体振荡器,其特征在于,所述频率控制电路进一步用于根据所述第一驱动信号驱动下流过所述晶体的电信号的特征的变化趋势确定频率控制量。
  9. 根据权利要求8所述的晶体振荡器,其特征在于,若所述第一振荡频率与所述晶体的谐振频率之间差值的绝对值大于设定的阈值,则减小所述频率控制量以降低所述第一振荡频率;或者,若所述第一振荡频率与所述晶体的谐振频率之间差值的绝对值小于设定的阈值,则增加所述频率控制量以增大所述第一振荡频率。
  10. 根据权利要求1-9任一项所述的晶体振荡器,其特征在于,还包括跨接在所述晶体两端第二振荡电路,所述第二振荡电路用于在所述第一振荡频率与所述晶体的谐振频率匹配时使所述晶体振荡器起振。
  11. 根据权利要求10所述的晶体振荡器,其特征在于,在调整所述第一振荡频率的过程中,所述第二振荡电路处于关闭状态;在所述第一振荡频率与所述晶体的谐振频率匹配时,所述第一振荡电路、频率控制电路处于关闭状态。
  12. 根据权利要求11所述的晶体振荡器,其特征在于,流过所述晶体的电信号的特征为包络频率。
  13. 一种振荡频率的调整方法,其特征在于,包括:
    以具有第一振荡频率的第一驱动信号驱动晶体;
    根据所述第一驱动信号驱动下流过所述晶体的电信号的特征确定频率控制量;
    根据所述频率控制量调整所述第一振荡频率。
  14. 根据权利要求13所述的方法,其特征在于,还包括:
    将所述第一振荡频率转换为第一控制信号、将所述频率控制量转换为频率控制信号;
    对应地,根据所述频率控制量调整所述第一振荡频率包括:根据所述第一控制信号和所述频率控制信号调整所述第一振荡频率。
  15. 根据权利要求14所述的方法,其特征在于,根据所述第一控制信号和所述频率控制信号调整所述第一振荡频率包括:根据所述第一控制信号和所述频率控制信号确定注入控制信号,根据所述注入控制信号得到调整后的所述第一振荡频率。
  16. 根据权利要求13所述的方法,其特征在于,还包括:对流过所述晶体的电信号进行检测,和/或,对流过所述晶体的电信号的特征进行检测。
  17. 根据权利要求13所述的方法,其特征在于,根据所述第一驱动信号驱动下流过所述晶体的电信号的特征确定频率控制量包括:根据所述第一驱动信号驱动下流过所述晶体的电信号的特征的变化趋势确定频率控制量。
  18. 根据权利要求17所述的方法,其特征在于,若所述第一振荡频率与所述晶体的谐振频率之间差值的绝对值大于设定的阈值,则减小所述频率控制量以使降低所述第一振荡频率;若所述第一振荡频率与所述晶体的谐振频率之间差值的绝对值小于设定的阈值,则增加所述频率控制量以增大所述第一振荡频率。
  19. 根据权利要求13-18任一项所述的方法,其特征在于,还包括:在所述第一振荡频率与所述晶体的谐振频率匹配时使所述晶体振荡器起振。
  20. 根据权利要求19所述的方法,其特征在于,在调整所述第一振荡频率的过程中,关闭所述第二振荡电路;在所述第一振荡频率与所述晶体的谐振频率匹配时,关闭所述第一振荡电路、频率控制电路。
PCT/CN2018/081052 2018-03-29 2018-03-29 晶体振荡器、振荡频率的调整方法 WO2019183875A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2018/081052 WO2019183875A1 (zh) 2018-03-29 2018-03-29 晶体振荡器、振荡频率的调整方法
CN201880000277.0A CN110692193B (zh) 2018-03-29 2018-03-29 晶体振荡器、振荡频率的调整方法
EP18875012.9A EP3567719B1 (en) 2018-03-29 2018-03-29 Crystal oscillator, and oscillation frequency adjustment method
US16/408,464 US10879917B2 (en) 2018-03-29 2019-05-10 Crystal oscillator and method for adjusting oscillation frequency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/081052 WO2019183875A1 (zh) 2018-03-29 2018-03-29 晶体振荡器、振荡频率的调整方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/408,464 Continuation US10879917B2 (en) 2018-03-29 2019-05-10 Crystal oscillator and method for adjusting oscillation frequency

Publications (1)

Publication Number Publication Date
WO2019183875A1 true WO2019183875A1 (zh) 2019-10-03

Family

ID=68057330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081052 WO2019183875A1 (zh) 2018-03-29 2018-03-29 晶体振荡器、振荡频率的调整方法

Country Status (4)

