WO2019181957A1 - 火炎検知システム、報知システム、火炎検知方法、及びプログラム - Google Patents

火炎検知システム、報知システム、火炎検知方法、及びプログラム Download PDF

Info

Publication number
WO2019181957A1
WO2019181957A1 PCT/JP2019/011510 JP2019011510W WO2019181957A1 WO 2019181957 A1 WO2019181957 A1 WO 2019181957A1 JP 2019011510 W JP2019011510 W JP 2019011510W WO 2019181957 A1 WO2019181957 A1 WO 2019181957A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame
image data
unit
flame detection
detection system
Prior art date
Application number
PCT/JP2019/011510
Other languages
English (en)
French (fr)
Inventor
徹 沖野
廣瀬 裕
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201980018742.8A priority Critical patent/CN111868795A/zh
Priority to JP2020507843A priority patent/JP7002043B2/ja
Publication of WO2019181957A1 publication Critical patent/WO2019181957A1/ja
Priority to US17/015,603 priority patent/US20210041297A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/12Actuation by presence of radiation or particles, e.g. of infrared radiation or of ions
    • G08B17/125Actuation by presence of radiation or particles, e.g. of infrared radiation or of ions by using a video camera to detect fire or smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/429Photometry, e.g. photographic exposure meter using electric radiation detectors applied to measurement of ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/027Control of working procedures of a spectrometer; Failure detection; Bandwidth calculation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0014Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation from gases, flames
    • G01J5/0018Flames, plasma or welding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/026Control of working procedures of a pyrometer, other than calibration; Bandwidth calculation; Gain control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • G01J2003/2826Multispectral imaging, e.g. filter imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0014Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation from gases, flames

