WO2019182097A1 - 磁性体観察方法および磁性体観察装置 - Google Patents

磁性体観察方法および磁性体観察装置 Download PDF

Info

Publication number
WO2019182097A1
WO2019182097A1 PCT/JP2019/012018 JP2019012018W WO2019182097A1 WO 2019182097 A1 WO2019182097 A1 WO 2019182097A1 JP 2019012018 W JP2019012018 W JP 2019012018W WO 2019182097 A1 WO2019182097 A1 WO 2019182097A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
characteristic
ray
circularly polarized
rays
Prior art date
Application number
PCT/JP2019/012018
Other languages
English (en)
French (fr)
Inventor
俊哉 稲見
徹 綿貫
哲朗 上野
安田 良
Original Assignee
国立研究開発法人量子科学技術研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人量子科学技術研究開発機構 filed Critical 国立研究開発法人量子科学技術研究開発機構
Priority to EP19771291.2A priority Critical patent/EP3770591A4/en
Priority to JP2020507917A priority patent/JP7129109B2/ja
Priority to US16/647,884 priority patent/US11474169B2/en
Publication of WO2019182097A1 publication Critical patent/WO2019182097A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/1215Measuring magnetisation; Particular magnetometers therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • G01N23/2252Measuring emitted X-rays, e.g. electron probe microanalysis [EPMA]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/032Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/1292Measuring domain wall position or domain wall motion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • H01J37/222Image processing arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/266Measurement of magnetic- or electric fields in the object; Lorentzmicroscopy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/266Measurement of magnetic- or electric fields in the object; Lorentzmicroscopy
    • H01J37/268Measurement of magnetic- or electric fields in the object; Lorentzmicroscopy with scanning beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/072Investigating materials by wave or particle radiation secondary emission combination of measurements, 2 kinds of secondary emission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/079Investigating materials by wave or particle radiation secondary emission incident electron beam and measuring excited X-rays
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/16Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using polarising devices, e.g. for obtaining a polarised beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24507Intensity, dose or other characteristics of particle beams or electromagnetic radiation
    • H01J2237/2455Polarisation (electromagnetic beams)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/25Tubes for localised analysis using electron or ion beams
    • H01J2237/2505Tubes for localised analysis using electron or ion beams characterised by their application
    • H01J2237/2588Lorenz microscopy (magnetic field measurement)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2803Scanning microscopes characterised by the imaging method
    • H01J2237/2807X-rays