Country Link
US (1) US10879917B2 (zh)
EP (1) EP3567719B1 (zh)
CN (1) CN110692193B (zh)
WO (1) WO2019183875A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11205995B2 (en) * 2020-03-27 2021-12-21 Intel Corporation Fast start-up crystal oscillator
CN115632652B (zh) * 2022-09-01 2023-06-30 深圳扬兴科技有限公司 一种集成晶振器的芯片处理方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162888A (zh) * 2006-10-10 2008-04-16 奕力科技股份有限公司 可调整振荡频率的振荡装置
US20080100391A1 (en) * 2006-10-31 2008-05-01 Samsung Electro-Mechanics Co., Ltd. Resistor-capacitor oscillation circuit capable of adjusting oscillation frequency and method of the same
CN103346782A (zh) * 2013-07-09 2013-10-09 东南大学 一种快速起振晶体振荡器
CN103618518A (zh) * 2013-11-27 2014-03-05 淮南市鑫联电子科技有限公司 一种晶体振荡器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5047734A (en) * 1990-05-30 1991-09-10 New Sd, Inc. Linear crystal oscillator with amplitude control and crosstalk cancellation
US6559730B1 (en) * 2000-07-05 2003-05-06 Cts Corporation Electronic switch with static control voltage for dynamically switching capacitance in a frequency-adjustable crystal oscillator
JP2004527976A (ja) * 2001-05-21 2004-09-09 トムソン ライセンシング ソシエテ アノニム 広帯域の電圧制御型水晶発振器
US6798301B1 (en) * 2001-06-11 2004-09-28 Lsi Logic Corporation Method and apparatus for controlling oscillation amplitude and oscillation frequency of crystal oscillator
JP4075447B2 (ja) * 2002-05-01 2008-04-16 セイコーエプソン株式会社 発振器、およびこの発振器を用いた電子機器
US6624708B1 (en) * 2002-06-25 2003-09-23 Sandia Corporation Active shunt capacitance cancelling oscillator circuit
US7911285B2 (en) * 2009-02-24 2011-03-22 Sanyo Electric Co., Ltd. Reference frequency control circuit
JP2013211654A (ja) * 2012-03-30 2013-10-10 Seiko Epson Corp 発振器、電子機器及び発振器の温度補償方法
US8816786B2 (en) * 2012-10-01 2014-08-26 Tensorcom, Inc. Method and apparatus of a crystal oscillator with a noiseless and amplitude based start up control loop
JP6045961B2 (ja) * 2013-01-31 2016-12-14 日本電波工業株式会社 水晶発振器及び発振装置
JP6060003B2 (ja) * 2013-02-21 2017-01-11 パナソニック株式会社 無線通信装置及びこの無線通信装置の起動方法
US9515604B2 (en) * 2014-05-19 2016-12-06 Texas Instruments Incorporated Driving crystal oscillator startup at above, below and operating frequency
US9515603B2 (en) * 2014-10-14 2016-12-06 Cypress Semiconductor Corporation Crystal oscillator start-up circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162888A (zh) * 2006-10-10 2008-04-16 奕力科技股份有限公司 可调整振荡频率的振荡装置
US20080100391A1 (en) * 2006-10-31 2008-05-01 Samsung Electro-Mechanics Co., Ltd. Resistor-capacitor oscillation circuit capable of adjusting oscillation frequency and method of the same
CN103346782A (zh) * 2013-07-09 2013-10-09 东南大学 一种快速起振晶体振荡器
CN103618518A (zh) * 2013-11-27 2014-03-05 淮南市鑫联电子科技有限公司 一种晶体振荡器

Also Published As

Publication number Publication date
CN110692193B (zh) 2024-02-13
EP3567719A1 (en) 2019-11-13
US10879917B2 (en) 2020-12-29
EP3567719A4 (en) 2020-01-15
CN110692193A (zh) 2020-01-14
US20190305786A1 (en) 2019-10-03
EP3567719B1 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
TWI313962B (en) Method and apparatus for a crystal oscillator to achieve fast start-up time, low power and frequency calibration
US10404258B2 (en) Integrated circuit device having an injection-locked oscillator
US7961060B1 (en) Amplitude regulated resonant oscillator with sampled feedback
EP3768440A1 (en) Methods and apparatus for driving a transducer
WO2019183875A1 (zh) 晶体振荡器、振荡频率的调整方法
TWI493864B (zh) 振盪訊號產生裝置與其相關方法
JP7307530B2 (ja) 水晶振動子回路、及び水晶振動子の起動方法
JP3584233B2 (ja) 振動型アクチュエータの駆動装置
JP2017199948A5 (zh)
JP2014216762A (ja) 半導体装置、発振回路及び信号処理システム
CN107743682A (zh) 具有自适应自启动的极低功率晶体振荡器
US20200007083A1 (en) Fast startup time for crystal oscillator
TW202227936A (zh) 觸覺自適應工作週期
CN106559038A (zh) 晶振电路
TWI659617B (zh) 弛緩震盪電路
WO2020051906A1 (zh) 计算机可读存储介质、快速启动时钟系统及其控制方法
Wei et al. Research on miniature quartz tuning fork with quality factor
JP2007188836A (ja) 高周波電源装置
TWI323032B (en) A circuit for compensating resistance variation and a method for tuning frequency thereof
US10393781B2 (en) Impedance synthesizer
CN116545385A (zh) 晶体振荡电路及其起振方法
JP3242080B2 (ja) 発振器回路
JP2004086118A (ja) テルミン
TWI691163B (zh) 起振電路及其操作方法
JP2013110743A (ja) 周波数を記憶する装置ならびに周波数を記憶しおよび読み出すための方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018875012

Country of ref document: EP

Effective date: 20190515

ENP Entry into the national phase

Ref document number: 2018875012

Country of ref document: EP

Effective date: 20190515

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE