WO2019181652A1 - Porous pad, vacuum chuck device, and plane forming method for porous pad - Google Patents
Porous pad, vacuum chuck device, and plane forming method for porous pad Download PDFInfo
- Publication number
- WO2019181652A1 WO2019181652A1 PCT/JP2019/010019 JP2019010019W WO2019181652A1 WO 2019181652 A1 WO2019181652 A1 WO 2019181652A1 JP 2019010019 W JP2019010019 W JP 2019010019W WO 2019181652 A1 WO2019181652 A1 WO 2019181652A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- porous pad
- porous
- slip
- workpiece
- ceramic
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q3/00—Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
- B23Q3/02—Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine for mounting on a work-table, tool-slide, or analogous part
- B23Q3/06—Work-clamping means
- B23Q3/08—Work-clamping means other than mechanically-actuated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B41/00—Component parts such as frames, beds, carriages, headstocks
- B24B41/06—Work supports, e.g. adjustable steadies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25B—TOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
- B25B11/00—Work holders not covered by any preceding group in the subclass, e.g. magnetic work holders, vacuum work holders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
Definitions
- the present invention relates to a porous pad, a vacuum chuck device, and a method for forming a flat surface of the porous pad.
- the vacuum chuck device described in Patent Document 1 forms a suction plate (porous pad) formed of porous ceramic having a suction surface on which a workpiece is placed, and a negative pressure guide space on the back side of the suction plate.
- a vacuum pump for adsorbing the work to the adsorption plate by setting the negative pressure guide space to a negative pressure is known.
- Patent Document 1 even if the workpiece is attracted to the suction plate, the position of the workpiece may be shifted from the suction surface due to an external force applied to the workpiece.
- the smaller the contact area between the suction surface of the suction plate and the workpiece the lower the suction force that the workpiece is attracted to the suction plate. Therefore, for example, when the size of the work is small with respect to the suction surface, the position of the work that is the installation target is easily displaced with respect to the suction surface of the suction plate.
- the present invention has been made in view of the above circumstances, and a porous pad, a vacuum chuck device, and a method for forming a flat surface of a porous pad that can prevent the position of an installed object to be displaced from the porous pad.
- the purpose is to provide.
- a porous pad includes a porous ceramic part having air permeability through which a fluid passes by forming a plurality of pores, and the porous ceramic part.
- a non-slip portion formed on the porous ceramic portion so as to be in contact with a part of the installation target to be installed, and having a higher static friction coefficient than the porous ceramic portion.
- the anti-slip part is arranged along the installation surface of the porous pad on which the installation object is installed and embedded in the porous ceramic part. You may make it provide the some cylinder part extended in a thickness direction.
- the anti-slip portion may be formed in a honeycomb shape in which regular hexagonal tubular portions are arranged along the installation surface.
- the anti-slip portion is formed of an elastic body
- the porous ceramic portion includes a first ceramic filling portion filled in a first tubular portion of the plurality of tubular portions, and the plurality of the porous ceramic portions.
- a second ceramic filling portion that is filled in the second cylindrical portion and formed separately from the first ceramic filling portion may be provided.
- the porous ceramic portion is formed with a groove portion that opens toward the installation object installed on the installation surface and is filled with the anti-slip portion. Good.
- the anti-slip part is arranged along the installation surface of the porous pad on which the installation object is installed and embedded in the porous ceramic part.
- a plurality of columnar portions extending in the thickness direction may be provided.
- the columnar portion is formed in a Y shape, an X shape, a V shape, an H shape, an L shape, or a T shape in the thickness direction of the porous pad. You may make it.
- the anti-slip portion may be formed so as to protrude from the installation surface by a protruding amount from the porous ceramic portion.
- the protrusion amount may be set to 0.01 mm to 1 mm.
- the anti-slip portion may be formed of a silicone resin.
- an area ratio obtained by dividing a contact area where the anti-slip portion and a part of the installation target object are in contact with an entire area of the porous ceramic portion is 0.10 or more and 0.50. The following may be used.
- a vacuum chuck device includes the porous pad, a base plate that forms a negative pressure guide space by the porous pad being installed, and the negative pressure.
- a method for forming a flat surface of a porous pad according to a third aspect of the present invention includes a step of polishing an installation surface of the porous pad by a polishing apparatus.
- the position of the installed object to be installed can be prevented from shifting with respect to the porous pad.
- FIG. 1 is a perspective view of a machine tool according to an embodiment of the present invention. It is sectional drawing of the vacuum chuck apparatus which concerns on one Embodiment of this invention. It is a top view which shows a part of installation surface of the porous pad which concerns on one Embodiment of this invention.
- FIG. 4 is a sectional view taken along line AA in FIG. 3. It is a figure which expands and shows a part of FIG. (A) is sectional drawing of the porous pad when the coolant liquid which concerns on one Embodiment of this invention is supplied, (b) is a cross section of the porous pad when the coolant liquid which concerns on a comparative example is supplied FIG. It is sectional drawing of the porous pad which concerns on the modification of this invention.
- the machine tool 1 includes a vacuum chuck device 10 that fixes a workpiece W, which is an example of an installation target, to the installation surface 20a, a processing unit 40 that processes the fixed workpiece W, A coolant liquid supply unit 50 for supplying the coolant W to the workpiece W.
- a vacuum chuck device 10 that fixes a workpiece W, which is an example of an installation target, to the installation surface 20a
- a processing unit 40 that processes the fixed workpiece W
- a coolant liquid supply unit 50 for supplying the coolant W to the workpiece W.
- directions orthogonal to each other along the installation surface 20a are defined as an X direction and a Y direction
- a direction orthogonal to the installation surface 20a is defined as a Z direction.
- the processing unit 40 includes a tool 41 for cutting or polishing the workpiece W fixed to the vacuum chuck device 10.
- the coolant liquid supply unit 50 supplies the coolant liquid Clt to the upper surface of the workpiece W in order to cool the frictional heat generated between the tool 41 being processed and the workpiece W.
- the vacuum chuck device 10 includes a porous pad 20, a base plate 12, and a through-hole plate 15.
- the base plate 12 includes a groove 12a that opens upward in the Z direction.
- the base plate 12 is provided with a porous pad 20 and a through-hole plate 15 so as to close the opening of the groove 12a.
- the groove 12a constitutes a negative pressure guide space.
- the through-hole plate 15 is a metal plate located between the porous pad 20 and the base plate 12.
- the through-hole plate 15 is formed with a plurality of through-holes 15a that are arranged in a matrix in the X and Y directions and penetrate in the Z direction.
- the porous pad 20 is formed in a plate shape and is located on the upper surface of the through-hole plate 15.
- the porous pad 20 has air permeability that allows fluid to pass therethrough. A specific configuration of the porous pad 20 will be described later.
- the vacuum pump 30 is connected to the negative pressure guide space in the groove 12a through the vacuum port 12b.
- the negative pressure guide space becomes negative pressure. Thereby, an adsorption force acts on the workpiece W on the installation surface 20 a of the porous pad 20, and the workpiece W is adsorbed on the porous pad 20.
- the porous pad 20 includes a porous ceramic portion 25 and an anti-slip portion 27.
- the porous ceramic portion 25 includes, for example, an aggregate made of a granular material of an inorganic material such as alumina or silicon carbide and a binding material (for example, vitrified bond, resinoid, cement, rubber, and glass) for bonding the aggregates to each other. Etc.) is introduced into a molding die and sintered.
- the porous ceramic part 25 has a porous structure in which countless fine pores are formed.
- the porosity (pore density) of the porous ceramic portion 25 can be adjusted by the mixing ratio of the aggregate and the binder, and the average pore diameter of the pores can be adjusted by selecting the particle size of the aggregate. it can.
- the porous ceramic portion 25 allows liquid fluid such as air or water to pass between the installation surface 20a and the back surface 20b (surface on the negative pressure guide space side) opposite to the installation surface 20a through the continuous fine pores. It has air permeability.
- the non-slip portion 27 has a function of suppressing the workpiece W from sliding on the installation surface 20 a through static friction with the workpiece W installed on the installation surface 20 a of the porous ceramic portion 25.
- the anti-slip portion 27 is a material that does not allow fluid to pass through, and is formed of a material that has a higher static friction coefficient than the porous ceramic portion 25 and elastically deforms.
- the non-slip portion 27 is formed of a high friction material such as natural synthetic resin, synthetic rubber, silicone resin, urethane, elastomer, vinyl chloride or polyester, for example.
- skid part 27 is formed with a silicone resin.
- the anti-slip portion 27 has a plurality of cylindrical portions 28 extending in the thickness direction of the porous ceramic portion 25, that is, in the Z direction.
- Each cylindrical portion 28 is formed so as to open on both sides in the Z direction and be embedded in the porous ceramic portion 25.
- Each cylinder part 28 has the distribution
- Each permissible flow chamber 29 is an independent space isolated for each cylindrical portion 28. For this reason, the fluid does not move between two adjacent flow allowing chambers 29.
- the non-slip portion 27 has a honeycomb shape in which regular hexagonal tubular portions 28 are arranged without gaps when viewed from the Z direction. That is, the cylinder part 28 is comprised by the six wall parts 28a which make a regular hexagon. If the honeycomb diameter is too small, there is a possibility that the passage of fluid in the Z direction may be hindered. If the honeycomb diameter is too large, as will be described later with reference to FIG. There is a risk that the ratio of the ratio will be reduced, and as a result, the degree of vacuum may be reduced. From such a viewpoint, the honeycomb diameter is preferably set to 1 mm to 10 mm, more preferably 1 mm to 5 mm.
- the first ceramic filling portion 251 of the porous ceramic portion 25 is filled in the first tubular portion 281 of the plurality of tubular portions 28.
- the second ceramic filling portion 252 of the porous ceramic portion 25 is filled in the second tubular portion 282 adjacent to the first tubular portion 281 among the plurality of tubular portions 28.
- the first ceramic filling part 251 and the second ceramic filling part 252 are formed separately.
- the anti-slip portion 27 is provided so as to protrude upward by a protrusion amount H from the porous ceramic portion 25. That is, the lower end surface of the anti-slip portion 27 is located on the same plane as the lower surface of the porous ceramic portion 25, and the upper end surface of the anti-slip portion 27 is formed higher than the upper surface of the porous ceramic portion 25 by the protruding amount H. . If the protruding amount H is too small, it may be difficult for the upper end surface of the anti-slip portion 27 to come into contact with the workpiece W. If the protruding amount H is too large, the workpiece W is separated from the porous ceramic portion 25 to attract the workpiece. May decrease.
- the protrusion amount H is preferably set to 0.01 mm to 1 mm, and more preferably set to 0.01 mm to 0.05 mm. Further, if the width W of the non-slip portion 27, that is, the thickness of the wall portion 28a is too large, the passage of fluid may be hindered. If it is too small, the contact area between the work W and the anti-slip portion 27 is insufficient. There is a possibility that the displacement of the position cannot be suppressed. From such a viewpoint, the width W of the anti-slip portion 27 is preferably set to 0.01 mm to 1 mm, and more preferably set to 0.01 mm to 0.5 mm.
- the area ratio obtained by dividing the contact area where the anti-slip portion 127 and a part of the workpiece W are contacted by the entire area of the porous ceramic portion 25 is too large, the passage of fluid may be hindered and too small.
- the contact area between the workpiece W and the anti-slip portion 27 is insufficient, and there is a possibility that the displacement of the workpiece W cannot be suppressed.
- the area ratio is preferably set to 0.10 or more and 0.50 or less.
- the anti-slip portion 27 When the plate-like workpiece W is installed on the installation surface 20 a of the porous pad 20, the upper end surface of the anti-slip portion 27 contacts the lower surface of the workpiece W.
- the anti-slip portion 27 is formed of a silicone resin or the like having a high static friction coefficient. For this reason, it can suppress that the position of the workpiece
- the workpiece W is formed into a plate shape using a material such as a metal such as aluminum, a resin, paper, ceramics, or wood, for example.
- the workpiece W is a solar cell panel, a semiconductor panel, a liquid crystal panel, a printed board, an organic EL (Electro-Luminescence) panel, a glass plate, a film such as a polymer, or the like.
- the contact area between the workpiece W and the porous pad becomes small, so the adsorption force of the workpiece W to the porous pad tends to be small, The position of the workpiece W is easily displaced.
- the porous pad 20 acts, for example, during processing because the frictional force due to the anti-slip portion 27 acts to compensate for the decrease in the suction force even if the workpiece W has a small size. Position shift of the workpiece W can be suppressed.