Definitions

  • the present invention relates to a method for observing the direction of magnetization or the magnitude of magnetization of a magnetic material, and an apparatus for observing the direction of magnetization or the magnitude of magnetization of a magnetic material.
  • the micro-geometric structure of the surface of the substance can be easily observed with an optical microscope or a scanning electron microscope (SEM: Scanning Electron Microscope).
  • a micro two-dimensional distribution of the elemental composition on the surface of the substance can also be visually recognized by detecting characteristic X-rays generated with electron beam irradiation in a scanning electron microscope.
  • a scanning electron microscope having such a function is widely used.
  • magnetic materials such as permanent magnets, electrical steel sheets, and magnetic recording media, it is possible to recognize the two-dimensional structure (magnetic domain structure) of magnetic domains (regions with uniform magnetization directions). Is also desired.
  • a spin SEM described in Non-Patent Document 1 As a technique in which a function for observing the magnetic domain structure is given to a scanning electron beam microscope, for example, a spin SEM described in Non-Patent Document 1 can be cited.
  • the spin polarization of secondary electrons emitted from the ferromagnetic material by electron beam irradiation is related to the magnetization of the magnetic material.
  • the spin SEM described in Patent Document 1 by utilizing this fact, the spin polarization of secondary electrons is measured, so that a two-dimensional structure of magnetization (2) together with a normal secondary electron image in a scanning electron microscope. (Dimensional magnetic domain structure) is imaged and displayed.
  • Patent Document 2 describes a magnetic force microscope capable of recognizing a magnetic domain structure as an image.
  • a magnetic film is provided on a cantilever used in an atomic force microscope, thereby enabling mapping of a leakage magnetic field from a sample, thereby recognizing a magnetic domain structure as an image.
  • Patent Document 3 a magnetic domain structure can be imaged and recognized by applying a voltage after bonding a spin current injection member to a sample and acquiring a thermal image (infrared image) of the sample. An observation device is described.
  • an observation method using a magneto-optic Kerr effect microscope is known.
  • This method is a method of irradiating the surface of a magnetic material with visible light or ultraviolet light and measuring a change in polarization of reflected light.
  • the magnetic domain structure is observed by utilizing the fact that the polarization of reflected light changes according to the direction of magnetization and the magnitude of magnetization of the measurement object due to the magneto-optic Kerr effect.
  • an observation method using an X-ray magnetic circular dichroism (XMCD) microscope is also known.
  • This method utilizes the property (MCD) that the ratio of X-rays absorbed by the sample when the magnetic sample is irradiated with circularly polarized X-rays differs depending on the rotation direction of the circularly polarized light.
  • MCD the property
  • the direction of magnetization and the magnitude of magnetization of the sample are measured from the difference in absorption rate in the rotation direction.
  • Magnetic domain observation using an XMCD microscope uses the absorption edge of a specific element in a measurement sample, and therefore can selectively measure a target element (element selective measurement).
  • the XMCD microscope can be classified into a soft X-ray MCD microscope and a hard X-ray MCD microscope according to the energy of X-rays to be irradiated.
  • Examples of the soft X-ray MCD microscope include a transmission type, an electron yield type, and a converted ion yield type.
  • Examples of the hard X-ray MCD microscope include a transmission type and a fluorescence yield type.
  • Magnetic materials such as permanent magnets, electrical steel sheets, or magnetic recording media are widely used in devices such as electric motors, transformers, and hard disk drives, and improving the performance of magnetic materials is an important issue in industry. .
  • Observation of the magnetic domain structure of the magnetic material is important in the development of the magnetic material, and various attempts have been made for the observation as described above.
  • the observation of the magnetic domain structure by these conventional techniques is generally a technique for observing the magnetic domain structure on the sample surface, and it is difficult to observe the magnetic domain structure inside the sample.
  • the measurement depth is limited to about 1 nm because of the low permeability of the secondary electrons to the sample.
  • the magnetic domain structure inside the magnetic material for example, a region having a depth of about several ⁇ m or more
  • it has been necessary to perform sample processing in advance such as thinning of the sample and surface polishing.
  • the excitation line is limited to the synchrotron radiation X-ray.
  • hard X-ray MCD has a small dichroism (low sensitivity) with respect to 3d transition metal elements (Fe, Co, Ni, etc.) known as typical elements constituting the magnetic material. It was difficult to use for general purpose observation of magnetic domain structure.
  • the transmission type XMCD microscope it was impossible to observe the magnetic domain structure unless the sample had a thickness capable of transmitting irradiated X-rays. For this reason, generally, when observing the magnetic domain structure with a transmission type XMCD microscope, it is necessary to slice the sample in advance so that the thickness of the sample can transmit the irradiated X-rays. Thinning of the sample is not essential for non-transmission MCD microscopes, but the detection depth of an electron yield type soft X-ray MCD microscope or a converted ion yield type soft X-ray MCD microscope depends on the escape depth of electrons. After all, the measurement depth was limited to about several nm.
  • the magneto-optic Kerr effect microscope is a technique for observing the magnetic domain structure using reflected light as described above
  • the sample surface is mirror-polished before observation (mechanical polishing with diamond or alumina abrasives, or acid or alkali). Chemical polishing etc.).
  • the surface treatment conditions may affect the observation results.
  • the surface of a magnetic sample such as a permanent magnet, an electromagnetic steel plate, or a magnetic recording medium may be coated or an inevitable film such as an oxide film may be formed.
  • a magnetic sample such as a permanent magnet, an electromagnetic steel plate, or a magnetic recording medium
  • an inevitable film such as an oxide film
  • the magnetic domain structure may change due to the above-described sample processing (such as sample thinning or film removal). That is, the magnetic domain structure of the exposed surface exposed on the sample surface by the sample processing may be different from the magnetic domain structure before the sample processing (magnetic domain structure when present inside the magnetic material). For this reason, it was difficult to observe the magnetic domain structure inside the magnetic material.
  • the conventional magnetic domain structure observation method has many limitations such as the limited measurement depth and the necessity of prior sample processing such as flattening of the sample surface and thinning of the sample. It became a foothold in the spread and use of observation techniques. For this reason, a magnetic substance observation technique is desired which is less restrictive to the sample and can accurately measure the direction of magnetization or the magnitude of magnetization.
  • One aspect of the present invention has been made in view of such problems, and provides a magnetic material observation technique in which the restriction on a sample is relaxed and the magnetization direction or the magnitude of the magnetization can be accurately measured. With the goal.
  • the inventors focused on characteristic X-rays generated when the magnetic material is irradiated with excitation rays, and as a result of extensive studies, the characteristic X-rays contain a considerable amount (easily measurable amount) of a circularly polarized component, It was discovered for the first time that the direction of rotation of the circularly polarized light component changes according to the direction of magnetization (the ratio of the right circularly polarized light component and the left circularly polarized light component included in the characteristic X-ray changes). And it discovered that the direction of magnetization of a magnetic body or the magnitude
  • the definition of “observing the direction of magnetization or the magnitude of magnetization” includes (1) an aspect in which only the direction of magnetization is observed, and (2) an aspect in which only the magnitude of magnetization is observed. (3) A mode of observing both the direction of magnetization and the magnitude of magnetization.
  • the present invention has the following configuration in order to solve the above problems.
  • a magnetic substance observation method is a method of observing the direction of magnetization or the magnitude of magnetization in a sample containing a magnetic substance, and is an element that constitutes the magnetic substance by irradiating the sample Irradiating an area on the sample with an excitation line that emits characteristic X-rays, and detecting the characteristic X-rays emitted by the element by irradiation of the excitation lines for each rotation direction of the circularly polarized light component
  • a detection step for recognizing as two intensities, and a calculation step for calculating a difference between the two intensities recognized in the detection step.
  • a magnetic substance observation apparatus is an apparatus for observing the direction of magnetization or the magnitude of magnetization in a sample containing a magnetic substance, and is an element that constitutes the magnetic substance by being irradiated on the sample A right-handed circularly polarized light component or a left-handed circularly polarized light component for each rotation direction of a circularly polarized light component, and an excitation radiation source that emits an exciting light that radiates characteristic X-rays to each other, and the characteristic X-ray emitted by the element by irradiation of the excited radiation And a data processing unit that outputs a calculated value calculated based on a difference between the intensity of the right circularly polarized light component and the intensity of the left circularly polarized light component.
  • the “magnetic substance” means a substance that can be magnetized.
  • the magnetic substance is a substance in which atoms constituting the magnetic substance can have a magnetic moment.
  • a substance so-called ferromagnetic substance and ferrimagnetic substance
  • Magnetic materials often contain magnetic elements such as iron and cobalt.
  • magnetic domain means a region in which the magnetization direction is uniform in a magnetic material.
  • the “magnetic domain structure” refers to a spatial distribution of magnetic domains in a magnetic material, and includes information on the direction of magnetization or the magnitude of magnetization in each magnetic domain.
  • the magnetic domain structure includes information indicating the arrangement of magnetic domains in the magnetic material and information indicating the direction of magnetization and / or the magnitude of magnetization in each magnetic domain.
  • the magnetic domain structure can include information other than these pieces of information.
  • the domain structure may include information related to the direction and / or magnitude of magnetization in each domain.
  • the magnetic domain structure may include information on the magnetization direction and size distribution inside the magnetic domain boundary (domain wall).
  • the “reversal ratio” means that when performing some measurement for obtaining the intensity, the measurement intensity under condition 1 is I 1 and the measurement intensity under condition 2 is I 2. (I 1 ⁇ I 2 ) / (I 1 + I 2 ) divided by the sum of these measured intensities.
  • Circularly polarized light includes right polarized light and left polarized light.
  • Right polarized light is circularly polarized light in which the electric field vector at the fixed point rotates clockwise (clockwise) over time when the moving light is observed at a fixed point, and left polarized light is observed at the fixed point. Then, the electric field vector at the fixed point is circularly polarized light that rotates counterclockwise (counterclockwise) with time.
  • the direction of rotation of circularly polarized light refers to the direction of rotation of this electric field vector, and is “clockwise” or “counterclockwise”.
  • degree of circular polarization refers to the difference between the ratio of the right circularly polarized light component and the ratio of the left circularly polarized light component to the total luminous flux.
  • characteristic X-ray refers to X-rays generated in the deexcitation process when vacancies are generated in the core level of an atom. Such characteristic X-rays have a substantially fixed energy corresponding to the level between the core levels.
  • the method for generating vacancies in the core level of the atom is not limited.
  • the intensity of the right circularly polarized component is expressed as I +, and the intensity of the left circularly polarized component is expressed as I ⁇ .
  • characteristic X-rays are emitted from the elements constituting the magnetic material.
  • the present inventors have confirmed for the first time that such a characteristic X-ray contains a circularly polarized light component.
  • the circularly polarized light component is classified into a right circularly polarized light component and a left circularly polarized light component.
  • the ratio of the right circularly polarized light component and the left circularly polarized light component included in the characteristic X-ray changes depending on the direction of magnetization or the magnitude of the magnetization of the site irradiated with the excitation beam (the site irradiated with the excitation beam in the magnetic material).
  • the present inventors have discovered for the first time. Based on such knowledge, the magnetic substance observation method disclosed here measures the direction of magnetization or the magnetization of the excitation beam irradiation site by measuring the ratio of the right circular polarization component and the left circular polarization component included in the characteristic X-ray. Observe the size (typically the domain structure).
  • FIG. 3 shows the measurement of the circularly polarized light component of characteristic X-ray by distinguishing the right circularly polarized light component and the left circularly polarized light component, and the intensity of each component (photons corresponding to each component are detected per unit time). It is the figure which plotted frequency) for every energy of characteristic X-rays.
  • white circles indicate the intensity of the right circularly polarized component
  • black circles indicate the intensity of the left circularly polarized component.
  • the intensity of the right circular polarization component and the intensity of the left circular polarization component are It can be seen that there is a significant difference between.
  • the characteristic X-ray includes a polarization component detected as circularly polarized light and other polarization components (hereinafter referred to as “non-circularly polarized light components”).
  • the non-circularly polarized light component is composed of linearly polarized light, 45 ° linearly polarized light, and non-polarized light. Therefore, when detecting the right circularly polarized component and when detecting the left circularly polarized component, the non-circularly polarized component is detected simultaneously with the circularly polarized component. Therefore, strictly speaking, the intensity plotted as the right circular polarization component in FIG.
  • the intensity of the non-circularly polarized component detected simultaneously with the right circularly polarized component and the intensity of the noncircularly polarized component detected simultaneously with the left circularly polarized component are both non-circularly polarized components included in the characteristic X-ray. Half the strength and equal to each other. Therefore, the intensities plotted as the right circular polarization component and the left circular polarization component in FIG.
  • the intensity of the non-circular polarization component detected at the same time as the circular polarization component corresponds to the true intensity of the component and the left circularly polarized component.
  • the difference between the intensity plotted as the right circular polarization component in FIG. 3 and the intensity plotted as the left circular polarization component in FIG. 3 is the difference between the true intensity of the right circular polarization component and the true intensity of the left circular polarization component. Matches.
  • FIG. 4 is a diagram in which a difference is calculated for the intensity of the right circular polarization component and the intensity of the left circular polarization component shown in FIG. 3 and the difference is plotted for each characteristic X-ray energy.
  • the difference between the intensity of the right circularly polarized component and the intensity of the left circularly polarized component when a magnetic field is applied so that the direction of magnetization is a predetermined direction is indicated by a black circle, and the direction of magnetization is opposite to the predetermined direction.
  • the above difference when a magnetic field is applied so as to be represented by white circles. From FIG. 4, it can be seen that when the magnetization direction is reversed, the difference between the right circular polarization intensity and the left circular polarization intensity is reversed.
  • a hard X-ray having a high property of transmitting a sample (hereinafter referred to as a transmission power) can be used.
  • a transmission power a hard X-ray having a high property of transmitting a sample.
  • the direction of magnetization differs for each magnetic domain, and the direction of magnetization changes abruptly at the boundary (domain wall) of the magnetic domain.
  • the magnetic domain structure can be mapped by sweeping the irradiation position of the excitation line on the sample and specifying the direction of magnetization according to the irradiation position of the excitation line. For example, by displaying the information mapping the magnetic domain structure superimposed on the captured image of the sample, the magnetic domain structure can be visualized and easily recognized.
  • the magnetic domain structure in the direction (depth direction) along the irradiation direction of the excitation line In addition to mapping by sweep measurement, it is also possible to observe the magnetic domain structure in the direction (depth direction) along the irradiation direction of the excitation line. For example, by changing the energy of the excitation line and changing the depth at which the excitation line reaches the material, or by moving the sample position up and down the position where the light receiving optical system is expected, etc.
  • the magnetic domain structure in the depth direction can be observed by measuring with changing to.
  • FIG. 6 is a flowchart showing this magnetic observation method.
  • the magnetic substance observation method disclosed herein is included in the irradiation step (S10) for irradiating the sample with excitation rays, the detection step (S20) for detecting the circularly polarized component contained in the characteristic X-ray, and the detected circularly polarized light.
  • the irradiation step (S10) is a step of irradiating a sample containing a magnetic material with excitation rays and emitting characteristic X-rays from the elements constituting the magnetic material.
  • the magnetic material sample to be observed is not particularly limited as long as it contains a magnetic material.
  • a magnetic substance is a substance that can be magnetized, and for example, iron (Fe), cobalt (Co), nickel (Ni), manganese (Mn), neodymium (Nd), samarium (Sm), gadolinium (Gd), Magnetic elements such as terbium (Tb) and dysprosium (Dy) are included.
  • iron (Fe) is a typical magnetic element.
  • Characteristic X-rays emitted from such iron (Fe) include hard X-rays (for example, FeK ⁇ ).
  • FeK ⁇ hard X-rays
  • a sample made of iron observes the magnetization direction or the magnitude of magnetization inside the sample. be able to.
  • the inside of the sample is a region having a depth of several ⁇ m or more (for example, 5 ⁇ m or more) from the sample surface, more preferably a region having a depth of 10 ⁇ m or more from the sample surface, for example, a depth from the sample surface. Is an area of about 40 ⁇ m.
  • the content of the magnetic substance (typically a magnetic element) contained in the sample to be observed is not particularly limited.
  • the magnetized portion typically, a region where a magnetic substance exists in the sample or a region where a magnetic element exists in the sample
  • the magnetized portion is magnetized.
  • the technique disclosed herein can be used for the purpose of observing the direction of magnetization or the magnitude of magnetization of a portion.
  • the method disclosed herein can be applied to a sample having a high magnetic element content (eg, 90% by mass or more, more preferably substantially 100% by mass).
  • a sample having a high magnetic element content eg, 90% by mass or more, more preferably substantially 100% by mass.
  • the size of the portion that is magnetized in the observation target sample for example, the region where the magnetic element is present
  • the technique disclosed here is applicable to the observation of the said magnetized part.
  • the technique disclosed herein may be used for confirming mixing of a magnetic element (magnetic material) present in a trace amount in a sample and observing the magnetization direction or the magnitude of the magnetization.
  • the above-mentioned excitation line is not particularly limited as long as it can emit characteristic X-rays from the elements constituting the magnetic material.
  • Examples of the characteristic X-ray include FeK ⁇ , CoK ⁇ , NiK ⁇ , MnK ⁇ , and the like.
  • Table 1 shows the relationship between the energy of these characteristic X-rays and the energy threshold of the excitation energy when the excitation ray is an X-ray.
  • the element constituting the magnetic material is Fe
  • the larger the energy of the characteristic X-ray the easier the characteristic X-ray escapes from the sample. That is, by using characteristic X-rays with large energy as a measurement object, a large measurement depth can be obtained, that is, the direction of magnetization or the magnitude of magnetization in the sample deep part (inside the sample) can be observed.
  • the characteristic X-rays in the table only exemplify typical characteristic X-rays emitted from the magnetic elements in the table, and each magnetic element in the table includes characteristic X-rays not illustrated in the table. May be released.
  • Fe can emit various characteristic X-rays such as FeK ⁇ 1 , FeK ⁇ 2 , FeK ⁇ .
  • hard X-ray is not particularly limited as long as the rotation direction of the circularly polarized light component can be distinguished in the detection step (S20) described later.
  • X-rays having an energy of 3 keV or more may be referred to as “hard X-rays” in this specification.
  • the excitation line is not limited to X-rays as long as it has an energy higher than that capable of exciting a magnetic element (that is, capable of emitting characteristic X-rays from the magnetic element in the deexcitation process).
  • Excitation rays other than X-rays for example, electromagnetic wave beams other than X-rays such as gamma rays, or charged particle beams such as electron beams, ion beams, positron beams, proton beams, or ⁇ particle beams may be used. From the viewpoint of observing the magnetic domain structure inside the sample, it is preferable to select an excitation line having a high permeability to the sample.
  • X-rays tend to have a high permeability to the sample.
  • hard X-rays high energy X-rays
  • the main constituent element is a magnetic body (for example, a magnetic steel sheet or a permanent magnet)
  • the depth of, for example, 1 ⁇ m or more is obtained by using hard X-rays as excitation rays. Can be observed.
  • the coating element is an epoxy film whose constituent element is a light element
  • the thickness of the coating film is about 1 mm or less
  • the coating film is made of an aluminum film, which is a light metal, the thickness of the coating film. Is about 100 ⁇ m or less, it is possible to observe the direction of magnetization or the magnitude of the magnetization of the magnetic body under the coating without removing the coating even when the magnetic body is coated with the coating. it can.
  • the main constituent element is a magnetic body (for example, an electromagnetic steel plate or a permanent magnet)
  • the magnetization direction or the depth to 0.1 ⁇ m or more (for example, about 2 ⁇ m) or The magnitude of magnetization can be observed.
  • the acceleration voltage of the electron beam used as the excitation line is about the same as the acceleration voltage (300 kV) of a normal TEM
  • the depth is the same as when using X-rays as the excitation line (for example, 1 ⁇ m or more, preferably 10 ⁇ m).
  • the direction of magnetization or the magnitude of magnetization of the magnetic substance under the film can be observed without removing the film even on a sample with a film formed on the surface. can do.
  • the acceleration voltage of the electron beam used as the excitation line is a normal SEM acceleration voltage (30 kV)
  • a film having a practical thickness is an epoxy or aluminum film. Even in the state in which the film) is formed, the magnetization direction or the magnitude of the magnetization of the magnetic material under the film can be observed without removing the film.
  • the acceleration voltage of the electron beam used as the excitation line is a normal TEM acceleration voltage (300 kV)
  • (1) when it is an epoxy film if the thickness of the film is about 400 ⁇ m or less
  • (2) when the coating is made of aluminum if the thickness of the coating is about 100 ⁇ m or less, even if the magnetic material is covered with the coating, the magnetic material under the coating is removed without removing the coating. The direction of magnetization or the magnitude of magnetization can be observed.
  • an electron beam is easy to focus so that the beam size is reduced.
  • An electron beam with a small beam size is suitable for observation with high spatial resolution.
  • an electron beam is preferable as an excitation line for observing a fine magnetic domain structure (the direction of magnetization or the magnitude of magnetization in a fine region).
  • an electron gun mounted on an electron microscope such as a transmission electron microscope (TEM) or SEM can be used as an excitation beam source.
  • TEM transmission electron microscope
  • an electron beam condensed at an SEM level for example, 1 nm or more and 1 ⁇ m or less, typically 3 nm or more and 300 nm or less
  • highly versatile observation can be realized.
  • observation with higher spatial resolution can be realized by using an electron beam condensed at a TEM level (for example, 0.3 nm or more and 30 nm or less) as an excitation line.
  • the excitation ray when the excitation ray is synchrotron radiation X-ray, the excitation ray can be condensed to 50 ⁇ m or less (for example, about 10 ⁇ m). If a more advanced condensing technique is used, it is 1 ⁇ m or less (for example, 200 nm to 300 nm). It is also possible to condense the light. By irradiating the sample with these condensed beams (condensed synchrotron radiation X-rays), observation with high spatial resolution can be realized.
  • the irradiation range of the excitation beam is not particularly limited.
  • the excitation line may be condensed to a diameter of about 0.1 nm to 1 mm (typically 1 nm to 100 ⁇ m), and the sample may be irradiated with the condensed excitation line.
  • the magnetic domain structure can be observed by sweeping the irradiation position of the excitation beam on the sample.
  • the sweeping method is not particularly limited.
  • the irradiation position of the excitation line can be adjusted by moving the light source of the excitation line or moving the sample.
  • the detection step (S20) is a step of detecting characteristic X-rays emitted from the sample in the irradiation step (S10).
  • the circularly polarized component of the characteristic X-ray is detected separately for each rotation direction. That is, as the method for detecting the characteristic X-ray, a method capable of distinguishing and detecting the right circularly polarized light component and the left circularly polarized light component can be suitably employed.
  • the detecting step (S20) includes a circularly polarized light separating step (S21) that separates the right circularly polarized component and the left circularly polarized component so that the right circularly polarized component and the left circularly polarized component can be detected separately, and the circular And an intensity detecting step (S22) for detecting the intensity of each circularly polarized component (right circularly polarized component and left circularly polarized component) separated in the polarization separating step (S21).
  • the circularly polarized light separation step (S21) for example, (1) one of the right circularly polarized light component and the left circularly polarized light component included in the characteristic X-ray is converted into a linearly polarized light component having the first polarization direction, and the other is converted.
  • the right circular polarization component is converted into a linear polarization component having the first polarization direction
  • the linear polarization component having the first polarization direction is extracted in the extraction step.
  • the right circularly polarized light component is separated by this circularly polarized light separation step (S21).
  • the circularly polarized light separation step (S21) whether to separate the right circularly polarized component or the left circularly polarized component can be switched, for example, by one of the following two methods.
  • the first method in the conversion step, the right circular polarization component included in the characteristic X-ray is converted into the first linear polarization component (in this case, the left circular polarization component is converted into the second linear polarization component).
  • a method of switching whether the right circularly polarized light component included in the characteristic X-ray is converted into the second linearly polarized light component (in this case, the left circularly polarized light component is changed to the first linearly polarized light component).
  • the second method is a method of switching between the separation of the first linearly polarized light component from the special X-ray and the separation of the second linearly polarized light component from the characteristic X-ray in the extraction step.
  • the conversion step of the circularly polarized light separation step (S21) can be realized using a wave plate such as a quarter wave plate ( ⁇ / 4 plate), for example.
  • a quarter wavelength plate a conventionally known one can be used without particular limitation, and may be selected according to the wavelength of the characteristic X-ray.
  • a wavelength plate of diamond single crystal a wavelength plate made of silicon (Si), a wavelength plate made of germanium (Ge), and the like.
  • a diamond single crystal wave plate (light element material wave plate) is optimal because it absorbs less X-rays.
  • the method for separating circularly polarized light components using such a wave plate is not particularly limited, and a conventionally known method may be employed.
  • a conventionally known method may be employed.
  • an example of a preferred embodiment will be described by taking as an example the case of using a diamond single crystal as the wave plate.
  • a wave plate (diamond single crystal) is placed on the optical axis of the light receiving optical system.
  • the direction of the wave plate is set so that the wave plate reflects the characteristic X-rays emitted from the sample by satisfying the Bragg reflection condition.
  • the position of the wave plate at this time is referred to as a basic position (0 ° position).
  • the wave plate is rotated by a predetermined rotation angle from the basic position with an axis orthogonal to the optical axis of the light receiving optical system as a rotation axis.
  • This rotation angle is such that the rotated wave plate functions as a +1/4 wave plate, that is, the right circularly polarized component is converted into linearly polarized light that is vertically polarized by the rotated wave plate, and the left circularly polarized component is It is determined to be converted into linearly polarized light that is polarized horizontally.
  • this rotation angle is referred to as A °
  • the position of the wave plate at this time is referred to as a + A ° position.
  • vertical and “horizontal” as polarization directions of linearly polarized light refer to two axes (X axis and Y axis) that are appropriately set within a plane orthogonal to the optical axis of the light receiving optical system. And the Y axis are orthogonal to each other in the plane.
  • horizontal is assumed to be the X axis
  • vertical is assumed to be the Y axis.
  • the wavelength plate (diamond single crystal) is rotated by A ° from the 0 ° position in the opposite direction to the case where it is used as the +1/4 wavelength plate with the axis orthogonal to the optical axis of the light receiving optical system as the rotation axis.
  • the -A ° position the right circularly polarized component is converted into a horizontally polarized linearly polarized light and the left circularly polarized component is converted into a vertically polarized linearly polarized light by the wave plate.
  • the polarization direction of linearly polarized light differs by 90 ° according to the rotation direction of the circularly polarized light component before passing through the quarter wavelength plate. That is, the polarization direction is orthogonal to the linearly polarized light when the right circularly polarized light component passes through the wave plate and the linearly polarized light when the left circularly polarized light component passes through the wave plate.
  • the diamond single crystal functions as a quarter wavelength plate ( ⁇ / 4 plate). That is, the position of the wave plate and / or the polarizer described later is switched (for example, the position of the wave plate is switched between the + A ° position and the ⁇ A ° position), thereby rotating the circularly polarized light component included in the characteristic X-ray in the rotation direction.
  • ⁇ / 4 plate the position of the wave plate and / or the polarizer described later is switched (for example, the position of the wave plate is switched between the + A ° position and the ⁇ A ° position), thereby rotating the circularly polarized light component included in the characteristic X-ray in the rotation direction.
  • the rotation axis is not particularly limited as long as it is a direction orthogonal to the traveling direction of the characteristic X-ray.
  • the rotation axis is preferably set so as to coincide with a direction inclined by 45 ° with respect to the vertical and horizontal directions of a polarizer (analyzer) described later.
  • the rotation angle (A °) of the wave plate may be set as appropriate.
  • the extraction step of the circularly polarized light separation step (S21) can be realized using, for example, a linear polarizer (analyzer).
  • a linear polarizer analyzer
  • examples of the linear polarizer that can be used in the extraction step include a silicon linear polarizer and a germanium linear polarizer.
  • the method of separating linearly polarized light components using such a linear polarizer is not particularly limited, and a conventionally known method may be employed.
  • a germanium single crystal is used as the linear polarizer.
  • a linear polarizer is placed on the optical axis of the light receiving optical system.
  • the direction of the linear polarizer is set so that the Bragg condition is satisfied and the linear polarizer Bragg-reflects characteristic X-rays transmitted through the wave plate.
  • the angle of Bragg reflection (angle formed by the reflection surface of the linear polarizer and the optical axis of the light receiving optical system) is preferably close to 45 °, preferably 45 ° ⁇ 5 °, more preferably 45 ° ⁇ 3 °. It is desirable to fit in.
  • a single crystal that produces such Bragg reflection is selected according to the energy of characteristic X-rays.
  • the single crystal is linearly polarized light having a polarization direction parallel (longitudinal) to the rotation axis of the linear polarizer and linear polarization having a polarization direction perpendicular (transverse) to the rotation axis of the linear polarizer. It functions as a so-called linear polarizer that selectively performs Bragg reflection.
  • the linearly polarized light component included in the characteristic X-ray can be distinguished for each length and width with respect to the rotation axis of the linear polarizer.
  • the characteristic X-rays actually include a plurality of characteristic X-rays corresponding to different elements and emission of different deexcitation processes (K ⁇ rays, K ⁇ rays, L ⁇ rays, etc.). For this reason, there are a plurality of peaks in the spectrum of characteristic X-rays. That is, the characteristic X-rays emitted from the sample S are not monochromatic. For this reason, it is preferable that the polarizer selectively detects X-rays in a specific energy band. That is, it is preferable that the polarizer also performs characteristic X-ray energy decomposition (detection of X-ray energy).
  • the setting of the polarizer it is possible to detect the characteristic X-rays belonging to the narrow energy band corresponding to a particular characteristic X-rays (e.g., K [alpha 1 line of Fe) at below the X-ray detector.
  • a particular characteristic X-rays e.g., K [alpha 1 line of Fe
  • polarizer a polarizer that can exhibit a desired effect such as selecting a polarization direction or selecting an energy band may be appropriately selected and used.
  • the target sample is iron (Fe)
  • a polarizer composed of a single crystal of Ge can be preferably used.
  • the characteristic X-ray includes non-circularly polarized light components such as linearly polarized light in addition to circularly polarized light.
  • the detection of the right circular polarization component and the left circular polarization component separately is not limited to detecting only the right circular polarization component or the left circular polarization component from the characteristic X-ray. That is, when detecting one circularly polarized component, the other circularly polarized component need not be detected at the same time, and when detecting each circularly polarized component, a non-circularly polarized component may be detected at the same time. For example, when each circular polarization component is detected by switching the position of the 1 ⁇ 4 wavelength plate, the non-circular polarization component is equally included in the detection result when the right circular polarization component is detected and when the left circular polarization component is detected.
  • the detection of the right circular polarization component and the left circular polarization component separately is not limited to detecting only the right circular polarization component or the left circular polarization component from
  • the circularly polarized light separation step (S21) may further include means for aligning the traveling direction of characteristic X-rays.
  • the traveling direction (radiation direction) of characteristic X-rays generated by excitation rays is radial and not parallel.
  • a collimating optical system for converting the characteristic X-rays into parallel light is provided in front of the circularly polarized light separating means (for example, a wave plate).
  • the intensity detection step (S22) is a step of detecting the intensity of each circularly polarized component included in the characteristic X-ray.
  • the frequency with which photons constituting the circularly polarized component are detected within a unit time may be detected as the intensity of the circularly polarized component.
  • the ratio of the right circular polarization component and the left circular polarization component included in the characteristic X-ray can be detected as an index representing the intensity of each circular polarization component.
  • the characteristic X-rays classified according to the rotation direction of the circularly polarized light in the circularly polarized light separating step (S21) may be detected by a conventionally known X-ray detector.
  • a semiconductor detector for example, a silicon drift detector
  • X-rays of this energy with high sensitivity can be used.
  • the energy of characteristic X-rays varies depending on the elements constituting the magnetic material.
  • the magnetic element is Fe
  • Co is the CoK ⁇ 1 line
  • Ni NiK ⁇ 1
  • the intensity of the right circularly polarized component and the left circularly polarized component (I + and I ⁇ in FIG. 4). Shows a significant difference, and the magnitude relationship between I + and I ⁇ is reversed at the center energy. These relationships are reversed when the direction of the applied magnetic field (the direction of magnetization) is reversed. Therefore, by measuring the intensity (I + ) of the right circularly polarized component and the intensity (I ⁇ ) of the left circularly polarized component at an energy (for example, 6.405 keV) at a certain point other than the central energy in the vicinity of the central energy. The direction of magnetization in the sample can be observed.
  • an energy for example, 6.405 keV
  • the central energy refers to energy that reverses the magnitude relationship between the intensity (I + ) of the right circularly polarized light component and the intensity (I ⁇ ) of the left circularly polarized light component.
  • the characteristic X-ray is K ⁇ 1
  • the magnitude relationship between the intensity of the right circularly polarized light component (I + ) and the intensity of the left circularly polarized light component (I ⁇ ) is the peak energy of each characteristic X-ray. It reverses as a boundary. Therefore, in this case, the peak energy of each characteristic X-ray may be regarded as the center energy (typically, the predetermined energy within the range of the peak energy ⁇ 0.002 keV of the characteristic X-ray).
  • the calculation step (S30) compares the intensity of the right circularly polarized component detected in the detection step (S20) with the intensity of the left circularly polarized component. Typically, the difference between the intensity of the right circular polarization component and the intensity of the left circular polarization component is calculated. The sign of this difference represents the direction of magnetization. Therefore, calculating such a difference corresponds to specifying the direction of magnetization. Further, the magnitude of the difference correlates with the magnitude of magnetization. Therefore, calculating such a difference leads to specifying the magnitude of magnetization.
  • the difference (I + -I ⁇ ) between the intensity (I + ) of the right circularly polarized component and the intensity (I ⁇ ) of the left circularly polarized component is normalized.
  • the difference (I + ⁇ I ⁇ ) is divided by the sum of the intensities (I + + I ⁇ ) of the detected circularly polarized light components, and this is calculated as the “inversion ratio”.
  • the direction of magnetization can be specified based on the sign of the inversion ratio, and the magnitude of magnetization can be specified based on the magnitude of the inversion ratio.
  • the standardization method is not particularly limited, and may be appropriately selected.
  • the reversal ratio is suitable as an index for magnetic domain observation because the difference is emphasized and the rotation direction of circularly polarized light is easily recognized.
  • the characteristic X-ray intensity may change depending on the shape of the sample surface (typically unevenness). For this reason, the shape of the sample surface affects the magnitude of the difference between the intensity of the right circularly polarized light component and the intensity of the left circularly polarized light component, and the observation accuracy of the magnetic domain structure may decrease.
  • the inversion ratio is less affected by the shape of the sample surface than the difference itself. For this reason, the accuracy of magnetic domain structure observation can be improved by adopting the inversion ratio as an index of magnetic domain structure observation.
  • magnetization can also be recognized as a vector by detecting characteristic X-rays from a plurality of different directions.
  • the magnetization is vectorized.
  • the in-plane direction (plane) magnetization can be measured as a two-dimensional vector.
  • the magnetization can be measured as a three-dimensional vector by observing the sample by arranging three detectors at positions where the detection directions of characteristic X-rays are different in three orthogonal directions.
  • the characteristic X as a two-dimensional or three-dimensional vector by sequentially measuring the characteristic X from a plurality of different directions using a measuring device having a variable light receiving axis direction. It is also possible to sequentially measure characteristic X-rays from a plurality of different directions by changing the direction of the sample with respect to the light receiving optical axis, such as rotating the sample stage. In these, sweeping is independently performed in measurement from a plurality of directions, and the results obtained are derived from the same sample position in the mutual data by image recognition, and vector mapping is performed by superimposing them. It is also possible to obtain
  • FIG. 1 is a diagram showing a configuration of the magnetic body observation apparatus 1.
  • the direction of magnetization or the magnitude of magnetization at each point on the surface of the sample S is recognized.
  • the direction of magnetization or the magnitude of magnetization inside the sample S can also be recognized.
  • the magnetic substance observation apparatus 1 includes a part having the same configuration as a conventionally known scanning electron microscope.
  • an electron source (electron gun) 11 is provided at the top of the magnetic substance observation apparatus 1.
  • the electron source 11 emits an electron beam (excitation line) E1 downward in the figure.
  • the electron optical system 12 includes a coil for forming the electron beam E1 so that the energy, beam size, beam shape, and intensity of the electron beam E1 are appropriate on the sample S fixed on the sample stage 13. And / or electrodes are included.
  • the electron optical system 12 may also be provided with a deflection coil for sweeping the electron beam E1 on the sample S.
  • the traveling direction of the electron beam E1 can be changed so as to scan the surface of the sample S two-dimensionally or to scan the inside of the sample S three-dimensionally. That is, the electron source 11 and the electron optical system 12 function as an excitation beam source 10 for scanning an electron beam (excitation beam) E1 on the sample S.
  • an electron detector 20 for detecting secondary electrons E2 generated by irradiating the surface of the sample S with the electron beam E1 is provided.
  • the electrons detected by the electron detector 20 may include reflected electrons and the like in addition to the secondary electrons E2.
  • the control unit 21 controls the above configuration and also functions as a data processing unit that displays the detection intensity of the electron detector 20 accompanying the sweep of the electron beam E1 on the display unit (display) 22 as a two-dimensional image. In this two-dimensional image, the detection intensity of the electron detector 20 is shown, for example, corresponding to the irradiation position of the electron beam E1 on the sample S. This two-dimensional image becomes an electron beam image of the surface of the sample S.
  • this magnetic observation apparatus 1 also functions as a normal scanning electron microscope. Instead of fixing the sample S and sweeping the electron beam E1, the electron beam E1 may be fixed and the sample S may be moved in the in-plane direction.
  • a configuration for measuring lines is used.
  • These elements include magnetic elements such as Fe, Co, Ni, Mn, Nd, Sm, Gd, Tb, and Dy, and the energy of these characteristic X-rays is well known.
  • the K ⁇ 1 line (6.404 keV) of Fe which is a magnetic element, is used as the characteristic X-ray.
  • a detection unit 30 is provided for detecting the intensity of the right circularly polarized component and the left circularly polarized component of the characteristic X-ray.
  • a collimating optical system 31 is used for making the X-ray X ⁇ b> 1 diverge from the portion irradiated with the electron beam E ⁇ b> 1 in the sample S into parallel light (parallel).
  • X-ray X1 actually includes different elements, multiple characteristic X-rays corresponding to emission of different deexcitation processes (K ⁇ -rays, K ⁇ -rays, L ⁇ -rays, etc.) and continuous X-rays that are not characteristic X-rays Therefore, there are a plurality of peaks in the spectrum of X-ray X1. Thereafter, the X-ray X1 passes through the wave plate 32 corresponding to the energy of the characteristic X-ray to be measured.
  • the wave plate 32 is a quarter wave plate ( ⁇ / 4 plate) corresponding to the energy (wavelength) of characteristic X-rays to be measured. Further, the position (angle) of the wave plate 32 around an axis orthogonal to the optical axis of the light receiving optical system can be switched between two types by the control unit 21 as described later.
  • each circularly polarized component passes through the wave plate 32, it becomes linearly polarized light polarized in a predetermined direction. That is, the polarization direction of the linearly polarized light after passing through the wave plate 32 changes by 90 ° in accordance with the rotation direction (clockwise, counterclockwise) of the circularly polarized light component before passing through the wave plate 32. In other words, the circularly polarized light component that has passed through the wave plate 32 becomes linearly polarized light that is polarized vertically (vertically) or linearly polarized light that is polarized horizontally (horizontal).
  • the wavelength plate 32 functioning as a ⁇ / 4 plate can be configured using, for example, diamond.
  • the X-ray X2 after passing through the wave plate 32 is reflected by a reflective polarizer 33 that selectively Bragg-reflects only a component in a specific polarization direction, and becomes an X-ray X3.
  • the X-ray X3 is detected by the X-ray detector 34 and output as an electric signal.
  • the polarizer 33 is made of, for example, Ge single crystal, and selectively diffracts not only the component of the specific polarization direction as described above but also only X-rays of specific energy in a narrow band.
  • the X-ray X1 emitted from the sample S is not a single color, as described above, by setting the polarizer 33, the X-ray narrow energy band corresponding to a particular characteristic X-ray (e.g. K [alpha 1 line of Fe) X3 can be detected by the X-ray detector 34.
  • a semiconductor detector for example, a silicon drift detector
  • X-rays of this energy with high sensitivity can be used as in the technique described in Patent Document 1.
  • the polarization direction of the left circular polarization component included in the characteristic X-rays after passing through the wave plate 32 is equal to the direction in which the polarizer 33 selectively diffracts (Bragg reflection).
  • the arrangement is set (for example, the wave plate 32 is set to the ⁇ A ° position)
  • the left circularly polarized component included in the characteristic X-ray is detected by the X-ray detector 34.
  • the polarization direction after the right circular polarization component included in the characteristic X-ray passes through the wave plate 32 is orthogonal to the polarization direction after the left circular polarization component included in the characteristic X-ray passes through the wave plate 32.
  • the right circularly polarized light component included in the characteristic X-ray is not detected by the X-ray detector 34.
  • the wave plate 32 is rotated (for example, the wave plate is set to the + A ° position)
  • the polarization direction of the characteristic X-ray passing through the wave plate 32 changes by 90 °.
  • the polarization component is detected by the X-ray detector 34
  • the left circular polarization component is not detected by the X-ray detector 34.
  • the wavelength plate 32 is arranged as described above (position around the axis orthogonal to the optical axis). The setting is appropriately performed.
  • the control unit 21 rotates the circularly polarized light by switching the wave plate 32 to two kinds of positions around the optical axis as described above to obtain the output of the detector 34.
  • the intensity of the characteristic X-ray for each direction can be recognized.
  • the difference in the intensity of the characteristic X-ray for each rotation direction of the circularly polarized light that is, the difference in the intensity between the right circularly polarized light component and the left circularly polarized light component is the surface or the inside of the sample S as described below. Reflects the direction of magnetization or the magnitude of magnetization.
  • the characteristic X-rays emitted from the magnetic material (Fe), the direction of magnetization, and the magnitude of magnetization will be described.
  • XMCD X-ray Magnetic Dichroism
  • the transmittance of a ferromagnetic material with respect to circularly polarized X-rays changes according to the direction of magnetization.
  • the characteristic X-rays emitted by the Fe atoms themselves include a circularly polarized component, and the ratio of the components in the respective rotation directions (right circularly polarized component and left circularly polarized component) in this circularly polarized component is Utilizing the change by magnetization.
  • FIG. 2 is a diagram showing a configuration for this measurement.
  • the electron beam E1 is used as an excitation line for radiating characteristic X-rays to the magnetic element in the sample S.
  • the high-intensity monochromatized to 7.13 keV is used here.
  • Synchrotron radiation X-ray radiation X-ray R
  • an external magnetic field H strong enough to saturate the magnetization in the sample S was applied in the in-plane direction of the main surface of the sample S so that the polarity could be reversed.
  • the synchrotron radiation X-ray R that passed through the slit 41 was incident on the sample S perpendicular to the main surface of the sample S.
  • the wave plate 32, the polarizer 33, and the X-ray detector 34 similar to those described above were used for detection.
  • the emission angle of the characteristic X-ray (X-ray X1) is 45 °, but the emission angle is not limited to this.
  • the observation is performed without using the collimating optical system 31.
  • the parallel X-ray is used even when the synchrotron radiation X-ray is used as the excitation line.
  • the optical system 31 may be disposed upstream of the wave plate 32.
  • FIG. 3 shows detection results (energy spectrum) detected by the X-ray detector 34 while switching between the two types of states in the wave plate 32 as described above.
  • the characteristic X-rays detected here correspond to the K ⁇ 1 line of Fe.
  • the peak in the state where the outputs in the above two states are mixed (when the X-ray detector 34 detects the polarization state without distinguishing the polarization state) is 6.404 keV.
  • the output (the number of counts per 600 seconds) of the X-ray detector 34 in each of the above two states is the intensity I + (white circle in FIG. 3) and intensity I ⁇ (black circle in FIG. 3), respectively. ) With error bars.
  • the intensities I + and I ⁇ correspond to the intensities of the circularly polarized light components whose rotation directions are opposite to each other.
  • the characteristic X-rays radiated from the sample S include many non-circularly polarized components other than circularly polarized light. Therefore, the intensities I + and I ⁇ indicate the sum of the intensity of the circularly polarized light component and the intensity of the non-circularly polarized light component that cannot be distinguished by the wave plate 32, the polarizer 33, or the like.
  • the intensity of the non-circularly polarized component counted as the intensity I + and the intensity of the non-circularly polarized component counted as the intensity I ⁇ are each 1 / of the intensity of the non-circularly polarized component included in the characteristic X-ray. 2
  • FIG. 4 shows a graph in which (I + ⁇ I ⁇ ) / (I + + I ⁇ ) is plotted before and after the direction of the external magnetic field H is reversed.
  • the state of the sample S before and after reversing the external magnetic field H is such that the magnetization in the horizontal direction is uniformly aligned in the first direction in all magnetic domains in the sample S, and the magnetization in the horizontal direction is the sample S.
  • the difference I + -I ⁇ corresponds to the difference in the output of the detector 34 when the wave plate 32 is switched.
  • the result before reversing the direction of the external magnetic field H is shown as + H (black circle), and the result after reversing the direction of the external magnetic field H is shown as -H (white circle), each with an error bar. .
  • the curve in the figure is an approximate curve as an eye guide.
  • [(I + ) + (I ⁇ )] peak (the peak value of the sum of the black circle and white circle spectra in FIG. 3) is used as the normalization factor. .
  • the difference I + -I in the low energy side than the center energy - reduced by the use of the integral value of the more error - the integral value of the difference I + -I in a high energy side than the center energy
  • the absolute value such as the difference I + -I ⁇ , the ratio (I + ⁇ I ⁇ ) / (I + + I ⁇ ), or the integral value of the difference I + ⁇ I ⁇ as described above is the magnetization of the sample S It corresponds to the magnitude and becomes zero when its magnetization is zero. More specifically, information corresponding to the direction and magnitude of the projection component in the direction of the light receiving axis in the magnetization is obtained.
  • FIGS. 3 and 4 the measurement was performed in a state where magnetization was saturated by applying a strong external magnetic field H and the magnetization direction and the magnetization magnitude in the sample S were uniformly aligned.
  • the direction of magnetization or the magnitude of the magnetization of the sample S in a state where the strong external magnetic field H is not applied that is, the sample S in a state where the magnetization is not uniform. It is possible to observe the distribution of.
  • FIG. 5 schematically shows the structure of the magnetic domain in the magnetic material in the state where the external magnetic field H is not applied.
  • the direction of the arrow and the size of the arrow indicate the direction of magnetization and the size of magnetization, respectively.
  • the synchrotron radiation X-ray R used as the excitation line in FIG. 2 is swept, and the difference I + ⁇ I ⁇ and the ratio (I + ⁇ I ⁇ ) / (I corresponding to each irradiation position on the sample S If a value such as + + I ⁇ ) is calculated, the magnetization direction or the magnetization size distribution in the sample can be obtained.
  • each pixel is a two-dimensional image corresponding to each irradiation position on the sample S, and the difference I when the pixel value (shading or color) of each pixel irradiates the irradiation position corresponding to the pixel with the excitation line I
  • a two-dimensional image corresponding to values such as + ⁇ I ⁇ and ratio (I + ⁇ I ⁇ ) / (I + + I ⁇ ) is displayed two-dimensionally on the display unit 22, a magnetic domain structure as shown in FIG. 5 is obtained. It can be displayed visually.
  • the synchrotron radiation X-ray R is used as the excitation line, but the principle is the same even when the electron beam E1 is used as in the configuration of FIG.
  • the excitation source 10 and the magnetic observation apparatus 1 can be made smaller and less expensive than when the synchrotron radiation X-ray R is used.
  • the detection intensity in the detector 34 can be increased, and the intensities I + and I ⁇ can be obtained efficiently.
  • the magnetic domain structure can be displayed on the display unit 22 as described above. That is, the magnetic substance observation method executed in the magnetic substance observation apparatus 1 in the configuration of FIG.
  • FIG. 1 is an irradiation process in which an electron beam E1 is irradiated onto one region on the sample S, and X-rays corresponding to characteristic X-rays emitted thereby. Is detected a plurality of times while sweeping the electron beam E1 so that the one region moves on the sample S. Thereafter, a display step is performed in which the calculated value calculated based on the difference between the two intensities recognized in the detection step is imaged as described above and displayed on the display unit 22.
  • the configuration of FIG. 1 also functions as a scanning electron microscope, and a normal electron beam image of the sample S can be displayed on the display unit 22. At this time, an image of the magnetic domain structure based on the intensities I + and I ⁇ as described above can be displayed together with the electron beam image. This makes it easy to recognize the magnetic domain structure corresponding to the fine structure of the surface of the sample S.
  • an image acquisition unit that acquires a scanning electron microscope image (microscope image) may be further provided, and the microscope image and the region irradiated with the electron beam may be output in correspondence with each other.
  • the configuration of FIG. 1 can be replaced with the configuration of a transmission electron microscope.
  • a film such as a natural oxide film is often formed on the surface of a sample made of a magnetic material.
  • a film such as a natural oxide film is often formed on the surface of a sample made of a magnetic material.
  • prior sample processing is necessary to eliminate this.
  • the excitation light can reach the magnetic body under the film.
  • the material permeability is lower than when the synchrotron radiation X-ray R having the same energy is used, but the electron beam E1 is coated on the surface of the sample S using the electron optical system 12. It is easy to set the energy to such a level that allows the light to pass through. That is, by increasing the energy of the electron beam E1 by the electron optical system 12 in FIG. 1, the electron beam E1 passes through such a coating, or the sample S has a certain depth of 1 ⁇ m or more (for example, 5 ⁇ m or more, preferably It is possible to make the electron beam E1 reach up to 10 ⁇ m or more.
  • characteristic X-rays that are directly measured in the above configuration, and the energy thereof is 6.404 keV in, for example, FeK ⁇ 1 as described above.
  • X-rays in such a hard energy region have a high material transmittance.
  • characteristic X-rays emitted from a region whose depth from the sample surface is about several ⁇ m or more can be detected.
  • characteristic X-rays have a high material transmittance with respect to a film made of a nonmagnetic material. For this reason, even if such a film exists on the sample S, the influence on the measurement of the intensities I + , I ⁇ , etc. is small.
  • the pretreatment for eliminating the coating composed of the nonmagnetic material formed on the sample surface is required, but also the magnetic domain structure in the deep part can be measured.
  • the magnetic domain structure in the deep part can be measured. For example, it is possible to measure a magnetic domain structure in a portion that is three orders of magnitude deeper than when using the above-described spin SEM.
  • the main component added as compared with a normal scanning electron microscope is a detection unit 30, and the control unit 21 is a data processing unit as described above. Only features have been added. For this reason, this magnetic substance observation apparatus 1 can be obtained by adding the detection part 30 to the conventional scanning electron microscope substantially. That is, the magnetic body observation apparatus 1 can be configured simply.
  • the configuration of the detection unit 30 including the collimating optical system 31, the wave plate 32, the polarizer 33, and the X-ray detector 34 is simple. If the intensity of the characteristic X-ray to be detected is sufficiently high, the collimating optical system 31 is not necessary. Further, when the X-ray microanalyzer is provided in the scanning electron microscope, the X-ray detector 34 can be shared with the X-ray microanalyzer.
  • this magnetic observation apparatus 1 it is sufficient to be able to detect the intensity of each circularly polarized component included in the characteristic X-rays emitted from the sample S. It is not necessary to apply special processing to the sample S such as joining other members to the sample S as in the technique, and this is the same as the conventional X-ray microanalyzer and the like. For this reason, the magnetic domain structure in the sample S can be easily observed.
  • the configuration using the electron beam E1 or the synchrotron radiation X-ray R (X-ray) as the excitation ray is exemplified, but as long as the characteristic X-ray can be emitted from the magnetic element constituting the sample S.
  • Other excitation lines can also be used.
  • an electromagnetic wave beam other than X-rays or a charged particle beam other than an electron beam can be used as an excitation beam.
  • electromagnetic wave beams other than X-rays that can be used as excitation rays include gamma rays.
  • Examples of charged particle beams other than electron beams that can be used as excitation beams include positron beams, proton beams, ⁇ particle beams, and ion beams.
  • the depth measurement can be performed to a depth at which the characteristic X-ray can escape from the sample.
  • the penetration depth (D1) of the excitation ray into the sample is the depth (D2) at which the characteristic X-ray can escape the sample. It is preferable to set the energy of the excitation line so as to satisfy the above (D1 ⁇ D2).
  • the characteristic X-ray to be measured is exemplified as the configuration of the Fe K ⁇ 1 line, but it is also possible to discriminate and detect the rotational direction of the circularly polarized light in the characteristic X-ray.
  • elements that emit such characteristic X-rays include magnetic elements such as Co, Ni, Mn, Nd, Sm, Gd, Tb, and Dy.
  • the characteristic X-ray energy is at keV level, so the material transmittance is higher than that of secondary electrons as measured by the spin SEM.
  • the sample S is an alloy containing the above-mentioned element, one kind of characteristic X-ray in one of the above-described elements constituting the alloy is appropriately selected and detected by the X-ray detector 34. Can be targeted.
  • the intensities I + and I ⁇ that can be easily detected by the configuration of FIG. 1 are used.
  • the structure (distribution) of the magnetic domain in FIG. 5 can be recognized, but the magnitude and direction as the magnetization vector in FIG. 5 are not accurately detected.
  • the magnetization can be measured more accurately as a vector.
  • it is also possible to measure as a two-dimensional or three-dimensional vector by making the direction of the light receiving optical axis variable and measuring from a plurality of directions.
  • the characteristic X-ray emitted from the sample S is X A much larger amount can be incident on the line detector 34. Therefore, the configuration in which the characteristic X emitted from the sample S is collimated using the collimating optical system 31 and incident on the X-ray detector 34 is superior in the utilization efficiency of the characteristic X-ray emitted from the sample S. .
  • the collimating optical system 31 it is preferable to use a collimating optical system capable of two-dimensionally collimating characteristic X-rays emitted from the sample S.
  • Such a collimating optical system can be constituted by, for example, a Montell-type multilayer film mirror.
  • a collimating optical system constituted by a Montell-type multilayer mirror as the collimating optical system 31
  • the present embodiment has the following configuration.
  • the magnetic body observation method is a method for observing the direction of magnetization or the magnitude of magnetization in a sample including a magnetic body, and is characterized by the characteristics X of the elements constituting the magnetic body by being irradiated on the sample.
  • Two intensities obtained by irradiating a region on the sample with an excitation line that emits a line, and the characteristic X-rays emitted by the element by the irradiation of the excitation line for each rotation direction of the circularly polarized light component And a calculating step for calculating a difference between the two intensities recognized in the detecting step.
  • the excitation line is one of an electromagnetic wave beam and a charged particle beam.
  • the magnetic body observation apparatus of the present embodiment is an apparatus for observing the direction of magnetization or the magnitude of magnetization in a sample containing a magnetic body, and is characterized by the characteristic X of the elements constituting the magnetic body by being irradiated on the sample.
  • An excitation source that emits an excitation line that emits a line, and the characteristic X-rays emitted by the element by irradiation of the excitation line are detected as a right circular polarization component or a left circular polarization component for each rotation direction of the circular polarization component.
  • a detection unit; and a data processing unit that outputs a calculated value calculated based on a difference between the intensity of the right circular polarization component and the intensity of the left circular polarization component.
  • the excitation beam source irradiates the sample with the excitation beam so that the excitation beam irradiation position on the sample is swept, and the data processing unit calculates the calculated value. Is recognized as the excitation beam irradiation position is swept, and the calculated value is output as an image displayed corresponding to the region irradiated with the excitation beam on the sample.
  • the magnetic substance observation apparatus includes a quarter-wave plate for the characteristic X-ray.
  • the detection unit includes a polarizer that gives different intensity to the characteristic X-rays that have been linearly polarized after passing through the wave plate in accordance with the polarization direction. It is characterized by doing.
  • the excitation line is any one of an electromagnetic wave beam and a charged particle beam.
  • the excitation beam is an electron beam
  • the excitation beam further includes an image acquisition unit that acquires a microscope image that is a scanning electron microscope image or a transmission electron microscope image
  • the data processing unit includes The microscope image and the region irradiated with the excitation beam are output in correspondence with each other.
  • This embodiment relates to a novel magnetic domain structure observation method for observing a magnetic domain structure by measuring a circularly polarized component of characteristic X-rays. Since characteristic X-rays include X-rays in the hard X-ray region with high transparency, if the circularly polarized light of the X-rays in the hard X-ray region is the object of measurement, it is It is also possible to observe a magnetic domain structure having a depth of about ⁇ m. For this reason, when observing a magnetic body, the restriction

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Power Engineering (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本発明に係る磁性体観察方法は、試料(S)の一領域に励起線(E1)を照射することによって、試料(S)に含まれる磁性元素に特性X線(X1)を放射させる照射工程と、特性X線(X1)に含まれる右円偏光成分および左円偏光成分の強度をそれぞれ検出する検出工程と、右円偏光成分の強度と左円偏光成分の強度との差分を算出する算出工程と、を含んでいる。この差分を参照することで、試料(S)に対する制限が緩く、かつ、磁化の向きまたは磁化の大きさの精密な測定が可能になる。

Description

磁性体観察方法および磁性体観察装置
 本発明は、磁性体の磁化の向きまたは磁化の大きさを観察する方法、および、磁性体の磁化の向きまたは磁化の大きさを観察する装置に関する。
 物質の表面のミクロな幾何学的構造は、光学顕微鏡や走査型電子顕微鏡(SEM:Scanning Electron Microscope)で容易に観察することができる。物質の表面における元素組成のミクロな2次元分布も、走査型電子顕微鏡において電子線の照射に伴って発生する特性X線を検出することによって、視覚的に認識することが可能である。例えば、特許文献1に記載されるように、こうした機能を有する走査型電子顕微鏡が広く用いられている。一方、永久磁石、電磁鋼板、磁気記録媒体等、磁性体材料を基にした材料の開発等においては、磁区(磁化の向きが揃った領域)の2次元状の構造(磁区構造)を認識できることも望まれる。
 磁区構造を観察するための機能を走査型電子線顕微鏡に付与した技術として、例えば、非特許文献1に記載のスピンSEMが挙げられる。電子線照射によって強磁性体から発せられた2次電子のスピン偏極は、磁性体の磁化と関連をもつ。特許文献1に記載のスピンSEMにおいては、このことを利用し、2次電子のスピン偏極を測定することによって、走査型電子線顕微鏡における通常の2次電子画像と共に磁化の2次元構造(2次元状磁区構造)を画像化して表示している。
 また、特許文献2には、磁区構造が画像として認識できる磁気力顕微鏡が記載されている。特許文献2に記載の磁気力顕微鏡においては、原子間力顕微鏡において用いられるカンチレバーに磁性膜を付与することにより、試料からの漏洩磁場のマッピングが可能とされ、これによって磁区構造が画像として認識している。また、特許文献3には、試料に対してスピン流注入部材を接合した上で電圧を印加し、試料の熱画像(赤外線画像)を取得することによって磁区構造を画像化して認識することのできる観察装置が記載されている。
 また、磁区構造を観察する手法として、磁気光学カー効果顕微鏡を用いた観察方法が知られている。この方法は、可視光或いは紫外光を磁性体試料面に照射し、反射光の偏光の変化を計測する手法である。この方法においては、磁気光学カー効果によって測定対象の磁化の向きおよび磁化の大きさに応じて反射光の偏光が変化することを利用して磁区構造を観察する。
 また、磁区構造を観察する別の手法として、X線磁気円二色性(XMCD)顕微鏡を用いた観察方法も公知である。この方法においては、円偏光のX線を磁性体試料に照射した際に試料に吸収されるX線の割合が円偏光の左右回転方向により異なるという性質(MCD)を利用し、円偏光の左右回転方向の吸収率の差分から、試料の磁化の向きおよび磁化の大きさを計測する。XMCD顕微鏡を用いた磁区観察は、測定試料中の特定元素の吸収端を利用するため、目的の元素を選択的に測定する(元素選択的測定)ことができる。
 上記XMCD顕微鏡は、照射するX線のエネルギーに応じて軟X線MCD顕微鏡と硬X線MCD顕微鏡とに分類できる。軟X線MCD顕微鏡としては、透過型、電子収量型、転換イオン収量型などが例示される。硬X線MCD顕微鏡としては、透過型、蛍光収量型などが例示される。
「スピン偏極走査電子顕微鏡(スピンSEM)」、孝橋照生、顕微鏡、第48巻、第1号、15頁(2013年) 日本国公開特許公報「特開2017-44557号」 日本国公開特許公報「特開2012-233845号」 日本国公開特許公報「特開2017-191066号」
 永久磁石、電磁鋼板、または磁気記録媒体などの磁性材料は、電気モーター、変圧器、またはハードディスクドライブなどの装置で広く利用されており、磁性材料の性能向上は、産業界における重要な課題である。磁性材料の磁区構造の観察は、磁性材料の材料開発で重要であり、その観察のために、上述のとおり様々な試みがなされている。しかし、これらの従来技術による磁区構造の観察は、一般的に試料表面の磁区構造を観察する技術であり、試料内部の磁区構造を観察することは困難であった。
 例えば、非特許文献1に記載の技術のように2次電子に関する測定を行う場合には、試料に対する2次電子の透過性が低いために、測定深度が1nm程度に限定されてしまう。このため、磁性体の内部(例えば、深度が数μm程度以上の領域)の磁区構造を観察することはできない。よって、このような磁区観察方法で磁性体内部の磁区構造を観察するためには、試料の薄片化や表面研磨などの事前の試料処理を施さなければならなかった。
 XMCD顕微鏡は、励起線が放射光X線に限定される。また、硬X線MCDは、磁性材料を構成する代表的な元素として知られる3d遷移金属元素(Fe、Co、Niなど)に対して二色性が小さい(感度が低い)ため、磁性材料の磁区構造の観察に汎用的に利用し難かった。
 特に透過型のXMCD顕微鏡は、照射X線が透過可能な厚みの試料でなければ、磁区構造の観察は不可能であった。このため、一般的に、透過型のXMCD顕微鏡で磁区構造を観察する場合には、照射X線が透過可能な試料厚みとなるように、事前に試料を薄片化する必要があった。透過型以外のMCD顕微鏡であれば試料の薄片化は必須でないが、電子収量型の軟X線MCD顕微鏡または転換イオン収量型の軟X線MCD顕微鏡の検出深度は電子の脱出深度に依存するため、やはり測定深度が数nm程度に限定された。
 上記磁気光学カー効果顕微鏡は、上述のとおり反射光を用いて磁区構造を観察する手法であるため、観察前に試料表面を鏡面研磨(ダイヤモンドもしくはアルミナ研磨剤等による機械研磨、または、酸もしくはアルカリによる化学研磨など)を行う必要があった。また、表面処理条件が観察結果に影響を及ぼす場合があった。
 また、永久磁石、電磁鋼板、または磁気記録媒体などの磁性試料の表面は、被膜処理されている場合、又は、酸化膜等の不可避の被膜が形成されている場合がある。従来の磁区構造観察方法においては、一般的に測定深度が上記被膜の厚みよりも短いため、当該被膜を除去することなく磁性体試料の磁区構造を直接観察することが困難であった。よって、被膜が形成された試料の磁区構造を観察するためには、当該被膜を除去する事前の試料処理を施さなければならなかった。
 また、上記試料処理(試料の薄片化、または被膜除去など)に起因して磁区構造が変化する場合があることが報告されている。即ち、上記試料処理により試料表面に露出した露出面の磁区構造は、試料処理前の磁区構造(磁性体の内部に存在したときの磁区構造)とは異なる場合がある。このため、磁性体の内部の磁区構造の観察は困難であった。
 以上のように、従来の磁区構造観察方法は、測定深度が限定されること、試料表面の平坦化や試料の薄片化といった事前の試料処理が必要不可欠であること、といった制約が多く、磁性体観察技術の普及および利用の足枷となっていた。このため、試料に対する制限が緩く、かつ、磁化の向きまたは磁化の大きさの精密な測定が可能である磁性体観察技術が望まれた。
 本発明の一態様は、かかる問題点に鑑みてなされたものであり、試料に対する制限が緩く、かつ、磁化の向きまたは磁化の大きさの精密な測定が可能な磁性体観察技術を提供することを目的とする。
 発明者らは、磁性体に励起線を照射したときに生じる特性X線に着目し、鋭意検討したところ、当該特性X線が相当量(容易に計測可能な量)の円偏光成分を含み、磁化の向きに応じて当該円偏光成分の回転方向が変化する(特性X線中に含まれる右円偏光成分と左円偏光成分の割合が変化する)ことを初めて発見した。そして、かかる特性X線の円偏光を計測することで磁性体の磁化の向き又は磁化の大きさを観察し得ることを見出し、本発明を完成した。なお、本明細書において「磁化の向き又は磁化の大きさを観察する」という規定には、(1)磁化の向きのみを観察する態様と、(2)磁化の大きさのみを観察する態様と、(3)磁化の向き及び磁化の大きさの両方を観察する態様とが含まれる。
 本発明は、上記課題を解決すべく、以下に掲げる構成とした。
 本発明の一態様に係る磁性体観察方法は、磁性体を含む試料における磁化の向き又は磁化の大きさを観察する方法であって、前記試料に照射されることによって前記磁性体を構成する元素に特性X線を放射させる励起線を前記試料上の一領域に照射する照射工程と、前記励起線の照射によって前記元素が発した前記特性X線を、円偏光成分の回転方向毎に検出した2つの強度として認識する検出工程と、前記検出工程において認識された前記2つの強度の差を算出する算出工程と、を含んでいる。
 本発明の一態様に係る磁性体観察装置は、磁性体を含む試料における磁化の向き又は磁化の大きさを観察する装置であって、前記試料に照射されることによって前記磁性体を構成する元素に特性X線を放射させる励起線を発する励起線源と、前記励起線の照射によって前記元素が発した前記特性X線を、円偏光成分の回転方向毎に右円偏光成分または左円偏光成分として検出する検出部と、前記右円偏光成分の強度と前記左円偏光成分の強度との差に基づいて算出された算出値を出力させるデータ処理部と、を備えている。
 本発明の一態様によれば、試料に対する制限が緩く、かつ、磁化の向きまたは磁化の大きさの精密な測定が可能な磁性体観察技術を提供することができる。
本発明の実施の形態に係る磁性体観察装置の構成を示す図である。 磁化と特性X線における円偏光成分の回転方向の関係について調べた実験における構成を示す図である。 磁化が一様な場合において、Feの特性X線に含まれる右円偏光成分および左円偏光成分のスペクトルを示す図である。 Feの特性X線の円偏光成分の回転方向毎に検出された強度の差分のスペクトルを、磁化の向きを反転させて測定した結果である。 試料上の磁区構造を模式的に示す図である。 本発明の実施の形態に係る磁性体観察方法を示すフローチャートである。
 〔用語の定義〕
 本明細書において、「磁性体」とは、磁性を帯び得る物質を意味する。換言すると、磁性体は、それを構成する原子が磁気モーメントを有し得る物質である。本明細書においては、磁性体として、各原子の磁気モーメントの向きが互いに揃い全体として磁化を持つ状態を実現し得る物質(所謂、強磁性体およびフェリ磁性体)を想定する。磁性体は、しばしば、鉄やコバルトなどの磁性元素を含む。
 本明細書において、「磁区」とは、磁性体において磁化の向きが揃った領域を意味する。本明細書において、「磁区構造」とは、磁性体中の磁区の空間分布を指し、各磁区における磁化の向きまたは磁化の大きさについての情報を含む。換言すると、磁区構造は、磁性体における磁区の配置を表す情報と、各磁区における磁化の向きおよび/または磁化の大きさを表す情報と、を含む。なお、磁区構造は、これらの情報以外の情報、を含み得る。例えば、磁区構造は、各磁区における磁化の向き及び/又は大きさに関連する情報を含み得る。或いは、磁区構造は、磁区の境界(磁壁)内部における磁化の向きや大きさの分布についての情報を含み得る。
 本明細書において、「反転比」とは、強度を求めるなんらかの測定を行う際に、条件1での測定強度をIとし、条件2での測定強度をIとするとき、これらの測定強度の差をこれらの測定強度の和で割った量(I-I)/(I+I)を意味する。
 円偏光には、右偏光と左偏光とがある。右偏光は、遠ざかる光を固定点において観測したときに、その固定点における電場ベクトルが時間経過と共に右回り(時計回り)に回転する円偏光であり、左偏光は、遠ざかる光を固定点において観測したときに、その固定点における電場ベクトルが時間経過と共に左回り(反時計回り)に回転する円偏光である。本明細書において、「円偏光の回転方向」は、この電場ベクトルの回転方向のことを指し、「右回り」または「左回り」の何れかである。
 本明細書において、「円偏光度」とは、全光束に対する右円偏光成分の割合と左円偏光成分の割合の差を指す。
 本明細書において、「特性X線」とは、原子の内殻準位に空孔を生成した際に、脱励起過程において発生するX線をいう。かかる特性X線は、内殻準位間に相当するほぼ決まったエネルギーを持つ。原子の内殻準位に空孔を生成する方法は限定されない。
 本明細書においては、右円偏光成分の強度をIと表記し、左円偏光成分の強度をIと表記する。
 〔磁性体観察の原理〕
 以下、まず、ここで開示する磁性体観察(方法および装置)の原理について、適宜図面を参照して説明する。
 磁性体に励起線を照射すると、当該磁性体を構成する元素から特性X線が放射される。かかる特性X線に円偏光成分が含まれることを本発明者らが初めて確認した。当該円偏光成分は、右円偏光成分と左円偏光成分とに区別される。
 そして、励起線照射部位(磁性体において励起線を照射された部位)の磁化の向きまたは磁化の大きさに応じて、特性X線に含まれる右円偏光成分と左円偏光成分の割合が変化することを本発明者らが初めて発見した。ここで開示する磁性体観察方法は、かかる知見に基づき、特性X線に含まれる右円偏光成分と左円偏光成分との割合を計測することで、励起線照射部位の磁化の向きまたは磁化の大きさ(典型的には磁区構造)を観察する。
 以下、磁性体として鉄を用い、励起線として放射光X線を用いた場合を例として、磁性体観察方法の原理について説明する。なお、ここでは、磁性体の表面及び内部に磁性体の表面(の接平面)と平行な方向の磁場を印加し、磁性体の磁化の向きを強制的に一方向に揃えた試料を測定対象として用いた。
 図3は、特性X線の円偏光成分について、右円偏光成分と左円偏光成分とを区別して測定し、それぞれの成分の強度(それぞれの成分に対応する光子が単位時間あたりに検出される頻度)を特性X線のエネルギー毎にプロットした図である。同図において、白丸は右円偏光成分の強度を示し、黒丸は左円偏光成分の強度を示す。同図によれば、特性X線のエネルギーが特定の範囲(図3の例では、6.404±0.04keV)に含まるときには、上記右円偏光成分の強度と左円偏光成分の強度との間に有意な差が存在することが解る。
 なお、特性X線には、円偏光として検出される偏光成分と、それ以外の偏光成分(以下、「非円偏光成分」という)とが含まれる。非円偏光成分は、直線偏光、45°直線偏光、及び無偏光により構成される。このため、右円偏光成分を検出する際、および、左円偏光成分を検出する際には、それぞれ、円偏光成分と同時に非円偏光成分が検出される。したがって、厳密に言うと、図3に右円偏光成分としてプロットした強度は、右円偏光成分の真の強度と非偏光成分の強度との和であり、図3に左円偏光成分としてプロットした強度は、左円偏光成分の真の強度と非偏光成分の強度との和である。ただし、右円偏光成分と同時に検出される非円偏光成分の強度と、左円偏光成分と同時に検出される非円偏光成分の強度とは、どちらも特性X線に含まれる非円偏光成分の強度の半分であり、互いに等しい。このため、図3に右円偏光成分および左円偏光成分としてプロットした強度は、円偏光成分と同時に検出した非円偏光成分の強度分だけ縦軸方向にシフトすることによって、それぞれ、右円偏光成分および左円偏光成分の真の強度に一致する。また、図3に右円偏光成分としてプロットした強度と図3に左円偏光成分としてプロットした強度との差分は、右円偏光成分の真の強度と左円偏光成分の真の強度との差分に一致する。
 図4は、上記図3で示す右円偏光成分の強度と左円偏光成分の強度とについて差分を算出し、その差分を特性X線のエネルギー毎にプロットした図である。磁化の向きが所定の向きとなるように磁場を印加した場合の上記右円偏光成分の強度と左円偏光成分の強度との差分を黒丸で示し、磁化の向きが上記所定の向きと逆向きとなるように磁場を印加した場合の上記差分を白丸で示す。図4より、磁化の向きを反転させると、右円偏光強度と左円偏光強度との差分が反転することが解る。
 このように、エネルギーが特定の範囲に含まれる特性X線の円偏光度を測定することで、励起線照射部の磁化の向きや磁化の大きさを観察することができる。
 さらに、上記特性X線として、試料を透過する性質(以下、透過力という)が高い硬X線を用いることができる。かかる硬X線領域の特性X線を測定対象とすることで、試料内部から放出された特性X線の円偏光成分を検出することができる。即ち、特性X線が放出された深さの磁区構造を観察することができる。換言すると、励起線および特性X線を選択することで、これらが透過し得る深さの試料内部の磁区構造を、事前の試料処理(薄片化、被膜除去など)をすることなく直接観察することができる。
 また、一般的に、磁区毎に磁化の向きが異なり、磁区の境界(磁壁)で磁化の向きが急激に変化することが知られている。このため、試料上の励起線の照射位置を掃引し、当該励起線の照射位置に応じて磁化の向きを特定することで、磁区構造をマッピングすることができる。例えば、当該磁区構造をマッピングした情報を試料の撮像画像に重ねて表示することで、磁区構造を可視化し認識し易くなる。
 また、掃引測定によるマッピングのみでなく、励起線の照射方向に沿う方向(深さ方向)の磁区構造を観察することも可能である。例えば、励起線のエネルギーを変化させて、励起線が材料内に到達する深さを変化させて計測する、或いは、受光光学系の見込む箇所を、試料位置を上下させることなどによって、深さ方向に変化させて計測することで、深さ方向の磁区構造を観察できる。上記掃引測定による励起線の照射方向に対して垂直な表面(水平面)の磁区構造観察と、上記深さ方向の磁区構造の観察とを組み合わせれば、磁区構造の3次元観察も実現可能である。
 また、磁性体を構成する元素によって、特性X線のエネルギーが異なることが知られている。このため、特性X線のエネルギースペクトルを測定することで、磁性体を構成する元素のマッピングも可能である。なお、かかる元素マッピングと上記磁区構造の観察とは同時に実現可能である。
 〔磁性体観察方法〕
 以下、ここで開示する磁性体観察方法について、適宜図面を参照して説明する。図6は、この磁性体観察方法を示すフローチャートである。ここで開示する磁性体観察方法は、試料に励起線を照射する照射工程(S10)と、特性X線に含まれる円偏光成分を検出する検出工程(S20)と、検出した円偏光に含まれる右円偏光成分と左円偏光成分の差を算出する算出工程(S30)と、を包含する。
 上記照射工程(S10)は、磁性体を含む試料に励起線を照射し、当該磁性体を構成する元素から特性X線を放射させる工程である。
 観察対象である磁性体試料は、磁性体を含む限り特に限定されない。磁性体とは、磁性を帯び得る物質であり、例えば、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)、ネオジウム(Nd)、サマリウム(Sm)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)などの磁性元素を含む。
 例えば、鉄(Fe)は代表的な磁性元素である。かかる鉄(Fe)から放出される特性X線は硬X線(例えばFeKα)を含む。かかる特性X線(FeKα)を測定対象とすることで、鉄からなる試料(実質的に鉄の含有量が100%である試料)は、試料内部の磁化の向き又は磁化の大きさを観察することができる。ここで、試料内部は、試料表面からの深さが数μm以上(例えば5μm以上)の領域、より好ましくは試料表面からの深さが10μm以上の領域であり、例えば、試料表面からの深さが40μm程度の領域である。
 なお、観察対象の試料に含まれる磁性体(典型的には磁性元素)の含有量は特に制限されない。換言すれば、観察対象の試料に磁化されている部分(典型的には、試料中で磁性体が存在する領域、あるいは試料中で磁性元素が存在する領域)が存在すれば、かかる磁化された部分の磁化の向きまたは磁化の大きさを観察する目的にここで開示する技術を利用できる。
 例えば、磁性元素の含有量が多い(例えば90質量%以上、より好ましくは実質的に100質量%)試料に対して、ここで開示する方法を適用できる。或いはまた、磁性元素の含有量が少ない(例えば1ppm程度以下)場合であっても、観察対象試料中で磁化されている部分(例えば当該磁性元素が存在する領域)の大きさが検出可能なサイズ以上であれば、当該磁化されている部分の観察にここで開示する技術を適用可能である。例えば、試料中に極微量に存在する磁性元素(磁性体)の混入確認およびその磁化の向きまたは磁化の大きさの観察に、ここで開示する技術を利用してもよい。
 上記励起線は、磁性体を構成する元素から特性X線を放射することが可能であれば、特に限定されない。
 特性X線を発生させるためには、特性X線の種類毎に決まっているエネルギー閾値以上の励起線を照射する必要がある。このエネルギー閾値は、磁性体を構成する元素によっておおよそ決まっており、励起線の種類には強く依存しない。
 上記特性X線としては、FeKα、CoKα、NiKα、MnKα、などが例示される。これらの特性X線のエネルギーと、励起線がX線の場合の励起エネルギーのエネルギー閾値との関係を表1に示す。例えば、磁性体を構成する元素がFeの場合、7.11keV以上の励起線を照射すると、6.404keVの特性X線が放射される(eV=電子ボルト)。特性X線のエネルギーが大きいほど、当該特性X線は試料から脱出し易い。即ち、エネルギーの大きな特性X線を測定対象とすることで、大きな測定深度を得られる、即ち、試料深部(試料内部)の磁化の向きまたは磁化の大きさを観察することができる。
 なお、表中の特性X線は表中の磁性元素から放出される代表的な特性X線を例示したに過ぎず、表中の各磁性元素は、表中に例示していない特性X線も放出し得る。例えば、Feは、FeKα、FeKα、FeKβなどの種々の特性X線を放出し得る。
Figure JPOXMLDOC01-appb-T000001
 なお、特に限定することを意味するものでは無いが、本明細書において「硬X線」とは、後述の検出工程(S20)において円偏光成分の回転方向を区別可能であれば特に限定されない。例えば3keV以上のエネルギーのX線を本明細書における「硬X線」とすればよい。
 即ち、上記励起線は、磁性元素を励起させ得る(すなわち、脱励起過程において磁性元素から特性X線を放出させ得る)エネルギー以上のエネルギーを有するものであればよく、X線に限定されない。X線以外の励起線、例えば、ガンマ線などのX線以外の電磁波ビーム、または、電子線、イオンビーム、陽電子線、陽子線、もしくはμ粒子線などの荷電粒子線等を用いてもよい。試料内部の磁区構造を観察する観点では、試料への透過力の高い励起線を選択することが好ましい。
 例えば、X線は、試料への透過力が高い傾向がある。特に、軟X線と比較して、硬X線(高エネルギーのX線)は透過力が高いため、励起線として好ましい。
 例えば、主な構成元素が鉄である磁性体(例えば電磁鋼板や永久磁石)であれば、硬X線を励起線として用いることによって、例えば1μm以上(好ましくは10μm以上、例えば40μm程度)の深さまで観察することができる。
 また、表面に被膜が形成された試料であっても、当該被膜を除去することなく、被膜下の磁性体の磁化の向きまたは磁化の大きさを観察することができる。例えば、(1)構成元素が軽元素であるエポキシ製の被膜であるときには、被膜の厚みが1mm程度以下であれば、また、(2)軽金属であるアルミニウム製の被膜であるときには、被膜の厚みが100μm程度以下であれば、磁性体が被膜で被覆された状態であっても、当該被膜を除去することなく、当該被膜下の磁性体の磁化の向きまたは磁化の大きさを観察することができる。
 或いはまた、励起線として電子線を用いる場合、主な構成元素が鉄である磁性体(例えば電磁鋼板や永久磁石)であれば、0.1μm以上(例えば2μm程度)の深さまで磁化の向きまたは磁化の大きさを観察することができる。また、励起線として用いる電子線の加速電圧が通常のTEMの加速電圧(300kV)と同程度であれば、励起線としてX線を用いる場合と同程度の深さ(例えば1μm以上、好ましくは10μm以上、例えば20μm程度)まで磁化の向きまたは磁化の大きさを観察することが可能である。
 また、励起線として電子線を用いる場合においても、表面に被膜が形成された試料であっても、当該被膜を除去することなく、被膜下の磁性体の磁化の向きまたは磁化の大きさを観察することができる。励起線として用いる電子線の加速電圧が通常のSEMの加速電圧(30kV)である場合、エポキシ製またはアルミニウム製の被膜であれば、実用的な厚みの被膜(例えば、厚みが5μm~10μm程度の被膜)が形成された状態であっても、当該被膜を除去することなく、当該被膜下の磁性体の磁化の向きまたは磁化の大きさを観察することができる。また、励起線として用いる電子線の加速電圧が通常のTEMの加速電圧(300kV)である場合、(1)エポキシ製の被膜であるときには、被膜の厚みが400μm程度以下であれば、また、(2)アルミニウム製の被膜であるときには、被膜の厚みが100μm程度以下であれば、磁性体が被膜で被覆された状態であっても、当該被膜を除去することなく、当該被膜下の磁性体の磁化の向きまたは磁化の大きさを観察することができる。
 なお、電子線は、ビームサイズが小さくなるよう集光し易い。ビームサイズが小さな電子線は、高い空間分解能での観察に適する。このため、電子線は、微細な磁区構造(微細な領域における磁化の向きまたは磁化の大きさ)を観察するための励起線として好ましい。
 励起線が電子線の場合、透過型電子顕微鏡(TEM:Transmission Electron Microscope)やSEMなどの電子顕微鏡に搭載される電子銃を励起線源として利用することができる。SEMレベル(たとえば1nm以上1μm以下、典型的には3nm以上300nm以下)に集光した電子線を励起線として利用することで、汎用性の高い観察を実現できる。或いはまた、TEMレベル(例えば0.3nm以上30nm以下)に集光した電子線を励起線として用いれば、より高い空間分解能での観察を実現できる。
 或いはまた、励起線が放射光X線の場合、励起線を50μm以下(例えば10μm程度)に集光することが可能であり、より高度な集光技術を用いれば、1μm以下(例えば200nm~300nm程度)に集光することも可能である。これら集光ビーム(集光した放射光X線)を試料に照射すれば、高い空間分解能での観察を実現できる。
 上記励起線の照射範囲は特に限定されない。例えば、励起線を直径0.1nm以上1mm以下(典型的には1nm以上100μm以下)程度に集光して、集光した励起線を試料に照射すればよい。
 また、励起線の照射位置を試料上で掃引することで、磁区構造を観察することができる。かかる掃引の方法は特に限定されず、例えば、励起線の光源を移動する、または試料を移動することによって、励起線の照射位置を調整することができる。
 上記検出工程(S20)は、上記照射工程(S10)にて試料から放射された特性X線を検出する工程である。典型的には、特性X線の円偏光成分を回転方向毎に区別して検出する。即ち、上記特性X線の検出方法は、右円偏光成分と左円偏光成分とを区別して検出可能な方法を好適に採用できる。
 かかる検出工程(S20)は、右円偏光成分と左円偏光成分とを区別して検出できるように、右円偏光成分と左円偏光成分とを分別する円偏光分別工程(S21)と、当該円偏光分別工程(S21)により分別された各円偏光成分(右円偏光成分および左円偏光成分)の強度を検出する強度検出工程(S22)とを具備してもよい。
 円偏光分別工程(S21)は、例えば、(1)特性X線に含まれる右円偏光成分および左円偏光成分の一方を、第1の偏光方向を有する直線偏光成分に変換すると共に、他方を、第1の偏光方向と異なる第2の偏光方向を有する直線偏光成分に変換する変換工程と、(2)変換工程にて得られた第1の偏光方向を有する直線偏光成分および第2の偏光方向を有する直線偏光成分の両方を含む特性X線から、第1の偏光方向を有する直線偏光成分または第2の偏光方向を有する直線偏光成分の何れか一方を抽出する抽出工程と、により構成することができる。例えば、(1)変換工程において、右円偏光成分が第1の偏光方向を有する直線偏光成分に変換され、(2)抽出工程にて、第1の偏光方向を有する直線偏光成分が抽出される場合、この円偏光分別工程(S21)によって、右円偏光成分が分別されることになる。なお、円偏光分別工程(S21)において、右円偏光成分を分別するか左円偏光成分を分別するかは、例えば、以下の2つの方法の何れかにより切り替えることができる。第1の方法は、変換工程において、特性X線に含まれる右円偏光成分を第1の直線偏光成分に変換するか(この場合、左円偏光成分は第2の直線偏光成分に変換される)、特性X線に含まれる右円偏光成分を第2の直線偏光成分に変換するか(この場合、左円偏光成分は第1の直線偏光成分に変化される)、を切り替える方法である。第2の方法は、抽出工程において、特線X線から第1の直線偏光成分を分離するか、特性X線から第2の直線偏光成分を分離するか、を切り替える方法である。
 上記円偏光分別工程(S21)の変換工程は、例えば、1/4波長板(λ/4板)等の波長板を用いて実現することができる。かかる1/4波長板は、従来公知のものを特に制限なく使用可能であり、特性X線の波長に応じて選択すればよい。例えば、ダイヤモンド単結晶の波長板、シリコン(Si)製の波長板、ゲルマニウム(Ge)製の波長板等がある。特に、ダイヤモンド単結晶の波長板(軽元素材料の波長板)は、X線の吸収が少ないため最適である。
 かかる波長板を用いた円偏光成分の分別方法は特に限定されず、従来公知の方法を採用すればよい。以下、波長板としてダイヤモンド単結晶を用いる場合を例として好適な実施態様の一例を説明する。
 まず、波長板(ダイヤモンド単結晶)を、受光光学系の光軸上に配置する。この際、波長板の向きは、ブラッグ反射条件を満たして波長板が試料から放射された特性X線をブラッグ反射するように設定する。以下、このときの波長板の位置を、基本位置(0°位置)という。次に、波長板を、受光光学系の光軸に直交する軸を回転軸として、基本位置から所定の回転角だけ回転させる。この回転角は、回転後の波長板が+1/4波長板として機能するように、すなわち、回転後の波長板によって右円偏光成分が縦に偏光する直線偏光に変換され、左円偏光成分が横に偏光する直線偏光に変換されるように決められている。以下、この回転角を、A°といい、このときの波長板の位置を、+A°位置という。
 ここで、直線偏光の偏光方向としての「縦」「横」とは、受光光学系の光軸に直交する面内で適宜設定される2軸(X軸、Y軸)をいい、これらX軸とY軸とは前記面内で直交する。ここでは「横」をX軸とし、「縦」をY軸として説明する。
 一方で、波長板(ダイヤモンド単結晶)を、受光光学系の光軸に直交する軸を回転軸として、上記+1/4波長板として使用する場合とは逆方向に0°位置からA°回転させると(ここでは-A°位置という)、波長板によって、右円偏光成分が横に偏光する直線偏光に変換され、左円偏光成分が縦に偏光する直線偏光に変換される。換言すると、1/4波長板を通過する前の円偏光成分の回転方向に応じて直線偏光の偏光方向が90°異なる。即ち、右円偏光成分が波長板を通過した場合の直線偏光と左円偏光成分が波長板を通過した場合の直線偏光とは偏光方向が直交する。
 このように、ダイヤモンド単結晶は1/4波長板(λ/4板)として機能する。即ち、波長板および/または後述の偏光子の位置を切り替える(例えば、波長板の位置を上記+A°位置と-A°位置とを切り替える)ことで特性X線に含まれる円偏光成分を回転方向毎に区別することができる。
 ここで、上記回転軸は特性X線の進行方向に直交する方向であれば特に限定されない。好ましくは、後述の偏光子(アナライザー)の縦横に対して45°傾いた方向と一致するように回転軸を設定するのが好ましい。
 また、上記波長板の回転角度(A°)は適宜設定すれば良い。例えば、A°=0.01°程度の回転(位置の切り替え)で、1/4波長板として機能し得る。このため、例えば0<A°≦90°の範囲で適宜設定すればよい。
 上記円偏光分別工程(S21)の抽出工程は、例えば、直線偏光子(アナライザー)を用いて実現することができる。かかる直線偏光子は、従来公知のものを特に制限なく使用可能であり、特性X線の波長に応じて選択すればよい。抽出工程に利用可能な直線偏光子としては、例えば、シリコン製の直線偏光子、ゲルマニウム製の直線偏光子等が挙げられる。
 かかる直線偏光子を用いた直線偏光成分の分離方法は特に限定されず、従来公知の方法を採用すればよい。以下、直線偏光子としてゲルマニウム単結晶を用いる場合を例として一例を説明する。
 まず、直線偏光子を、受光光学系の光軸上に配置する。この際、直線偏光子の向きは、ブラッグ条件を満足して直線偏光子が波長板を透過した特性X線をブラッグ反射するように設定する。ブラッグ反射の角度(直線偏光子の反射面と受光光学系の光軸との成す角)は45°に近いことが望ましく、好適には45°±5°、より好適には45°±3°に収まることが望まれる。特性X線のエネルギーに応じて、このようなブラッグ反射を生じる単結晶を選択する。単結晶は、この状態で、直線偏光子の回転軸に対して平行(縦)な偏光方向を持つ直線偏光を、直線偏光子の回転軸に対して垂直(横)な偏光方向を持つ直線偏光とは区別して選択的にブラッグ反射する、所謂直線偏光子として機能する。このように特性X線に含まれる直線偏光成分を、直線偏光子の回転軸に対する縦横毎に区別することができる。
 特性X線には、実際には異なる元素、異なる脱励起過程の発光(Kα線、Kβ線、Lα線、など)に対応した複数の特性X線が含まれる。このため、特性X線のスペクトルにおいては、複数のピークが存在する。即ち、試料Sから発せられる特性X線は、単色ではない。このため、上記偏光子は、特定のエネルギー帯域のX線を選択的に検出することが好ましい。即ち、上記偏光子は、特性X線のエネルギー分解(X線のエネルギーの検出)も行うことが好ましい。
 例えば、偏光子の設定により、特定の特性X線(例えばFeのKα線)に対応した狭いエネルギー帯域に属する特性X線を後述のX線検出器にて検出可能となる。
 上記偏光子としては、偏光方向を選択する、またはエネルギー帯域を選択する、といった所望の効果を発揮し得るものを適宜選択して用いればよい。例えば、対象試料が鉄(Fe)であれば、Geの単結晶で構成された偏光子を好適に使用し得る。
 通常、上記特性X線は、円偏光の他に直線偏光などの非円偏光成分を包含する。右円偏光成分と左円偏光成分とを区別して検出する、とは、特性X線から右円偏光成分または左円偏光成分のみを検出することに限られない。すなわち、一方の円偏光成分を検出する際に他方の円偏光成分が同時に検出されなければよく、各円偏光成分を検出する際に非円偏光成分が同時に検出されても構わない。例えば、上記1/4波長板の位置を切り替えて各円偏光成分を検出する場合、右円偏光成分検出時と左円偏光成分検出時で、非円偏光成分が検出結果に等分に包含される。
 上記円偏光分別工程(S21)は、特性X線の進行方向を揃える手段をさらに備えても良い。通常、励起線により発生する特性X線の進行方向(放射方向)は放射状であり平行でない。一方で、円偏光の分別は平行光を用いることが好ましい。このため、円偏光を分別する前に、特性X線が平行光となるよう、適宜平行化(コリメート)を行うことが好ましい。このため、好ましくは、特性X線を平行光とするための平行化光学系を上記円偏光分別手段(例えば波長板)の前に備える。
 上記強度検出工程(S22)は、特性X線に含まれる各円偏光成分の強度を検出する工程である。例えば、単位時間内に円偏光成分を構成する光子が検出される頻度を、円偏光成分の強度として検出すればよい。例えば、特性X線に含まれる右円偏光成分および左円偏光成分の割合を、各円偏光成分の強度を表す指標として検出することができる。
 例えば、上記円偏光分別工程(S21)にて円偏光の回転方向に応じて分別された特性X線を、従来公知のX線検出器でそれぞれ検出すればよい。例えば、特許文献1に記載の技術と同様に、このエネルギーのX線を高感度で検出できる半導体検出器(例えばシリコンドリフト検出器)を用いることができる。
 磁性体を構成する元素により、特性X線のエネルギーが異なることが知られている。例えば、磁性元素がFeの場合、FeKα線(ピークエネルギー=6.404keV)、Coの場合はCoKα線(ピークエネルギー=6.930keV)、Niの場合はNiKα(ピークエネルギー=7.478keV)、Mnの場合はMnKα(ピークエネルギー=5.899keV)といった、ピークエネルギーが異なる複数の特性X線が放出される。図4より、かかる特性X線のピークエネルギー(図4では6.404keV)を挟んだ2つのエネルギー領域において、右円偏光成分と左円偏光成分の強度(図4中のIとI)には有意な差異が見られ、中心エネルギーを境にIとIの大小関係は逆転する。また、これらの関係は、印加磁場の方向(磁化の方向)が逆転した場合には、反転する。このため、中心エネルギー近傍で中心エネルギー以外のある1点のエネルギー(例えば6.405keV)での右円偏光成分の強度(I)、左円偏光成分の強度(I)を測定することによって、試料中の磁化の向きを観察することができる。
 ここで、本明細書において中心エネルギーとは、上記右円偏光成分の強度(I)と左円偏光成分の強度(I)の大小関係が逆転するエネルギーをいう。例えば、上記特性X線がKαの場合には、上記右円偏光成分の強度(I)と左円偏光成分の強度(I)の大小関係は上記の各特性X線のピークエネルギーを境として逆転する。よって、この場合には、各特性X線のピークエネルギーを、中心エネルギー(典型的には、特性X線のピークエネルギー±0.002keVの範囲内の所定のエネルギー)と見做せばよい。
 上記算出工程(S30)は、上記検出工程(S20)で検出した右円偏光成分の強度と、左円偏光成分の強度とを比較する。典型的には、右円偏光成分の強度と左円偏光成分の強度との差分を算出する。かかる差分の符号は、磁化の向きを表す。したがって、かかる差分を算出することは、磁化の向きを特定することに相当する。また、かかる差分の大きさは、磁化の大きさと相関する。したがって、かかる差分を算出することは、磁化の大きさを特定することに繋がる。
 好適な一態様では、上記右円偏光成分の強度(I)と上記左円偏光成分の強度(I)との差分(I-I)を規格化する。例えば、上記差分(I-I)を検出された円偏光成分の強度の和(I+I)で除し、これを「反転比」として算出する。かかる反転比の符号に基づき、磁化の向きを特定可能であり、また、かかる反転比の大きさに基づき、磁化の大きさを特定可能である。規格化の手法は特に限定されず、適宜選択すればよい。即ち、上記のような差分I-I、比率(I-I)/(I+I)等だけでなく、I、Iの差を高いS/N比で反映するような量を適宜設定することができる。
 上記反転比は、上記差分が強調され、円偏光の回転方向を認識し易くなるため磁区観察の指標として好適である。
 また、試料表面の形状(典型的には凹凸)により特性X線の強度が変化する場合がある。このため、試料表面の形状が上記右円偏光成分の強度と左円偏光成分の強度の差分の大小に影響してしまい、磁区構造の観察精度が低下する場合がある。一方、上記反転比は、上記差分そのものよりも試料表面の形状の影響を受け難い。このため、当該反転比を磁区構造観察の指標として採用することで、磁区構造観察の精度を向上し得る。
 特性X線を一方向からのみ検出する場合は、磁化(ベクトル)の受光軸方向への射影成分の向きおよび大きさに対応する情報が得られる。このため、磁化の向きをベクトルとして観察する場合、受光軸方向の異なる測定系を用いて試料からの特性X線を検出することによって、磁化ベクトルの各受光軸方向への射影成分を個別に計測する必要がある。このような場合であっても、反転比を用いれば、検出結果を受光軸毎に校正することなく、各受光軸に対応する計測値を直接比較することができるので、好ましい。
 上記右円偏光成分の強度と上記左円偏光成分の強度との差分の符号および絶対値は、それぞれ、磁化(ベクトル)の受光軸方向への射影成分の向きおよび大きさに対応する。このため、特性X線を異なる複数の方向から検出することにより、磁化をベクトルとして認識することもできる。
 具体的には、上記特性X線を異なる検出方向から検出するように複数の検出器を配置し、各検出器の検出結果に基づいて算出された上記反転比を比較することで、磁化をベクトル測定することができる。例えば、2つの検出器を、特性X線の検出方向が90°異なる位置に配置して試料を観察することで、面内方向(平面)の磁化を2次元のベクトルとして測定できる。或いはまた、3つの検出器を、特性X線の検出方向が直交3方向に異なる位置に配置して試料を観察することで、磁化を3次元のベクトルとして測定できる。
 例えば、受光軸方向が可変な測定装置を用いて、特性Xを異なる複数の方向から順次計測することにより2次元或いは3次元ベクトルとして計測することも可能である。また、試料台を回転させるなど、試料の受光光軸に対する向きを変えることにより、特性X線を異なる複数の方向から順次計測することも可能である。これらにおいて、複数の方向からの計測において掃引をそれぞれ独立に行い、得られた結果を画像認識によって、互いのデータにおける同一試料位置からのデータを導出し、これらを重ね合わせることにより、ベクトルのマッピングを得ることも可能である。
 一方で、永久磁石材料、方向性電磁鋼板、または磁気メモリ材料などでは、磁化の向きが決まっている場合が多く、その向きおよび大きさの計測として、検出方向が一方向のみで十分である場合も多い。
 〔磁性体観察装置〕
 以下、本発明の実施の形態に係る磁性体観察装置について説明する。図1は、この磁性体観察装置1の構成を示す図である。ここでは、試料Sの表面(図1における上側の面)の各点における磁化の向きまたは磁化の大きさが認識される。或いはまた、試料Sの内部の磁化の向きまたは磁化の大きさを認識することもできる。これによって、磁化の向きが揃った領域(磁区)の分布を認識することができる。
 この磁性体観察装置1は、従来より知られる走査型電子顕微鏡と同様の構成の部分を具備する。まず、図1において、磁性体観察装置1の最上部には、電子源(電子銃)11が設けられている。電子源11は、電子線(励起線)E1を、図中下側に向けて発する。電子光学系12には、試料台13上に固定された試料S上で電子線E1のエネルギー、ビームサイズ、ビーム形状、および強度が適正となるように、電子線E1を成形するためのコイルおよび/または電極が含まれている。また、電子光学系12には、試料S上で電子線E1を掃引するための偏向コイルも設けられていてもよい。この場合、試料Sの表面を2次元的に走査するように、あるいは、試料Sの内部を3次元的に走査するように、電子線E1の進行方向を変化させることができる。すなわち、電子源11と電子光学系12とは、電子線(励起線)E1を試料S上で走査するための励起線源10として機能する。
 また、試料Sの上面側には、試料Sの表面に電子線E1が照射されることによって発生した2次電子E2を検出する電子検出器20が設けられる。なお、電子検出器20で検出される電子には、2次電子E2の他に、反射電子等も含まれ得る。制御部21は、上記の構成を制御し、電子線E1の掃引に伴う電子検出器20の検出強度を2次元画像として表示部(ディスプレイ)22で表示させるデータ処理部としても機能する。この二次元画像において、電子検出器20の検出強度は、例えば、試料Sにおける電子線E1の照射箇所に対応させて示される。この二次元画像が試料Sの表面の電子線画像となる。上記の構成は、従来より知られる走査型電子顕微鏡(SEM)と同様である。このため、この磁性体観察装置1は、通常の走査型電子顕微鏡としても機能する。なお、試料Sを固定して電子線E1を掃引する代わりに、電子線E1は固定し試料Sを面内方向で移動させてもよい。
 ここでは、この磁性体観察装置1においては、上記のように2次電子や反射電子を測定する構成に加え、電子線E1の照射によって試料Sの表面において、磁性材料となる元素が発する特性X線を測定するための構成が用いられる。この元素としては、磁性元素であるFe、Co、Ni、Mn、Nd、Sm、Gd、Tb、Dy等があり、これらの特性X線のエネルギーは周知である。例えば、以下の例では、この特性X線として磁性体元素であるFeのKα線(6.404keV)が用いられる。特許文献1に記載されるように、従来より知られるX線マイクロアナライザにおいても、試料から発せられるX線のスペクトルにおいて特性X線を認識することによってこの特性X線を発した元素が特定され、試料の組成分析が行われる。これに対して、この磁性体観察装置1においては、特性X線に含まれる右円偏光成分及び左円偏光成分の強度をそれぞれ測定することによって、磁化についての情報が得られる。
 このため、ここでは、特性X線の右円偏光成分及び左円偏光成分の強度をそれぞれ検出するための検出部30が設けられる。検出部30では、まず、試料Sにおいて電子線E1で照射された箇所から発散して発せられるX線X1を平行光とする(平行化する)ための平行化光学系31が用いられる。X線X1には、実際には異なる元素、異なる脱励起過程の発光(Kα線、Kβ線、Lα線、など)に対応した複数の特性X線および特性X線ではない連続X線なども含まれるため、X線X1のスペクトルにおいては、複数のピークが存在する。その後、このX線X1は、測定対象となる特性X線のエネルギーに対応する波長板32を通過する。波長板32は、測定対象とする特性X線のエネルギー(波長)に対応した1/4波長板(λ/4板)である。また、受光光学系の光軸に直交した軸の周りの波長板32の位置(角度)は、制御部21によって、後述するように2種類に切り替え可能とされる。
 上述のとおり、各円偏光成分は、波長板32を通過すると、所定の方向に偏光した直線偏光となる。即ち、波長板32を通過する前の円偏光成分の回転方向(右回り、左回り)に応じて、波長板32を通過した後の直線偏光の偏光方向は90°変化する。換言すると、波長板32を通過した円偏光成分は、縦(垂直)に偏光する直線偏光、または横(水平)に偏光する直線偏光となる。特性X線として後述するFeのKα線(6.404keV)を想定する場合、λ/4板として機能する波長板32は、例えばダイヤモンド等を用いて構成することができる。