Definitions

  • the present disclosure relates generally to a flame detection system, a notification system, a flame detection method, and a program, and more particularly to a flame detection system, a notification system, a flame detection method, and a program for detecting a flame.
  • the flame detection apparatus described in Patent Literature 1 includes an imaging optical system, an imaging unit, and a flame determination unit.
  • the imaging means is a color TV camera that images a predetermined monitoring range through an imaging optical system.
  • the flame determination unit binarizes the video signal from the imaging unit, and determines whether or not the subject is a flame from the time-series pattern of the obtained binarized signal.
  • An object of the present disclosure is to provide a flame detection system, a notification system, a flame detection method, and a program that can improve the flame detection accuracy.
  • the flame detection system includes a determination unit and an output unit.
  • the determination unit determines that it is a flame when ultraviolet light is detected by image processing on image data.
  • the output unit outputs a determination result of the determination unit.
  • a notification system includes the above-described flame detection system, a solid-state imaging device, and a notification unit.
  • the solid-state imaging device is sensitive to ultraviolet light and outputs image data.
  • the notification unit reports an abnormality according to the output result of the output unit.
  • the flame detection system includes a solid-state imaging device, a determination unit, and an output unit.
  • the solid-state imaging device has first and second pixels arranged in a two-dimensional grid, and a filter is provided for the second pixel.
  • the determination unit creates first image data from first pixel information of the first pixel.
  • the determination unit creates second image data from second pixel information of the second pixel.
  • the determination unit determines that the region emitting light of the first wavelength is a flame based on the luminance values of the first image data and the second image data.
  • the output unit outputs a determination result of the determination unit.
  • the flame detection method includes a determination step and an output step.
  • the determination step is a step of determining a flame when ultraviolet light is detected by image processing on image data.
  • the output step is a step of outputting a determination result in the determination step.
  • a program according to an aspect of the present disclosure is a program for causing a computer system to execute the above-described flame detection method.
  • FIG. 1 is a block diagram of a flame detection system and a notification system according to an embodiment of the present disclosure.
  • FIG. 2A is a schematic diagram illustrating an arrangement example of color filters of a solid-state imaging device included in the above-described notification system.
  • FIG. 2B is a schematic diagram illustrating another arrangement example of the color filters of the solid-state imaging device included in the above-described notification system.
  • FIG. 3 is a circuit diagram of each pixel of the solid-state imaging device provided in the above-described notification system.
  • FIG. 4 is a schematic cross-sectional view of a solid-state imaging device provided in the above-described notification system.
  • FIG. 5 is a timing chart of the solid-state imaging device included in the above-described notification system.
  • FIG. 1 is a block diagram of a flame detection system and a notification system according to an embodiment of the present disclosure.
  • FIG. 2A is a schematic diagram illustrating an arrangement example of color filters of a solid-state imaging device included in the above-
  • FIG. 6 is a flowchart of an operation example 1 of the above-described flame detection system.
  • FIG. 7 is an explanatory diagram of an operation example 1 of the above-described flame detection system.
  • FIG. 8 is a flowchart of an operation example 2 of the above-described flame detection system.
  • FIG. 9 is an explanatory diagram of an operation example 2 of the above-described flame detection system.
  • FIG. 10 is a flowchart of Operation Example 3 of the above-described flame detection system.
  • FIG. 11 is an explanatory diagram of an operation example 3 of the above-described flame detection system.
  • FIG. 12 is a flowchart of an operation example 4 of the flame detection system.
  • FIG. 13 is an explanatory diagram of an operation example 4 of the flame detection system.
  • FIG. 14 is a block diagram of a flame detection system and a notification system according to a modification of the embodiment of the present disclosure.
  • the flame detection system 1 is a system that is applied to, for example, a hydrogen station, a hydrogen power generation facility, and the like and detects a flame generated by hydrogen leakage.
  • the notification system 10 is a system for notifying that an abnormality (hydrogen leakage) has occurred when a flame is detected by the flame detection system 1.
  • the flame detection system 1 includes a determination unit 11 and an output unit 12, as shown in FIG.
  • the determination unit 11 determines whether or not the flame is a detection target from the result of image processing on the image data D0. In other words, the determination unit 11 determines that it is a flame when ultraviolet light (first wavelength light) is detected by image processing on the image data D0.
  • the flame as the detection target is a hydrogen flame. “Hydrogen flame” as used herein refers to a flame generated by burning hydrogen, and at this time, only ultraviolet light is generated.
  • the output unit 12 outputs the determination result of the determination unit 11.
  • the notification system 10 includes a flame detection system 1, a solid-state imaging device 2, and a notification unit 3.
  • the solid-state imaging device 2 has sensitivity to ultraviolet light (ultraviolet light), and outputs image data D0 to the flame detection system 1.
  • the notification unit 3 notifies the abnormality in accordance with the output result of the output unit 12 of the flame detection system 1. Specifically, the notification unit 3 notifies that an abnormality (hydrogen leakage) has occurred when a result indicating that a hydrogen flame has been detected is received from the output unit 12.
  • the flame detection system 1 it is determined whether or not the flame (hydrogen flame) is based on the presence or absence of ultraviolet light in the image data D0. Detection accuracy can be improved. Moreover, according to the notification system 10 according to the present embodiment, when a flame is detected by the flame detection system 1, it can be notified that an abnormality (hydrogen leakage) has occurred.
  • the notification system 10 includes a flame detection system 1, a solid-state imaging device 2, and a notification unit 3.
  • the notification system 10 may further include a lens that collects light on the solid-state image sensor 2, a filter that controls the wavelength range of light incident on the solid-state image sensor 2, and the like.
  • the lens needs to be a lens that can collect not only visible light but also ultraviolet light.
  • the flame detection system 1 is provided with the determination part 11, the output part 12, and the memory
  • the determination unit 11 includes a signal processing unit 111.
  • the determination unit 11 is composed of a microcomputer having a processor and a memory. That is, the determination unit 11 is realized by a computer system having a processor and a memory. The computer system functions as the determination unit 11 by the processor executing an appropriate program.
  • the program may be recorded in advance in a memory, or may be provided by being recorded through a telecommunication line such as the Internet or a non-transitory recording medium such as a memory card.
  • the signal processing unit 111 performs predetermined signal processing (image processing) on the image data D0 from the solid-state imaging device 2. For example, as shown in FIG. 2A, when the solid-state imaging device 2 includes only a blue color filter, the signal processing unit 111 creates first image data D1 and second image data D2.
  • the first image data D1 is an image created based on the pixels (pixels labeled with “W” in FIG. 2A) 20 that can receive ultraviolet light, blue light, green light, and red light.
  • the second image data D ⁇ b> 2 is an image created based on a pixel 20 with a color filter (a pixel indicated with “B” in FIG. 2A).
  • the pixel 20 that can receive ultraviolet light, blue light, green light, and red light is also referred to as a “first pixel 20”.
  • the pixel 20 with the color filter is interpolated based on the surrounding first pixel 20.
  • the first pixel 20 is interpolated based on the surrounding pixel 20 having a color filter.
  • the signal processing unit 111 includes first image data D1, second image data D2, Third image data D3 and fourth image data D4 are created.
  • the first image data D1 is an image created based on the pixels (pixels on which “W” is displayed in FIG. 2B) 20 that can receive ultraviolet light, blue light, green light, and red light.
  • the second image data D ⁇ b> 2 is an image created based on a pixel (a pixel denoted by “B” in FIG. 2B) 20 with a blue color filter.
  • the third image data D3 is an image created based on a pixel (a pixel on which “R” is shown in FIG. 2B) 20 with a red color filter.
  • the fourth image data D4 is an image created based on a pixel (a pixel indicated with “G” in FIG. 2B) 20 having a green color filter.
  • the determination unit 11 performs a determination process based on the first image data D1 and the second image data D2 (or the first image data D1 to the fourth image data D4) stored in the storage unit 13.
  • the determination unit 11 determines a hydrogen flame and a light emission source other than the hydrogen flame in the determination process.
  • the “light emitting source other than the hydrogen flame” here includes spark discharge (for example, lightning), corona discharge, a flame of a substance containing carbon (hereinafter also referred to as “carbon flame”), and the like.
  • the “flame of a substance containing carbon” here refers to a flame generated by burning a substance containing carbon, and at this time, ultraviolet light and visible light are generated.
  • the determination unit 11 determines a hydrogen flame and a carbon flame based on at least one image data corresponding to the wavelength of the carbon flame among the first image data D1 and the second to fourth image data D2 to D4.
  • the determination unit 11 determines that the light source is detected in all of at least one of the first image data D1 and the second to fourth image data D2 to D4 corresponding to the wavelength of the carbon flame. If the emission source is detected only in the first image data D1, it is determined that the flame is hydrogen.
  • the determination unit 11 determines a hydrogen flame and a discharge based on the first image data D1 and the second image data D2. The determination unit 11 determines the discharge if the light source is detected in both the first image data D1 and the second image data D2, and determines the hydrogen flame if the light source is detected only in the first image data D1. judge. That is, the determination unit 11 determines that it is not a hydrogen flame (flame) when light in a wavelength region different from the ultraviolet light is detected by image processing on the image data D0. In particular, when distinguishing between hydrogen flame and discharge, the wavelength range different from ultraviolet light is the wavelength range of blue light. The wavelength range of blue light is, for example, 380 nm to 400 nm.
  • the output unit 12 outputs the determination result of the determination unit 11 to the notification unit 3. In other words, when the determination unit 11 determines that a hydrogen flame as a detection target is detected, the output unit 12 outputs a result indicating that a hydrogen flame is detected to the notification unit 3. In the present embodiment, the output unit 12 outputs a notification command signal S ⁇ b> 1 for causing the notification unit 3 to notify that a hydrogen flame as a detection target is detected.
  • the storage unit 13 is configured by a readable / writable memory such as a flash memory, for example.
  • the storage unit 13 includes first image data D1 and second image data D2 (or first image data D1 to fourth image) created by the signal processing unit 111 based on the image data D0 sent from the solid-state imaging device 2. Data D4) is stored.
  • a plurality of (in the illustrated example, 16) pixels 20 are provided.
  • the plurality of pixels 20 (first pixel and second pixel) are arranged in a two-dimensional lattice pattern.
  • the pixel 20 labeled “W” is a first pixel that can receive white light, that is, ultraviolet light, blue light, green light, and red light, and the pixel 20 labeled “B”. Is a pixel (second pixel) having a color filter that allows only blue light to pass through.
  • a pixel 20 with “R” is a pixel with a color filter that passes only red light
  • a pixel 20 with “G” is a color filter that passes only green light.
  • Pixel. 2A and 2B, the first pixels 20 and the pixels 20 with color filters are alternately arranged.
  • At least one of the plurality of pixels 20 is a pixel 20 having a color filter in order to discriminate between a hydrogen flame and a light emission source other than the hydrogen flame.
  • at least one of the plurality of pixels 20 is a pixel 20 having a blue color filter.
  • each of the plurality of pixels 20 includes a first electrode 24, a photoelectric conversion unit 25, a second electrode 26, a charge storage unit 28, a first transistor 291 and a second transistor 291.
  • a transistor 292 and a third transistor 293 are included.
  • Each of the plurality of pixels 20 further includes a semiconductor substrate 21, a pixel circuit 22, and a wiring layer 23. In the example shown in FIG. 4, three pixel circuits 22 are mounted on the semiconductor substrate 21.
  • the first electrode (lower electrode) 24 is made of a material having a good compatibility with a semiconductor processing process such as aluminum (Al), copper (Cu), titanium nitride (TiN), and the like.
  • the first electrode 24 is electrically connected to the charge storage unit 28 provided in the pixel circuit 22 via the wiring layer 23.
  • the photoelectric conversion unit 25 is an organic film having sensitivity to ultraviolet light, for example.
  • the organic film is sensitive not only to ultraviolet light but also to visible light.
  • the photoelectric conversion unit 25 is located on the first electrode 24.
  • the photoelectric conversion unit 25 converts light into an electrical signal.
  • the material of the photoelectric conversion unit 25 is not limited to an organic film, and may be a material having sensitivity to ultraviolet light, such as silicon, aluminum gallium nitride (AlGaN), and diamond.
  • the second electrode (upper electrode) 26 is a transparent electrode made of, for example, indium tin oxide (ITO), zinc oxide (ZnO), or the like.
  • the second electrode 26 is located on the photoelectric conversion unit 25.
  • the protective film 27 is made of, for example, silicon nitride, silicon oxynitride, or the like.
  • the charge storage unit 28 is provided in the pixel circuit 22.
  • the charge storage unit 28 stores the charge generated by the photoelectric conversion unit 25.
  • the charge storage unit 28 is, for example, a PN junction capacitor.
  • the first transistor (source follower transistor) 291 outputs the source voltage as a signal when the charge stored in the charge storage unit 28 is applied to the gate.
  • the second transistor (reset transistor) 292 erases (resets) the charge accumulated in the charge accumulation unit 28 from the charge accumulation unit 28.
  • the third transistor (selection transistor) 293 selects one of the plurality of pixels 20.
  • the light transmitted through the protective film 27 and the second electrode 26 is converted from light to electric charge (electric signal) by photoelectric conversion in the photoelectric conversion unit 25.
  • the charges converted by the photoelectric conversion unit 25 are accumulated in the charge accumulation unit 28.
  • the charge accumulated in the charge accumulation unit 28 is applied to the gate of the first transistor 291 and the source voltage of the first transistor 291 is output as a signal.
  • the charge accumulated in the charge accumulation unit 28 is erased from the charge accumulation unit 28 by the second transistor 292.
  • the charge storage unit 28 is used.
  • the data can be read without losing the charge stored in the memory. That is, in the circuit configuration of the solid-state imaging device 2 according to the present embodiment, nondestructive reading that reads data (signal) without destroying the charges accumulated in the charge accumulation unit 28 is possible.
  • the solid-state imaging device 2 As shown in FIG. 5, until the charge of the charge storage unit 28 is reset (erased) by the second transistor 292 (that is, one charge storage period).
  • the signal charge is output from the charge storage unit 28 three times by the first transistor 291.
  • the data can be read during the accumulation in the state where the charge accumulation in the charge accumulation unit 28 is continued. Therefore, even when the signal charge is extremely small, the signal charge is accumulated for a long time. This has the advantage that the signal can be easily recognized. In addition, there is an advantage that early discrimination is possible by data read out during accumulation.
  • the notification unit 3 is configured to notify an abnormality according to the output result of the output unit 12 of the flame detection system 1. Specifically, when the determination unit 11 determines that a hydrogen flame as a detection target is detected, the notification unit 3 notifies that an abnormality (hydrogen leakage) has occurred.
  • the notification unit 3 includes, for example, a monitor (display device) installed at the hydrogen station.
  • the notification unit 3 causes the monitor to display a display such as “abnormality has occurred” in response to the notification command signal S1 from the output unit 12.
  • the notification unit 3 may be configured to perform not only display on the monitor but also notification by sound (sound, buzzer, etc.). Further, in this case, for example, it may be configured to notify the management company or the like of the hydrogen station that an abnormality has occurred.
  • Operation example 1 of the flame detection system 1 according to the present embodiment will be described with reference to FIGS. 6 and 7.
  • the solid-state imaging device 2 has a configuration including a blue color filter, as shown in FIG. 2A.
  • “Pattern 1” in FIG. 7 shows a case where both hydrogen flame and discharge are not detected.
  • “Pattern 2” in FIG. 7 shows a case where a hydrogen flame is detected.
  • “Pattern 3” in FIG. 7 shows a case where discharge is detected.
  • “Pattern 4” in FIG. 7 shows a case where both hydrogen flame and discharge are detected. Note that the shape of the hydrogen flame and the discharge in FIG. 7 schematically represents the hydrogen flame and the discharge, and is different from the actual shape.
  • the determination unit 11 reads the first image data D1 from the storage unit 13.
  • the signal processing unit 111 extracts the first region R1 based on the first image data D1 (step ST101). At this time, the signal processing unit 111 compares the luminance value of each pixel 20 in the first image data D1 with a preset threshold value, and extracts an area having the luminance value equal to or greater than the threshold value as the first area R1 (step ST102). If the first region R1 is not extracted (step ST102; No), the determination unit 11 determines that there is no hydrogen flame and discharge, and repeats steps ST101 and ST102. That is, “Pattern 1” in FIG.
  • the determination unit 11 reads the second image data D2 from the storage unit 13.
  • the signal processing unit 111 extracts the second region R2 based on the second image data D2 (step ST103).
  • the “second region R2” is a region that is the same region as the first region R1 in the second image data D2, and in which the luminance value of each pixel 20 is equal to or greater than a threshold value. That is, the signal processing unit 111 compares the brightness value of the same area as the first area R1 in the second image data D2 with the threshold value, and extracts an area having a brightness value equal to or greater than the threshold value as the second area R2 (step ST104). .
  • Step ST104 If the 2nd field R2 is extracted (Step ST104; Yes), judgment part 11 will judge with discharge, and will return to Step ST101. That is, “Pattern 3” in FIG. That is, if the light emitting source is a discharge, blue light is included, and this blue light is transmitted through the blue color filter, so that it is extracted as the second region R2 in the second image data D2.
  • step ST104 determines that the flame is a hydrogen flame (step ST105). That is, “patterns 2 and 4” in FIG. That is, if the light source is a hydrogen flame, only ultraviolet light is absorbed, and this ultraviolet light is absorbed by the blue color filter, and therefore is not extracted as the second region R2 in the second image data D2.
  • Determining unit 11 causes the output unit 12 to output a notification command signal S1 when it is determined as a hydrogen flame.
  • reporting system 10 which received alerting
  • the first image data D1 and the second image data D2 may be displayed on the monitor of the notification unit 3.
  • “Pattern 1” in FIG. 9 shows a case where none of the hydrogen flame, discharge, and carbon flame is detected.
  • “Pattern 2” in FIG. 9 shows a case where a hydrogen flame is detected.
  • “Pattern 3” in FIG. 9 shows a case where discharge is detected.
  • “Pattern 4” in FIG. 9 indicates a case where a carbon flame is detected.
  • “Pattern 5” in FIG. 9 shows a case where all of a hydrogen flame, a discharge, and a carbon flame are detected. Note that the shapes of the hydrogen flame, discharge, and carbon flame in FIG. 9 schematically represent the hydrogen flame, discharge, and carbon flame, and are different from the actual shapes.
  • the determination unit 11 reads the first image data D1 from the storage unit 13.
  • the signal processing unit 111 extracts the first region R1 based on the first image data D1 (step ST201). At this time, the signal processing unit 111 compares the luminance value of each pixel 20 in the first image data D1 with a preset threshold value, and extracts an area having the luminance value equal to or higher than the threshold value as the first area R1 (step ST202). If the first region R1 is not extracted (step ST202; No), the determination unit 11 determines that there is no hydrogen flame, discharge, or carbon flame, and repeats steps ST201 and ST202. That is, it is “Pattern 1” in FIG.
  • the determination unit 11 reads the second image data D2 from the storage unit 13.
  • the signal processing unit 111 extracts the second region R2 based on the second image data D2 (step ST203).
  • the signal processing unit 111 compares the brightness value of the same area as the first area R1 in the second image data D2 with the threshold value, and extracts an area having the brightness value equal to or greater than the threshold value as the second area R2 (step ST204).
  • Step ST204 If the 2nd field R2 is extracted (Step ST204; Yes), judgment part 11 will judge with discharge, and will return to Step ST201. That is, “Pattern 3” in FIG. That is, if the light emitting source is a discharge, blue light is included, and this blue light is transmitted through the blue color filter, so that it is extracted as the second region R2 in the second image data D2.
  • the determination unit 11 reads out the third image data D3 from the storage unit 13 if the second region R2 is not extracted (step ST204; No).
  • the signal processing unit 111 extracts the third region R3 based on the third image data D3 (step ST205).
  • the signal processing unit 111 compares the luminance value of the same area as the first area R1 in the third image data D3 with the threshold value, and extracts an area having the luminance value equal to or higher than the threshold value as the third area R3 (step ST206).
  • Step ST206 If the 3rd field R3 is extracted (Step ST206; Yes), judgment part 11 will judge with a carbon flame (Step ST208). That is, “Pattern 4” in FIG. That is, if the emission source is a carbon flame, red light is included, and this red light is transmitted through the red color filter, so that it is extracted as the third region R3 in the third image data D3.
  • step ST207 the determination unit 11 determines that the flame is a hydrogen flame (step ST207). That is, “patterns 2 and 5” in FIG. That is, if the emission source is a hydrogen flame, only ultraviolet light is absorbed, and this ultraviolet light is absorbed by the red color filter, and thus is not extracted as the third region R3 in the third image data D3.
  • Determining unit 11 causes the output unit 12 to output a notification command signal S1 when it is determined as a hydrogen flame.
  • reporting system 10 which received alerting
  • the first image data D1, the second image data D2, and the third image data D3 may be displayed on the monitor of the notification unit 3.
  • a general flame (“flame of carbon-containing substance”) emits red light and passes through a red filter.
  • a general flame (“flame of carbon-containing substance”) emits red light and passes through a red filter.
  • “Pattern 1” in FIG. 11 shows a case where both hydrogen flame and discharge are not detected.
  • “Pattern 2” in FIG. 11 shows a case where a hydrogen flame is detected.
  • “Pattern 3” in FIG. 11 shows a case where discharge is detected.
  • “Pattern 4” in FIG. 11 shows a case where both hydrogen flame and discharge are detected. Note that the shape of the hydrogen flame and discharge in FIG. 11 schematically represents the hydrogen flame and discharge, and is different from the actual shape.
  • the determination unit 11 reads the first image data D1 from the storage unit 13.
  • the signal processing unit 111 extracts the first region R1 based on the first image data D1 (step ST301). At this time, the signal processing unit 111 compares the luminance value of each pixel 20 in the first image data D1 with a preset threshold value, and extracts an area where the luminance value is equal to or greater than the threshold value as the first area R1 (step ST302). If the first region R1 is not extracted (step ST302; No), the determination unit 11 determines that there is no hydrogen flame and discharge, and repeats steps ST301 and ST302. That is, “Pattern 1” in FIG.
  • the determination unit 11 extracts the first region R1 for a plurality of (three in the illustrated example) first image data D1 that are continuous in time series. (Step ST303). In other words, the determination unit 11 determines whether or not it is a flame based on a plurality of image data D0 obtained in time series. Since the light emission source emits light discontinuously, the determination unit 11 determines that the discharge is performed unless the first region R1 is continuously detected in time series (step ST304; No), and step ST301. Return to. That is, “Pattern 3” in FIG.
  • the determination unit 11 determines that the first region R1 is continuously detected in the time series (step ST304; Yes) and the hydrogen flame (step). ST305). In other words, the determination unit 11 determines that there is a flame when ultraviolet light is continuously detected by image processing on the plurality of image data D0. That is, “patterns 2 and 4” in FIG.
  • Determining unit 11 causes the output unit 12 to output a notification command signal S1 when it is determined as a hydrogen flame.
  • reporting system 10 which received alerting
  • the first image data D1, the second image data D2, and the third image data D3 may be displayed on the monitor of the notification unit 3.
  • “Pattern 1” in FIG. 13 shows a case where both hydrogen flame and discharge are not detected.
  • “Pattern 2” in FIG. 13 shows a case where a hydrogen flame is detected.
  • “Pattern 3” in FIG. 13 shows a case where discharge is detected.
  • “Pattern 4” in FIG. 13 shows a case where both hydrogen flame and discharge are detected.
  • the determination unit 11 reads the first image data D1 from the storage unit 13.
  • the signal processing unit 111 extracts the first region R1 based on the first image data D1 (step ST401). At this time, the signal processing unit 111 compares the luminance value of each pixel 20 in the first image data D1 with a preset threshold value, and extracts an area having the luminance value equal to or greater than the threshold value as the first area R1 (step ST402). If the first region R1 is not extracted (step ST402; No), the determination unit 11 determines that there is no hydrogen flame and discharge, and repeats steps ST401 and ST402. That is, “Pattern 1” in FIG.
  • the determination unit 11 causes the signal processing unit 111 to recognize the shape of the first region R1 (step ST403).
  • the light emission source is a hydrogen flame, it is ignited by frictional heat generated by gas jetting from a spot leak in a high-pressure pipe. Trapezoidal shape) (hereinafter referred to as “first shape M1”).
  • first shape M1 when the light emitting source is a discharge, the light source is linear or rectangular with the length of two opposing sides being less than 10% (hereinafter referred to as “second shape M2”).
  • step ST404 If the shape of 1st area
  • step ST404 If the shape of 1st area
  • region R1 is 1st shape M1 (step ST404; No), the determination part 11 will determine with a hydrogen flame (step ST405). That is, the pattern is “2, 4” in FIG. In other words, the determination unit 11 determines whether or not the flame is based on the shape of the ultraviolet light region detected by the image processing.
  • Determining unit 11 causes the output unit 12 to output a notification command signal S1 when it is determined as a hydrogen flame.
  • reporting system 10 which received alerting
  • the first image data D1 and the second image data D2 may be displayed on the monitor of the notification unit 3.
  • the above-described embodiment is merely one of various embodiments of the present disclosure.
  • the above-described embodiment can be variously changed according to the design or the like as long as the object of the present disclosure can be achieved.
  • the function similar to the flame detection system 1 may be embodied by a flame detection method, a computer program, or a non-temporary recording medium recording the computer program.
  • the flame detection method includes a determination step and an output step.
  • the determination step is a step of determining a flame when ultraviolet light is detected by image processing on the image data D0.
  • the output step is a step of outputting the determination result in the determination step.
  • a program according to one aspect is a program for causing a computer system to execute the above-described flame detection method.
  • the execution subject of the flame detection system 1 or the flame detection method in the present disclosure includes a computer system.
  • the computer system has a processor and memory as hardware.
  • the processor executes the program recorded in the memory of the computer system, the function as the execution subject of the flame detection system 1 or the flame detection method in the present disclosure is realized.
  • the program may be recorded in advance in the memory of the computer system, but may be provided through a telecommunication line.
  • the program may be provided by being recorded on a non-transitory recording medium such as a memory card, an optical disk, or a hard disk drive that can be read by a computer system.
  • a processor of a computer system includes one or more electronic circuits including a semiconductor integrated circuit (IC) or a large scale integrated circuit (LSI).
  • the plurality of electronic circuits may be integrated on one chip, or may be distributed on the plurality of chips.
  • the plurality of chips may be integrated into one device, or may be distributed and provided in a plurality of devices.
  • the function of the determination unit 11 (including the signal processing unit 111) of the flame detection system 1 may be provided in one device or may be provided in a distributed manner in a plurality of devices. Furthermore, at least a part of the functions of the determination unit 11 may be realized by, for example, cloud (cloud computing).
  • the flame is not limited to a hydrogen flame, and may be another flame as long as it emits light.
  • the emission spectrum differs between combustion in a state where oxygen is sufficient (complete combustion) and combustion in a state where oxygen is insufficient (incomplete combustion) Blue, red when incompletely burned).
  • the characteristics of the filter with the emission spectra of complete combustion and incomplete combustion, not only can the hydrogen flame, discharge, and carbon flame be distinguished, but also the combustion state of the carbon flame (general flame) Can also be determined.
  • a color filter that transmits only specific light is used.
  • image data in a state where there is no light emission from a light source is used as reference data, and a filter function is realized by a difference from this reference data. May be.
  • a filter (UV filter, RGB filter, etc.) for identifying the light source can be omitted.
  • a filter that blocks light having a longer wavelength range than that of blue light is a solid-state imaging device. 2 may be provided.
  • the solid-state imaging device 2 includes the pixel 20 having the color filter and the pixel 20 capable of receiving ultraviolet light, blue light, green light, and red light is illustrated.
  • the solid-state imaging device 2 may include, for example, a pixel 20 having a color filter and a pixel on which a UV filter capable of transmitting only ultraviolet light is mounted.
  • the solid-state imaging device 2 is included in the notification system 10, but the solid-state imaging device 2 may be included in the flame detection system 1 as shown in FIG.
  • the flame detection system 1 may include the solid-state imaging device 2, the determination unit 11, and the output unit 12.
  • the flame detection system (1) includes the determination unit (11) and the output unit (12).
  • a determination part (11) determines with a flame, when an ultraviolet light is detected by the image process with respect to image data (D0).
  • the output unit (12) outputs the determination result of the determination unit (11).
  • the flame detection accuracy it is determined whether or not the flame is based on the presence or absence of ultraviolet light in the image data (D0), and the flame detection accuracy can be improved as compared with the case where the determination is based on the movement of the flame or the like.
  • the determination unit (11) is not a flame when light in a wavelength region different from the ultraviolet light is detected by the image processing. Is determined.
  • the wavelength range is a wavelength range of blue light.
  • an ultraviolet light source such as a discharge (including lightning) and a flame.
  • the determination unit (11) performs a flame based on the plurality of image data (D0) obtained in time series. It is determined whether or not there is.
  • the determination unit (11) allows the flame when the ultraviolet light is continuously detected by the image processing on the plurality of image data (D0). It is determined that
  • the discrimination accuracy between the flame and the ultraviolet light source other than the flame can be improved.
  • the determination unit (11) includes the ultraviolet light region (first region R1) detected by the image processing. It is determined whether or not the flame is based on the shape (first shape M1, second shape M2).
  • the notification system (10) according to the seventh aspect includes the flame detection system (1) according to any one of the first to sixth aspects, a solid-state imaging device (2), and a notification unit (3).
  • the solid-state imaging device (2) is sensitive to ultraviolet light and outputs image data (D0).
  • the solid-state imaging device (2) includes a plurality of pixels (20) arranged in an array.
  • Each of the plurality of pixels (20) includes a first electrode (24), a photoelectric conversion unit (25), a charge storage unit (28), a second electrode (26), a first transistor (291), A second transistor (292) and a third transistor (293) are included.
  • the photoelectric conversion unit (25) is located on the first electrode (24) and converts light into an electrical signal.
  • the charge storage unit (28) is electrically connected to the first electrode (24), and stores the charge generated by the photoelectric conversion unit (25).
  • the second electrode (26) is located on the photoelectric conversion unit (25).
  • the first transistor (291) causes the charge stored in the charge storage unit (28) to be output from the charge storage unit (28).
  • the second transistor (292) erases the charge stored in the charge storage section (28) from the charge storage section (28).
  • the third transistor (293) selects any pixel (20) from among the plurality of pixels (20).
  • the photoelectric conversion part (25) is an organic film.
  • the flame detection method includes a determination step and an output step.
  • the determination step is a step of determining a flame when ultraviolet light is detected by image processing on the image data (D0).
  • the output step is a step of outputting the determination result in the determination step.
  • the program according to the tenth aspect is a program that causes a computer system to execute the flame detection method according to the ninth aspect.
  • the flame detection system (1) includes a solid-state imaging device (2), a determination unit (11), and an output unit (12).
  • the solid-state imaging device (2) has a first pixel (20) and a second pixel (20) arranged in a two-dimensional grid, and a filter is provided for the second pixel (20). .
  • the determination unit (11) creates first image data (D1) from the first pixel information of the first pixel (20).
  • the determination unit (11) creates second image data (D2) from the second pixel information of the second pixel (20).
  • the determination unit (11) determines that the region emitting light of the first wavelength is a flame based on the luminance values of the first image data (D1) and the second image data (D2).
  • the output unit (12) outputs the determination result of the determination unit (11).
  • the configuration according to the second to sixth aspects is not an essential configuration of the flame detection system (1) and can be omitted as appropriate.
  • the configuration according to the eighth aspect is not an essential configuration of the notification system (10) and can be omitted as appropriate.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Multimedia (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Alarm Systems (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

本開示の課題は、火炎の検知精度を向上させることである。火炎検知システム(1)は、判定部(11)と、出力部(12)と、を備える。判定部(11)は、画像データ(D0)に対する画像処理によって紫外光が検知されている場合に火炎であると判定する。出力部(12)は、判定部(11)の判定結果を出力する。

Description

火炎検知システム、報知システム、火炎検知方法、及びプログラム
 本開示は、一般に火炎検知システム、報知システム、火炎検知方法、及びプログラムに関し、より詳細には、火炎を検知する火炎検知システム、報知システム、火炎検知方法、及びプログラムに関する。
 従来、炎と人工光とを区別可能な炎探知装置が知られている(例えば、特許文献1参照)。特許文献1に記載の炎探知装置は、撮像光学系と、撮像手段と、炎判定手段と、を備える。撮像手段は、撮像光学系を通して所定の監視範囲を撮像するカラーTVカメラである。炎判定手段は、撮像手段からの映像信号を2値化し、得られた2値化信号の時系列的パターンから被写体が炎であるか否かを判定する。
 特許文献1に記載の炎探知装置(火炎検知システム)では、炎が左右に動くことに着目して、炎と人工光とを区別している。そのため、左右に動かないような炎(火炎)の場合には、炎として区別することができない可能性があった。
特開平8-307757号公報
 本開示の目的は、火炎の検知精度を向上させることができる火炎検知システム、報知システム、火炎検知方法、及びプログラムを提供することにある。
 本開示の一態様に係る火炎検知システムは、判定部と、出力部と、を備える。前記判定部は、画像データに対する画像処理によって紫外光が検知されている場合に火炎であると判定する。前記出力部は、前記判定部の判定結果を出力する。
 本開示の一態様に係る報知システムは、上述の火炎検知システムと、固体撮像素子と、報知部と、を備える。前記固体撮像素子は、紫外光に対して感度を有し、画像データを出力する。前記報知部は、前記出力部の出力結果に応じて異常を報知する。
 本開示の一態様に係る火炎検知システムは、固体撮像素子と、判定部と、出力部と、を備える。前記固体撮像素子は、二次元の格子状に配置されている第1画素及び第2画素を有し、前記第2画素に対してフィルタが設けられている。前記判定部は、前記第1画素の第1画素情報から第1画像データを作成する。前記判定部は、前記第2画素の第2画素情報から第2画像データを作成する。前記判定部は、前記第1画像データ及び前記第2画像データの各々の輝度値に基づいて、第1波長の光を発する領域を火炎であると判定する。前記出力部は、前記判定部の判定結果を出力する。
 本開示の一態様に係る火炎検知方法は、判定ステップと、出力ステップと、を備える。前記判定ステップは、画像データに対する画像処理によって紫外光が検知されている場合に火炎であると判定するステップである。前記出力ステップは、前記判定ステップでの判定結果を出力するステップである。
 本開示の一態様に係るプログラムは、コンピュータシステムに、上述の火炎検知方法を実行させるためのプログラムである。
図1は、本開示の一実施形態に係る火炎検知システム及び報知システムのブロック図である。 図2Aは、同上の報知システムが備える固体撮像素子のカラーフィルタの配置例を示す模式図である。図2Bは、同上の報知システムが備える固体撮像素子のカラーフィルタの別の配置例を示す模式図である。 図3は、同上の報知システムが備える固体撮像素子の各画素の回路図である。 図4は、同上の報知システムが備える固体撮像素子の模式的な断面図である。 図5は、同上の報知システムが備える固体撮像素子のタイミングチャートである。 図6は、同上の火炎検知システムの動作例1のフローチャートである。 図7は、同上の火炎検知システムの動作例1の説明図である。 図8は、同上の火炎検知システムの動作例2のフローチャートである。 図9は、同上の火炎検知システムの動作例2の説明図である。 図10は、同上の火炎検知システムの動作例3のフローチャートである。 図11は、同上の火炎検知システムの動作例3の説明図である。 図12は、同上の火炎検知システムの動作例4のフローチャートである。 図13は、同上の火炎検知システムの動作例4の説明図である。 図14は、本開示の一実施形態の変形例に係る火炎検知システム及び報知システムのブロック図である。
 (1)概要
 以下、本実施形態に係る火炎検知システム1及び報知システム10の概要について、図1を参照して説明する。
 本実施形態に係る火炎検知システム1は、例えば、水素ステーション、水素発電設備等に適用され、水素漏れによって発生した火炎を検知するためのシステムである。また、本実施形態に係る報知システム10は、火炎検知システム1によって火炎を検知した場合に、異常(水素漏れ)が発生したことを報知するためのシステムである。
 本実施形態に係る火炎検知システム1は、図1に示すように、判定部11と、出力部12と、を備えている。判定部11は、画像データD0に対する画像処理の結果から、検知対象としての火炎であるか否かを判定する。言い換えると、判定部11は、画像データD0に対する画像処理によって紫外光(第1波長の光)が検知されている場合に火炎であると判定する。本実施形態では、検知対象としての火炎は水素火炎である。ここでいう「水素火炎」とは、水素が燃焼することによって発生する火炎のことをいい、このとき紫外光のみを発生する。出力部12は、判定部11の判定結果を出力する。
 本実施形態に係る報知システム10は、図1に示すように、火炎検知システム1と、固体撮像素子2と、報知部3と、を備えている。固体撮像素子2は、紫外光(紫外線)に対して感度を有しており、火炎検知システム1に対して画像データD0を出力する。報知部3は、火炎検知システム1の出力部12の出力結果に応じて異常を報知する。具体的には、報知部3は、水素火炎が検知されたことを示す結果を出力部12から受け取っている場合に、異常(水素漏れ)が発生していることを報知する。
 本実施形態に係る火炎検知システム1によれば、画像データD0における紫外光の有無によって火炎(水素火炎)か否かを判定しており、火炎の動き等から判定する場合と比較して火炎の検知精度を向上させることができる。また、本実施形態に係る報知システム10によれば、火炎検知システム1によって火炎を検知した場合に、異常(水素漏れ)が発生していることを報知することができる。
 (2)詳細
 以下、本実施形態に係る火炎検知システム1及び報知システム10の詳細について、図1~図4に基づいて説明する。
 本実施形態に係る報知システム10は、図1に示すように、火炎検知システム1と、固体撮像素子2と、報知部3と、を備えている。報知システム10は、更に、固体撮像素子2に光を集光させるレンズ、固体撮像素子2に入射する光の波長域を制御するフィルタ等を備えていてもよい。但し、上記レンズは、可視光だけでなく、紫外光も集光できるレンズであることが必要である。
 (2.1)火炎検知システム
 火炎検知システム1は、図1に示すように、判定部11と、出力部12と、記憶部13と、を備えている。判定部11は、信号処理部111を含む。
 判定部11は、プロセッサ及びメモリを有するマイクロコンピュータで構成されている。つまり、判定部11は、プロセッサ及びメモリを有するコンピュータシステムで実現されている。そして、プロセッサが適宜のプログラムを実行することにより、コンピュータシステムが判定部11として機能する。プログラムは、メモリに予め記録されていてもよいし、インターネット等の電気通信回線を通じて、又はメモリカード等の非一時的な記録媒体に記録されて提供されてもよい。
 信号処理部111は、固体撮像素子2からの画像データD0に対して所定の信号処理(画像処理)を行う。例えば、図2Aに示すように、固体撮像素子2が青色のカラーフィルタのみを備えている場合には、信号処理部111は、第1画像データD1及び第2画像データD2を作成する。第1画像データD1は、紫外光、青色光、緑色光及び赤色光を受光可能な画素(図2Aにおいて「W」が表記されている画素)20に基づいて作成される画像である。第2画像データD2は、カラーフィルタのある画素(図2Aにおいて「B」が表記されている画素)20に基づいて作成される画像である。以下、紫外光、青色光、緑色光及び赤色光を受光可能な画素20を「第1画素20」ともいう。第1画像データD1では、カラーフィルタのある画素20については、周囲の第1画素20に基づいて補間される。第2画像データD2では、第1画素20については、周囲のカラーフィルタのある画素20に基づいて補間される。
 また、例えば、図2Bに示すように、固体撮像素子2が青色、赤色及び緑色のカラーフィルタを備えている場合には、信号処理部111は、第1画像データD1、第2画像データD2、第3画像データD3及び第4画像データD4を作成する。第1画像データD1は、紫外光、青色光、緑色光及び赤色光を受光可能な画素(図2Bにおいて「W」が表示されている画素)20に基づいて作成される画像である。第2画像データD2は、青色のカラーフィルタのある画素(図2Bにおいて「B」が表記されている画素)20に基づいて作成される画像である。第3画像データD3は、赤色のカラーフィルタのある画素(図2Bにおいて「R」が表記されている画素)20に基づいて作成される画像である。第4画像データD4は、緑色のカラーフィルタのある画素(図2Bにおいて「G」が表記されている画素)20に基づいて作成される画像である。
 判定部11は、記憶部13に記憶されている第1画像データD1及び第2画像データD2(又は、第1画像データD1~第4画像データD4)に基づいて判定処理を行う。判定部11は、判定処理において、水素火炎と水素火炎以外の発光源とを判別する。ここでいう「水素火炎以外の発光源」には、火花放電(例えば、雷)、コロナ放電、炭素を含む物質の火炎(以下、「炭素火炎」ともいう)等が含まれる。また、ここでいう「炭素を含む物質の火炎」とは、炭素を含む物質が燃焼することによって発生する火炎のことをいい、このとき紫外光と可視光を発生する。判定部11は、例えば、第1画像データD1及び第2~第4画像データD2~D4のうち炭素火炎の波長に対応した少なくとも1つの画像データに基づいて水素火炎と炭素火炎とを判別する。判定部11は、第1画像データD1及び第2~第4画像データD2~D4のうち炭素火炎の波長に対応した少なくとも1つの画像データのすべてに発光源を検知していれば炭素火炎と判定し、第1画像データD1のみに発光源を検知していれば水素火炎と判定する。
 また、火花放電、コロナ放電(以下、「放電」ともいう)の場合、紫外光だけでなく青色光も発生する。判定部11は、例えば、第1画像データD1及び第2画像データD2に基づいて水素火炎と放電とを判別する。判定部11は、第1画像データD1及び第2画像データD2の両方に発光源を検知していれば放電と判定し、第1画像データD1のみに発光源を検知していれば水素火炎と判定する。つまり、判定部11は、画像データD0に対する画像処理によって紫外光とは異なる波長域の光が検知されている場合には水素火炎(火炎)でないと判定する。特に、水素火炎と放電とを判別する場合には、紫外光とは異なる波長域は、青色光の波長域である。青色光の波長域は、例えば、380nm~400nmである。
 出力部12は、判定部11の判定結果を報知部3に出力する。言い換えると、出力部12は、検知対象としての水素火炎が検知されていると判定部11が判定した場合に、水素火炎が検知されていることを示す結果を報知部3に出力する。本実施形態では、出力部12は、検知対象としての水素火炎が検知されていることを報知部3に報知させるための報知指令信号S1を報知部3に出力する。
 記憶部13は、例えば、フラッシュメモリ等の読み書き可能なメモリで構成されている。記憶部13は、固体撮像素子2から送られてくる画像データD0に基づいて信号処理部111が作成した第1画像データD1及び第2画像データD2(又は、第1画像データD1~第4画像データD4)を記憶する。
 (2.2)固体撮像素子
 本実施形態に係る固体撮像素子2は、図2A及び図2Bに示すように、m×n(図示例ではm=4、n=4)のアレイ状に配置されている複数(図示例では16個)の画素20を有している。言い換えると、複数の画素20(第1画素及び第2画素)は、二次元の格子状に配置されている。図2Aにおいて、「W」が表記されている画素20は、白色、つまり紫外光、青色光、緑色光及び赤色光を受光可能な第1画素であり、「B」が表記されている画素20は、青色光のみを通すカラーフィルタのある画素(第2画素)である。図2Bにおいて、「R」が表記されている画素20は、赤色光のみを通すカラーフィルタのある画素であり、「G」が表記されている画素20は、緑色光のみを通すカラーフィルタのある画素である。図2A及び図2Bでは、第1画素20とカラーフィルタのある画素20とが交互に並んでいる。
 本実施形態に係る火炎検知システム1では、水素火炎と水素火炎以外の発光源とを判別するために、複数の画素20のうちの少なくとも1つがカラーフィルタのある画素20であることが好ましい。特に、水素火炎と放電とを判別する場合には、複数の画素20のうちの少なくとも1つが青色のカラーフィルタのある画素20であることが好ましい。
 複数の画素20の各々は、図3及び図4に示すように、第1電極24と、光電変換部25と、第2電極26と、電荷蓄積部28と、第1トランジスタ291と、第2トランジスタ292と、第3トランジスタ293と、を含む。また、複数の画素20の各々は、更に、半導体基板21と、画素回路22と、配線層23と、を含む。図4に示す例では、3つの画素回路22が半導体基板21に実装されている。
 第1電極(下部電極)24は、例えば、アルミニウム(Al)、銅(Cu)、窒化チタン(TiN)等の、半導体加工プロセスとの相性の良い材料からなる。第1電極24は、配線層23を介して、画素回路22に設けられている電荷蓄積部28に電気的に接続されている。
 光電変換部25は、例えば、紫外光に対して感度を有する有機膜である。有機膜は、紫外光だけでなく、可視光に対しても感度を有している。光電変換部25は、第1電極24上に位置している。光電変換部25は、光を電気信号に変換する。光電変換部25の材料は、有機膜に限らず、例えば、シリコン、窒化アルミニウムガリウム(AlGaN)、ダイヤモンド等の、紫外光に対して感度を有する材料であってもよい。
 第2電極(上部電極)26は、例えば、酸化インジウムスズ(ITO)、酸化亜鉛(ZnO)等からなる透明電極である。第2電極26は、光電変換部25上に位置している。
 保護膜27は、例えば、窒化ケイ素、酸窒化ケイ素等からなる。
 電荷蓄積部28は、画素回路22に設けられている。電荷蓄積部28は、光電変換部25で生成された電荷を蓄積する。電荷蓄積部28は、例えば、PN接合容量である。
 第1トランジスタ(ソースフォロワトランジスタ)291は、電荷蓄積部28に蓄積されている電荷がゲートに印加されることによって、ソース電圧を信号として出力する。第2トランジスタ(リセットトランジスタ)292は、電荷蓄積部28に蓄積されている電荷を、電荷蓄積部28から消去(リセット)させる。第3トランジスタ(選択トランジスタ)293は、複数の画素20の中からいずれかの画素20を選択する。
 次に、固体撮像素子2の動作について簡単に説明する。保護膜27及び第2電極26を透過した光は、光電変換部25において光電変換により光から電荷(電気信号)に変換される。光電変換部25にて変換させた電荷は、電荷蓄積部28に蓄積される。電荷蓄積部28に蓄積された電荷は、第1トランジスタ291のゲートに印加され、第1トランジスタ291のソース電圧が信号として出力される。また、電荷蓄積部28に蓄積された電荷は、第2トランジスタ292によって電荷蓄積部28から消去される。
 ところで、一般的な固体撮像素子の回路構成では、途中でデータを読み出す場合に電荷蓄積部から電荷が失われてしまうが、本実施形態に係る固体撮像素子2の回路構成では、電荷蓄積部28に蓄積されている電荷を失うことなく、データを読み出すことができる。すなわち、本実施形態に係る固体撮像素子2の回路構成では、電荷蓄積部28に蓄積されている電荷を破壊せずにデータ(信号)を読み出す非破壊読み出しが可能である。
 本実施形態に係る固体撮像素子2では、図5に示すように、第2トランジスタ292により電荷蓄積部28の電荷がリセット(消去)されるまでの間(つまり、1回の電荷蓄積期間)に、第トランジスタ291により電荷蓄積部28から信号電荷を3回出力している。この方法によれば、電荷蓄積部28への電荷の蓄積を継続させた状態において蓄積途中でデータを読み出すことができるので、信号電荷が極めて小さい場合であっても、信号電荷を長時間蓄積することによって信号を認識しやすくなるという利点がある。また、蓄積途中で読み出したデータによって早期の判別が可能になるという利点もある。
 (2.3)報知部
 報知部3は、火炎検知システム1の出力部12の出力結果に応じて異常を報知するように構成されている。具体的には、報知部3は、検知対象としての水素火炎を検知していると判定部11が判定した場合に、異常(水素漏れ)が発生していることを報知する。報知部3は、例えば、水素ステーションに設置されたモニタ(表示装置)を備えている。報知部3は、出力部12からの報知指令信号S1によって、例えば、「異常が発生しています」等の表示をモニタに表示させる。この場合において、報知部3は、モニタへの表示だけでなく、音(音声、ブザー等)による報知を合わせて行うように構成されていてもよい。また、この場合において、例えば、水素ステーションの管理会社等に対して、異常が発生している旨を通知するように構成されていてもよい。
 (3)動作
 以下、本実施形態に係る火炎検知システム1の動作について説明する。
 (3.1)動作例1
 本実施形態に係る火炎検知システム1の動作例1について、図6及び図7を参照して説明する。動作例1では、水素火炎と放電とを判別する場合について説明する。この場合、固体撮像素子2は、図2Aに示すように、青色のカラーフィルタを備えた構成になる。
 図7における「パターン1」は、水素火炎及び放電の両方を検知していない場合を示している。図7における「パターン2」は、水素火炎を検知している場合を示している。図7における「パターン3」は、放電を検知している場合を示している。図7における「パターン4」は、水素火炎及び放電の両方を検知している場合を示している。なお、図7における水素火炎及び放電の形状は、水素火炎及び放電を模式的に表しており、実際の形状とは異なっている。
 判定部11は、第1画像データD1を記憶部13から読み出す。信号処理部111は、第1画像データD1に基づいて第1領域R1を抽出する(ステップST101)。このとき、信号処理部111は、第1画像データD1において各画素20の輝度値を予め設定した閾値と比較し、輝度値が閾値以上の領域を第1領域R1として抽出する(ステップST102)。判定部11は、第1領域R1が抽出されなければ(ステップST102;No)、水素火炎及び放電がないと判定し、ステップST101,ST102を繰り返す。つまり、図7における「パターン1」である。
 判定部11は、第1領域R1が抽出されていれば(ステップST102;Yes)、第2画像データD2を記憶部13から読み出す。信号処理部111は、第2画像データD2に基づいて第2領域R2を抽出する(ステップST103)。ここでいう「第2領域R2」とは、第2画像データD2における第1領域R1と同じ領域であって、各画素20の輝度値が閾値以上の領域をいう。つまり、信号処理部111は、第2画像データD2における第1領域R1と同じ領域の輝度値と閾値とを比較し、輝度値が閾値以上の領域を第2領域R2として抽出する(ステップST104)。
 判定部11は、第2領域R2が抽出されていれば(ステップST104;Yes)、放電と判定し、ステップST101に戻る。つまり、図7における「パターン3」である。すなわち、発光源が放電であれば青色光が含まれており、この青色光は青色のカラーフィルタを透過するため、第2画像データD2において第2領域R2として抽出される。
 判定部11は、第2領域R2が抽出されなければ(ステップST104;No)、水素火炎と判定する(ステップST105)。つまり、図7における「パターン2,4」である。すなわち、発光源が水素火炎であれば紫外光のみであり、この紫外光は青色のカラーフィルタで吸収されるため、第2画像データD2において第2領域R2として抽出されない。
 判定部11は、水素火炎と判定した場合、報知指令信号S1を出力部12から出力させる。そして、出力部12からの報知指令信号S1を受けた報知システム10の報知部3は、異常(水素漏れ)が発生していることを報知する。この場合において、報知部3のモニタに、第1画像データD1及び第2画像データD2を表示させてもよい。
 この方法によれば、水素火炎と放電とを判別することができるので、水素ステーション等の設備を誤検知によって停止させる不具合を低減することができる。
 (3.2)動作例2
 本実施形態に係る火炎検知システム1の動作例2について、図8及び図9を参照して説明する。動作例2では、水素火炎と放電と炭素火炎(一例として、赤色光を発する火炎)とを判別する場合について説明する。この場合、固体撮像素子2は、図2Bに示すように、青色、赤色、緑色のカラーフィルタを備えた構成になる。
 図9における「パターン1」は、水素火炎、放電及び炭素火炎のいずれも検知していない場合を示している。図9における「パターン2」は、水素火炎を検知している場合を示している。図9における「パターン3」は、放電を検知している場合を示している。図9における「パターン4」は、炭素火炎を検知している場合を示している。図9における「パターン5」は、水素火炎、放電及び炭素火炎の全てを検知している場合を示している。なお、図9における水素火炎、放電及び炭素火炎の形状は、水素火炎、放電及び炭素火炎を模式的に表しており、実際の形状とは異なっている。
 判定部11は、第1画像データD1を記憶部13から読み出す。信号処理部111は、第1画像データD1に基づいて第1領域R1を抽出する(ステップST201)。このとき、信号処理部111は、第1画像データD1において各画素20の輝度値を予め設定した閾値と比較し、輝度値が閾値以上の領域を第1領域R1として抽出する(ステップST202)。判定部11は、第1領域R1が抽出されなければ(ステップST202;No)、水素火炎、放電及び炭素火炎のいずれもないと判定し、ステップST201,ST202を繰り返す。つまり、図9における「パターン1」である。
 判定部11は、第1領域R1が抽出されていれば(ステップST202;Yes)、第2画像データD2を記憶部13から読み出す。信号処理部111は、第2画像データD2に基づいて第2領域R2を抽出する(ステップST203)。信号処理部111は、第2画像データD2における第1領域R1と同じ領域の輝度値と閾値とを比較し、輝度値が閾値以上の領域を第2領域R2として抽出する(ステップST204)。
 判定部11は、第2領域R2が抽出されていれば(ステップST204;Yes)、放電と判定し、ステップST201に戻る。つまり、図9における「パターン3」である。すなわち、発光源が放電であれば青色光が含まれており、この青色光は青色のカラーフィルタを透過するため、第2画像データD2において第2領域R2として抽出される。
 判定部11は、第2領域R2が抽出されなければ(ステップST204;No)、第3画像データD3を記憶部13から読み出す。信号処理部111は、第3画像データD3に基づいて第3領域R3を抽出する(ステップST205)。信号処理部111は、第3画像データD3における第1領域R1と同じ領域の輝度値と閾値とを比較し、輝度値が閾値以上の領域を第3領域R3として抽出する(ステップST206)。
 判定部11は、第3領域R3が抽出されていれば(ステップST206;Yes)、炭素火炎と判定する(ステップST208)。つまり、図9における「パターン4」である。すなわち、発光源が炭素火炎であれば赤色光が含まれており、この赤色光は赤色のカラーフィルタを透過するため、第3画像データD3において第3領域R3として抽出される。
 判定部11は、第3領域R3が抽出されなければ(ステップST206;No)、水素火炎と判定する(ステップST207)。つまり、図9における「パターン2,5」である。すなわち、発光源が水素火炎であれば紫外光のみであり、この紫外光は赤色のカラーフィルタで吸収されるため、第3画像データD3において第3領域R3として抽出されない。
 判定部11は、水素火炎と判定した場合、報知指令信号S1を出力部12から出力させる。そして、出力部12からの報知指令信号S1を受けた報知システム10の報知部3は、異常(水素漏れ)が発生していることを報知する。この場合において、報知部3のモニタに、第1画像データD1、第2画像データD2及び第3画像データD3を表示させてもよい。
 この方法によれば、水素火炎と放電と炭素火炎とを判別することができるので、水素ステーション等の設備を誤検知によって停止させる不具合を低減することができる。
 なお、動作例2に示すように、一般の炎(「炭素を含む物質の炎」)は赤色に発光しており、赤色のフィルタを透過することになる。このように、誤検知してしまう対象のスペクトルが予め分かっていれば、画素に搭載するフィルタの特性をそのスペクトルに合わせて変更することで、より認識しやすくなるという利点がある。
 (3.3)動作例3
 本実施形態に係る火炎検知システム1の動作例3について、図10及び図11を参照して説明する。動作例3では、水素火炎と放電とを判別する場合について説明する。この場合、固体撮像素子2は、図2Aに示すように、青色のカラーフィルタを備えた構成になる。
 図11における「パターン1」は、水素火炎及び放電の両方を検知していない場合を示している。図11における「パターン2」は、水素火炎を検知している場合を示している。図11における「パターン3」は、放電を検知している場合を示している。図11における「パターン4」は、水素火炎及び放電の両方を検知している場合を示している。なお、図11における水素火炎及び放電の形状は、水素火炎及び放電を模式的に表しており、実際の形状とは異なっている。
 判定部11は、第1画像データD1を記憶部13から読み出す。信号処理部111は、第1画像データD1に基づいて第1領域R1を抽出する(ステップST301)。このとき、信号処理部111は、第1画像データD1において各画素20の輝度値を予め設定した閾値と比較し、輝度値が閾値以上の領域を第1領域R1として抽出する(ステップST302)。判定部11は、第1領域R1が抽出されなければ(ステップST302;No)、水素火炎及び放電がないと判定し、ステップST301,ST302を繰り返す。つまり、図11における「パターン1」である。
 判定部11は、第1領域R1が抽出されていれば(ステップST302;Yes)、時系列において連続する複数枚(図示例では3枚)の第1画像データD1について第1領域R1を抽出する(ステップST303)。言い換えると、判定部11は、時系列で得られた複数の画像データD0に基づいて火炎であるか否かを判定する。発光源が放電の場合には非連続的に発光するため、判定部11は、時系列において第1領域R1が連続で検知されていなければ(ステップST304;No)、放電と判定し、ステップST301に戻る。つまり、図11における「パターン3」である。
 発光源が水素火炎の場合には連続的に発光するため、判定部11は、時系列において第1領域R1が連続で検知されていれば(ステップST304;Yes)、水素火炎と判定する(ステップST305)。言い換えると、判定部11は、複数の画像データD0に対する画像処理によって紫外光が連続で検知されている場合に火炎であると判定する。つまり、図11における「パターン2,4」である。
 判定部11は、水素火炎と判定した場合、報知指令信号S1を出力部12から出力させる。そして、出力部12からの報知指令信号S1を受けた報知システム10の報知部3は、異常(水素漏れ)が発生していることを報知する。この場合において、報知部3のモニタに、第1画像データD1、第2画像データD2及び第3画像データD3を表示させてもよい。
 この方法によれば、水素火炎と放電とを判別することができるので、水素ステーション等の設備を誤検知によって停止させる不具合を低減することができる。
 (3.4)動作例4
 本実施形態に係る火炎検知システム1の動作例4について、図12及び図13を参照して説明する。動作例4では、水素火炎と放電とを判別する場合について説明する。この場合、固体撮像素子2は、図2Aに示すように、青色のカラーフィルタを備えた構成になる。
 図13における「パターン1」は、水素火炎及び放電の両方を検知していない場合を示している。図13における「パターン2」は、水素火炎を検知している場合を示している。図13における「パターン3」は、放電を検知している場合を示している。図13における「パターン4」は、水素火炎及び放電の両方を検知している場合を示している。
 判定部11は、第1画像データD1を記憶部13から読み出す。信号処理部111は、第1画像データD1に基づいて第1領域R1を抽出する(ステップST401)。このとき、信号処理部111は、第1画像データD1において各画素20の輝度値を予め設定した閾値と比較し、輝度値が閾値以上の領域を第1領域R1として抽出する(ステップST402)。判定部11は、第1領域R1が抽出されなければ(ステップST402;No)、水素火炎及び放電がないと判定し、ステップST401,ST402を繰り返す。つまり、図13における「パターン1」である。
 判定部11は、第1領域R1が抽出されていれば(ステップST402;Yes)、信号処理部111に第1領域R1の形状を認識させる(ステップST403)。ここで、発光源が水素火炎の場合、高圧配管のスポットリークからガスが噴き出すことによる摩擦熱で着火するため、火炎形状は、対向する2辺の長さの差分が10%以上の長方形状(台形状)になる(以下、「第1形状M1」という)。これに対して、発光源が放電の場合、線状、又は対向する2辺の長さが10%未満の長方形状になる(以下、「第2形状M2」という)。
 判定部11は、第1領域R1の形状が第2形状M2であれば(ステップST404;Yes)、放電と判定し、ステップST401に戻る。つまり、図11における「パターン3」である。
 判定部11は、第1領域R1の形状が第1形状M1であれば(ステップST404;No)、水素火炎と判定する(ステップST405)。つまり、図11におけるパターン「2,4」である。言い換えると、判定部11は、画像処理によって検知されている紫外光領域の形状に基づいて火炎か否かを判定する。
 判定部11は、水素火炎と判定した場合、報知指令信号S1を出力部12から出力させる。そして、出力部12からの報知指令信号S1を受けた報知システム10の報知部3は、異常(水素漏れ)が発生していることを報知する。この場合において、報知部3のモニタに、第1画像データD1及び第2画像データD2を表示させてもよい。
 この方法によれば、水素火炎と放電とを判別することができるので、水素ステーション等の設備を誤検知によって停止させる不具合を低減することができる。
 (4)変形例
 上述の実施形態は、本開示の様々な実施形態の一つに過ぎない。上述の実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。また、火炎検知システム1と同様の機能は、火炎検知方法、コンピュータプログラム、又はコンピュータプログラムを記録した非一時的な記録媒体等で具現化されてもよい。
 一態様に係る火炎検知方法は、判定ステップと、出力ステップと、を備える。判定ステップは、画像データD0に対する画像処理によって紫外光が検知されている場合に火炎であると判定するステップである。出力ステップは、判定ステップでの判定結果を出力するステップである。
 一態様に係るプログラムは、コンピュータシステムに、上述の火炎検知方法を実行させるためのプログラムである。
 以下、上述の実施形態の変形例を列挙する。以下に説明する変形例は、適宜組み合わせて適用可能である。
 本開示における火炎検知システム1又は火炎検知方法の実行主体は、コンピュータシステムを含んでいる。コンピュータシステムは、ハードウェアとしてのプロセッサ及びメモリを有する。コンピュータシステムのメモリに記録されたプログラムをプロセッサが実行することによって、本開示における火炎検知システム1又は火炎検知方法の実行主体としての機能が実現される。プログラムは、コンピュータシステムのメモリに予め記録されていてもよいが、電気通信回線を通じて提供されてもよい。また、プログラムは、コンピュータシステムで読み取り可能なメモリカード、光学ディスク、ハードディスクドライブ等の非一時的な記録媒体に記録されて提供されてもよい。コンピュータシステムのプロセッサは、半導体集積回路(IC)又は大規模集積回路(LSI)を含む1乃至複数の電子回路で構成される。複数の電子回路は、1つのチップに集約されていてもよいし、複数のチップに分散して設けられていてもよい。複数のチップは、1つの装置に集約されていてもよいし、複数の装置に分散して設けられていてもよい。
 また、火炎検知システム1の判定部11(信号処理部111を含む)の機能は、1つの装置に設けられていてもよいし、複数の装置に分散して設けられていてもよい。さらに、判定部11の少なくとも一部の機能は、例えば、クラウド(クラウドコンピューティング)によって実現されていてもよい。
 上述の実施形態では、火炎が水素火炎である場合を例示したが、火炎は水素火炎に限らず、発光する火炎であれば他の火炎でもよい。例えば、一般の炎の場合、酸素が十分にある状態での燃焼(完全燃焼)時と酸素が不足している状態での燃焼(不完全燃焼)時とで発光スペクトルが異なる(完全燃焼時は青色、不完全燃焼時は赤色)。上述したとおり、フィルタの特性を完全燃焼時、不完全燃焼時のそれぞれの発光スペクトルに合わせることで、水素火炎と放電と炭素火炎とを判別するだけでなく、炭素火炎(一般火炎)の燃焼状態を判別することも可能となる。
 上述の実施形態では、特定光のみを透過させるカラーフィルタを用いているが、例えば、発光源からの発光がない状態の画像データを基準データとし、この基準データとの差分によってフィルタ機能を実現してもよい。この場合、発光源を識別するためのフィルタ(UVフィルタ、RGBフィルタ等)を省略することができる。
 例えば、水素火炎と放電とを判別する場合には、放電に含まれる青色光よりも長波長域の光は不要であるため、青色光よりも長波長域の光を遮断するフィルタが固体撮像素子2に設けられていてもよい。
 上述の実施形態では、固体撮像素子2が、カラーフィルタのある画素20と、紫外光、青色光、緑色光及び赤色光を受光可能な画素20とを有している場合を例示した。これに対して、固体撮像素子2は、例えば、カラーフィルタのある画素20と、紫外光のみを透過可能なUVフィルタが搭載された画素とを有していてもよい。
 上述の実施形態では、固体撮像素子2が報知システム10に含まれているが、固体撮像素子2は、図14に示すように、火炎検知システム1に含まれていてもよい。言い換えると、火炎検知システム1は、固体撮像素子2と、判定部11と、出力部12と、を備えていてもよい。
 (まとめ)
 以上説明したように、第1の態様に係る火炎検知システム(1)は、判定部(11)と、出力部(12)と、を備える。判定部(11)は、画像データ(D0)に対する画像処理によって紫外光が検知されている場合に火炎であると判定する。出力部(12)は、判定部(11)の判定結果を出力する。
 この態様によれば、画像データ(D0)における紫外光の有無によって火炎か否かを判定しており、火炎の動き等から判定する場合と比較して火炎の検知精度を向上させることができる。
 第2の態様に係る火炎検知システム(1)では、第1の態様において、判定部(11)は、上記画像処理によって紫外光とは異なる波長域の光が検知されている場合には火炎でないと判定する。
 この態様によれば、火炎と火炎以外の発光源とを判別することができる。
 第3の態様に係る火炎検知システム(1)では、第2の態様において、上記波長域は、青色光の波長域である。
 この態様によれば、放電(雷を含む)等の紫外発光源と火炎とを判別することができる。
 第4の態様に係る火炎検知システム(1)では、第1~3のいずれかの態様において、判定部(11)は、時系列で得られた複数の画像データ(D0)に基づいて火炎であるか否かを判定する。
 この態様によれば、1枚の画像データに基づいて判定する場合と比較して火炎の検知精度を向上させることができる。
 第5の態様に係る火炎検知システム(1)では、第4の態様において、判定部(11)は、複数の画像データ(D0)に対する画像処理によって紫外光が連続で検知されている場合に火炎であると判定する。
 この態様によれば、火炎に含まれる紫外光であれば時系列において連続で検知されるので、火炎と火炎以外の紫外発光源との判別精度を向上させることができる。
 第6の態様に係る火炎検知システム(1)では、第1~5のいずれかの態様において、判定部(11)は、上記画像処理によって検知されている紫外光領域(第1領域R1)の形状(第1形状M1、第2形状M2)に基づいて火炎か否かを判定する。
 この態様によれば、紫外光の形状から火炎か否かを判定することができる。
 第7の態様に係る報知システム(10)は、第1~6のいずれかの態様の火炎検知システム(1)と、固体撮像素子(2)と、報知部(3)と、を備える。固体撮像素子(2)は、紫外光に対して感度を有し、画像データ(D0)を出力する。報知部(3)は、出力部(12)の出力結果に応じて異常を報知する。
 この態様によれば、火炎検知システム(1)によって火炎を検知した場合に、異常が発生していることを報知することができる。
 第8の態様に係る報知システム(10)では、第7の態様において、固体撮像素子(2)は、アレイ状に配置されている複数の画素(20)を備える。複数の画素(20)の各々は、第1電極(24)と、光電変換部(25)と、電荷蓄積部(28)と、第2電極(26)と、第1トランジスタ(291)と、第2トランジスタ(292)と、第3トランジスタ(293)と、を含む。光電変換部(25)は、第1電極(24)上に位置しており、光を電気信号に変換する。電荷蓄積部(28)は、第1電極(24)に電気的に接続されており、光電変換部(25)で生成された電荷を蓄積する。第2電極(26)は、光電変換部(25)上に位置している。第1トランジスタ(291)は、電荷蓄積部(28)に蓄積されている電荷を電荷蓄積部(28)から出力させる。第2トランジスタ(292)は、電荷蓄積部(28)に蓄積されている電荷を電荷蓄積部(28)から消去させる。第3トランジスタ(293)は、複数の画素(20)の中からいずれかの画素(20)を選択する。光電変換部(25)は、有機膜である。
 この態様によれば、火炎検知システム(1)によって火炎を検知した場合に、異常が発生していることを報知することができる。
 第9の態様に係る火炎検知方法は、判定ステップと、出力ステップと、を備える。判定ステップは、画像データ(D0)に対する画像処理によって紫外光が検知されている場合に火炎であると判定するステップである。出力ステップは、判定ステップでの判定結果を出力するステップである。
 この態様によれば、火炎の検知精度を向上させることができる。
 第10の態様に係るプログラムは、コンピュータシステムに、第9の態様の火炎検知方法を実行させるプログラムである。
 この態様によれば、火炎の検知精度を向上させることができる。
 第11の態様に係る火炎検知システム(1)は、固体撮像素子(2)と、判定部(11)と、出力部(12)と、を備える。固体撮像素子(2)は、二次元の格子状に配置されている第1画素(20)及び第2画素(20)を有し、第2画素(20)に対してフィルタが設けられている。判定部(11)は、第1画素(20)の第1の画素情報から第1画像データ(D1)を作成する。判定部(11)は、第2画素(20)の第2画素情報から第2画像データ(D2)を作成する。判定部(11)は、第1画像データ(D1)及び第2画像データ(D2)の各々の輝度値に基づいて、第1波長の光を発する領域を火炎であると判定する。出力部(12)は、判定部(11)の判定結果を出力する。
 この態様によれば、第1画像データ(D1)及び第2画像データ(D2)の各々の輝度値に基づいて火炎か否かを判定することができる。
 第2~6の態様に係る構成については、火炎検知システム(1)の必須の構成ではなく、適宜省略可能である。
 第8の態様に係る構成については、報知システム(10)の必須の構成ではなく、適宜省略可能である。
1 火炎検知システム
11 判定部
12 出力部
2 固体撮像素子
20 画素
24 第1電極
25 光電変換部
26 第2電極
28 電荷蓄積部
291 第1トランジスタ
292 第2トランジスタ
293 第3トランジスタ
3 報知部
10 報知システム
D0 画像データ
D1 第1画像データ
D2 第2画像データ
M1 第1形状
M2 第2形状
R1 第1領域

Claims (11)

  1.  画像データに対する画像処理によって紫外光が検知されている場合に火炎であると判定する判定部と、
     前記判定部の判定結果を出力する出力部と、を備える、
     火炎検知システム。
  2.  前記判定部は、前記画像処理によって紫外光とは異なる波長域の光が検知されている場合には火炎でないと判定する、
     請求項1に記載の火炎検知システム。
  3.  前記波長域は、青色光の波長域である、
     請求項2に記載の火炎検知システム。
  4.  前記判定部は、時系列で得られた複数の前記画像データに基づいて火炎であるか否かを判定する、
     請求項1~3のいずれか1項に記載の火炎検知システム。
  5.  前記判定部は、前記複数の画像データに対する前記画像処理によって紫外光が連続で検知されている場合に火炎であると判定する、
     請求項4に記載の火炎検知システム。
  6.  前記判定部は、前記画像処理によって検知されている紫外光領域の形状に基づいて火炎か否かを判定する、
     請求項1~5のいずれか1項に記載の火炎検知システム。
  7.  請求項1~6のいずれか1項に記載の火炎検知システムと、
     紫外光に対して感度を有し、前記画像データを出力する固体撮像素子と、
     前記出力部の出力結果に応じて異常を報知する報知部と、を備える、
     報知システム。
  8.  前記固体撮像素子は、アレイ状に配置されている複数の画素を備え、
     前記複数の画素の各々は、
      第1電極と、
      前記第1電極上に位置しており、光を電気信号に変換する光電変換部と、
      前記第1電極に電気的に接続されており、前記光電変換部で生成された電荷を蓄積する電荷蓄積部と、
      前記光電変換部上に位置している第2電極と、
      前記電荷蓄積部に蓄積されている電荷を前記電荷蓄積部から出力させる第1トランジスタと、
      前記電荷蓄積部に蓄積されている電荷を前記電荷蓄積部から消去させる第2トランジスタと、
      前記複数の画素の中からいずれかの画素を選択する第3トランジスタと、を含み、
     前記光電変換部は、有機膜である、
     請求項7に記載の報知システム。
  9.  画像データに対する画像処理によって紫外光が検知されている場合に火炎であると判定する判定ステップと、
     前記判定ステップでの判定結果を出力する出力ステップと、を備える、
     火炎検知方法。
  10.  コンピュータシステムに、
     請求項9に記載の火炎検知方法を実行させるためのプログラム。
  11.  二次元の格子状に配置されている第1画素及び第2画素を有し、前記第2画素に対してフィルタが設けられている固体撮像素子と、
     前記第1画素の第1画素情報から第1画像データを作成し、前記第2画素の第2画素情報から第2画像データを作成し、前記第1画像データ及び前記第2画像データの各々の輝度値に基づいて、第1波長の光を発する領域を火炎であると判定する判定部と、
     前記判定部の判定結果を出力する出力部と、を備える、
     火炎検知システム。
PCT/JP2019/011510 2018-03-20 2019-03-19 火炎検知システム、報知システム、火炎検知方法、及びプログラム WO2019181957A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980018742.8A CN111868795A (zh) 2018-03-20 2019-03-19 火焰检测系统、报告系统、火焰检测方法和程序
JP2020507843A JP7002043B2 (ja) 2018-03-20 2019-03-19 火炎検知システム、報知システム、火炎検知方法、及びプログラム
US17/015,603 US20210041297A1 (en) 2018-03-20 2020-09-09 Flame detection system, reporting system, flame detection method, and non-transitory storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-053553 2018-03-20
JP2018053553 2018-03-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/015,603 Continuation US20210041297A1 (en) 2018-03-20 2020-09-09 Flame detection system, reporting system, flame detection method, and non-transitory storage medium

Publications (1)

Publication Number Publication Date
WO2019181957A1 true WO2019181957A1 (ja) 2019-09-26

Family

ID=67987279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011510 WO2019181957A1 (ja) 2018-03-20 2019-03-19 火炎検知システム、報知システム、火炎検知方法、及びプログラム

Country Status (4)

Country Link
US (1) US20210041297A1 (ja)
JP (1) JP7002043B2 (ja)
CN (1) CN111868795A (ja)
WO (1) WO2019181957A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3102605U (ja) * 2003-12-26 2004-07-15 功 村上 水素ステーション
JP2006267097A (ja) * 2005-02-28 2006-10-05 Shikoku Res Inst Inc 火炎可視化装置
JP2011151269A (ja) * 2010-01-22 2011-08-04 Rohm Co Ltd 撮像装置
JP2015108924A (ja) * 2013-12-04 2015-06-11 能美防災株式会社 炎検出装置および炎検出方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1155558A (ja) * 1997-08-06 1999-02-26 Minolta Co Ltd デジタルカメラ
JPH11160158A (ja) * 1997-11-28 1999-06-18 Hochiki Corp 火災監視装置
JP4077098B2 (ja) * 1998-12-25 2008-04-16 ホーチキ株式会社 微分スペクトルセンサ
JP3835525B2 (ja) * 2001-03-19 2006-10-18 ホーチキ株式会社 波長可変フィルタ制御装置
JP4701130B2 (ja) * 2006-06-15 2011-06-15 富士フイルム株式会社 光電変換膜積層型カラー固体撮像素子
KR100862409B1 (ko) * 2007-05-31 2008-10-08 대구대학교 산학협력단 비디오 영상을 이용한 화재 감지 방법
JP5478043B2 (ja) * 2008-09-11 2014-04-23 富士フイルム株式会社 固体撮像素子及び撮像装置
CN102957917B (zh) * 2011-08-30 2016-03-30 比亚迪股份有限公司 一种像素阵列、摄像头及基于该阵列的色彩处理方法
DE102014014501A1 (de) * 2014-09-30 2016-03-31 Dräger Safety AG & Co. KGaA Flammdetektor, Verfahren zur Flammerkenung und Filterarray für einen CMOS-Chip
JP6473350B2 (ja) * 2015-03-05 2019-02-20 独立行政法人国立高等専門学校機構 カラー撮像素子
JP6520326B2 (ja) * 2015-04-07 2019-05-29 リコーイメージング株式会社 撮像素子および撮像装置
JP2017028114A (ja) * 2015-07-23 2017-02-02 パナソニックIpマネジメント株式会社 光検出器、光検出装置、固体撮像装置およびカメラシステム
JP2017059689A (ja) * 2015-09-16 2017-03-23 株式会社東芝 撮像素子
CN106373320B (zh) * 2016-08-22 2018-10-02 中国人民解放军海军工程大学 基于火焰颜色离散度和连续帧图像相似度的火灾识别方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3102605U (ja) * 2003-12-26 2004-07-15 功 村上 水素ステーション
JP2006267097A (ja) * 2005-02-28 2006-10-05 Shikoku Res Inst Inc 火炎可視化装置
JP2011151269A (ja) * 2010-01-22 2011-08-04 Rohm Co Ltd 撮像装置
JP2015108924A (ja) * 2013-12-04 2015-06-11 能美防災株式会社 炎検出装置および炎検出方法

Also Published As

Publication number Publication date
JPWO2019181957A1 (ja) 2021-03-18
CN111868795A (zh) 2020-10-30
US20210041297A1 (en) 2021-02-11
JP7002043B2 (ja) 2022-01-20

Similar Documents

Publication Publication Date Title
CN107924923B (zh) 固态摄像装置和电子设备
CN108716983B (zh) 光学元件检测方法和装置、电子设备、存储介质
JP5311945B2 (ja) 撮像装置および欠陥画素検出方法
JP2010067828A (ja) 固体撮像素子及び撮像装置
CN112788313B (zh) 图像传感器、成像系统和终端
JP6229005B2 (ja) 光学検出装置
US6526366B1 (en) Imaging sensor defect map storage
KR102077281B1 (ko) SoC 기반 강판 표면결함 검출장치 및 시스템
US8812912B2 (en) Detecting system component failures in a computing system
WO2019181957A1 (ja) 火炎検知システム、報知システム、火炎検知方法、及びプログラム
JP2007028326A (ja) カメラモジュール及び移動電話端末
CN215066222U (zh) 一种传输带系统
JP2009217725A (ja) 監視装置及び監視方法
JPWO2015174295A1 (ja) 撮像装置および撮像方法
JP2010067829A (ja) 固体撮像素子及び撮像装置
CN113155852A (zh) 一种传输带的检测方法、装置及电子设备
JP5902006B2 (ja) 監視カメラ
JP2008111705A (ja) 欠陥検出方法、欠陥検出プログラムおよび検査装置
JP2015072204A (ja) 監視カメラ及び監視システム
JP2018138888A (ja) 撮像装置及び火災判定装置
CN108982552A (zh) 光检测装置以及其操作方法
US10636131B2 (en) Inspection video radiation filter
JP2021140459A (ja) 画像処理システム
KR101132407B1 (ko) 이미지 센서를 포함하는 촬영 장치
JP2007128308A (ja) 監視制御装置及び監視制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19772001

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507843

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19772001

Country of ref document: EP

Kind code of ref document: A1