JP2007136569A - Vacuum chuck - Google Patents

Vacuum chuck Download PDF

Info

Publication number
JP2007136569A
JP2007136569A JP2005330550A JP2005330550A JP2007136569A JP 2007136569 A JP2007136569 A JP 2007136569A JP 2005330550 A JP2005330550 A JP 2005330550A JP 2005330550 A JP2005330550 A JP 2005330550A JP 2007136569 A JP2007136569 A JP 2007136569A
Authority
JP
Japan
Prior art keywords
fluid guide
guide path
workpiece
vacuum chuck
porous adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005330550A
Other languages
Japanese (ja)
Other versions
JP4214147B2 (en
Inventor
Atsushi Takada
篤 高田
Yoshie Kaneko
良衛 金子
Masakazu Takatsu
雅一 高津
Natsuko Ikeda
奈津子 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nano TEM Co Ltd
Original Assignee
Nano TEM Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nano TEM Co Ltd filed Critical Nano TEM Co Ltd
Priority to JP2005330550A priority Critical patent/JP4214147B2/en
Publication of JP2007136569A publication Critical patent/JP2007136569A/en
Application granted granted Critical
Publication of JP4214147B2 publication Critical patent/JP4214147B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Jigs For Machine Tools (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detach a workpiece from a vacuum chuck by preventing the occurrence of deformation of a sucker in the vacuum chuck having the porous sucker and supplying liquid between a sucking surface and the workpiece. <P>SOLUTION: This vacuum chuck 10 is formed by sintering an aggregate made of granular powder of inorganic material and a binder connecting the aggregates to each other, and it includes the porous sucker 12, the surface of which is provided with a sucking surface 12 for sucking and holding a workpiece. A fluid guide passage 16 penetrating and communicating with the sucking surface 13 is formed in the interior of the porous sucker 12. Negative pressure air is supplied to the fluid guide passage 16 by a vacuum pump 24, thereby sucking and holding the workpiece to the sucking surface 13, and when positive pressure fluid is supplied to the fluid guide passage 16 from a pressurizing pump 32, the workpiece is detached from the vacuum chuck. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、被加工物を真空吸着して保持するための真空チャックに関する。   The present invention relates to a vacuum chuck for holding a workpiece by vacuum suction.

シリコン製の半導体ウエハの表面に回路パターンを形成したり、ガラス製の液晶ディスプレイ(LCD)を加工したり、種々の被加工物に切削や研削などの機械加工を施す際には、これらの被加工物つまりワークを真空吸着して保持するために真空チャックが使用されている。このような真空チャックとしては、特許文献1に記載されるように、多孔質材料からなる吸着体と、この吸着体が接合される金属製のベースプレートとを有するものがあり、真空を吸着体に供給するためにベースプレートには複数の溝が形成されている。ベースプレートに形成された溝とベースプレートに接着剤等により接合される吸着体とにより真空を案内される流路が形成されている。この流路を外部の真空源に接続することによって多孔質の吸着体の表面は大気圧よりも低い負圧状態つまり真空状態になり、被加工物は吸着体の表面に吸着されて保持される。   When a circuit pattern is formed on the surface of a semiconductor wafer made of silicon, a liquid crystal display (LCD) made of glass is processed, or machining such as cutting or grinding is performed on various workpieces, these substrates are covered. A vacuum chuck is used to hold a workpiece, that is, a workpiece by vacuum suction. As described in Patent Document 1, such a vacuum chuck includes an adsorbent made of a porous material and a metal base plate to which the adsorbent is joined. A plurality of grooves are formed in the base plate for supply. A channel for guiding a vacuum is formed by a groove formed in the base plate and an adsorbent bonded to the base plate by an adhesive or the like. By connecting this flow path to an external vacuum source, the surface of the porous adsorbent is brought into a negative pressure state lower than atmospheric pressure, that is, a vacuum state, and the workpiece is adsorbed and held on the surface of the adsorbent. .

真空チャックにより保持されて所定の加工が施された被加工物は、真空チャックから取り外されることになる。加工能率向上のためには、加工後の被加工物を迅速に真空チャックから取り外す、つまりディチャックする必要があるため、圧縮空気などの気体を吸着体に供給して迅速に真空を解除するようにしている。
特開2001−341042号公報
The workpiece which is held by the vacuum chuck and has been subjected to the predetermined processing is removed from the vacuum chuck. In order to improve the processing efficiency, it is necessary to quickly remove the workpiece after processing from the vacuum chuck, that is, dechuck, so that a vacuum such as compressed air is supplied to the adsorbent to quickly release the vacuum. I have to.
JP 2001-341042 A

被加工物に対する加工がクリーンルーム内で行われる場合には、被加工物を真空チャックからディチャックするために加圧気体を多孔質の吸着体に供給すると、供給された加圧気体がチャック内の異物つまりパーティクルとともにクリーンルーム内に飛散することになる。飛散したパーティクルが被加工物の表面に付着すると、量産品の製造歩留まりが低下することになるので、真空チャックから被加工物を取り外す際には、多孔質の吸着体に水等の液体を供給して吸着体の表面から液体を噴出させることが試みられた。   When the workpiece is processed in a clean room, when the pressurized gas is supplied to the porous adsorbent to dechuck the workpiece from the vacuum chuck, the supplied pressurized gas is contained in the chuck. It will be scattered in the clean room together with foreign matter or particles. If the scattered particles adhere to the surface of the workpiece, the production yield of mass-produced products will decrease, so when removing the workpiece from the vacuum chuck, supply liquid such as water to the porous adsorbent Attempts were made to eject liquid from the surface of the adsorbent.

しかしながら、液体は気体に比べて粘性抵抗が高いので、ディチャック時には高圧の液体を吸着体に供給する必要がある。このため、従来のように吸着体をベースプレートに接合するようにした真空チャックにおいては、ディチャックのために液体を吸着体に供給すると、吸着体とベースプレートとの接合部に背圧による応力が集中して吸着体がベースプレートから剥がれたり、吸着体が変形したりするという問題点があった。   However, since the liquid has a higher viscosity resistance than the gas, it is necessary to supply a high-pressure liquid to the adsorbent during digging. For this reason, in a conventional vacuum chuck in which an adsorbent is bonded to a base plate, when liquid is supplied to the adsorbent for dechucking, stress due to back pressure is concentrated at the junction between the adsorbent and the base plate. As a result, the adsorbent is peeled off from the base plate or the adsorbent is deformed.

本発明の目的は、多孔質の吸着体を有する真空チャックにおける吸着体の変形発生を防止することにある。   An object of the present invention is to prevent the occurrence of deformation of an adsorbent in a vacuum chuck having a porous adsorbent.

本発明の目的は、吸着面と被加工物との間に液体を供給して被加工物を真空チャックから取り外すことができるようにすることにある。   An object of the present invention is to supply a liquid between the suction surface and the workpiece so that the workpiece can be detached from the vacuum chuck.

本発明の真空チャックは、被加工物を真空吸着する真空チャックであって、無機質材料の粉粒体からなる骨材と当該骨材相互を連結する結合材との混合物を焼結して形成され、表面に被加工物を吸着保持する吸着面が設けられた多孔質吸着体を有し、前記吸着面に透過して連通する流体案内路を前記多孔質吸着体の内部に形成し、前記流体案内路に連通するとともに真空供給源に接続される連通ポートを前記多孔質吸着体に形成することを特徴とする。   The vacuum chuck according to the present invention is a vacuum chuck for vacuum-adsorbing a workpiece, and is formed by sintering a mixture of an aggregate made of a granular material of an inorganic material and a binder for connecting the aggregates to each other. A porous adsorbent having an adsorbing surface for adsorbing and holding a workpiece on the surface, and forming a fluid guide path that penetrates and communicates with the adsorbing surface inside the porous adsorbent. A communication port that communicates with the guide path and is connected to a vacuum supply source is formed in the porous adsorbent.

本発明の真空チャックは、前記吸着面に吸着保持された被加工物を前記吸着面から離す際に前記流体案内路に加圧流体を供給することを特徴とする。   The vacuum chuck of the present invention is characterized in that a pressurized fluid is supplied to the fluid guide path when the work piece held on the suction surface is separated from the suction surface.

本発明の真空チャックは、前記流体案内路を前記多孔質吸着体の内部に格子状、同心円状または螺旋状に分散して形成することを特徴とする。   The vacuum chuck of the present invention is characterized in that the fluid guide path is formed in a lattice shape, a concentric circle shape, or a spiral shape inside the porous adsorbent.

本発明の真空チャックは、前記多孔質吸着体の中央部における流体の透過量と周辺部における流体の透過量とを相違させることを特徴とする。   The vacuum chuck of the present invention is characterized in that the permeation amount of fluid in the central portion of the porous adsorbent is different from the permeation amount of fluid in the peripheral portion.

本発明の真空チャックは、前記流体案内路を前記吸着体の中央部における流体案内路と、周辺部における流体案内路との複数の独立案内路に分離し、前記吸着面に被加工物を吸着保持する際に、それぞれの独立案内路に時間差を持たせて真空を供給することを特徴とする。   In the vacuum chuck of the present invention, the fluid guide path is separated into a plurality of independent guide paths including a fluid guide path in the central portion of the adsorbent and a fluid guide path in the peripheral portion, and the workpiece is sucked onto the suction surface. When holding, a vacuum is supplied with a time difference between the independent guide paths.

本発明の真空チャックは、前記流体案内路を前記多孔質吸着体の中央部における流体案内路と、周辺部における流体案内路との複数の独立案内路に分離し、前記吸着面に被加工物を吸着保持する際に、それぞれの独立案内路に供給される真空の圧力を相違させることを特徴とする。   In the vacuum chuck of the present invention, the fluid guide path is separated into a plurality of independent guide paths including a fluid guide path in the central portion of the porous adsorbent and a fluid guide path in the peripheral portion, and a workpiece is provided on the suction surface. When adsorbed and held, the vacuum pressure supplied to each independent guide path is made different.

本発明によれば、多孔質吸着体の内部に吸着面に流体を透過して連通させる流体案内路を形成したので、流体案内面を区画形成する内壁面の強度が高まり、被加工物を吸着面に吸着保持させる際に流体案内路に負圧空気を供給しても多孔質吸着体の変形発生が防止される。また、吸着面に吸着保持された被加工物を真空チャックから取り外す際に流体案内路に加圧流体を供給しても多孔質吸着体の変形発生が防止される。これにより、多孔質吸着体の耐久性を向上することができるとともに、吸着保持された被加工物の加工精度を高めることができる。   According to the present invention, since the fluid guide path that allows fluid to permeate and communicate with the adsorption surface is formed inside the porous adsorbent, the strength of the inner wall surface that defines the fluid guide surface is increased, and the workpiece is adsorbed. Even when negative pressure air is supplied to the fluid guide path when adsorbed and held on the surface, deformation of the porous adsorbent is prevented. Further, even if the pressurized fluid is supplied to the fluid guide path when the work piece held on the suction surface is removed from the vacuum chuck, deformation of the porous adsorbent is prevented. Thereby, the durability of the porous adsorbent can be improved, and the processing accuracy of the workpiece that is adsorbed and held can be increased.

流体案内路は、格子状、同心円状あるいは螺旋状とすることにより複数本の通路が相互に連通された状態となって多孔質吸着体の内部に分散されて形成され、流体案内路は流体案内路網つまり流体案内通路網となり、被加工物を吸着面で保持する際には被加工物全体に吸着力が加えられる。   The fluid guide path is formed in a lattice shape, a concentric circle shape, or a spiral shape so that a plurality of passages are in communication with each other and dispersed inside the porous adsorbent. When the workpiece is held by the suction surface, an adsorption force is applied to the entire workpiece.

被加工物を保持する際に、吸着面における空気の透過量を中央部と周辺部とで変化させたり、央部と周辺部とで真空を供給する時間に差を持たせることにより、吸着が完了する前に被加工物と吸着面との間に空気が挟み込まれることがなくなる。これにより、吸着保持された被加工物に内部歪みが発生することがなくなり、内部歪みの発生を防止することにより加工精度を高めることができる。   When holding the work piece, the amount of air permeation on the adsorption surface can be changed between the central part and the peripheral part, or the time for supplying the vacuum between the central part and the peripheral part can be different. Air is no longer sandwiched between the workpiece and the suction surface before completion. Thereby, internal strain does not occur in the work piece held by suction, and the processing accuracy can be improved by preventing the occurrence of internal strain.

空気の透過量を吸着面の複数の領域で相違させるには、網状つまりネット状の流体案内路を構成する流路の本数を相違させたり、流体案内路の幅を相違させたり、それぞれの領域に相違した圧力の供給することにより達成される。   In order to make the air permeation amount different in the plurality of areas of the adsorption surface, the number of flow paths constituting the net-like or net-like fluid guide path, the width of the fluid guide path, or the respective areas are different. This is achieved by supplying different pressures.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。図1(A)は本発明の一実施の形態である真空チャックの外観を示す斜視図であり、図1(B)は本発明の他の実施の形態である真空チャックの外観を示す斜視図である。図2(A)は図1(A)における2A−2A線拡大断面図であり、図2(B)は図2(A)における2B−2B線断面図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1A is a perspective view showing an appearance of a vacuum chuck according to an embodiment of the present invention, and FIG. 1B is a perspective view showing an appearance of a vacuum chuck according to another embodiment of the present invention. It is. 2A is an enlarged cross-sectional view taken along line 2A-2A in FIG. 1A, and FIG. 2B is a cross-sectional view taken along line 2B-2B in FIG.

真空チャック10は、図1(A)に示すように、プレート状のベース11とこの表面に接着剤により接合される多孔質吸着体12とを有しており、それぞれは全体的に四辺形となっている。ベース11は金属により形成され、多孔質吸着体12は無機質材料の粉粒体からなる骨材と骨材相互を連結する結合材との混合物を焼結して形成されている。多孔質吸着体12の裏面はベース11の表面に接着され、ベース11の表面は被加工物を吸着する吸着面13となっている。多孔質吸着体12の外周部は樹脂等により封孔処理されて封止層14となっており、空気などの流体が多孔質吸着体12の外周部は透過しない。同様に、多孔質吸着体12の底部も樹脂等により封孔処理されて封止層15となっている。   As shown in FIG. 1 (A), the vacuum chuck 10 has a plate-like base 11 and a porous adsorbent 12 joined to the surface by an adhesive, each of which has a quadrilateral shape as a whole. It has become. The base 11 is formed of a metal, and the porous adsorbent 12 is formed by sintering a mixture of an aggregate made of a granular material of an inorganic material and a binder that connects the aggregates. The back surface of the porous adsorbent 12 is adhered to the surface of the base 11, and the surface of the base 11 is an adsorption surface 13 that adsorbs the workpiece. The outer peripheral portion of the porous adsorbent 12 is sealed with a resin or the like to form a sealing layer 14, and fluid such as air does not permeate the outer peripheral portion of the porous adsorbent 12. Similarly, the bottom of the porous adsorbent 12 is sealed with a resin or the like to form a sealing layer 15.

多孔質吸着体12の内部には、図2(A)に示すように、図において左右方向と上下方向とにそれぞれ延びるとともに交差部で相互に連通された複数の通路からなる流体案内路16が形成されており、流体案内路16は全体的に格子状になって多孔質吸着体12の内部に分散形成されている。このようにして、流体案内路16は網状ないしネット状となった流体案内路網になり多孔質吸着体12の内部に形成されている。   Inside the porous adsorbent 12, as shown in FIG. 2 (A), there is a fluid guide path 16 composed of a plurality of passages extending in the left-right direction and the up-down direction in the drawing and communicating with each other at intersections. The fluid guide paths 16 are formed in a lattice shape and are dispersedly formed inside the porous adsorbent 12. In this way, the fluid guide path 16 is a fluid guide path network having a net shape or a net shape, and is formed inside the porous adsorbent 12.

図2(A)に示す多孔質吸着体12は、流体案内路網つまり流体案内路16が多孔質吸着体12の左右方向の外周二辺にそれぞれ平行となって形成された11本の通路と、上下方向の外周二辺にそれぞれ平行となって形成された11本の通路とにより形成され、それぞれを連通させることになり、流体案内路16は全体的に格子状の流体案内路網となっている。それぞれの流体案内路16を構成する通路は、多孔質吸着体12の大きさ等によって任意に設定される。流体案内路16を構成する通路の横断面形状は四角形となっており、流体案内路16相互間のピッチPは同一に設定され、流体案内路16の幅寸法Dもほぼ全て同一に設定されている。   The porous adsorbent 12 shown in FIG. 2 (A) is composed of 11 passages in which a fluid guide channel network, that is, a fluid guide channel 16 is formed in parallel with two outer peripheral sides in the left-right direction of the porous adsorbent 12. These are formed by 11 passages formed in parallel with the two outer peripheral sides in the vertical direction, and communicate with each other, so that the fluid guide passage 16 is a lattice-like fluid guide passage network as a whole. ing. The passages constituting each fluid guide passage 16 are arbitrarily set depending on the size of the porous adsorbent 12 and the like. The cross-sectional shape of the passages constituting the fluid guide path 16 is a quadrangle, the pitch P between the fluid guide paths 16 is set to be the same, and the width dimension D of the fluid guide paths 16 is also set to be almost the same. Yes.

図2(B)に示すように、流体案内路16と吸着面13との間の厚みD1の部分は吸着側領域17を構成し、流体案内路16と多孔質吸着体12の裏面との間の厚みD2の部分は支持側領域18を構成し、吸着側領域17と支持側領域18との間の厚みD3の部分は流路形成領域19を構成しており、これらの各領域17〜19は、骨材と結合材との混合物を焼結して多孔質吸着体12を成形することにより組織的に一体に連なっている。   As shown in FIG. 2 (B), the portion of the thickness D1 between the fluid guide path 16 and the adsorption surface 13 constitutes an adsorption side region 17 between the fluid guide path 16 and the back surface of the porous adsorbent 12. The portion of the thickness D2 constitutes the support side region 18, and the portion of the thickness D3 between the suction side region 17 and the support side region 18 constitutes the flow path forming region 19, and each of these regions 17-19 Are integrally formed by sintering the mixture of the aggregate and the binder to form the porous adsorbent 12.

多孔質吸着体12を構成する骨材としては、研削砥石に用いられるアルミナ質研削材や炭化ケイ素質研削材からなる粉粒体が使用される。アルミナ質研削材を骨材とする場合には、JISのR6111に規定される褐色アルミナ研削材A、白色アルミナ研削材WA、淡紅色アルミナ研削材PA、解粉型アルミナ研削材HA、人造エメリー研削材AE、およびアルミナジルコニア研削材AZを用いることができる。炭化ケイ素質研削材を骨材とする場合には、黒色炭化ケイ素研削材Cおよび緑色炭化ケイ素研削材GCを用いることができる。その他、天然ダイヤモンド、人工ダイヤモンド、コランダムなど研削砥石に使用される研削材であれば、どのような無機質材料をも使用することができる。結合材としては、砥石の結合材として使用されているビトリファイドまたはレジノイド、セメント、ゴム、およびガラスなどを使用することができる。   As the aggregate constituting the porous adsorbent 12, a granular material made of an alumina abrasive or a silicon carbide abrasive used for a grinding wheel is used. When an alumina abrasive is used as an aggregate, brown alumina abrasive A, white alumina abrasive WA, light red alumina abrasive PA, powdered alumina abrasive HA, artificial emery grinding as defined in JIS R6111 A material AE and an alumina zirconia abrasive AZ can be used. When the silicon carbide abrasive is an aggregate, a black silicon carbide abrasive C and a green silicon carbide abrasive GC can be used. In addition, any inorganic material can be used as long as it is an abrasive used for grinding wheels such as natural diamond, artificial diamond, and corundum. As the binding material, vitrified or resinoid, cement, rubber, glass and the like used as a binding material for a grindstone can be used.

多孔質吸着体12は、このような骨材と結合材とを有する粉粒体混合物を用いて成型金型で図示する形状に成形した後に、焼結炉において加熱焼結することにより全体的に通気性を有する構造となり、焼結処理された後に、封止層14,15が樹脂等の封止材により形成される。多孔質吸着体12の内部に流体案内路16を形成するには、成形金型により粉粒体混合物を用いて成形する際に、粉粒体混合物の内部に流体案内路網に対応した形状に形成された消失性材料を埋め込む。この消失性材料は粉粒体混合物の焼結時の熱により消失されて多孔質吸着体12の内部には格子状となった流体案内路16が形成される。   The porous adsorbent 12 is entirely formed by forming a powder mixture having such an aggregate and a binder into a shape shown in the drawing mold and then heating and sintering in a sintering furnace. After the structure has air permeability and is sintered, the sealing layers 14 and 15 are formed of a sealing material such as a resin. In order to form the fluid guide path 16 inside the porous adsorbent body 12, when forming the powder mixture using a molding die, a shape corresponding to the fluid guide path network is formed inside the powder mixture. Embed the formed extinguishing material. This vanishing material is lost by the heat during sintering of the powder mixture, and a fluid guide path 16 in the form of a lattice is formed inside the porous adsorbent 12.

多孔質吸着体12の表面は被加工物を吸着保持する吸着面13となっており、この吸着面13の大きさは、被加工物の大きさにほぼ対応している。図示する多孔質吸着体12は正方形の被加工物に対応して正方形となっているが、被加工物の形状に対応させて長方形としても良く、被加工物が円板形状であれば、図1(B)に示すように、多孔質吸着体12を円板形状としても良く、多孔質吸着体12の表面形状は被加工物に対応させて任意の形状に設定される。   The surface of the porous adsorbent 12 is an adsorbing surface 13 that adsorbs and holds the workpiece, and the size of the adsorbing surface 13 substantially corresponds to the size of the workpiece. The illustrated porous adsorbent 12 has a square shape corresponding to a square workpiece, but may have a rectangular shape corresponding to the shape of the workpiece. If the workpiece is a disc, As shown in FIG. 1 (B), the porous adsorbent 12 may have a disk shape, and the surface shape of the porous adsorbent 12 is set to an arbitrary shape corresponding to the workpiece.

多孔質吸着体12には流体案内路16に連通する第1と第2の2つの連通ポート21,22が形成されている。第1の連通ポート21は多孔質吸着体12の裏面に開口し、第2の連通ポート22は外周面に開口しており、第1の連通ポート21はベース11に形成された接続ポート23に連通している。接続ポート23には、真空供給源としての真空ポンプ24が真空配管25により接続され、真空配管25には流路開閉弁26と圧力調整弁27とが設けられている。第2の連通ポート22には、液体容器31内の液体を加圧して吐出する加圧流体供給源としての加圧ポンプ32が液体配管33により接続され、この液体配管33には流路開閉弁34と圧力調整弁35とが設けられている。   The porous adsorbent 12 is formed with first and second communication ports 21 and 22 communicating with the fluid guide path 16. The first communication port 21 opens on the back surface of the porous adsorbent 12, the second communication port 22 opens on the outer peripheral surface, and the first communication port 21 is connected to the connection port 23 formed on the base 11. Communicate. A vacuum pump 24 as a vacuum supply source is connected to the connection port 23 by a vacuum pipe 25, and a flow path opening / closing valve 26 and a pressure adjustment valve 27 are provided in the vacuum pipe 25. A pressure pump 32 as a pressurized fluid supply source that pressurizes and discharges the liquid in the liquid container 31 is connected to the second communication port 22 by a liquid pipe 33, and a flow path opening / closing valve is connected to the liquid pipe 33. 34 and a pressure regulating valve 35 are provided.

したがって、真空チャック10の吸着面13に図2(B)に二点鎖線で示すように被加工物Wを配置した状態のもとで、真空ポンプ24を駆動させると、吸着面13から外部空気が多孔質吸着体12の内部に透過流入して吸着面13とこれに配置された被加工物Wとの間は大気圧よりも低い真空状態つまり負圧状態となって、被加工物Wは吸着面13に吸着保持される。このときの吸着力は、図2(A)に示すように、多孔質吸着体12の内部には図において左右方向と上下方向とにそれぞれほぼ等間隔となって流体案内路16が網状に分散して形成されているので、吸着面13全体において大きく相違することはない。   Therefore, when the vacuum pump 24 is driven in a state where the workpiece W is disposed on the suction surface 13 of the vacuum chuck 10 as shown by a two-dot chain line in FIG. Permeate into the porous adsorbent 12 and the space between the adsorbing surface 13 and the workpiece W placed thereon becomes a vacuum state lower than atmospheric pressure, that is, a negative pressure state. It is sucked and held on the suction surface 13. At this time, as shown in FIG. 2 (A), the fluid guide passages 16 are distributed in a net-like manner in the porous adsorbent body 12 at approximately equal intervals in the horizontal direction and the vertical direction in the drawing. Therefore, there is no significant difference in the entire suction surface 13.

真空チャック10に吸着保持された被加工物Wに対する切削加工、研削加工、あるいは表面処理等の加工が終了した後には、被加工物Wを真空チャック10からディチャックするために、真空ポンプ24により流体案内路16に対する負圧空気の供給を停止し、加圧ポンプ32の駆動により液体容器31内の水等の液体を流体案内路16内に加圧供給する。流体案内路16に供給された水は、多孔質性の吸着側領域17を透過して吸着面13から吐出され、被加工物Wは吸着面13から離れて真空チャック10から取り外される。被加工物Wの真空チャック10からの取り外しつまりディチャックを水等の液体を吸着面13から吐出させて行うと、真空チャック10がクリーンルーム内で使用される場合であっても、吸着面13から圧縮空気を吐出させる場合に比して、クリーンルーム内には異物つまりパーティクルが飛散することがない。これにより、被加工物の表面への異物付着に起因する量産品の精度低下や製造歩留まりの低下が防止される。   After the processing such as cutting, grinding, or surface treatment on the workpiece W attracted and held by the vacuum chuck 10 is completed, a vacuum pump 24 is used to dechuck the workpiece W from the vacuum chuck 10. The supply of negative pressure air to the fluid guide path 16 is stopped, and the liquid such as water in the liquid container 31 is pressurized and supplied into the fluid guide path 16 by driving the pressurizing pump 32. The water supplied to the fluid guide path 16 passes through the porous suction side region 17 and is discharged from the suction surface 13, and the workpiece W is separated from the suction surface 13 and removed from the vacuum chuck 10. When the workpiece W is removed from the vacuum chuck 10, that is, the dechuck is performed by discharging a liquid such as water from the suction surface 13, even if the vacuum chuck 10 is used in a clean room, it is removed from the suction surface 13. Compared to the case where compressed air is discharged, foreign matter, that is, particles do not scatter in the clean room. As a result, it is possible to prevent a decrease in accuracy of a mass-produced product and a decrease in manufacturing yield due to adhesion of foreign matter to the surface of the workpiece.

被加工物Wをディチャックする際に流体案内路16に供給する水の圧力は、多孔質体内を透過する際における液体の粘性抵抗が気体に比べて大きいので、真空吸着のために真空ポンプ24から流体案内路16に供給される負圧空気よりも大気圧との差圧を大きく設定する必要がある。このように、ディチャック時には高い圧力の液体が流体案内路16内に供給されるが、流体案内路16は一体に成形された多孔質吸着体12の内部に形成され、吸着側領域17と支持側領域18と流路形成領域19とが組織的に一体に連なっているので、流体案内路16を区画形成する壁面の強度が高くなり、ディチャック時における多孔質吸着体12の変形が防止される。したがって、従来のように、ベースの表面に溝を形成し、ベースに多孔質吸着体を接着剤により接合して真空チャックを形成した場合に比して、ディチャック時の多孔質吸着体12の変形発生やベース11からの多孔質吸着体12の剥がれの発生がなく、被加工物の加工精度が高まるとともに多孔質吸着体12の耐久性が大幅に向上する。   The pressure of the water supplied to the fluid guide path 16 when the workpiece W is dechucked is higher in the viscosity resistance of the liquid when permeating through the porous body than the gas. Therefore, it is necessary to set the differential pressure with respect to the atmospheric pressure larger than the negative pressure air supplied to the fluid guide path 16. As described above, at the time of dechucking, a high-pressure liquid is supplied into the fluid guide path 16, but the fluid guide path 16 is formed inside the integrally formed porous adsorbent body 12 and supports the suction side region 17. Since the side area 18 and the flow path forming area 19 are systematically connected integrally, the strength of the wall surface defining the fluid guide path 16 is increased, and the deformation of the porous adsorbent 12 during the dechucking is prevented. The Therefore, as compared with the conventional case where a groove is formed on the surface of the base and the porous adsorbent is bonded to the base with an adhesive to form a vacuum chuck, the porous adsorbent 12 at the time of dechucking is formed. There is no occurrence of deformation or peeling of the porous adsorbent 12 from the base 11, the processing accuracy of the workpiece is increased, and the durability of the porous adsorbent 12 is greatly improved.