 波長板32を通過した後のX線X2は、特定の偏光方向の成分のみを選択的にブラッグ反射させる反射型の偏光子33で反射され、X線X3となる。このX線X3は,X線検出器34で検出され、電気信号として出力される。また、偏光子33は、例えばGeの単結晶で構成され、上記のような特定の偏光方向の成分だけでなく、特定のエネルギーのX線のみを狭い帯域で選択的に回折させる。このため、試料Sから発せられるX線X1は上記のように単色ではないが、偏光子33の設定によって、特定の特性X線(例えばFeのKα線)に対応した狭いエネルギー帯域のX線X3としてX線検出器34で検出することができる。X線検出器34としては、特許文献1に記載の技術と同様に、このエネルギーのX線を高感度で検出できる半導体検出器(例えばシリコンドリフト検出器)を用いることができる。
 ここで、例えば特性X線に含まれる左円偏光成分が波長板32を通過した後の偏光方向が偏光子33で選択的に回折(ブラッグ反射)される方向と等しくなるように波長板32の配置を設定した(例えば、波長板32を上記-A°位置とする)場合、特性X線に含まれる左円偏光成分がX線検出器34で検出される。この場合、特性X線に含まれる右円偏光成分が波長板32を通過した後の偏光方向は、特性X線に含まれる左円偏光成分が波長板32を通過した後の偏光方向と直交する。したがって、この場合、特性X線に含まれる右円偏光成分は、X線検出器34で検出されない。一方、波長板32を回転させた場合(例えば、波長板を上記+A°位置とする)には、波長板32を通過する特性X線の偏光方向が90°変化するため、逆に、右円偏光成分がX線検出器34で検出され、左円偏光成分はX線検出器34はX線検出器34で検出されない。なお、同様に円偏光成分の回転方向毎の特性X線の強度がX線検出器34で得られる限りにおいて、波長板32の上記のような配置(光軸に直交した軸の周りの位置)の設定は適宜行われる。
 このため、制御部21は、X線X1が発せられる際に、波長板32を上記のように光軸周りにおける2種類の位置に切り替えて検出器34の出力を得ることによって、円偏光の回転方向毎の特性X線の強度を認識することができる。ここで、この円偏光の回転方向毎の特性X線の強度の差分、すなわち、右円偏光成分と左円偏光成分との強度の差分は、以下に説明するように、試料Sにおける表面或いは内部の磁化の向きまたは磁化の大きさを反映する。
 磁性体(Fe)から発せられる特性X線の偏光状態と磁化の向きおよび磁化の大きさの関係について実際に調べた結果について説明する。円偏光したX線に対する強磁性体の透過率が磁化の向きに応じて変化することは、XMCD(X-ray Magnetic Circular Dichroism:X線磁気円二色性)として周知である。これに対して、本願発明では、Fe原子が発する特性X線自身に円偏光成分が含まれ、この円偏光成分における各回転方向の成分(右円偏光成分および左円偏光成分)の比率が、磁化によって変化することを利用している。
 試料SとしてFeで構成された板を用い、磁化と特性X線における上記の円偏光の特性について調べた。図2は、この測定の際の構成を示す図である。図1の構成では、試料Sにおける磁性元素に対して特性X線を放射させるための励起線として電子線E1が用いられるものとしたが、ここでは、7.13keVに単色化された高強度のシンクロトロン放射光X線(放射光X線R)が代わりに用いられた。また、試料Sにおける磁化を飽和状態にできる程度の強い外部磁場Hが極性を反転できるようにして試料Sの主面の面内方向に印加された。スリット41を通過した放射光X線Rを試料Sの主面と垂直に試料Sに入射させた。その結果、磁化(外部磁場H)の方向と放射光X線Sの方向とに平行な面内において出射角が45°となるように試料Sから放射されたX線X1が、スリット42を介して前記と同様の波長板32、偏光子33、およびX線検出器34を用いて検知された。なお、本実施態様では上記特性X線(X線X1)の出射角を45°としたが、当該出射角はこれに限定されない。また、ここでは平行化光学系31を用いずに観察を行ったが、上記電子線を励起線に用いる場合と同様に、当該放射光X線を励起線に用いた場合であっても、平行化光学系31を波長板32よりも上流に配置してもよい。
 図3は、上記のように波長板32における2種類の状態を切り替えてX線検出器34で検出した検出結果(エネルギースペクトル)である。ここで検出された特性X線はFeのKα線に対応する。上記の2種類の状態での出力が混合した状態(偏光状態を区別しないでX線検出器34が検出した場合)でのピークは6.404keVとなる。図3においては、上記の2種類の状態の各々におけるX線検出器34の出力(600秒当たりのカウント数)が、それぞれ強度I(図3における白丸)、強度I(図3における黒丸)としてエラーバー付きで示されている。前記のとおり、強度I、Iは、回転方向が互いに逆向きの円偏光成分の強度に対応する。ただし、試料Sから放射される特性X線には、円偏光以外の非円偏光成分も多く含まれる。このため、強度I、Iは、円偏光成分の強度と、波長板32、偏光子33等では弁別できない非円偏光成分の強度との和を示すことになる。なお、強度Iとしてカウントされる非円偏光成分の強度、及び、強度Iとしてカウントされる非円偏光成分の強度は、それぞれ、特性X線に含まれる非円偏光成分の強度の1/2になる。
 図3の特性より、強度I、Iの差は、FeのKα線のピークである6.404keVの周りで有意に異なっている。この差は、特性X線(FeのKα線)における右円偏光成分と左円偏光成分との強度の違いを反映している。印加する外部磁場Hの向きを反転させることによって、試料Sの磁化の向きを反転させることができる。外部磁場Hの向きを反転させる前および後のそれぞれについて、(I-I)/(I+I)をプロットしたグラフを図4に示す。外部磁場Hを反転させる前および後の試料Sの状態は、それぞれ、水平方向における磁化が試料Sにおいて全ての磁区で一様に第1の向きに揃った状態と、水平方向における磁化が試料Sにおいて全ての磁区で一様に第2の向き(第1の向きと反対向き)に揃った状態とに対応する。差I-Iは、波長板32の切り替えを行った際の検出器34の出力の差に相当する。図4では、外部磁場Hの向きを反転させる前の結果を+H(黒丸)、外部磁場Hの向きを反転させた後の結果を‐H(白丸)として、それぞれエラーバー付きで示されている。図中の曲線は、eye guideとしての近似曲線である。なお、ここでは、規格化因子として(I+I)の代わりに[(I)+(I)]peak(図3の黒丸と白丸のスペクトルの和のピーク値を使用)を採用した。
 図4より、中心エネルギー(6.404keV)を挟んだ2つのエネルギー領域において、強度Iと強度Iには有意な差異が見られ、中心エネルギーを境に強度Iと強度Iの大小関係は逆転する。また、この大小関係は、外部磁場Hの向きの反転に伴い、試料Sの磁化の向きが逆転した場合には、反転する。このため、中心エネルギー近傍で中心エネルギー以外のある1点のエネルギー(例えば6.405keV)での強度I、Iを測定することによって、少なくとも試料Sの主面と平行な方向(磁場の印加された方向)中の磁化の向きを判定することができる。また、あるいは、中心エネルギーよりも低エネルギー側における差分I-Iの積分値と、中心エネルギーよりも高エネルギー側における差分I-Iの積分値とを用いることによって、より誤差を少なくして、この判定を行うことが可能である。また、差分I-I、比率(I-I)/(I+I)、あるいは上記のような差分I-Iの積分値等の絶対値は、試料Sの磁化の大きさに対応し、その磁化が零の場合には零となる。より具体的には、磁化のうち受光軸方向への射影成分についてその向きと大きさに対応する情報が得られる。
 図3、4においては、強い外部磁場Hを印加することによって磁化が飽和し試料Sにおける磁化の向きおよび磁化の大きさが一様に揃った状態について測定がされた。しかしながら、磁性体観察装置1によれば、強い外部磁場Hが印加されていない状態の試料S、すなわち、磁化が一様に揃っていない状態の試料Sについても、磁化の向きまたは磁化の大きさの分布を観察することが可能である。外部磁場Hが印加されない状態での磁性体における磁区の構造を模式的に図5に示す。ここで、矢印の向きおよび矢印の大きさは、それぞれ、磁化の向きおよび磁化の大きさを示す。こうした状態においては、(1)磁化の向きまたは磁化の大きさは各磁区毎に異なり、(2)各磁区内では磁化は一様となり、(3)磁区の境界(磁壁)で磁化の向きはまたは磁化の大きさ急激に変化する。このため、図3、4と同様の測定結果を試料S上の各点で入手した場合には、上記の差分I-I等の算出値は、1つの磁区内では一様であり、磁区の境界で急激に変化する。なお、高い空間分解能の観察であれば、磁区の境界(磁壁)内部における磁化の向きや大きさの分布についての情報を取得することも可能である。
 このため、図2において励起線として用いられた放射光X線Rを掃引し、その試料S上の各照射位置に対応する差分I-I、比率(I-I)/(I+I)等の値を算出すれば、その試料における磁化の向きまたは磁化の大きさの分布が得られる。また、各画素が試料S上の各照射位置に対応する2次元画像であって、各画素の画素値(濃淡または色)がその画素に対応する照射位置に励起線を照射したときの差分I-I、比率(I-I)/(I+I)等の値に対応する2次元画像を表示部22で2次元表示すれば、図5に示されるような磁区構造を可視的に表示することができる。
 図3、4の例では、励起線として放射光X線Rが用いられたが、図1の構成のように電子線E1を用いた場合でも、原理は同様である。この場合、上記のような放射光X線Rを用いる場合と比べて、励起線源10及びこの磁性体観察装置1をより小型、安価とすることができる。また、平行化光学系31を用いることによって、検出器34における検出強度を高めることができ、効率よく強度I、Iを得ることができる。これによって、上記のように磁区構造を表示部22で表示させることができる。すなわち、図1の構成における磁性体観察装置1において実行される磁性体観察方法は、電子線E1を試料S上の一領域に照射する照射工程、これによって発した特性X線に対応するX線を円偏光成分の異なる2つの回転方向毎に検出した2つの強度として認識する検出工程、をこの一領域が試料S上で移動するように電子線E1を掃引しつつ複数回行う。その後、検出工程において認識された2つの強度の差に基づいて算出された算出値を上記のように画像化して表示部22で表示させる表示工程を行う。
 また、前記のように、図1の構成は走査型電子顕微鏡としても機能し、表示部22で試料Sの通常の電子線画像を表示させることもできる。この際、この電子線画像と共に上記のような強度I、Iに基づいた磁区構造の画像を表示させることができる。これによって、磁区構造を試料Sの表面の微細構造等と対応して認識することが容易となる。すなわち、走査型電子顕微鏡画像(顕微鏡画像)を取得する画像取得部をさらに設け、この顕微鏡画像と、電子線が照射された領域と、を対応させて表示した画像として出力させてもよい。同様に、図1の構成を透過型電子顕微鏡の構成に置き換えて使用することもできる。
 一般的に、磁性体で構成された試料表面には自然酸化膜などの被膜が形成される場合が多い。従来の磁区構造観察方法では、当該被膜存在下での測定が困難であったため、これを排除するための事前の試料処理が必要だった。
 X線を励起光として用いることで被膜下の磁性体まで励起光を到達させることができる。また、電子線E1を用いた場合には同等エネルギーの放射光X線Rを用いた場合と比べて物質透過性は低いものの、電子光学系12を用いて電子線E1を試料Sの表面の被膜を透過させる程度のエネルギーとすることは容易である。即ち、図1における電子光学系12によって電子線E1のエネルギーを高くすることによって、電子線E1がこうした被膜を透過するように、あるいは試料Sにおける1μm以上の一定の深さ(例えば5μm以上、好ましくは10μm以上)まで電子線E1が到達するようにすることは可能である。
 さらに、上記の構成において直接測定されるのは特性X線であり、そのエネルギーは上記のように、例えばFeKαにおいては6.404keVである。このような硬エネルギー領域のX線は物質透過率が高い。このため、試料表面からの深さが数μm程度以上である領域から発せられる特性X線を検出することができる。また、かかる特性X線は非磁性体で構成される被膜に対する物質透過率が高い。このため、このような被膜が試料S上に存在しても、強度I、I等の測定に対する影響は小さい。即ち、ここで開示する構成によると、上記試料表面に形成される非磁性体で構成された被膜を排除する事前処理を必要としないだけでなく、深部の磁区構造の測定が可能となる。例えば、前述のスピンSEMを用いた場合と比べて3桁以上深い部分の磁区構造を測定することができる。
 また、図1の構成において、通常の走査型電子顕微鏡と比べて追加された構成要素として主となるものは、検出部30であり、制御部21については、上記のようなデータ処理部としての機能のみが追加されている。このため、実質的には従来の走査型電子顕微鏡に検出部30を追加することでこの磁性体観察装置1を得ることができる。すなわち、この磁性体観察装置1を単純な構成とすることができる。この際、平行化光学系31、波長板32、偏光子33、X線検出器34からなる検出部30の構成は単純である。なお、検出される特性X線の強度が十分高ければ、平行化光学系31は不要である。また、X線マイクロアナライザが走査型電子顕微鏡に設けられている場合には、X線検出器34はX線マイクロアナライザと共通とすることもできる。
 また、上記のように、この磁性体観察装置1においては、試料Sが発した特性X線に含まれる各円偏光成分の強度を検出することができれば十分であるため、特許文献3に記載の技術のように他の部材を試料Sに接合する等の特殊な加工を試料Sに対して施すことは不要であり、この点については、従来のX線マイクロアナライザ等と同様である。このため、試料Sにおける磁区構造の観察を容易に行うことができる。
 なお、以上の説明では、励起線として電子線E1又は放射光X線R(X線)を用いる構成を例示したが、試料Sを構成する磁性元素から特性X線を放射させることができる限りにおいて、他の励起線を用いることもできる。例えば、X線以外の電磁波ビーム、又は、電子線以外の荷電粒子線を励起線として利用することができる。励起線として利用することが可能な、X線以外の電磁波ビームとしては、例えば、ガンマ線が挙げられる。また、励起線として利用することが可能な、電子線以外の荷電粒子線としては、例えば、陽電子線、陽子線、μ粒子線、イオンビームが挙げられる。
 なお、ここで開示する技術によると、特性X線が試料から脱出可能な深さまで深部計測を行うことができる。このため、上記試料Sの深部計測を行う場合(試料内部を計測する場合)には、試料に対する励起線の侵入深さ(D1)が、特性X線が試料を脱出可能な深さ(D2)以上となるように(D1≧D2)、上記励起線のエネルギーを設定することが好ましい。
 また、以上の説明では、測定対象とされた特性X線をFeのKα線とする構成を例示したが、同様に特性X線における円偏光の回転方向を弁別して検出することが可能である限りにおいて、他の脱励起過程の発光(Kα線、Kβ線、Lα線、など)を用いることもできる。また、こうした特性X線を発する元素としては、Feの他に、磁性体元素であるCo、Ni、Mn、Nd、Sm、Gd、Tb、Dyなどがある。どの元素を測定対象としても、その特性X線のエネルギーはkeVレベルであるため、前記のスピンSEMで測定されるような2次電子よりも物質透過率が高く、前記のような被膜等が測定に及ぼす影響は小さい。また、試料Sが上記の元素を含む合金である場合には、その合金を構成する上記の元素のうちの一つにおけるある1種の特性X線を適宜選択してX線検出器34の検出対象とすることができる。
 なお、上述したように、強度I、Iの差に基づく算出値を画像化することによって磁区の境界における磁化の急激な変化を認識することができ、これによって詳細な磁区構造を視覚的に認識することができる。この際、この算出値としては、上記のような差分I-I、比率(I-I)/(I+I)等だけでなく、強度I、Iの差を高いS/N比で反映するような量を適宜設定することができる。
 また、以上の説明においては、特性X線に含まれる円偏光成分を円偏光の回転方向毎に検出するために、波長板32と偏光子33を組み合わせて用いる構成を例示した。しかしながら、同様に特性X線における円偏光成分を円偏光の回転方向毎に検出することができる限りにおいて、他の構成を用いることもできる。例えば、波長板を用いて偏光方向の異なる2種類の直線偏光成分を含む特性X線を得た上で、偏光子33を用いずにX線検出器側で偏光方向毎の強度が検出できるような構成としてもよい。
 また、上記の例においては、磁区構造を視覚的に認識することを目的としたために、図1の構成によって容易に検出可能な強度I、Iを用いた。この場合には、図5における磁区の構造(分布)は認識できる一方で、図5における磁化のベクトルとしての大きさ、向きは正確には検出されない。しかしながら、図1における検出部30の位置(電子線E1が照射される箇所からみた検出部30の方向)等を可変とすることにより、ベクトルとして磁化をより正確に計測することも可能である。或いはまた、前述のように、受光光軸の方向を可変として、複数の方向から計測することにより2次元或いは3次元ベクトルとして計測することも可能である。また、試料台を回転させるなどで試料の受光光軸に対する向きを変えることにより複数の方向から計測することも可能である。これらにおいて、複数の方向からの計測において掃引をそれぞれ独立に行い、得られた結果を画像認識によって、互いのデータにおける同一試料位置からのデータを導出し、これらを重ね合わせることにより、ベクトルのマッピングを得ることも可能である。
 〔平行化光学系に関する補足〕
 なお、図2に示すように、試料Sから発せられる特性X線のうち、スリット42を透過した特定X線をX線検出器34に入射させる構成では、試料Sから発せられる特性X線のうちスリット42を通過しない特性X線(典型的には試料Sから発せられる特性X線の大部分)はX線検出器34に入射することなく損失となる。一方、図1に示すように、試料Sから発せられる特性Xを、平行化光学系31を用いて平行化してX線検出器34に入射させる構成では、試料Sから発せられる特性X線をX線検出器34に格段に多く入射させることができる。したがって、試料Sから発せられる特性Xを、平行化光学系31を用いて平行化してX線検出器34に入射させる構成の方が、試料Sから発せられる特性X線の利用効率において優れている。
 平行化光学系31としては、試料Sから発せられる特性X線を2次元的に平行化することが可能な平行化光学系を用いることが好ましい。試料Sから発せられる特性X線の受光角(X線検出器34に入射する出射角の範囲)が1次元あたりa倍になると、試料Sから発せられる特性X線の利用効率がa倍になるからである。
 このような平行化光学系は、例えば、モンテル型多層膜ミラーにより構成することができる。発明者らが行った実験によれば、平行化光学系31としてモンテル型多層膜ミラーにより構成された平行化光学系を用いることによって、試料Sから発せられる特性X線の受光角が1次元あたり約170倍になり、試料Sから発せられる特性X線の利用効率(上記モンテル型多層膜ミラーの反射率=75%を考慮した利用効率)が約2万倍になることが確認された。
 〔まとめ〕
 本実施形態は、上記課題を解決すべく、以下に掲げる構成とした。
 本実施形態の磁性体観察方法は、磁性体を含む試料における磁化の向き又は磁化の大きさを観察する方法であって、前記試料に照射されることによって前記磁性体を構成する元素に特性X線を放射させる励起線を前記試料上の一領域に照射する照射工程と、前記励起線の照射によって前記元素が発した前記特性X線を、円偏光成分の回転方向毎に検出した2つの強度として認識する検出工程と、前記検出工程において認識された前記2つの強度の差を算出する算出工程と、を具備することを特徴とする。
 本実施形態の磁性体観察方法において、前記励起線は、電磁波ビーム、および、荷電粒子線のいずれかであることを特徴とする。
 本実施形態の磁性体観察装置は、磁性体を含む試料における磁化の向きまたは磁化の大きさを観察する装置であって、前記試料に照射されることによって前記磁性体を構成する元素に特性X線を放射させる励起線を発する励起線源と、前記励起線の照射によって前記元素が発した前記特性X線を、円偏光成分の回転方向毎に右円偏光成分または左円偏光成分として検出する検出部と、前記右円偏光成分の強度と前記左円偏光成分の強度との差に基づいて算出された算出値を出力させるデータ処理部と、を具備することを特徴とする。
 本実施形態の磁性体観察装置において、前記励起線源は、前記試料上の励起線照射位置が掃引されるように前記励起線を前記試料上に照射させ、前記データ処理部は、前記算出値を前記励起線照射位置の掃引に伴い認識し、前記算出値を前記試料上の前記励起線が照射された領域に対応させて表示した画像として出力させることを特徴とする。
 本実施形態における磁性体観察装置は、前記特性X線に対する1/4波長板を具備することを特徴とする。
 本実施形態における磁性体観察装置において、前記検出部は、前記波長板を透過した後に直線偏光とされた前記特性X線に対して、偏光方向に対応して異なる強度を付与する偏光子を具備することを特徴とする。
 本実施形態における磁性体観察装置において、前記励起線は、電磁波ビーム、および、荷電粒子線のいずれかであることを特徴とする。
 本実施形態における磁性体観察装置において、前記励起線は電子線であり、走査型電子顕微鏡画像または透過型電子顕微鏡画像である顕微鏡画像を取得する画像取得部をさらに具備し、前記データ処理部は、前記顕微鏡画像と、前記励起線が照射された領域と、を対応させて表示した画像として出力させることを特徴とする。
 本実施形態は、特性X線の円偏光成分を計測することで磁区構造を観察する、新規の磁区構造観察方法に関する。特性X線には透過性の高い硬X線領域のX線が含まれるため、当該硬X線領域のX線の円偏光を計測対象とすれば、従来は測定困難であった試料表面から数μm程度の深さの磁区構造の観察も実現可能である。このため、磁性体を観察する際に、試料に対する制限が緩く、かつ精密な測定が可能となる。
 〔付記事項〕
 本発明は、上述した各実施形態に限定されるものでなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
1 磁性体観察装置
10 励起線源
11 電子源(電子銃)
12 電子光学系
13 試料台
20 電子検出器
21 制御部(データ処理部)
22 表示部
30 検出部
31 平行化光学系
32 波長板
33 偏光子
34 X線検出器
41、42 スリット
E1 電子線(励起線)
E2 2次電子
H 磁場
R 放射光X線(シンクロトロン放射光X線:励起線)
S 試料
X1、X2、X3 X線