- the porous pad 120 according to the comparative example is different from the porous pad 20 of the present embodiment and does not have the anti-slip portion 27 and is configured only by the porous ceramic portion 25. . If the coolant liquid Clt is poured into the work W in a state where the work W is adsorbed on the installation surface 120a of the porous pad 120 according to the comparative example, as shown by an arrow F1 in FIG. It passes through the porous pad 120 from the upper surface through the side surface. At this time, as indicated by an arrow F2 in FIG.
- the porous pad 20 has a flow allowance chamber 29 for each cylindrical portion 28.
- the plurality of flow permitting chambers 29 include a liquid passage chamber 29a through which the coolant liquid Clt passes and a vacuum forming chamber 29b that is closed by the lower surface of the workpiece W to form a vacuum.
- the liquid passage chamber 29a has at least a part of the upper opening thereof.
- the liquid passage chamber 29a overlaps the side surface of the workpiece W in the Z direction, and is arranged in a frame shape along the side surface of the workpiece W.
- the vacuum forming chamber 29b is disposed in a plurality of liquid passage chambers 29a arranged in a frame shape, with the upper opening thereof closed by the lower surface of the workpiece W.
- the coolant liquid Clt is poured into the workpiece W adsorbed on the porous pad 20
- the coolant liquid Clt passes through the plurality of liquid passage chambers 29a. Therefore, the coolant liquid Clt does not enter the plurality of vacuum forming chambers 29b. Therefore, a part of the coolant Clt is prevented from entering the workpiece overlap region L1 of the porous pad 20.
- the plurality of vacuum forming chambers 29b that form a vacuum can be isolated from the liquid passage chambers 29a through which the coolant liquid Clt passes. Therefore, the degree of vacuum in the workpiece overlap region L1 of the porous pad 20 can be increased, and consequently the suction force can be increased.
- the coolant Clt functions like a film that does not allow air to pass through the workpiece W. That is, the degree of vacuum in the workpiece overlap region L1 of the porous pad 20 can be increased by surrounding the periphery of the plurality of vacuum forming chambers 29b in which the coolant liquid Clt that does not allow air to pass therethrough forms a vacuum.
- a part of the coolant liquid Clt wraps around the work overlap region L1 of the porous pad 20, so that air from the coolant liquid Clt does not pass through the wrap-around part. The function is reduced and air can be easily passed. Therefore, in the configuration of the comparative example, the degree of vacuum is easily lowered as compared with the configuration of the present embodiment.
- the position and number of the liquid passage chamber 29a and the vacuum forming chamber 29b vary depending on the size of the workpiece W or the installation position of the workpiece W.
- the installation surface 20a of the porous pad 20 is polished by a polishing apparatus (not shown) so as to be a flat surface.
- the anti-slip portion 27 is compressed in the Z direction more than the porous ceramic portion 25. For this reason, the polishing amount of the anti-slip portion 27 is smaller than the polishing amount of the porous ceramic portion 25.
- the anti-slip portion 27 protrudes from the porous ceramic portion 25 by the protrusion amount H due to the restoring force of the anti-slip portion 27. Therefore, even after the installation surface 20 a of the porous pad 20 is polished, the anti-slip portion 27 can maintain a state in which the anti-slip portion 27 protrudes from the porous ceramic portion 25 by the protrusion amount H. Further, since the non-slip portion 27 is formed over the entire area of the porous ceramic portion 25 in the Z direction, even when the installation surface 20a of the porous pad 20 is repeatedly polished, the anti-slip function by the anti-slip portion 27 is provided. Can be maintained.
- the porous pad 20 is a workpiece that is an example of an installation object to be installed in the porous ceramic portion 25 and a porous ceramic portion 25 having air permeability that allows fluid to pass through by forming a plurality of pores. And a non-slip portion 27 formed in the porous ceramic portion 25 so as to be in contact with a part of W and having a higher static friction coefficient than the porous ceramic portion 25. According to this configuration, the position of the workpiece W to be installed can be prevented from being shifted with respect to the porous pad 20 by the anti-slip portion 27.
- the non-slip portion 27 acts to compensate for a decrease in the suction force that accompanies the small size of the workpiece W. For this reason, it can suppress that the position of the workpiece
- the anti-slip portion 27 is arranged along the installation surface 20a of the porous pad 20 on which the workpiece W is installed, and is embedded in the porous ceramic portion 25 in the thickness direction (Z direction). ) Are provided with a plurality of tube portions 28. According to this structure, it becomes easy to hold
- the anti-slip portion 27 is formed in a honeycomb shape in which regular hexagonal tubular portions 28 are arranged along the installation surface 20a. According to this structure, the cylinder part 28 is provided with the some wall part 28a which faces three different directions in the installation surface 20a. For this reason, it becomes easy to hold
- the anti-slip part 27 is formed of an elastic body.
- the porous ceramic portion 25 is filled in the first ceramic filling portion 251 filled in the first tubular portion 281 among the plurality of tubular portions 28, and in the second tubular portion 282 among the plurality of tubular portions 28, The 1st ceramic filling part 251 and the 2nd ceramic filling part 252 formed separately are provided.
- the anti-slip portion 27 functions as an elastic body between the separate first ceramic filling portion 251 and the second ceramic filling portion 252.
- the anti-slip portion 27 is formed so as to protrude from the installation surface 20 a by the protrusion amount H rather than the porous ceramic portion 25. According to this configuration, the non-slip portion 27 protrudes more than the porous ceramic portion 25, so that the anti-slip portion 27 can be brought into contact with the workpiece W more reliably.
- the protrusion amount H is set to 0.01 mm to 1 mm. According to this configuration, the workpiece W can be brought into contact with the anti-slip portion 27 without the workpiece W being separated from the porous ceramic portion 25.
- the anti-slip portion 27 is formed of a silicone resin. According to this configuration, since the silicone resin has a high coefficient of static friction, the displacement of the workpiece W can be further suppressed.
- the method of forming the flat surface of the porous pad 20 includes a step of polishing the installation surface 20a of the porous pad 20 to a flat surface by a polishing apparatus.
- the non-slip portion 27 is compressed more than the porous ceramic portion 25 when being polished by the polishing apparatus, so that the non-slip portion 27 protrudes from the porous ceramic portion 25 by the protruding amount H even after polishing. It can be kept in the state. Accordingly, even when the installation surface 20a of the porous pad 20 is repeatedly polished, the anti-slip portion 27 remains, so that the function of suppressing the displacement of the workpiece W by the anti-slip portion 27 can be maintained.
- the vacuum chuck device 10 includes a porous pad 20, a base plate 12 that forms a negative pressure guide space by installing the porous pad 20, and a workpiece W by supplying negative pressure to the negative pressure guide space. And a vacuum pump 30 for adsorbing to the installation surface 20 a of the porous pad 20. According to this configuration, in the vacuum chuck device 10, the position shift of the workpiece W can be suppressed by the anti-slip portion 27.
- the anti-slip portion 27 is formed over the entire installation surface 20a of the porous pad 20, but may be formed in a part of the installation surface 20a.
- the machine tool 1 includes the coolant liquid supply unit 50, but the coolant liquid supply unit 50 may be omitted. Even in this case, as shown in FIG. 6 (a), the degree of vacuum and thus the adsorption power can be increased by isolating the vacuum forming chamber 29b that forms a vacuum from the flow allowing chamber 29 through which air passes. it can.
- the processing unit 40 cuts or polishes the workpiece W fixed to the vacuum chuck device 10 through the tool 41.
- the present invention is not limited to this, and the workpiece W may be printed or exposed.
- the first ceramic filling portion 251 and the second ceramic filling portion 252 are formed separately by way of the anti-slip portion 27.
- the porous ceramic portion 25 may be formed with a groove portion 26 that opens upward, and a non-slip portion 27 may be located in the groove portion 26.
- the porous ceramic portion 25 can be integrally formed, whereby the rigidity of the porous pad 20 can be increased, and the porous pad 20 can be prevented from bending.
- the groove part 26 shown in FIG. 7 may be omitted, and the anti-slip part 27 may be installed on the upper surface of the porous ceramic part 25 formed in a plate shape. In this case, for example, the thickness of the anti-slip portion 27 is set to be the same as the protrusion amount H. Further, the anti-slip portion 27 is bonded to the porous ceramic portion 25 with an adhesive.
- the lower end surface of the non-slip portion 27 is located on the same plane as the lower surface of the porous ceramic portion 25, and the upper end surface of the anti-slip portion 27 is the porous ceramic portion 25. It was formed so as to protrude from the upper surface by a protrusion amount H.
- the present invention is not limited thereto, and as shown in FIG. 10, the lower end surface of the anti-slip portion 27 may be formed so as to protrude from the lower surface of the porous ceramic portion 25 by a protrusion amount H. According to this configuration, both surfaces of the porous pad 20 can be used as installation surfaces with a function of preventing the work W from slipping.
- the anti-slip portion 27 is formed in a honeycomb shape, but is not limited thereto, and may be formed in another shape.
- the cylindrical portion 28 of the anti-slip portion 27 is not limited to a regular hexagonal cylindrical shape, and may be formed in a rectangular cylindrical shape or a cylindrical shape.
- the anti-slip portion 27 may be formed in a shape other than a cylindrical shape.
- the anti-slip portion 127 may be formed in a lattice shape.
- the anti-slip portion 127 extends along the X direction and a plurality of first plate portions 127a aligned along the Y direction, and a plurality of second plate portions extending along the Y direction and aligned along the X direction. 127b.
- the 1st board part 127a and the 2nd board part 127b are connected in the position which mutually cross
- the anti-slip portion 127 shown in FIG. 9 has square cylindrical tube portions arranged in the X direction and the Y direction along the installation surface 20a without any gaps. 9 is the same as FIG. 4 of the above embodiment or FIGS. 7, 8 and 10 of the above modification.
- the anti-slip portion 27 is formed in a cylindrical shape such as a honeycomb shape, but is not limited thereto, and may be formed in a columnar shape extending along the Z direction.
- the anti-slip portion 27 may be composed of a plurality of columnar portions 227 arranged at positions corresponding to the corner portions of the honeycomb.
- the columnar portion 227 has a Y-shape when viewed from the Z direction, and has a shape extending along the Z direction.
- the plurality of columnar portions 227 are formed separately from each other, the range affected when a part of the anti-slip portion 27 is bent can be reduced. Moreover, when it has a Y-shape, it can be strong with respect to a bending compared with the case where it forms in flat form.
- the columnar portion 227 is not limited to the Y shape as viewed from the Z direction, and may be formed in an X shape, a V shape, an H shape, an L shape, or a T shape. When the columnar part 227 has an X-shape, the columnar part 227 is preferably arranged at the intersection of the lattice.
- the workpiece W was placed on the porous pad 20 in which the non-slip portions 127 were formed in a lattice shape shown in FIG. 9, and the apparent friction coefficient was measured.
- stone and glass were used for the work W.
- the lattice spacing D of the non-slip portion 127 is 10 mm, 5 mm, 3 mm, and 1.5 mm
- the work W is placed on the installation surface 20 a and is adsorbed by the vacuum chuck device 10 to the installation surface 20 a of the porous pad 20. did. In this state, the apparent friction coefficient was measured.
- an apparent friction coefficient was measured by placing the workpiece W on a porous pad that does not have the anti-slip portion 127.
- the measurement result of the apparent friction coefficient is shown in FIG.
- the vertical axis represents the apparent friction coefficient
- the horizontal axis represents the area ratio (silicone resin area ratio) obtained by dividing the contact area where the non-slip portion 127 and a part of the work W are in contact with the entire area of the porous ceramic portion 25. ).
- the ratio of the anti-slip portion 127 is increased. Therefore, the area ratio of the silicone resin is increased as the distance D is decreased.
- No groove is an apparent friction coefficient of the comparative example measured by placing the workpiece W on the porous pad 20 having no anti-slip portion 127.
- the apparent friction coefficient was larger when both the stone and the glass were used than when there was no groove in the comparative example when the distance D was 10 mm when both the stone and the glass were used for the workpiece W.
- the distance D was 5 mm
- the apparent friction coefficient was larger for both stone and glass than when the distance D was 10 mm.
- the distance D was 3 mm
- the apparent friction coefficient was larger for both stone and glass than when the distance D was 5 mm.
- the distance D was 1.5 mm, the apparent friction coefficient was larger in the stone than in the case where the distance D was 3 mm, but the apparent friction coefficient was smaller in the glass.
- the silicone resin area ratio is up to 0.20, the apparent friction coefficient increases as the silicone resin area ratio increases, and when it exceeds 0.20, the apparent friction coefficient is the silicone resin area ratio. It turned out that it does not necessarily grow even if it grows larger. From this, it was found that the silicone resin area ratio is preferably 1.10 or more and 1.50 or less.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Jigs For Machine Tools (AREA)
- Gripping Jigs, Holding Jigs, And Positioning Jigs (AREA)
- Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
- Grinding Of Cylindrical And Plane Surfaces (AREA)
Abstract
This porous pad (20) is provided with: a porous ceramic portion (25) having formed a plurality of pores providing permeability to allow for passage of a fluid; and an antislip portion (27) which is formed on the porous ceramic portion (25) so as to contact a part of a work (W) as an example of an object to be mounted that is mounted on the porous ceramic portion (25), and which has a static coefficient of friction higher than that of the porous ceramic portion (25).
Description
本発明は、多孔質パッド、真空チャック装置及び多孔質パッドの平面形成方法に関する。
The present invention relates to a porous pad, a vacuum chuck device, and a method for forming a flat surface of the porous pad.
従来から、設置されるワークに対して真空状態を形成することによりワークを吸着する真空チャック装置が知られている。例えば、特許文献1に記載の真空チャック装置は、ワークが設置される吸着面を有し多孔質セラミックにより形成される吸着プレート(多孔質パッド)と、吸着プレートの裏側に負圧案内空間を形成するベースプレートと、負圧案内空間を負圧とすることによりワークを吸着プレートに吸着する真空ポンプと、を備える。
Conventionally, there is known a vacuum chuck device that sucks a workpiece by forming a vacuum state on the workpiece to be installed. For example, the vacuum chuck device described in Patent Document 1 forms a suction plate (porous pad) formed of porous ceramic having a suction surface on which a workpiece is placed, and a negative pressure guide space on the back side of the suction plate. And a vacuum pump for adsorbing the work to the adsorption plate by setting the negative pressure guide space to a negative pressure.
しかしながら、上記特許文献1の構成では、ワークが吸着プレートに吸着している場合であっても、ワークに加わる外力によりワークの位置が吸着面に対してずれるおそれがある。一般的に、吸着プレートの吸着面とワークとの接触面積が小さくなるほど、ワークが吸着プレートに吸着する吸着力が低下する。よって、例えば、ワークのサイズが吸着面に対して小さい場合には、設置対象物であるワークの位置が吸着プレートの吸着面に対してずれ易い。
However, in the configuration of Patent Document 1 described above, even if the workpiece is attracted to the suction plate, the position of the workpiece may be shifted from the suction surface due to an external force applied to the workpiece. In general, the smaller the contact area between the suction surface of the suction plate and the workpiece, the lower the suction force that the workpiece is attracted to the suction plate. Therefore, for example, when the size of the work is small with respect to the suction surface, the position of the work that is the installation target is easily displaced with respect to the suction surface of the suction plate.
本発明は、上記実状を鑑みてなされたものであり、設置された設置対象物の位置が多孔質パッドに対してずれることを抑制できる多孔質パッド、真空チャック装置及び多孔質パッドの平面形成方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and a porous pad, a vacuum chuck device, and a method for forming a flat surface of a porous pad that can prevent the position of an installed object to be displaced from the porous pad. The purpose is to provide.
上記目的を達成するため、本発明の第1の観点に係る多孔質パッドは、複数の気孔が形成されることにより流体を通過させる通気性を有する多孔質セラミック部と、前記多孔質セラミック部に設置される設置対象物の一部に接触するように前記多孔質セラミック部に形成され、前記多孔質セラミック部よりも高い静摩擦係数を有する滑り止め部と、を備える。
In order to achieve the above object, a porous pad according to a first aspect of the present invention includes a porous ceramic part having air permeability through which a fluid passes by forming a plurality of pores, and the porous ceramic part. A non-slip portion formed on the porous ceramic portion so as to be in contact with a part of the installation target to be installed, and having a higher static friction coefficient than the porous ceramic portion.
また、上記多孔質パッドにおいて、前記滑り止め部は、前記設置対象物が設置される前記多孔質パッドの設置面に沿って並び、前記多孔質セラミック部に埋め込まれた状態で前記多孔質パッドの厚さ方向に延びる複数の筒部を備える、ようにしてもよい。
Further, in the porous pad, the anti-slip part is arranged along the installation surface of the porous pad on which the installation object is installed and embedded in the porous ceramic part. You may make it provide the some cylinder part extended in a thickness direction.
また、上記多孔質パッドにおいて、前記滑り止め部は、前記設置面に沿って正六角形筒状の前記筒部が並べられたハニカム状に形成される、ようにしてもよい。
In the porous pad, the anti-slip portion may be formed in a honeycomb shape in which regular hexagonal tubular portions are arranged along the installation surface.
また、上記多孔質パッドにおいて、前記滑り止め部は弾性体により形成され、前記多孔質セラミック部は、前記複数の筒部のうち第1筒部内に充填される第1セラミック充填部と、前記複数の筒部のうち第2筒部内に充填され、前記第1セラミック充填部と別体で形成される第2セラミック充填部と、を備える、ようにしてもよい。
Further, in the porous pad, the anti-slip portion is formed of an elastic body, and the porous ceramic portion includes a first ceramic filling portion filled in a first tubular portion of the plurality of tubular portions, and the plurality of the porous ceramic portions. A second ceramic filling portion that is filled in the second cylindrical portion and formed separately from the first ceramic filling portion may be provided.
また、上記多孔質パッドにおいて、前記多孔質セラミック部には前記設置面に設置される前記設置対象物に向けて開口し、前記滑り止め部が充填される溝部が形成される、ようにしてもよい。
Further, in the porous pad, the porous ceramic portion is formed with a groove portion that opens toward the installation object installed on the installation surface and is filled with the anti-slip portion. Good.
また、上記多孔質パッドにおいて、前記滑り止め部は、前記設置対象物が設置される前記多孔質パッドの設置面に沿って並び、前記多孔質セラミック部に埋め込まれた状態で前記多孔質パッドの厚さ方向に延びる複数の柱状部を備える、ようにしてもよい。
Further, in the porous pad, the anti-slip part is arranged along the installation surface of the porous pad on which the installation object is installed and embedded in the porous ceramic part. A plurality of columnar portions extending in the thickness direction may be provided.
また、上記多孔質パッドにおいて、前記柱状部は、前記多孔質パッドの厚さ方向にみて、Y字状、X字状、V字状、H字状、L字状またはT字状に形成される、ようにしてもよい。
In the porous pad, the columnar portion is formed in a Y shape, an X shape, a V shape, an H shape, an L shape, or a T shape in the thickness direction of the porous pad. You may make it.
また、上記多孔質パッドにおいて、前記滑り止め部は、前記多孔質セラミック部よりも前記設置面から突出量だけ突出して形成される、ようにしてもよい。
In the porous pad, the anti-slip portion may be formed so as to protrude from the installation surface by a protruding amount from the porous ceramic portion.
また、上記多孔質パッドにおいて、前記突出量は、0.01mm~1mmに設定される、ようにしてもよい。
In the porous pad, the protrusion amount may be set to 0.01 mm to 1 mm.
また、上記多孔質パッドにおいて、前記滑り止め部はシリコーン樹脂により形成される、ようにしてもよい。
In the porous pad, the anti-slip portion may be formed of a silicone resin.
また、上記多孔質パッドにおいて、前記滑り止め部と前記設置対象物の一部とが接触する接触面積を前記多孔質セラミック部の全体の面積で除した面積率は、0.10以上0.50以下である、ようにしてもよい。
In the porous pad, an area ratio obtained by dividing a contact area where the anti-slip portion and a part of the installation target object are in contact with an entire area of the porous ceramic portion is 0.10 or more and 0.50. The following may be used.
上記目的を達成するため、本発明の第2の観点に係る真空チャック装置は、前記多孔質パッドと、前記多孔質パッドが設置されることにより負圧案内空間を形成するベースプレートと、前記負圧案内空間に負圧を供給することにより前記設置対象物を前記多孔質パッドの設置面に吸着させる真空ポンプと、を備える。
In order to achieve the above object, a vacuum chuck device according to a second aspect of the present invention includes the porous pad, a base plate that forms a negative pressure guide space by the porous pad being installed, and the negative pressure. A vacuum pump for adsorbing the installation object onto the installation surface of the porous pad by supplying a negative pressure to the guide space.
上記目的を達成するため、本発明の第3の観点に係る多孔質パッドの平面形成方法は、前記多孔質パッドの設置面を平面に研磨装置により研磨する工程を備える。
To achieve the above object, a method for forming a flat surface of a porous pad according to a third aspect of the present invention includes a step of polishing an installation surface of the porous pad by a polishing apparatus.
本発明によれば、設置された設置対象物の位置が多孔質パッドに対してずれることを抑制できる。
According to the present invention, the position of the installed object to be installed can be prevented from shifting with respect to the porous pad.
本発明に係る多孔質パッド、真空チャック装置及び多孔質パッドの平面形成方法の一実施形態について図面を参照して説明する。
Embodiments of a porous pad, a vacuum chuck device and a method for forming a flat surface of a porous pad according to the present invention will be described with reference to the drawings.
図1に示すように、工作機械1は、設置対象物の一例であるワークWを設置面20aに固定する真空チャック装置10と、固定されたワークWを加工する加工部40と、加工中のワークWにクーラント液Cltを供給するクーラント液供給部50と、を備える。なお、以下の説明では、設置面20aに沿う互いに直交する方向をX方向及びY方向と規定し、設置面20aに直交する方向をZ方向と規定する。
As shown in FIG. 1, the machine tool 1 includes a vacuum chuck device 10 that fixes a workpiece W, which is an example of an installation target, to the installation surface 20a, a processing unit 40 that processes the fixed workpiece W, A coolant liquid supply unit 50 for supplying the coolant W to the workpiece W. In the following description, directions orthogonal to each other along the installation surface 20a are defined as an X direction and a Y direction, and a direction orthogonal to the installation surface 20a is defined as a Z direction.
加工部40は、真空チャック装置10に固定されたワークWを切削又は研磨する工具41を備える。クーラント液供給部50は、加工中の工具41とワークWの間で発生する摩擦熱を冷却するためにワークWの上面にクーラント液Cltを供給する。
The processing unit 40 includes a tool 41 for cutting or polishing the workpiece W fixed to the vacuum chuck device 10. The coolant liquid supply unit 50 supplies the coolant liquid Clt to the upper surface of the workpiece W in order to cool the frictional heat generated between the tool 41 being processed and the workpiece W.
図2に示すように、真空チャック装置10は、多孔質パッド20と、ベースプレート12と、スルーホール板15と、を備える。
As shown in FIG. 2, the vacuum chuck device 10 includes a porous pad 20, a base plate 12, and a through-hole plate 15.
ベースプレート12は、Z方向の上方に向けて開口する溝12aを備える。ベースプレート12には、溝12aの開口部を塞ぐように多孔質パッド20及びスルーホール板15が設けられる。溝12aは負圧案内空間を構成する。
The base plate 12 includes a groove 12a that opens upward in the Z direction. The base plate 12 is provided with a porous pad 20 and a through-hole plate 15 so as to close the opening of the groove 12a. The groove 12a constitutes a negative pressure guide space.
スルーホール板15は、多孔質パッド20とベースプレート12の間に位置する金属板である。スルーホール板15には、X方向及びY方向にマトリクス状に配置され、Z方向に貫通する複数の貫通孔15aが形成される。
The through-hole plate 15 is a metal plate located between the porous pad 20 and the base plate 12. The through-hole plate 15 is formed with a plurality of through-holes 15a that are arranged in a matrix in the X and Y directions and penetrate in the Z direction.
多孔質パッド20は、板状に形成され、スルーホール板15の上面に位置する。多孔質パッド20は流体を通過させる通気性を有する。多孔質パッド20の具体的な構成については後述する。
The porous pad 20 is formed in a plate shape and is located on the upper surface of the through-hole plate 15. The porous pad 20 has air permeability that allows fluid to pass therethrough. A specific configuration of the porous pad 20 will be described later.
真空ポンプ30は、真空ポート12bを介して溝12a内の負圧案内空間と接続される。真空ポンプ30は作動すると、負圧案内空間内は負圧となる。これにより、多孔質パッド20の設置面20a上のワークWに対して吸着力が作用し、ワークWは多孔質パッド20上で吸着される。
The vacuum pump 30 is connected to the negative pressure guide space in the groove 12a through the vacuum port 12b. When the vacuum pump 30 is operated, the negative pressure guide space becomes negative pressure. Thereby, an adsorption force acts on the workpiece W on the installation surface 20 a of the porous pad 20, and the workpiece W is adsorbed on the porous pad 20.
次に、多孔質パッド20の具体的な構成について説明する。
図3及び図4に示すように、多孔質パッド20は、多孔質セラミック部25と、滑り止め部27と、を備える。 Next, a specific configuration of theporous pad 20 will be described.
As shown in FIGS. 3 and 4, theporous pad 20 includes a porous ceramic portion 25 and an anti-slip portion 27.
図3及び図4に示すように、多孔質パッド20は、多孔質セラミック部25と、滑り止め部27と、を備える。 Next, a specific configuration of the
As shown in FIGS. 3 and 4, the
多孔質セラミック部25は、例えば、アルミナや炭化ケイ素などの無機質材料の粉粒体からなる骨材とその骨材相互を結合するための結合材(例えば、ビトリファイドボンド、レジノイド、セメント、ゴム及びガラスなど)の混合材料を成型金型に投入して焼結することで形成される。多孔質セラミック部25は、微細な気孔が無数に形成された多孔質構造となっている。多孔質セラミック部25の気孔率(気孔密度)は、骨材と結合材の混合割合により調整することができ、また、気孔の平均孔径は、骨材の粒度を選定することにより調整することができる。多孔質セラミック部25は、連なった微細気孔を介して設置面20aとその反対面である裏面20b(負圧案内空間側の面)との間で空気又は水などの液体の流体を通過させることができる通気性を有する。
The porous ceramic portion 25 includes, for example, an aggregate made of a granular material of an inorganic material such as alumina or silicon carbide and a binding material (for example, vitrified bond, resinoid, cement, rubber, and glass) for bonding the aggregates to each other. Etc.) is introduced into a molding die and sintered. The porous ceramic part 25 has a porous structure in which countless fine pores are formed. The porosity (pore density) of the porous ceramic portion 25 can be adjusted by the mixing ratio of the aggregate and the binder, and the average pore diameter of the pores can be adjusted by selecting the particle size of the aggregate. it can. The porous ceramic portion 25 allows liquid fluid such as air or water to pass between the installation surface 20a and the back surface 20b (surface on the negative pressure guide space side) opposite to the installation surface 20a through the continuous fine pores. It has air permeability.
滑り止め部27は、多孔質セラミック部25の設置面20aに設置されたワークWとの静摩擦を通じてワークWが設置面20aで滑ることを抑制する機能を有する。
滑り止め部27は、流体を通過させない材料であって、多孔質セラミック部25よりも静摩擦係数が高く、弾性変形する材料により形成される。滑り止め部27は、例えば、天然ゴム、合成ゴム、シリコーン樹脂、ウレタン、エラストマー、塩化ビニール又はポリエステル等の軟質の合成樹脂等の高摩擦材料により形成される。本例では、滑り止め部27はシリコーン樹脂により形成される。 Thenon-slip portion 27 has a function of suppressing the workpiece W from sliding on the installation surface 20 a through static friction with the workpiece W installed on the installation surface 20 a of the porous ceramic portion 25.
Theanti-slip portion 27 is a material that does not allow fluid to pass through, and is formed of a material that has a higher static friction coefficient than the porous ceramic portion 25 and elastically deforms. The non-slip portion 27 is formed of a high friction material such as natural synthetic resin, synthetic rubber, silicone resin, urethane, elastomer, vinyl chloride or polyester, for example. In this example, the anti-slip | skid part 27 is formed with a silicone resin.
滑り止め部27は、流体を通過させない材料であって、多孔質セラミック部25よりも静摩擦係数が高く、弾性変形する材料により形成される。滑り止め部27は、例えば、天然ゴム、合成ゴム、シリコーン樹脂、ウレタン、エラストマー、塩化ビニール又はポリエステル等の軟質の合成樹脂等の高摩擦材料により形成される。本例では、滑り止め部27はシリコーン樹脂により形成される。 The
The
滑り止め部27は、多孔質セラミック部25の厚さ方向、すなわちZ方向に延びる複数の筒部28を有する。各筒部28は、Z方向の両側に開口し、多孔質セラミック部25に埋め込まれるように形成される。各筒部28は、Z方向に流体を通すことができる流通許容室29を有する。各流通許容室29は、筒部28毎に隔離された独立した空間である。このため、隣り合う2つの流通許容室29間で流体が移動することはない。
The anti-slip portion 27 has a plurality of cylindrical portions 28 extending in the thickness direction of the porous ceramic portion 25, that is, in the Z direction. Each cylindrical portion 28 is formed so as to open on both sides in the Z direction and be embedded in the porous ceramic portion 25. Each cylinder part 28 has the distribution | circulation allowance chamber 29 which can let a fluid pass in a Z direction. Each permissible flow chamber 29 is an independent space isolated for each cylindrical portion 28. For this reason, the fluid does not move between two adjacent flow allowing chambers 29.
滑り止め部27は、本例では、Z方向から見て、正六角形筒状の筒部28が隙間なく並べられたハニカム状をなす。すなわち、筒部28は、正六角形をなす6つの壁部28aにより構成される。ハニカム径は小さすぎるとZ方向の流体の通過を阻害するおそれがあり、ハニカム径は大きすぎると、図6(a)を参照しつつ後述するように、ワークWの下面に占める真空形成室29bの割合が小さくなり、ひいては真空度が低下するおそれがある。このような観点から、ハニカム径は、好ましくは1mm~10mm、より好ましくは1mm~5mmに設定される。
In this example, the non-slip portion 27 has a honeycomb shape in which regular hexagonal tubular portions 28 are arranged without gaps when viewed from the Z direction. That is, the cylinder part 28 is comprised by the six wall parts 28a which make a regular hexagon. If the honeycomb diameter is too small, there is a possibility that the passage of fluid in the Z direction may be hindered. If the honeycomb diameter is too large, as will be described later with reference to FIG. There is a risk that the ratio of the ratio will be reduced, and as a result, the degree of vacuum may be reduced. From such a viewpoint, the honeycomb diameter is preferably set to 1 mm to 10 mm, more preferably 1 mm to 5 mm.
図4に示すように、複数の筒部28のうち第1筒部281内には、多孔質セラミック部25のうち第1セラミック充填部251が充填される。複数の筒部28のうち第1筒部281に隣接する第2筒部282内には、多孔質セラミック部25のうち第2セラミック充填部252が充填される。第1セラミック充填部251及び第2セラミック充填部252は別体で形成される。
As shown in FIG. 4, the first ceramic filling portion 251 of the porous ceramic portion 25 is filled in the first tubular portion 281 of the plurality of tubular portions 28. The second ceramic filling portion 252 of the porous ceramic portion 25 is filled in the second tubular portion 282 adjacent to the first tubular portion 281 among the plurality of tubular portions 28. The first ceramic filling part 251 and the second ceramic filling part 252 are formed separately.
図5に示すように、滑り止め部27は、多孔質セラミック部25よりも突出量Hだけ上方向へ突出するように設けられる。すなわち、滑り止め部27の下端面は多孔質セラミック部25の下面と同一平面上に位置し、滑り止め部27の上端面は多孔質セラミック部25の上面よりも突出量Hだけ高く形成される。突出量Hは小さすぎると滑り止め部27の上端面がワークWに接触することが困難となるおそれがあり、突出量Hは大きすぎるとワークWが多孔質セラミック部25から離れることにより吸着力が低下するおそれがある。このような観点から、突出量Hは、好ましくは0.01mm~1mmに設定され、より好ましくは0.01mm~0.05mmに設定される。
また、滑り止め部27の幅W、すなわち壁部28aの厚さは大きすぎると流体の通過を阻害するおそれがあり、小さすぎるとワークWと滑り止め部27の接触面積が足りずにワークWの位置ずれを抑制できないおそれがある。このような観点から、滑り止め部27の幅Wは、好ましくは0.01mm~1mmに設定され、より好ましくは0.01mm~0.5mmに設定される。また、滑り止め部127とワークWの一部とが接触する接触面積を多孔質セラミック部25の全体の面積で除した面積率は、大きすぎると流体の通過を阻害するおそれがあり、小さすぎるとワークWと滑り止め部27の接触面積が足りずにワークWの位置ずれを抑制できないおそれがある。このため、面積率は、好ましくは、0.10以上0.50以下に設定される。 As shown in FIG. 5, theanti-slip portion 27 is provided so as to protrude upward by a protrusion amount H from the porous ceramic portion 25. That is, the lower end surface of the anti-slip portion 27 is located on the same plane as the lower surface of the porous ceramic portion 25, and the upper end surface of the anti-slip portion 27 is formed higher than the upper surface of the porous ceramic portion 25 by the protruding amount H. . If the protruding amount H is too small, it may be difficult for the upper end surface of the anti-slip portion 27 to come into contact with the workpiece W. If the protruding amount H is too large, the workpiece W is separated from the porous ceramic portion 25 to attract the workpiece. May decrease. From such a viewpoint, the protrusion amount H is preferably set to 0.01 mm to 1 mm, and more preferably set to 0.01 mm to 0.05 mm.
Further, if the width W of thenon-slip portion 27, that is, the thickness of the wall portion 28a is too large, the passage of fluid may be hindered. If it is too small, the contact area between the work W and the anti-slip portion 27 is insufficient. There is a possibility that the displacement of the position cannot be suppressed. From such a viewpoint, the width W of the anti-slip portion 27 is preferably set to 0.01 mm to 1 mm, and more preferably set to 0.01 mm to 0.5 mm. In addition, if the area ratio obtained by dividing the contact area where the anti-slip portion 127 and a part of the workpiece W are contacted by the entire area of the porous ceramic portion 25 is too large, the passage of fluid may be hindered and too small. In addition, the contact area between the workpiece W and the anti-slip portion 27 is insufficient, and there is a possibility that the displacement of the workpiece W cannot be suppressed. For this reason, the area ratio is preferably set to 0.10 or more and 0.50 or less.
また、滑り止め部27の幅W、すなわち壁部28aの厚さは大きすぎると流体の通過を阻害するおそれがあり、小さすぎるとワークWと滑り止め部27の接触面積が足りずにワークWの位置ずれを抑制できないおそれがある。このような観点から、滑り止め部27の幅Wは、好ましくは0.01mm~1mmに設定され、より好ましくは0.01mm~0.5mmに設定される。また、滑り止め部127とワークWの一部とが接触する接触面積を多孔質セラミック部25の全体の面積で除した面積率は、大きすぎると流体の通過を阻害するおそれがあり、小さすぎるとワークWと滑り止め部27の接触面積が足りずにワークWの位置ずれを抑制できないおそれがある。このため、面積率は、好ましくは、0.10以上0.50以下に設定される。 As shown in FIG. 5, the
Further, if the width W of the
多孔質パッド20の設置面20aに板状のワークWが設置されると、ワークWの下面に滑り止め部27の上端面が接触する。ここで、滑り止め部27は静摩擦係数が高いシリコーン樹脂等により形成される。このため、真空に伴う吸着力に加えて、ワークWとの間で作用する静摩擦力により加工中のワークWの位置が設置面20aに沿う方向にずれることを抑制できる。ワークWは、例えば、アルミニウム等の金属、樹脂、紙、セラミックス、木等の材質により板状に形成される。具体的には、ワークWは、太陽電池パネル、半導体パネル、液晶パネル、プリント基板、有機EL(Electro-Luminescence)パネル、ガラス板又はポリマー等のフィルム等である。
一般的に、ワークWのサイズが多孔質パッドの設置面に対して小さい場合、ワークWと多孔質パッドの接触面積が小さくなるため、多孔質パッドへのワークWの吸着力が小さくなり易く、ワークWの位置がずれ易い。この点、本実施形態に係る多孔質パッド20は、たとえ、小さいサイズのワークWであっても、吸着力の低下を補うように滑り止め部27による摩擦力が作用するため、例えば加工中のワークWの位置ずれを抑制できる。 When the plate-like workpiece W is installed on theinstallation surface 20 a of the porous pad 20, the upper end surface of the anti-slip portion 27 contacts the lower surface of the workpiece W. Here, the anti-slip portion 27 is formed of a silicone resin or the like having a high static friction coefficient. For this reason, it can suppress that the position of the workpiece | work W during processing shifts | deviates to the direction in alignment with the installation surface 20a with the static friction force which acts between the workpiece | work W in addition to the suction force accompanying vacuum. The workpiece W is formed into a plate shape using a material such as a metal such as aluminum, a resin, paper, ceramics, or wood, for example. Specifically, the workpiece W is a solar cell panel, a semiconductor panel, a liquid crystal panel, a printed board, an organic EL (Electro-Luminescence) panel, a glass plate, a film such as a polymer, or the like.
In general, when the size of the workpiece W is small with respect to the installation surface of the porous pad, the contact area between the workpiece W and the porous pad becomes small, so the adsorption force of the workpiece W to the porous pad tends to be small, The position of the workpiece W is easily displaced. In this regard, theporous pad 20 according to the present embodiment acts, for example, during processing because the frictional force due to the anti-slip portion 27 acts to compensate for the decrease in the suction force even if the workpiece W has a small size. Position shift of the workpiece W can be suppressed.
一般的に、ワークWのサイズが多孔質パッドの設置面に対して小さい場合、ワークWと多孔質パッドの接触面積が小さくなるため、多孔質パッドへのワークWの吸着力が小さくなり易く、ワークWの位置がずれ易い。この点、本実施形態に係る多孔質パッド20は、たとえ、小さいサイズのワークWであっても、吸着力の低下を補うように滑り止め部27による摩擦力が作用するため、例えば加工中のワークWの位置ずれを抑制できる。 When the plate-like workpiece W is installed on the
In general, when the size of the workpiece W is small with respect to the installation surface of the porous pad, the contact area between the workpiece W and the porous pad becomes small, so the adsorption force of the workpiece W to the porous pad tends to be small, The position of the workpiece W is easily displaced. In this regard, the
次に、図6(a),(b)を参照しつつ、加工中のワークWにクーラント液Cltが注がれたときの作用について説明する。
図6(b)に示すように、比較例に係る多孔質パッド120は、本実施形態の多孔質パッド20と異なり、滑り止め部27を有さず、多孔質セラミック部25のみにより構成される。比較例に係る多孔質パッド120の設置面120aにワークWが吸着された状態で、ワークWにクーラント液Cltが注がれると、図6(b)の矢印F1で示すように、ワークWの上面から側面を経て多孔質パッド120を通過する。この際、図6(b)の矢印F2で示すように、クーラント液Cltの一部は多孔質パッド120におけるワークWの下方のワーク重複領域L1に回り込む。これにより、多孔質パッド120のワーク重複領域L1における真空度が低くなり、吸着力が低下する要因となっていた。 Next, referring to FIGS. 6A and 6B, the operation when the coolant Clt is poured into the workpiece W being processed will be described.
As shown in FIG. 6B, theporous pad 120 according to the comparative example is different from the porous pad 20 of the present embodiment and does not have the anti-slip portion 27 and is configured only by the porous ceramic portion 25. . If the coolant liquid Clt is poured into the work W in a state where the work W is adsorbed on the installation surface 120a of the porous pad 120 according to the comparative example, as shown by an arrow F1 in FIG. It passes through the porous pad 120 from the upper surface through the side surface. At this time, as indicated by an arrow F2 in FIG. 6B, a part of the coolant liquid Clt wraps around the workpiece overlap region L1 below the workpiece W in the porous pad 120. As a result, the degree of vacuum in the workpiece overlap region L1 of the porous pad 120 is lowered, which is a factor that reduces the suction force.
図6(b)に示すように、比較例に係る多孔質パッド120は、本実施形態の多孔質パッド20と異なり、滑り止め部27を有さず、多孔質セラミック部25のみにより構成される。比較例に係る多孔質パッド120の設置面120aにワークWが吸着された状態で、ワークWにクーラント液Cltが注がれると、図6(b)の矢印F1で示すように、ワークWの上面から側面を経て多孔質パッド120を通過する。この際、図6(b)の矢印F2で示すように、クーラント液Cltの一部は多孔質パッド120におけるワークWの下方のワーク重複領域L1に回り込む。これにより、多孔質パッド120のワーク重複領域L1における真空度が低くなり、吸着力が低下する要因となっていた。 Next, referring to FIGS. 6A and 6B, the operation when the coolant Clt is poured into the workpiece W being processed will be described.
As shown in FIG. 6B, the
この点、図6(a)に示すように、本実施形態に係る多孔質パッド20は、筒部28毎に流通許容室29を有する。複数の流通許容室29は、クーラント液Cltが通過する液体通過室29aと、ワークWの下面に塞がれて真空を形成する真空形成室29bと、を備える。液体通過室29aは、その上側の開口部の少なくとも一部が開口する。本例では、液体通過室29aは、ワークWの側面とZ方向に重なり、ワークWの側面に沿うように枠状に並ぶ。真空形成室29bは、その上側の開口部がワークWの下面により塞がれ、枠状に並ぶ複数の液体通過室29a内に配置される。
多孔質パッド20に吸着されたワークWにクーラント液Cltが注がれると、クーラント液Cltは複数の液体通過室29aを通過する。よって、クーラント液Cltは複数の真空形成室29bに侵入しない。従って、クーラント液Cltの一部が多孔質パッド20のワーク重複領域L1に回り込むことが抑制される。これにより、真空を形成する複数の真空形成室29bをクーラント液Cltが通過する液体通過室29aから隔離することができる。従って、多孔質パッド20のワーク重複領域L1における真空度を高めることができ、ひいては吸着力を高めることができる。 In this regard, as shown in FIG. 6A, theporous pad 20 according to the present embodiment has a flow allowance chamber 29 for each cylindrical portion 28. The plurality of flow permitting chambers 29 include a liquid passage chamber 29a through which the coolant liquid Clt passes and a vacuum forming chamber 29b that is closed by the lower surface of the workpiece W to form a vacuum. The liquid passage chamber 29a has at least a part of the upper opening thereof. In this example, the liquid passage chamber 29a overlaps the side surface of the workpiece W in the Z direction, and is arranged in a frame shape along the side surface of the workpiece W. The vacuum forming chamber 29b is disposed in a plurality of liquid passage chambers 29a arranged in a frame shape, with the upper opening thereof closed by the lower surface of the workpiece W.
When the coolant liquid Clt is poured into the workpiece W adsorbed on theporous pad 20, the coolant liquid Clt passes through the plurality of liquid passage chambers 29a. Therefore, the coolant liquid Clt does not enter the plurality of vacuum forming chambers 29b. Therefore, a part of the coolant Clt is prevented from entering the workpiece overlap region L1 of the porous pad 20. As a result, the plurality of vacuum forming chambers 29b that form a vacuum can be isolated from the liquid passage chambers 29a through which the coolant liquid Clt passes. Therefore, the degree of vacuum in the workpiece overlap region L1 of the porous pad 20 can be increased, and consequently the suction force can be increased.
多孔質パッド20に吸着されたワークWにクーラント液Cltが注がれると、クーラント液Cltは複数の液体通過室29aを通過する。よって、クーラント液Cltは複数の真空形成室29bに侵入しない。従って、クーラント液Cltの一部が多孔質パッド20のワーク重複領域L1に回り込むことが抑制される。これにより、真空を形成する複数の真空形成室29bをクーラント液Cltが通過する液体通過室29aから隔離することができる。従って、多孔質パッド20のワーク重複領域L1における真空度を高めることができ、ひいては吸着力を高めることができる。 In this regard, as shown in FIG. 6A, the
When the coolant liquid Clt is poured into the workpiece W adsorbed on the
また、クーラント液Cltは、ワークWにとって空気を通さないフィルムのように機能する。すなわち、空気を通さないクーラント液Cltが真空を形成する複数の真空形成室29bの周囲を囲むことにより、多孔質パッド20のワーク重複領域L1における真空度を高めることができる。一方、この点、図6(b)の比較例では、クーラント液Cltの一部が多孔質パッド20のワーク重複領域L1に回り込むことにより、この回り込んだ部分でクーラント液Cltによる空気を通さない機能が低下し、空気を通し易くなる。よって、比較例の構成では、本実施形態の構成に比べて、真空度が低下し易い。
なお、ワークWのサイズ又はワークWの設置位置に応じて、液体通過室29a及び真空形成室29bの位置及び数は変わる。 Further, the coolant Clt functions like a film that does not allow air to pass through the workpiece W. That is, the degree of vacuum in the workpiece overlap region L1 of theporous pad 20 can be increased by surrounding the periphery of the plurality of vacuum forming chambers 29b in which the coolant liquid Clt that does not allow air to pass therethrough forms a vacuum. On the other hand, in the comparative example of FIG. 6B, a part of the coolant liquid Clt wraps around the work overlap region L1 of the porous pad 20, so that air from the coolant liquid Clt does not pass through the wrap-around part. The function is reduced and air can be easily passed. Therefore, in the configuration of the comparative example, the degree of vacuum is easily lowered as compared with the configuration of the present embodiment.
The position and number of theliquid passage chamber 29a and the vacuum forming chamber 29b vary depending on the size of the workpiece W or the installation position of the workpiece W.
なお、ワークWのサイズ又はワークWの設置位置に応じて、液体通過室29a及び真空形成室29bの位置及び数は変わる。 Further, the coolant Clt functions like a film that does not allow air to pass through the workpiece W. That is, the degree of vacuum in the workpiece overlap region L1 of the
The position and number of the
次に、多孔質パッド20の設置面20aを研磨する方法について説明する。多孔質パッド20は繰り返し使用されると、多孔質パッド20の設置面20aの平面度が低くなったり、設置面20aに凹凸が形成されたりするおそれがある。そこで、多孔質パッド20の設置面20aは、平面となるように図示しない研磨装置により研磨される。研磨される際、滑り止め部27は多孔質セラミック部25よりもZ方向に圧縮する。このため、滑り止め部27の研磨量は、多孔質セラミック部25の研磨量よりも少なくなる。研磨装置による滑り止め部27への圧縮力が解除されると、滑り止め部27の復元力により滑り止め部27は多孔質セラミック部25よりも突出量Hだけ突出する。よって、多孔質パッド20の設置面20aが研磨された後にも、滑り止め部27は、多孔質セラミック部25よりも突出量Hだけ突出した状態を維持できる。また、滑り止め部27はZ方向に多孔質セラミック部25の全域にわたって形成されるため、多孔質パッド20の設置面20aを繰り返し研磨した場合であっても、滑り止め部27による滑り止め機能を維持することができる。
Next, a method for polishing the installation surface 20a of the porous pad 20 will be described. If the porous pad 20 is used repeatedly, the flatness of the installation surface 20a of the porous pad 20 may be lowered, or irregularities may be formed on the installation surface 20a. Therefore, the installation surface 20a of the porous pad 20 is polished by a polishing apparatus (not shown) so as to be a flat surface. When being polished, the anti-slip portion 27 is compressed in the Z direction more than the porous ceramic portion 25. For this reason, the polishing amount of the anti-slip portion 27 is smaller than the polishing amount of the porous ceramic portion 25. When the compressive force applied to the anti-slip portion 27 by the polishing apparatus is released, the anti-slip portion 27 protrudes from the porous ceramic portion 25 by the protrusion amount H due to the restoring force of the anti-slip portion 27. Therefore, even after the installation surface 20 a of the porous pad 20 is polished, the anti-slip portion 27 can maintain a state in which the anti-slip portion 27 protrudes from the porous ceramic portion 25 by the protrusion amount H. Further, since the non-slip portion 27 is formed over the entire area of the porous ceramic portion 25 in the Z direction, even when the installation surface 20a of the porous pad 20 is repeatedly polished, the anti-slip function by the anti-slip portion 27 is provided. Can be maintained.
(効果)
以上、説明した一実施形態によれば、以下の効果を奏する。 (effect)
As mentioned above, according to one Embodiment described, there exist the following effects.
以上、説明した一実施形態によれば、以下の効果を奏する。 (effect)
As mentioned above, according to one Embodiment described, there exist the following effects.
(1)多孔質パッド20は、複数の気孔が形成されることにより流体を通過させる通気性を有する多孔質セラミック部25と、多孔質セラミック部25に設置される設置対象物の一例であるワークWの一部に接触するように多孔質セラミック部25に形成され、多孔質セラミック部25よりも高い静摩擦係数を有する滑り止め部27と、を備える。
この構成によれば、滑り止め部27によって、設置されるワークWの位置が多孔質パッド20に対してずれることを抑制できる。
例えば、多孔質パッド20の設置面20aとワークWとの接触面積が小さくなるほど、ワークWが設置面20aに吸着する吸着力が低下する。滑り止め部27は、ワークWのサイズが小さいことに伴う吸着力の低下を補うように作用する。このため、ワークWのサイズに関わらず、ワークWの位置が多孔質パッド20に対してずれることを抑制できる。 (1) Theporous pad 20 is a workpiece that is an example of an installation object to be installed in the porous ceramic portion 25 and a porous ceramic portion 25 having air permeability that allows fluid to pass through by forming a plurality of pores. And a non-slip portion 27 formed in the porous ceramic portion 25 so as to be in contact with a part of W and having a higher static friction coefficient than the porous ceramic portion 25.
According to this configuration, the position of the workpiece W to be installed can be prevented from being shifted with respect to theporous pad 20 by the anti-slip portion 27.
For example, the smaller the contact area between theinstallation surface 20a of the porous pad 20 and the workpiece W, the lower the adsorption force that the workpiece W adsorbs to the installation surface 20a. The non-slip portion 27 acts to compensate for a decrease in the suction force that accompanies the small size of the workpiece W. For this reason, it can suppress that the position of the workpiece | work W shift | deviates with respect to the porous pad 20, irrespective of the size of the workpiece | work W. FIG.
この構成によれば、滑り止め部27によって、設置されるワークWの位置が多孔質パッド20に対してずれることを抑制できる。
例えば、多孔質パッド20の設置面20aとワークWとの接触面積が小さくなるほど、ワークWが設置面20aに吸着する吸着力が低下する。滑り止め部27は、ワークWのサイズが小さいことに伴う吸着力の低下を補うように作用する。このため、ワークWのサイズに関わらず、ワークWの位置が多孔質パッド20に対してずれることを抑制できる。 (1) The
According to this configuration, the position of the workpiece W to be installed can be prevented from being shifted with respect to the
For example, the smaller the contact area between the
(2)滑り止め部27は、ワークWが設置される多孔質パッド20の設置面20aに沿って並び、多孔質セラミック部25に埋め込まれた状態で多孔質パッド20の厚さ方向(Z方向)に延びる複数の筒部28を備える。
この構成によれば、設置面20aに対するワークWが設置される向きに関わらず、滑り止め部27によりワークWを保持し易くなる。 (2) Theanti-slip portion 27 is arranged along the installation surface 20a of the porous pad 20 on which the workpiece W is installed, and is embedded in the porous ceramic portion 25 in the thickness direction (Z direction). ) Are provided with a plurality of tube portions 28.
According to this structure, it becomes easy to hold | maintain the workpiece | work W by the anti-slip | skidpart 27 irrespective of the direction in which the workpiece | work W is installed with respect to the installation surface 20a.
この構成によれば、設置面20aに対するワークWが設置される向きに関わらず、滑り止め部27によりワークWを保持し易くなる。 (2) The
According to this structure, it becomes easy to hold | maintain the workpiece | work W by the anti-slip | skid
(3)滑り止め部27は、設置面20aに沿って正六角形筒状の筒部28が並べられたハニカム状に形成される。
この構成によれば、筒部28は、設置面20aにおいて異なる3方向を向く複数の壁部28aを備える。このため、設置面20aに対するワークWが設置される向きに関わらず、滑り止め部27によりワークWを保持し易くなる。 (3) Theanti-slip portion 27 is formed in a honeycomb shape in which regular hexagonal tubular portions 28 are arranged along the installation surface 20a.
According to this structure, thecylinder part 28 is provided with the some wall part 28a which faces three different directions in the installation surface 20a. For this reason, it becomes easy to hold | maintain the workpiece | work W by the anti-slip | skid part 27 irrespective of the direction in which the workpiece | work W is installed with respect to the installation surface 20a.
この構成によれば、筒部28は、設置面20aにおいて異なる3方向を向く複数の壁部28aを備える。このため、設置面20aに対するワークWが設置される向きに関わらず、滑り止め部27によりワークWを保持し易くなる。 (3) The
According to this structure, the
(4)滑り止め部27は弾性体により形成される。多孔質セラミック部25は、複数の筒部28のうち第1筒部281内に充填される第1セラミック充填部251と、複数の筒部28のうち第2筒部282内に充填され、第1セラミック充填部251と別体で形成される第2セラミック充填部252と、を備える。
この構成によれば、滑り止め部27が別体の第1セラミック充填部251及び第2セラミック充填部252の間で弾性体として機能する。これにより、例えば、ワークWがX方向又はY方向に反っている場合であっても、ワークWの反りに合わせて多孔質パッド20が変形する。このため、ワークWと多孔質パッド20の接触面積を確保することができ、ワークWの多孔質パッド20への吸着力を確保することができる。 (4) Theanti-slip part 27 is formed of an elastic body. The porous ceramic portion 25 is filled in the first ceramic filling portion 251 filled in the first tubular portion 281 among the plurality of tubular portions 28, and in the second tubular portion 282 among the plurality of tubular portions 28, The 1st ceramic filling part 251 and the 2nd ceramic filling part 252 formed separately are provided.
According to this configuration, theanti-slip portion 27 functions as an elastic body between the separate first ceramic filling portion 251 and the second ceramic filling portion 252. Thereby, for example, even when the workpiece W is warped in the X direction or the Y direction, the porous pad 20 is deformed in accordance with the warpage of the workpiece W. For this reason, the contact area of the workpiece | work W and the porous pad 20 can be ensured, and the adsorption | suction force to the porous pad 20 of the workpiece | work W can be ensured.
この構成によれば、滑り止め部27が別体の第1セラミック充填部251及び第2セラミック充填部252の間で弾性体として機能する。これにより、例えば、ワークWがX方向又はY方向に反っている場合であっても、ワークWの反りに合わせて多孔質パッド20が変形する。このため、ワークWと多孔質パッド20の接触面積を確保することができ、ワークWの多孔質パッド20への吸着力を確保することができる。 (4) The
According to this configuration, the
(5)滑り止め部27は、多孔質セラミック部25よりも設置面20aから突出量Hだけ突出して形成される。
この構成によれば、滑り止め部27が多孔質セラミック部25よりも突出することにより、滑り止め部27をより確実にワークWに接触させることができる。 (5) Theanti-slip portion 27 is formed so as to protrude from the installation surface 20 a by the protrusion amount H rather than the porous ceramic portion 25.
According to this configuration, thenon-slip portion 27 protrudes more than the porous ceramic portion 25, so that the anti-slip portion 27 can be brought into contact with the workpiece W more reliably.
この構成によれば、滑り止め部27が多孔質セラミック部25よりも突出することにより、滑り止め部27をより確実にワークWに接触させることができる。 (5) The
According to this configuration, the
(6)突出量Hは、0.01mm~1mmに設定される。
この構成によれば、ワークWが多孔質セラミック部25から離れることなく、ワークWを滑り止め部27に接触させることができる。 (6) The protrusion amount H is set to 0.01 mm to 1 mm.
According to this configuration, the workpiece W can be brought into contact with theanti-slip portion 27 without the workpiece W being separated from the porous ceramic portion 25.
この構成によれば、ワークWが多孔質セラミック部25から離れることなく、ワークWを滑り止め部27に接触させることができる。 (6) The protrusion amount H is set to 0.01 mm to 1 mm.
According to this configuration, the workpiece W can be brought into contact with the
(7)滑り止め部27はシリコーン樹脂により形成される。
この構成によれば、シリコーン樹脂は静摩擦係数が高いため、ワークWの位置ずれをより抑制できる。 (7) Theanti-slip portion 27 is formed of a silicone resin.
According to this configuration, since the silicone resin has a high coefficient of static friction, the displacement of the workpiece W can be further suppressed.
この構成によれば、シリコーン樹脂は静摩擦係数が高いため、ワークWの位置ずれをより抑制できる。 (7) The
According to this configuration, since the silicone resin has a high coefficient of static friction, the displacement of the workpiece W can be further suppressed.
(8)多孔質パッド20の平面形成方法は、多孔質パッド20の設置面20aを平面に研磨装置により研磨する工程を備える。
この構成によれば、研磨装置により研磨される際、滑り止め部27は多孔質セラミック部25よりも圧縮するため、研磨後も滑り止め部27を多孔質セラミック部25よりも突出量Hだけ突出させた状態を保つことができる。よって、多孔質パッド20の設置面20aを繰り返し研磨した場合であっても、滑り止め部27が残るため、滑り止め部27によるワークWの位置ずれを抑制する機能を維持することができる。 (8) The method of forming the flat surface of theporous pad 20 includes a step of polishing the installation surface 20a of the porous pad 20 to a flat surface by a polishing apparatus.
According to this configuration, thenon-slip portion 27 is compressed more than the porous ceramic portion 25 when being polished by the polishing apparatus, so that the non-slip portion 27 protrudes from the porous ceramic portion 25 by the protruding amount H even after polishing. It can be kept in the state. Accordingly, even when the installation surface 20a of the porous pad 20 is repeatedly polished, the anti-slip portion 27 remains, so that the function of suppressing the displacement of the workpiece W by the anti-slip portion 27 can be maintained.
この構成によれば、研磨装置により研磨される際、滑り止め部27は多孔質セラミック部25よりも圧縮するため、研磨後も滑り止め部27を多孔質セラミック部25よりも突出量Hだけ突出させた状態を保つことができる。よって、多孔質パッド20の設置面20aを繰り返し研磨した場合であっても、滑り止め部27が残るため、滑り止め部27によるワークWの位置ずれを抑制する機能を維持することができる。 (8) The method of forming the flat surface of the
According to this configuration, the
(9)真空チャック装置10は、多孔質パッド20と、多孔質パッド20が設置されることにより負圧案内空間を形成するベースプレート12と、負圧案内空間に負圧を供給することによりワークWを多孔質パッド20の設置面20aに吸着する真空ポンプ30と、を備える。
この構成によれば、真空チャック装置10において、滑り止め部27によりワークWの位置ずれを抑制できる。 (9) Thevacuum chuck device 10 includes a porous pad 20, a base plate 12 that forms a negative pressure guide space by installing the porous pad 20, and a workpiece W by supplying negative pressure to the negative pressure guide space. And a vacuum pump 30 for adsorbing to the installation surface 20 a of the porous pad 20.
According to this configuration, in thevacuum chuck device 10, the position shift of the workpiece W can be suppressed by the anti-slip portion 27.
この構成によれば、真空チャック装置10において、滑り止め部27によりワークWの位置ずれを抑制できる。 (9) The
According to this configuration, in the
(変形例)
なお、上記実施形態は、これを適宜変更した以下の形態にて実施することができる。 (Modification)
In addition, the said embodiment can be implemented with the following forms which changed this suitably.
なお、上記実施形態は、これを適宜変更した以下の形態にて実施することができる。 (Modification)
In addition, the said embodiment can be implemented with the following forms which changed this suitably.
上記実施形態においては、滑り止め部27は、多孔質パッド20の設置面20aの全域にわたって形成されていたが、設置面20aの一部に形成されていてもよい。
In the above embodiment, the anti-slip portion 27 is formed over the entire installation surface 20a of the porous pad 20, but may be formed in a part of the installation surface 20a.
上記実施形態においては、工作機械1はクーラント液供給部50を備えていたが、クーラント液供給部50を省略してもよい。この場合であっても、図6(a)に示すように、真空を形成する真空形成室29bを空気が通過する流通許容室29から隔離することにより、真空度、ひいては吸着力を高めることができる。
In the above embodiment, the machine tool 1 includes the coolant liquid supply unit 50, but the coolant liquid supply unit 50 may be omitted. Even in this case, as shown in FIG. 6 (a), the degree of vacuum and thus the adsorption power can be increased by isolating the vacuum forming chamber 29b that forms a vacuum from the flow allowing chamber 29 through which air passes. it can.
上記実施形態においては、加工部40は工具41を通じて真空チャック装置10に固定されたワークWを切削又は研磨していたが、これに限らず、ワークWに印刷又は露光等してもよい。
In the above embodiment, the processing unit 40 cuts or polishes the workpiece W fixed to the vacuum chuck device 10 through the tool 41. However, the present invention is not limited to this, and the workpiece W may be printed or exposed.
上記実施形態においては、図4に示すように、第1セラミック充填部251及び第2セラミック充填部252は滑り止め部27を介することにより別体で形成されていた。しかし、図7に示すように、多孔質セラミック部25には上方に向けて開口した溝部26が形成され、溝部26内には滑り止め部27が位置していてもよい。この構成では、多孔質セラミック部25を一体で形成することができ、これにより多孔質パッド20の剛性を高めることができ、多孔質パッド20が撓むことが抑制される。
さらに、図8に示すように、図7に示す溝部26が省略され、滑り止め部27は板状に形成される多孔質セラミック部25の上面に設置されてもよい。この場合、例えば、滑り止め部27の厚さは突出量Hと同一に設定される。また、滑り止め部27は多孔質セラミック部25と接着剤により接着される。 In the above embodiment, as shown in FIG. 4, the firstceramic filling portion 251 and the second ceramic filling portion 252 are formed separately by way of the anti-slip portion 27. However, as shown in FIG. 7, the porous ceramic portion 25 may be formed with a groove portion 26 that opens upward, and a non-slip portion 27 may be located in the groove portion 26. In this configuration, the porous ceramic portion 25 can be integrally formed, whereby the rigidity of the porous pad 20 can be increased, and the porous pad 20 can be prevented from bending.
Furthermore, as shown in FIG. 8, thegroove part 26 shown in FIG. 7 may be omitted, and the anti-slip part 27 may be installed on the upper surface of the porous ceramic part 25 formed in a plate shape. In this case, for example, the thickness of the anti-slip portion 27 is set to be the same as the protrusion amount H. Further, the anti-slip portion 27 is bonded to the porous ceramic portion 25 with an adhesive.
さらに、図8に示すように、図7に示す溝部26が省略され、滑り止め部27は板状に形成される多孔質セラミック部25の上面に設置されてもよい。この場合、例えば、滑り止め部27の厚さは突出量Hと同一に設定される。また、滑り止め部27は多孔質セラミック部25と接着剤により接着される。 In the above embodiment, as shown in FIG. 4, the first
Furthermore, as shown in FIG. 8, the
上記実施形態においては、図5に示すように、滑り止め部27の下端面は多孔質セラミック部25の下面と同一面上に位置し、滑り止め部27の上端面は多孔質セラミック部25の上面よりも突出量Hだけ突出するように形成されていた。しかし、これに限らず、図10に示すように、滑り止め部27の下端面も多孔質セラミック部25の下面よりも突出量Hだけ突出するように形成されてもよい。この構成によれば、多孔質パッド20の両面をワークWの滑り止め機能が付いた設置面として使用することができる。
In the above embodiment, as shown in FIG. 5, the lower end surface of the non-slip portion 27 is located on the same plane as the lower surface of the porous ceramic portion 25, and the upper end surface of the anti-slip portion 27 is the porous ceramic portion 25. It was formed so as to protrude from the upper surface by a protrusion amount H. However, the present invention is not limited thereto, and as shown in FIG. 10, the lower end surface of the anti-slip portion 27 may be formed so as to protrude from the lower surface of the porous ceramic portion 25 by a protrusion amount H. According to this configuration, both surfaces of the porous pad 20 can be used as installation surfaces with a function of preventing the work W from slipping.
上記実施形態においては、滑り止め部27はハニカム状に形成されていたが、これに限らず、他の形状で形成されていてもよい。例えば、滑り止め部27の筒部28は、正六角形筒状に限らず、四角形筒状又は円筒状に形成されてもよい。さらに、滑り止め部27は筒状以外の形状で形成されてもよい。例えば、図9に示すように、滑り止め部127は、格子状に形成されてもよい。詳しくは、滑り止め部127は、X方向に沿って延び、Y方向に沿って並ぶ複数の第1板部127aと、Y方向に沿って延び、X方向に沿って並ぶ複数の第2板部127bと、を備える。第1板部127a及び第2板部127bは、互いに交差する位置において連結している。言い換えると、図9に示す滑り止め部127は、正方形筒状の筒部が設置面20aに沿ってX方向及びY方向に隙間なく並べられている。図9のB-B線断面図は、上記実施形態の図4、又は上記変形例の図7、図8及び図10と同様である。
In the above-described embodiment, the anti-slip portion 27 is formed in a honeycomb shape, but is not limited thereto, and may be formed in another shape. For example, the cylindrical portion 28 of the anti-slip portion 27 is not limited to a regular hexagonal cylindrical shape, and may be formed in a rectangular cylindrical shape or a cylindrical shape. Further, the anti-slip portion 27 may be formed in a shape other than a cylindrical shape. For example, as shown in FIG. 9, the anti-slip portion 127 may be formed in a lattice shape. Specifically, the anti-slip portion 127 extends along the X direction and a plurality of first plate portions 127a aligned along the Y direction, and a plurality of second plate portions extending along the Y direction and aligned along the X direction. 127b. The 1st board part 127a and the 2nd board part 127b are connected in the position which mutually cross | intersects. In other words, the anti-slip portion 127 shown in FIG. 9 has square cylindrical tube portions arranged in the X direction and the Y direction along the installation surface 20a without any gaps. 9 is the same as FIG. 4 of the above embodiment or FIGS. 7, 8 and 10 of the above modification.
上記実施形態においては、滑り止め部27がハニカム状などの筒状に形成されていたが、これに限らず、Z方向に沿って延びる柱状の形状で形成されていてもよい。例えば、滑り止め部27は、図11に示すように、ハニカムの角部に相当する位置に配置された複数の柱状部227から構成されてもよい。柱状部227は、Z方向から見てY字状の形状を有し、Z方向に沿って延びる形状を有する。これにより、ワークWと滑り止め部27の接触面積が小さくなることにより、接触圧が大きくなり、ワークWがより確実に固定される効果が得られる。また、複数の柱状部227は、それぞれ独立分離して形成されるため、滑り止め部27の一部が撓んだ場合に影響を受ける範囲を小さくできる。また、Y字状の形状を有すると、平板状に形成される場合に比べて、曲げに対して強くできる。柱状部227は、Z方向から見てY字状の形状に限らず、X字状、V字状、H字状、L字状またはT字状に形成されてもよい。柱状部227が、X字状の形状を有する場合、柱状部227は、格子の交点に配置されるとよい。
In the above embodiment, the anti-slip portion 27 is formed in a cylindrical shape such as a honeycomb shape, but is not limited thereto, and may be formed in a columnar shape extending along the Z direction. For example, as shown in FIG. 11, the anti-slip portion 27 may be composed of a plurality of columnar portions 227 arranged at positions corresponding to the corner portions of the honeycomb. The columnar portion 227 has a Y-shape when viewed from the Z direction, and has a shape extending along the Z direction. As a result, the contact area between the workpiece W and the anti-slip portion 27 is reduced, so that the contact pressure is increased and the effect of fixing the workpiece W more reliably can be obtained. Further, since the plurality of columnar portions 227 are formed separately from each other, the range affected when a part of the anti-slip portion 27 is bent can be reduced. Moreover, when it has a Y-shape, it can be strong with respect to a bending compared with the case where it forms in flat form. The columnar portion 227 is not limited to the Y shape as viewed from the Z direction, and may be formed in an X shape, a V shape, an H shape, an L shape, or a T shape. When the columnar part 227 has an X-shape, the columnar part 227 is preferably arranged at the intersection of the lattice.
以下、本発明の実施例を対照例と対比しながら説明し、本発明の効果を実証する。この実施例は、本発明の一実施態様を示すものであり、本発明は何らこれらに限定されるものではない。
Hereinafter, the examples of the present invention will be described in comparison with the control examples, and the effects of the present invention will be verified. This example shows one embodiment of the present invention, and the present invention is not limited thereto.
本実施例では、図9に示す格子状に滑り止め部127が形成された多孔質パッド20にワークWを設置して見掛けの摩擦係数を計測した。滑り止め部127は、幅W=300μmのシリコーン樹脂を用いた。ワークWは、石とガラスを用いた。
In this example, the workpiece W was placed on the porous pad 20 in which the non-slip portions 127 were formed in a lattice shape shown in FIG. 9, and the apparent friction coefficient was measured. For the non-slip portion 127, a silicone resin having a width W = 300 μm was used. As the work W, stone and glass were used.
滑り止め部127の格子の間隔Dが、10mm、5mm、3mmおよび1.5mmの実施例について、ワークWを設置面20aに載せて、真空チャック装置10により多孔質パッド20の設置面20aに吸着した。この状態においてそれぞれ見掛けの摩擦係数を計測した。また、比較例として、滑り止め部127を有さない多孔質パッドにワークWを載せて見掛けの摩擦係数を測定した。
For the examples in which the lattice spacing D of the non-slip portion 127 is 10 mm, 5 mm, 3 mm, and 1.5 mm, the work W is placed on the installation surface 20 a and is adsorbed by the vacuum chuck device 10 to the installation surface 20 a of the porous pad 20. did. In this state, the apparent friction coefficient was measured. As a comparative example, an apparent friction coefficient was measured by placing the workpiece W on a porous pad that does not have the anti-slip portion 127.
見掛けの摩擦係数の測定結果を図12に示す。縦軸は見掛けの摩擦係数を示し、横軸は、滑り止め部127とワークWの一部とが接触する接触面積を多孔質セラミック部25の全体の面積で除した面積率(シリコーン樹脂面積率)を示す。間隔Dが小さくなると、滑り止め部127割合が大きくなるので、間隔Dが小さいほうが、シリコーン樹脂面積率が大きくなる。溝無しは、滑り止め部127を有さない多孔質パッド20にワークWを載せて計測した比較例の見掛けの摩擦係数である。
The measurement result of the apparent friction coefficient is shown in FIG. The vertical axis represents the apparent friction coefficient, and the horizontal axis represents the area ratio (silicone resin area ratio) obtained by dividing the contact area where the non-slip portion 127 and a part of the work W are in contact with the entire area of the porous ceramic portion 25. ). When the distance D is decreased, the ratio of the anti-slip portion 127 is increased. Therefore, the area ratio of the silicone resin is increased as the distance D is decreased. No groove is an apparent friction coefficient of the comparative example measured by placing the workpiece W on the porous pad 20 having no anti-slip portion 127.
この見掛けの摩擦係数は、ワークWに石とガラスを用いた場合の両方で、間隔Dが10mmである場合、比較例の溝無しより石とガラスとも見掛けの摩擦係数が大きくなった。間隔Dが5mmである場合、間隔Dが10mmである場合より石とガラスとも見掛けの摩擦係数が大きくなった。間隔Dが3mmである場合、間隔Dが5mmである場合より石とガラスとも見掛けの摩擦係数が大きくなった。間隔Dが1.5mmである場合、間隔Dが3mmである場合より石では見掛けの摩擦係数が大きくなったが、ガラスでは見掛けの摩擦係数が小さくなった。
The apparent friction coefficient was larger when both the stone and the glass were used than when there was no groove in the comparative example when the distance D was 10 mm when both the stone and the glass were used for the workpiece W. When the distance D was 5 mm, the apparent friction coefficient was larger for both stone and glass than when the distance D was 10 mm. When the distance D was 3 mm, the apparent friction coefficient was larger for both stone and glass than when the distance D was 5 mm. When the distance D was 1.5 mm, the apparent friction coefficient was larger in the stone than in the case where the distance D was 3 mm, but the apparent friction coefficient was smaller in the glass.
以上の結果から、シリコーン樹脂面積率が0.20までは、シリコーン樹脂面積率が大きくなるにつれて見掛けの摩擦係数が大きくなり、0.20を超えると、見掛けの摩擦係数は、シリコーン樹脂面積率が大きくなっても必ずしも大きくならないことがわかった。このことから、シリコーン樹脂面積率は1.10以上1.50以下であることが好ましいことがわかった。
From the above results, when the silicone resin area ratio is up to 0.20, the apparent friction coefficient increases as the silicone resin area ratio increases, and when it exceeds 0.20, the apparent friction coefficient is the silicone resin area ratio. It turned out that it does not necessarily grow even if it grows larger. From this, it was found that the silicone resin area ratio is preferably 1.10 or more and 1.50 or less.
本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。
The present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. The above-described embodiments are for explaining the present invention and do not limit the scope of the present invention. In other words, the scope of the present invention is shown not by the embodiments but by the claims. Various modifications within the scope of the claims and within the scope of the equivalent invention are considered to be within the scope of the present invention.
本出願は、2018年3月23日に出願された、日本国特許出願特願2018-055693号に基づく。本明細書中に日本国特許出願特願2018-055693号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。
This application is based on Japanese Patent Application No. 2018-055693 filed on Mar. 23, 2018. The specification, claims, and entire drawings of Japanese Patent Application No. 2018-055693 are incorporated herein by reference.