図3(A)は本発明の他の実施の形態である真空チャック10を示す断面図であり、図3(B)は図3(A)における3B−3B線断面図である。この真空チャック10は図2に示すものと同様にベース11と多孔質吸着体12とを有し、それぞれ四辺形となっている。図3(A)に示す多孔質吸着体12の内部に図において左右方向に平行となって形成される複数の通路は、相互間のピッチPが多孔質吸着体12の周辺部よりも中央部分が小さく設定されている。同様に、上下方向に平行となって形成される複数の通路は、相互間のピッチPが多孔質吸着体の周辺部よりも中央部分が小さく設定されている。これにより、流体案内路16は全体的に格子状ないし網状に分散形成されるとともに、多孔質吸着体12の中央部分における流体案内路16の占める面積が周辺部における流体案内路16の占める面積よりも大きくなっている。   3A is a sectional view showing a vacuum chuck 10 according to another embodiment of the present invention, and FIG. 3B is a sectional view taken along line 3B-3B in FIG. 3A. This vacuum chuck 10 has a base 11 and a porous adsorbent 12 as shown in FIG. 2, and each has a quadrilateral shape. In the plurality of passages formed in the porous adsorbent body 12 shown in FIG. 3A in parallel in the left-right direction in the drawing, the pitch P between them is a central portion rather than the peripheral portion of the porous adsorbent body 12. Is set smaller. Similarly, in the plurality of passages formed in parallel in the vertical direction, the pitch P between them is set to be smaller in the central portion than in the peripheral portion of the porous adsorbent. As a result, the fluid guide paths 16 are dispersed and formed as a whole in a lattice shape or a net shape, and the area occupied by the fluid guide paths 16 in the central portion of the porous adsorbent 12 is larger than the area occupied by the fluid guide paths 16 in the peripheral portion. Is also getting bigger.

したがって、被加工物Wを吸着する際に流体案内路16に真空を供給すると、吸着面13の中央部分から多孔質吸着体12の内部には周辺部よりも多くの空気が流入して空気の透過量が周辺部よりも多くなるので、吸着面13と被加工物Wとの間の真空度は周辺部よりも中央部の方が早く所定値に到達する。このように多孔質吸着体12の中央部分の通気性を高めると、被加工物Wを吸着面13に吸着保持させる際には、まず、被加工物Wは通気性が高く、つまり透過量が多く真空吸引力が高い中央部分から始めに吸着され、その後、被加工物Wと吸着面13との間に挟み込まれる空気を押し出すように周辺部に向かって吸着される。周辺部が先に吸着面13に吸着され、その後に中央部が吸着されると、吸着保持された被加工物Wの内部に歪みが発生するおそれがあるが、吸着面13の中央部における負圧空気の透過量を周辺部よりも高めることにより、吸着時に一時的にも吸着面13と被加工物Wとの間に空気が取り込まれることがないので、被加工物Wは内部に歪みを発生させることなく吸着面13に保持されることになる。   Accordingly, when a vacuum is supplied to the fluid guide path 16 when the workpiece W is adsorbed, more air flows from the central portion of the adsorption surface 13 into the porous adsorbent 12 than in the peripheral portion. Since the permeation amount is larger than that in the peripheral portion, the degree of vacuum between the suction surface 13 and the workpiece W reaches a predetermined value earlier in the central portion than in the peripheral portion. As described above, when the air permeability of the central portion of the porous adsorbent 12 is increased, when the workpiece W is adsorbed and held on the adsorption surface 13, first, the workpiece W has high air permeability, that is, the permeation amount is high. The vacuum is first sucked from the central portion where the vacuum suction force is high, and then sucked toward the periphery so as to push out the air sandwiched between the workpiece W and the suction surface 13. If the peripheral part is first adsorbed on the adsorption surface 13 and then the central part is adsorbed, there is a risk that distortion will occur inside the workpiece W that is adsorbed and held. By increasing the permeation amount of the pressurized air from the periphery, air is not taken in between the suction surface 13 and the workpiece W even during the suction, so that the workpiece W is distorted inside. It is held on the suction surface 13 without being generated.

図3(B)に示すように、多孔質吸着体12に形成された連通ポート21に連通させてベース11に形成された接続ポート23には共通配管36が接続され、この共通配管36には切換弁37を介して真空配管25と、液体配管33とが接続されている。したがって、この場合には、共通配管36を介して流体案内路16には負圧空気と加圧液体とを供給することができる。ただし、図2(B)に示す場合と同様に、多孔質吸着体12の外周面に開口させて連通ポート22を形成し、その連通ポート22に液体配管33を接続するようにしても良い。なお、図3(B)においては、図2(B)に示された負圧空気供給回路と加圧流体供給回路を構成する部材と同一の機能を有する部材には同一の符号が付されている。   As shown in FIG. 3B, a common pipe 36 is connected to the connection port 23 formed in the base 11 so as to communicate with the communication port 21 formed in the porous adsorbent body 12. The vacuum pipe 25 and the liquid pipe 33 are connected via the switching valve 37. Therefore, in this case, negative pressure air and pressurized liquid can be supplied to the fluid guide path 16 via the common pipe 36. However, similarly to the case shown in FIG. 2B, the communication port 22 may be formed by opening on the outer peripheral surface of the porous adsorbent 12, and the liquid pipe 33 may be connected to the communication port 22. 3B, members having the same functions as the members constituting the negative pressure air supply circuit and the pressurized fluid supply circuit shown in FIG. 2B are denoted by the same reference numerals. Yes.

図4(A)は本発明の他の実施の形態である真空チャック10を示す断面図であり、図4(B)は図4(A)における4B−4B線断面図である。この真空チャック10は図2および図3に示すものと同様にベース11と多孔質吸着体12とを有し、それぞれ四辺形となっている。   4A is a sectional view showing a vacuum chuck 10 according to another embodiment of the present invention, and FIG. 4B is a sectional view taken along line 4B-4B in FIG. 4A. This vacuum chuck 10 has a base 11 and a porous adsorbent 12 similar to those shown in FIGS. 2 and 3, each having a quadrilateral shape.