Claims (14)

  1.  磁性体を含む試料における磁化の向き又は磁化の大きさを観察する方法であって、
     前記試料に照射されることによって前記磁性体を構成する元素に特性X線を放射させる励起線を前記試料上の一領域に照射する照射工程と、
     前記励起線の照射によって前記元素が発した前記特性X線を、円偏光成分の回転方向毎に検出した2つの強度として認識する検出工程と、
     前記検出工程において認識された前記2つの強度の差を算出する算出工程と、
    を含んでいることを特徴とする磁性体観察方法。
  2.  前記励起線は、電磁波ビームである、
    ことを特徴とする請求項1に記載の磁性体観察方法。
  3.  前記励起線は、X線を除く電磁波ビームである、
    ことを特徴とする請求項2に記載の磁性体観察方法。
  4.  前記励起線は、荷電粒子線である、
    ことを特徴とする請求項1に記載の磁性体観察方法。
  5.  磁性体を含む試料における磁化の向きまたは磁化の大きさを観察する装置であって、
     前記試料に照射されることによって前記磁性体を構成する元素に特性X線を放射させる励起線を発する励起線源と、
     前記励起線の照射によって前記元素が発した前記特性X線を、円偏光成分の回転方向毎に右円偏光成分または左円偏光成分として検出する検出部と、
     前記右円偏光成分の強度と前記左円偏光成分の強度との差に基づいて算出された算出値を出力させるデータ処理部と、
    を備えていることを特徴とする磁性体観察装置。
  6.  前記励起線源は、前記試料上の励起線照射位置が掃引されるように前記励起線を前記試料上に照射させ、
     前記データ処理部は、前記算出値を前記励起線照射位置の掃引に伴い認識し、前記算出値を前記試料上の前記励起線が照射された領域に対応させて表示した画像として出力させる、
    ことを特徴とする請求項5に記載の磁性体観察装置。
  7.  前記検出部は、前記特性X線に対する1/4波長板を具備する、
    ことを特徴とする請求項5又は6に記載の磁性体観察装置。
  8.  前記検出部は、前記1/4波長板を透過した、直線偏光成分を含む前記特性X線に対して、偏光方向に対応して異なる強度を付与する偏光子を具備する、
    ことを特徴とする請求項7に記載の磁性体観察装置。
  9.  前記励起線は、電磁波ビームである、
    ことを特徴とする請求項5~8の何れか1項に記載の磁性体観察装置。
  10.  前記励起線は、X線を除く電磁波ビームである、
    ことを特徴とする請求項9に記載の磁性体観察装置。
  11.  前記励起線は、荷電粒子線である、
    ことを特徴とする請求項5~8の何れか1項に記載の磁性体観察装置。
  12.  前記励起線は、電子線であり、
     走査型電子顕微鏡画像または透過型電子顕微鏡画像である顕微鏡画像を取得する画像取得部をさらに備え、
     前記データ処理部は、前記顕微鏡画像と、前記励起線が照射された領域と、を対応させて表示した画像として出力させる、
    ことを特徴とする請求項11に記載の磁性体観察装置。
  13.  前記試料と前記検出部との間に前記特性X線を平行化する平行化光学系が設けられている、
    ことを特徴とする請求項5~12の何れか1項に記載の磁性体観察装置。
  14.  前記平行化光学系は、モンテル型多層膜ミラーにより構成されている、
    ことを特徴とする請求項13に記載の磁性体観察装置。
PCT/JP2019/012018 2018-03-22 2019-03-22 磁性体観察方法および磁性体観察装置 WO2019182097A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19771291.2A EP3770591A4 (en) 2018-03-22 2019-03-22 MAGNETIC BODY OBSERVATION METHOD AND MAGNETIC BODY OBSERVATION DEVICE
JP2020507917A JP7129109B2 (ja) 2018-03-22 2019-03-22 磁性体観察方法および磁性体観察装置
US16/647,884 US11474169B2 (en) 2018-03-22 2019-03-22 Magnetic material observation method, and magnetic material observation apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018054701 2018-03-22
JP2018-054701 2018-03-22

Publications (1)

Publication Number Publication Date
WO2019182097A1 true WO2019182097A1 (ja) 2019-09-26

Family

ID=67986520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012018 WO2019182097A1 (ja) 2018-03-22 2019-03-22 磁性体観察方法および磁性体観察装置

Country Status (4)

Country Link
US (1) US11474169B2 (ja)
EP (1) EP3770591A4 (ja)
JP (1) JP7129109B2 (ja)
WO (1) WO2019182097A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022118956A1 (ja) * 2020-12-04 2022-06-09 国立研究開発法人量子科学技術研究開発機構 磁化測定装置及び磁化測定方法
WO2022118957A1 (ja) * 2020-12-04 2022-06-09 国立研究開発法人量子科学技術研究開発機構 磁化測定方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7291618B2 (ja) 2019-12-24 2023-06-15 株式会社日立製作所 画像取得システム及び画像取得方法
US11906605B1 (en) * 2020-10-30 2024-02-20 The United States Of America, As Represented By The Secretary Of The Navy Apparatus, systems, and methods for measurement using magneto-optical Kerr effect
CN112744795B (zh) * 2021-02-01 2023-06-20 苏州大学张家港工业技术研究院 增强二维电子化合物材料磁性响应和居里温度的方法
US11525791B1 (en) 2021-06-14 2022-12-13 Applied Materials Israel Ltd. SNR for x-ray detectors in SEM systems by using polarization filter
CN115291149B (zh) * 2022-10-08 2023-02-03 赫智科技(苏州)有限公司 线阵扫描装置及控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545304A (ja) * 1991-08-20 1993-02-23 Hitachi Ltd 円偏光x線を用いた磁区観察法及びその装置
WO1997001862A1 (fr) * 1995-06-26 1997-01-16 Hitachi, Ltd. Microscope electronique et microscopie electronique
US20100086104A1 (en) * 2008-10-08 2010-04-08 Incoatec Gmbh X-ray analysis instrument with adjustable aperture window
JP2012211771A (ja) * 2011-03-30 2012-11-01 Shimadzu Corp 電子線分析装置
JP2012233845A (ja) 2011-05-09 2012-11-29 Hitachi High-Technologies Corp 磁気力顕微鏡用カンチレバーおよびその製造方法
WO2016147320A1 (ja) * 2015-03-17 2016-09-22 株式会社日立製作所 電磁波顕微鏡及びx線顕微鏡
JP2017044557A (ja) 2015-08-26 2017-03-02 株式会社日立ハイテクサイエンス X線分析装置
JP2017191066A (ja) 2016-04-15 2017-10-19 国立大学法人東北大学 磁気特性観察装置及び磁気特性観察方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3570456A (en) 1969-02-11 1971-03-16 Varian Associates Liquid development apparatus for development of electrostatic images
JPH07198631A (ja) 1993-12-28 1995-08-01 Apuko:Kk スピン偏極電子線源特性x線解析装置
US6313461B1 (en) * 1999-03-19 2001-11-06 International Business Machines Corp. Scanning-aperture electron microscope for magnetic imaging
JP2008066080A (ja) 2006-09-06 2008-03-21 National Institutes Of Natural Sciences 磁気円二色性測定方法、磁気円二色性光電子放出顕微鏡、及び磁気円二色性光電子放出顕微鏡システム
FR2935071B1 (fr) * 2008-08-13 2010-08-13 Europ Synchrotron Radiation Fa Detecteur de rayons x utilisable aux frequences micro-ondes
US8636980B2 (en) * 2009-06-19 2014-01-28 Koninklijke Philips N.V. MRI thermometry combined with hyperpolarisation device using photons with orbital angular momentum
JP5814729B2 (ja) 2011-10-06 2015-11-17 株式会社日立製作所 ベクトル場断層撮影装置およびベクトル場断層像再構成法
US9835569B2 (en) * 2013-09-25 2017-12-05 Toyota Jidosha Kabushiki Kaisha Magnetic measurement system and apparatus utilizing X-ray to measure comparatively thick magnetic materials
JP6411722B2 (ja) * 2013-09-25 2018-10-24 トヨタ自動車株式会社 磁気特性測定方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545304A (ja) * 1991-08-20 1993-02-23 Hitachi Ltd 円偏光x線を用いた磁区観察法及びその装置
WO1997001862A1 (fr) * 1995-06-26 1997-01-16 Hitachi, Ltd. Microscope electronique et microscopie electronique
US20100086104A1 (en) * 2008-10-08 2010-04-08 Incoatec Gmbh X-ray analysis instrument with adjustable aperture window
JP2012211771A (ja) * 2011-03-30 2012-11-01 Shimadzu Corp 電子線分析装置
JP2012233845A (ja) 2011-05-09 2012-11-29 Hitachi High-Technologies Corp 磁気力顕微鏡用カンチレバーおよびその製造方法
WO2016147320A1 (ja) * 2015-03-17 2016-09-22 株式会社日立製作所 電磁波顕微鏡及びx線顕微鏡
JP2017044557A (ja) 2015-08-26 2017-03-02 株式会社日立ハイテクサイエンス X線分析装置
JP2017191066A (ja) 2016-04-15 2017-10-19 国立大学法人東北大学 磁気特性観察装置及び磁気特性観察方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
OKAMOTO, T. ET AL.: "Characteristics of Oxygen Sensor Exploiting the Hot Spot in BaAl204- added GdBa2Cu3O7-delta Composite Ceramic Rod", JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, vol. 112, no. 5, 1 January 2004 (2004-01-01), pages S567 - S571, XP055676622 *
See also references of EP3770591A4
TERUO KOHASHI: "Spin-Polarized Scanning Electron Microscopy (Spin-SEM", KENBIKYO, vol. 48, no. 1, 2013, pages 15
TOSHIYA INAMI: "MAGNETIC CIRCULAR DICHROISM IN X-RAY EMISSION FROM FERROMAGNETS", PHYSICAL REVIEW LETTERS, vol. 119, no. 13, 17 September 2017 (2017-09-17), pages 1 - 5, XP055676621, ISSN: 0031-9007, DOI: 10.1103/PhysRevLett.119.137203 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022118956A1 (ja) * 2020-12-04 2022-06-09 国立研究開発法人量子科学技術研究開発機構 磁化測定装置及び磁化測定方法
WO2022118957A1 (ja) * 2020-12-04 2022-06-09 国立研究開発法人量子科学技術研究開発機構 磁化測定方法

Also Published As

Publication number Publication date
JPWO2019182097A1 (ja) 2021-03-25
US20200249288A1 (en) 2020-08-06
JP7129109B2 (ja) 2022-09-01
EP3770591A1 (en) 2021-01-27
EP3770591A4 (en) 2021-12-22
US11474169B2 (en) 2022-10-18

Similar Documents

Publication Publication Date Title
WO2019182097A1 (ja) 磁性体観察方法および磁性体観察装置
Donnelly et al. High-resolution hard x-ray magnetic imaging with dichroic ptychography
van Der Laan et al. Anisotropic x-ray magnetic linear dichroism and spectromicroscopy of interfacial Co/NiO (001)
Nakagawa et al. Magnetic circular dichroism near the Fermi level
Ott et al. Shaping micron-sized cold neutron beams
Kowalik et al. Description of the new I1011 beamline for magnetic measurements using synchrotron radiation at MAX-lab
Wang et al. On the possibility to detect multipolar order in URu 2 Si 2 by the electric quadrupolar transition of resonant elastic X-ray scattering
US9766190B2 (en) Method, system and apparatus for measuring comparatively thick materials
Morscher et al. Resonant photoelectron diffraction with circularly polarized light
Sugawara et al. Bulk-sensitive magnetic microscope utilizing x-ray magnetic circularly polarized emission
US9835569B2 (en) Magnetic measurement system and apparatus utilizing X-ray to measure comparatively thick magnetic materials
Kinoshita Application and future of photoelectron spectromicroscopy
Misawa et al. Resonant x-ray diffraction study using circularly polarized x rays on antiferromagnetic TbB 4
De Rossi et al. Unexpected Negative Exchange Splitting of the Fe (001) Image State
Oji et al. Implementation of time of flight polarized neutron imaging at IMAT-ISIS
Matsui et al. Parallel and antiparallel angular momentum transfer of circularly polarized light to photoelectrons and Auger electrons at the Ni L 3 absorption threshold
Zumbrägel et al. Exchange-split interface state at h-BN/Ni (111)
WO2022118957A1 (ja) 磁化測定方法
Mantouvalou Quantitative 3D Micro X-ray fluorescence spectroscopy
Schwesig et al. Novel type of neutron polarization analysis using the multianalyzer-equipment of the three-axes spectrometer PUMA
Jonnard et al. Dichroism of x-ray fluorescence under standing waves regime in magnetic periodic multilayers
Bykova High-resolution X-ray ptychography for magnetic imaging
Mori et al. Polarization analyzing system for x‐ray magnetic Kerr rotation in x‐ray magnetic resonant scattering
Borchert et al. Table-top X-ray magnetic circular dichroism at the Fe L edges
GRAZIANO X-ray emission intensity ratios detection for fast chemical characterization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771291

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507917

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019771291

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019771291

Country of ref document: EP

Effective date: 20201022