1 工作機械
10 真空チャック装置
12 ベースプレート
12a 溝
12b 真空ポート
15 スルーホール板
15a 貫通孔
20,120 多孔質パッド
20a,120a 設置面
20b 裏面
25 多孔質セラミック部
26 溝部
27,127 滑り止め部
227 柱状部
28 筒部
28a 壁部
29 流通許容室
29a 液体通過室
29b 真空形成室
30 真空ポンプ
40 加工部
41 工具
50 クーラント液供給部
251 第1セラミック充填部
252 第2セラミック充填部
281 第1筒部
282 第2筒部
H 突出量
L1 ワーク重複領域
W ワーク
Clt クーラント液 DESCRIPTION OFSYMBOLS 1 Machine tool 10 Vacuum chuck apparatus 12 Base plate 12a Groove 12b Vacuum port 15 Through-hole board 15a Through-hole 20,120 Porous pad 20a, 120a Installation surface 20b Back surface 25 Porous ceramic part 26 Groove part 27,127 Anti-slip part 227 Columnar part 28 cylinder portion 28a wall portion 29 flow allowance chamber 29a liquid passage chamber 29b vacuum forming chamber 30 vacuum pump 40 processing portion 41 tool 50 coolant liquid supply portion 251 first ceramic filling portion 252 second ceramic filling portion 281 first tube portion 282 first 2 cylinder part H protrusion amount L1 Work overlap area W Work Clt Coolant liquid
10 真空チャック装置
12 ベースプレート
12a 溝
12b 真空ポート
15 スルーホール板
15a 貫通孔
20,120 多孔質パッド
20a,120a 設置面
20b 裏面
25 多孔質セラミック部
26 溝部
27,127 滑り止め部
227 柱状部
28 筒部
28a 壁部
29 流通許容室
29a 液体通過室
29b 真空形成室
30 真空ポンプ
40 加工部
41 工具
50 クーラント液供給部
251 第1セラミック充填部
252 第2セラミック充填部
281 第1筒部
282 第2筒部
H 突出量
L1 ワーク重複領域
W ワーク
Clt クーラント液 DESCRIPTION OF
Claims (13)
- 複数の気孔が形成されることにより流体を通過させる通気性を有する多孔質セラミック部と、
前記多孔質セラミック部に設置される設置対象物の一部に接触するように前記多孔質セラミック部に形成され、前記多孔質セラミック部よりも高い静摩擦係数を有する滑り止め部と、を備える、
多孔質パッド。 A porous ceramic portion having air permeability that allows fluid to pass through by forming a plurality of pores;
A non-slip portion formed on the porous ceramic portion so as to contact a part of an installation object placed on the porous ceramic portion, and having a higher static friction coefficient than the porous ceramic portion,
Porous pad. - 前記滑り止め部は、前記設置対象物が設置される前記多孔質パッドの設置面に沿って並び、前記多孔質セラミック部に埋め込まれた状態で前記多孔質パッドの厚さ方向に延びる複数の筒部を備える、
請求項1に記載の多孔質パッド。 The anti-slip portion is arranged along the installation surface of the porous pad on which the installation object is installed, and a plurality of tubes extending in the thickness direction of the porous pad while being embedded in the porous ceramic portion Comprising a part,
The porous pad according to claim 1. - 前記滑り止め部は、前記設置面に沿って正六角形筒状の前記筒部が並べられたハニカム状に形成される、
請求項2に記載の多孔質パッド。 The non-slip portion is formed in a honeycomb shape in which the regular hexagonal tubular portions are arranged along the installation surface.
The porous pad according to claim 2. - 前記滑り止め部は弾性体により形成され、
前記多孔質セラミック部は、
前記複数の筒部のうち第1筒部内に充填される第1セラミック充填部と、
前記複数の筒部のうち第2筒部内に充填され、前記第1セラミック充填部と別体で形成される第2セラミック充填部と、を備える、
請求項2又は3に記載の多孔質パッド。 The anti-slip portion is formed of an elastic body,
The porous ceramic part is
A first ceramic filling portion filled in the first tubular portion among the plurality of tubular portions;
A second ceramic filling portion that is filled in a second cylindrical portion of the plurality of cylindrical portions and formed separately from the first ceramic filling portion;
The porous pad according to claim 2 or 3. - 前記多孔質セラミック部には前記設置面に設置される前記設置対象物に向けて開口し、前記滑り止め部が充填される溝部が形成される、
請求項2又は3に記載の多孔質パッド。 In the porous ceramic portion, an opening is formed toward the installation object installed on the installation surface, and a groove portion filled with the anti-slip portion is formed.
The porous pad according to claim 2 or 3. - 前記滑り止め部は、前記設置対象物が設置される前記多孔質パッドの設置面に沿って並び、前記多孔質セラミック部に埋め込まれた状態で前記多孔質パッドの厚さ方向に延びる複数の柱状部を備える、
請求項1に記載の多孔質パッド。 The non-slip portion is arranged along the installation surface of the porous pad on which the installation object is installed, and a plurality of columnar shapes extending in the thickness direction of the porous pad in a state of being embedded in the porous ceramic portion. Comprising a part,
The porous pad according to claim 1. - 前記柱状部は、前記多孔質パッドの厚さ方向にみて、Y字状、X字状、V字状、H字状、L字状またはT字状に形成される、
請求項6に記載の多孔質パッド。 The columnar portion is formed in a Y shape, an X shape, a V shape, an H shape, an L shape, or a T shape as viewed in the thickness direction of the porous pad.
The porous pad according to claim 6. - 前記滑り止め部は、前記多孔質セラミック部よりも前記設置面から突出量だけ突出して形成される、
請求項2から7の何れか一項に記載の多孔質パッド。 The anti-slip part is formed to protrude from the installation surface by a protruding amount than the porous ceramic part.
The porous pad according to any one of claims 2 to 7. - 前記突出量は、0.01mm~1mmに設定される、
請求項8に記載の多孔質パッド。 The protrusion amount is set to 0.01 mm to 1 mm.
The porous pad according to claim 8. - 前記滑り止め部はシリコーン樹脂により形成される、
請求項1から9の何れか一項に記載の多孔質パッド。 The anti-slip portion is formed of a silicone resin.
The porous pad according to any one of claims 1 to 9. - 前記滑り止め部と前記設置対象物の一部とが接触する接触面積を前記多孔質セラミック部の全体の面積で除した面積率は、0.10以上0.50以下である、
請求項1から10の何れか一項に記載の多孔質パッド。 The area ratio obtained by dividing the contact area where the non-slip part and a part of the installation target object are in contact with the entire area of the porous ceramic part is 0.10 or more and 0.50 or less.
The porous pad according to any one of claims 1 to 10. - 請求項1から11の何れか一項に記載の多孔質パッドと、
前記多孔質パッドが設置されることにより負圧案内空間を形成するベースプレートと、
前記負圧案内空間に負圧を供給することにより前記設置対象物を前記多孔質パッドの設置面に吸着させる真空ポンプと、を備える、
真空チャック装置。 The porous pad according to any one of claims 1 to 11,
A base plate that forms a negative pressure guide space by installing the porous pad;
A vacuum pump for adsorbing the installation object to the installation surface of the porous pad by supplying a negative pressure to the negative pressure guide space,
Vacuum chuck device. - 請求項2から11の何れか一項に記載の多孔質パッドの平面形成方法であって、
前記多孔質パッドの設置面を平面に研磨装置により研磨する工程を備える、
多孔質パッドの平面形成方法。 It is a plane formation method of the porous pad according to any one of claims 2 to 11,
A step of polishing the installation surface of the porous pad to a flat surface by a polishing apparatus;
A method for forming a flat surface of a porous pad.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020508249A JP6901812B2 (en) | 2018-03-23 | 2019-03-12 | Porous pad, vacuum chuck device and method for forming a plane of the porous pad |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018055693 | 2018-03-23 | ||
JP2018-055693 | 2018-03-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019181652A1 true WO2019181652A1 (en) | 2019-09-26 |
Family
ID=67987288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/010019 WO2019181652A1 (en) | 2018-03-23 | 2019-03-12 | Porous pad, vacuum chuck device, and plane forming method for porous pad |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6901812B2 (en) |
TW (1) | TW201940397A (en) |
WO (1) | WO2019181652A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112967981A (en) * | 2020-08-31 | 2021-06-15 | 重庆康佳光电技术研究院有限公司 | Chip transfer head and manufacturing method thereof, die bonder and chip transfer method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111403328A (en) * | 2020-03-13 | 2020-07-10 | 宁波润华全芯微电子设备有限公司 | Wafer bearing platform |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6282343A (en) * | 1985-10-07 | 1987-04-15 | Hitachi Electronics Eng Co Ltd | Surface inspecting instrument |
JPH06244269A (en) * | 1992-09-07 | 1994-09-02 | Mitsubishi Electric Corp | Semiconductor manufacturing apparatus, wafer vacuum chuck device thereof, and gas cleaning and nitride film formation therefor |
JPH07283295A (en) * | 1994-04-13 | 1995-10-27 | Murata Mfg Co Ltd | Sheet holding jig |
JPH09174364A (en) * | 1995-12-20 | 1997-07-08 | Shibayama Kikai Kk | Universal chuck table for semiconductor wafer |
JPH11309638A (en) * | 1998-04-28 | 1999-11-09 | Kyocera Corp | Vacuum suction pad |
JP2007220887A (en) * | 2006-02-16 | 2007-08-30 | Toshiba Ceramics Co Ltd | Universal chuck |
JP2014090038A (en) * | 2012-10-30 | 2014-05-15 | Kyocera Corp | Suction member |
-
2019
- 2019-03-12 JP JP2020508249A patent/JP6901812B2/en active Active
- 2019-03-12 WO PCT/JP2019/010019 patent/WO2019181652A1/en active Application Filing
- 2019-03-14 TW TW108108745A patent/TW201940397A/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6282343A (en) * | 1985-10-07 | 1987-04-15 | Hitachi Electronics Eng Co Ltd | Surface inspecting instrument |
JPH06244269A (en) * | 1992-09-07 | 1994-09-02 | Mitsubishi Electric Corp | Semiconductor manufacturing apparatus, wafer vacuum chuck device thereof, and gas cleaning and nitride film formation therefor |
JPH07283295A (en) * | 1994-04-13 | 1995-10-27 | Murata Mfg Co Ltd | Sheet holding jig |
JPH09174364A (en) * | 1995-12-20 | 1997-07-08 | Shibayama Kikai Kk | Universal chuck table for semiconductor wafer |
JPH11309638A (en) * | 1998-04-28 | 1999-11-09 | Kyocera Corp | Vacuum suction pad |
JP2007220887A (en) * | 2006-02-16 | 2007-08-30 | Toshiba Ceramics Co Ltd | Universal chuck |
JP2014090038A (en) * | 2012-10-30 | 2014-05-15 | Kyocera Corp | Suction member |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112967981A (en) * | 2020-08-31 | 2021-06-15 | 重庆康佳光电技术研究院有限公司 | Chip transfer head and manufacturing method thereof, die bonder and chip transfer method |
Also Published As
Publication number | Publication date |
---|---|
JP6901812B2 (en) | 2021-07-14 |
TW201940397A (en) | 2019-10-16 |
JPWO2019181652A1 (en) | 2021-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019181652A1 (en) | Porous pad, vacuum chuck device, and plane forming method for porous pad | |
US5692950A (en) | Abrasive construction for semiconductor wafer modification | |
TWI665146B (en) | Non-contact transferring device and non-contact suction plate | |
KR20050046807A (en) | Polishing pad for planarization | |
US11511389B2 (en) | Polishing head and polishing apparatus | |
US20170297171A1 (en) | Abrasive article and related methods | |
KR102283920B1 (en) | Film peeling apparatus | |
JP2014203904A (en) | Vacuum suction device and suction plate | |
KR20060033810A (en) | Polishing pad having edge surface treatment | |
JP5350908B2 (en) | Dressboard holding table and cutting device | |
JP2007136569A (en) | Vacuum chuck | |
JP2016197623A (en) | Sucking/holding jig, sucking/holding device equipped with this jig, sucking/holding method, processing method of substrate, and film formation method of substrate | |
JP2019169590A (en) | Porous pad, vacuum chuck device, and machine tool | |
WO2009081880A1 (en) | Sticking method and sticking device of sticking material | |
JP2020069548A (en) | Porous pad, vacuum chuck device and machine tool | |
TWI504447B (en) | Absorption table | |
JP2021115677A (en) | Pad unit, vacuum chuck device and work transport device | |
US20080003932A1 (en) | Sheet for mounting polishing workpiece and method for making the same | |
JP4254749B2 (en) | Contact object for adsorbing and holding object and adsorbing and holding device | |
TW200929424A (en) | Workpiece support apparatus | |
KR102607586B1 (en) | Substrate supportiong device and method of polishing substrate using the same | |
JP4266136B2 (en) | Vacuum chuck | |
KR101513593B1 (en) | The apparatus for separating the thin plates | |
JP2019166597A (en) | Elastic deformable pad, suction pad unit, vacuum chuck device and machine tool | |
JP5577817B2 (en) | Substrate mounting pad mechanism |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19771916 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020508249 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19771916 Country of ref document: EP Kind code of ref document: A1 |