図4(A)に示す多孔質吸着体12の内部には、多孔質吸着体12の中央部分における格子状の流体案内路16aと、周辺部における流体案内路16bとがそれぞれ相互に分離された独立案内路となって形成されている。それぞれの流体案内路16a,16bに連通させて多孔質吸着体12には連通ポート21a,21bが形成され、それぞれの連通ポートに連通する接続ポート23a,23bがベース11に形成されている。それぞれの接続ポート23a,23bには図3に示す場合と同様に共通配管36a,36bが接続され、それぞれの共通配管36a,36bには切換弁37a,37bを介して真空配管25と液体配管33とが接続されている。   In the porous adsorbent 12 shown in FIG. 4A, a lattice-like fluid guide path 16a in the central portion of the porous adsorbent 12 and a fluid guide path 16b in the peripheral portion are separated from each other. It is formed as an independent guideway. Communication ports 21a and 21b are formed in the porous adsorbent body 12 so as to communicate with the respective fluid guide paths 16a and 16b, and connection ports 23a and 23b communicating with the respective communication ports are formed in the base 11. Similar to the case shown in FIG. 3, common pipes 36a and 36b are connected to the respective connection ports 23a and 23b, and the vacuum pipe 25 and the liquid pipe 33 are connected to the respective common pipes 36a and 36b via switching valves 37a and 37b. And are connected.

図4に示すように、多孔質吸着体12の内部には中心部と周辺部とで分離独立させて別々の流体案内路16a,16bが分散して網状に形成されている。したがって、図4(B)に示すように、連通ポート21aを介して流体案内路16aに供給される負圧空気の圧力を圧力調整弁27aにより調圧し、連通ポート21bを介して流体案内路16bに供給される負圧空気の圧力を圧力調整弁27bにより調圧するようにすると、中央部の流体案内路16aに供給される負圧空気の真空度を、周辺部の流体案内路16bに供給される負圧空気の真空度よりも高くすることができる。   As shown in FIG. 4, inside the porous adsorbent 12, separate fluid guide paths 16a and 16b are dispersed and formed in a net shape so as to be separated and independent at the central portion and the peripheral portion. Therefore, as shown in FIG. 4B, the pressure of the negative pressure air supplied to the fluid guide path 16a via the communication port 21a is regulated by the pressure regulating valve 27a, and the fluid guide path 16b via the communication port 21b. When the pressure of the negative pressure air supplied to the pressure is regulated by the pressure regulating valve 27b, the degree of vacuum of the negative pressure air supplied to the center fluid guide passage 16a is supplied to the peripheral fluid guide passage 16b. The degree of vacuum of the negative pressure air can be increased.

これにより、図3に示した多孔質吸着体12と同様に、被加工物Wを吸着する際に吸着面13の中央部分から多孔質吸着体12の内部には周辺部よりも多くの空気が流入するので、中央部の空気透過量は周辺部よりも多くなり、吸着面13と被加工物Wとの間の真空度は周辺部よりも中央部の方が早く所定値に到達する。このように多孔質吸着体12の中央部分の通気性を高めると、被加工物Wを吸着面13に吸着保持させる際には、まず、被加工物Wは通気性つまり透過性が高く真空吸引力が高い中央部分から始めに吸着され、その後、被加工物Wと吸着面13との間に挟み込まれる空気を押し出すように周辺部に向かって吸着される。これにより、被加工物Wは内部に歪みを発生させることなく吸着面13に保持されることになる。   Thus, like the porous adsorbent 12 shown in FIG. 3, when adsorbing the workpiece W, more air than the peripheral portion is present from the central portion of the adsorbing surface 13 to the inside of the porous adsorbent 12. Since the air flows in, the air permeation amount in the central portion is larger than that in the peripheral portion, and the degree of vacuum between the suction surface 13 and the workpiece W reaches the predetermined value earlier in the central portion than in the peripheral portion. When the air permeability of the central portion of the porous adsorbent 12 is thus increased, when the workpiece W is adsorbed and held on the adsorption surface 13, first, the workpiece W is highly breathable, that is, highly permeable and vacuum suctioned. It is first adsorbed from the central part where the force is high, and then adsorbed toward the periphery so as to push out the air sandwiched between the workpiece W and the adsorption surface 13. As a result, the workpiece W is held on the suction surface 13 without causing distortion inside.

図4に示すように、流体案内路16を中心部の流体案内路16aと周辺部の流体案内路16bとに分離させると、それぞれに真空ポンプ24から同一圧力の負圧空気を供給するようにしても、中心部の流体案内路16aに対して周辺部の流体案内路16bよりも早く負圧空気を供給すれば、上述した場合と同様に、まず、被加工物Wは中央部分から始めに吸着され、その後、被加工物Wと吸着面13との間に挟み込まれる空気を押し出すように周辺部に向かって吸着される。このように、両方の流体案内路16a,16bに時間差を持たせて真空を供給する場合には、それぞれの切換弁37a,37bに対して制御部39から流路切換信号を送るようにする。   As shown in FIG. 4, when the fluid guide channel 16 is separated into a central fluid guide channel 16a and a peripheral fluid guide channel 16b, negative pressure air of the same pressure is supplied from the vacuum pump 24 to each. However, if negative pressure air is supplied to the fluid guide passage 16a in the central portion earlier than the fluid guide passage 16b in the peripheral portion, the workpiece W starts from the central portion first as in the case described above. It is adsorbed and then adsorbed toward the periphery so as to push out the air sandwiched between the workpiece W and the adsorption surface 13. As described above, when a vacuum is supplied to both the fluid guide paths 16a and 16b with a time difference, a flow path switching signal is sent from the control unit 39 to each of the switching valves 37a and 37b.

図5は本発明の他の実施の形態である真空チャック10を示す断面図である。この真空チャック10は、図1(B)に示すように、ベース11と多孔質吸着体12とがそれぞれ円形となっている。この多孔質吸着体12の内部には、同心円状になって流体案内路16が分散して形成されるとともに、流体案内路16は多孔質吸着体12の中央部分における同心円状の流体案内路16aと、周辺部における同心円状の流体案内路16bとに形成され、それぞれの流体案内路16a,16bは相互に分離された独立案内路となっている。流体案内路16aを構成する同心円状の複数本の流体案内路は放射方向の連通路16cにより相互に連通されて流体案内路網となり、流体案内路16bを構成する同心円状の複数本の流体案内路は放射方向の連通路16cにより相互に連通されて流体案内路網となっている。   FIG. 5 is a sectional view showing a vacuum chuck 10 according to another embodiment of the present invention. As shown in FIG. 1B, the vacuum chuck 10 has a base 11 and a porous adsorbent 12 each having a circular shape. Inside the porous adsorbent 12, concentric fluid guide paths 16 are formed in a dispersed manner, and the fluid guide path 16 is concentric fluid guide paths 16a in the central portion of the porous adsorbent 12. And the concentric fluid guide path 16b in the peripheral portion, and the fluid guide paths 16a and 16b are independent guide paths separated from each other. A plurality of concentric fluid guide paths constituting the fluid guide path 16a communicate with each other by a radial communication path 16c to form a fluid guide path network, and a plurality of concentric fluid guides constituting the fluid guide path 16b. The paths communicate with each other by a radial communication path 16c to form a fluid guide path network.

流体案内路16aに連通する連通ポート21aが多孔質吸着体12に形成され、流体案内路16bに連通する連通ポート21bが多孔質吸着体12に形成され、それぞれは図4(B)と同様に、図示しないベースに形成された接続ポートに連通されている。図5に示す真空チャック10における負圧空気供給回路と加圧流体供給回路の構造は、図4(B)に示す場合と同様となっている。   A communication port 21a communicating with the fluid guide path 16a is formed in the porous adsorbent body 12, and a communication port 21b communicating with the fluid guide path 16b is formed in the porous adsorbent body 12, each as in FIG. 4B. The communication port is connected to a connection port formed on a base (not shown). The structures of the negative pressure air supply circuit and the pressurized fluid supply circuit in the vacuum chuck 10 shown in FIG. 5 are the same as those shown in FIG.

それぞれの流体案内路16a,16bにおける同心円状の流体案内路の径方向のピッチは同一に設定されているが、中央部分における流体案内路16aの幅寸法R1は、周辺部における同心円状の流体案内路16bの幅寸法R2よりも大きく設定されている。したがって、図3に示した多孔質吸着体12と同様に、被加工物Wを吸着する際に吸着面13の中央部分から多孔質吸着体12の内部には周辺部よりも多くの空気が流入し、空気の透過量が周辺部よりも多いので、吸着面13と被加工物Wとの間の真空度は周辺部よりも中央部の方が早く所定値に到達する。このように多孔質吸着体12の中央部分の通気性つまり透過性を高めると、被加工物Wを吸着面13に吸着保持させる際には、まず、被加工物Wは通気性が高く真空吸引力が高い中央部分から始めに吸着され、その後、被加工物Wと吸着面13との間に挟み込まれる空気を押し出すように周辺部に向かって吸着される。   The pitches in the radial direction of the concentric fluid guide paths in each of the fluid guide paths 16a and 16b are set to be the same, but the width dimension R1 of the fluid guide path 16a in the center portion is concentric fluid guide in the peripheral portion. It is set larger than the width dimension R2 of the path 16b. Therefore, like the porous adsorbent 12 shown in FIG. 3, when adsorbing the workpiece W, more air flows from the central portion of the adsorbing surface 13 into the porous adsorbent 12 than the peripheral portion. In addition, since the air permeation amount is larger than that in the peripheral portion, the degree of vacuum between the suction surface 13 and the workpiece W reaches a predetermined value earlier in the central portion than in the peripheral portion. When the air permeability, that is, the permeability of the central portion of the porous adsorbent 12 is increased as described above, when the work W is sucked and held on the sucking surface 13, the work W is first of high air permeability and vacuum suction. It is first adsorbed from the central part where the force is high, and then adsorbed toward the periphery so as to push out the air sandwiched between the workpiece W and the adsorption surface 13.

図5に示す流体案内路16は同心円状となって形成されているが、螺旋状に流体案内路を形成するようにしても良い。その場合にも、図5に示すように、複数の流体案内路16a,16bに分離して形成するようにしても良い。   Although the fluid guide path 16 shown in FIG. 5 is formed concentrically, the fluid guide path may be formed in a spiral shape. Also in that case, as shown in FIG. 5, it may be formed separately into a plurality of fluid guide paths 16a and 16b.

上述したそれぞれの真空チャック10においては、一体に成形された多孔質吸着体12の内部に流体案内路が形成されているので、多孔質吸着体12とベース11との間で流体案内路を形成する場合に比して多孔質吸着体12の強度を高めることができ、被加工物を吸着保持するための負圧空気を流体案内路に供給し、被加工物をディチャックするときに高い圧力の水等の液体を流体案内路に供給しても、多孔質吸着体12の変形発生を防止できる。ただし、真空チャックの使用環境によっては、ディチャックのために液体を流体案内路に供給することなく、圧縮空気を供給するようにしても良い。また、真空チャック10は被加工物のディチャック時に流体案内路に加圧流体を供給することなく、流体案内路には吸着保持のための負圧空気のみを供給するようにしても良い。   In each of the vacuum chucks 10 described above, since the fluid guide path is formed inside the integrally formed porous adsorbent body 12, the fluid guide path is formed between the porous adsorbent body 12 and the base 11. The strength of the porous adsorbent 12 can be increased as compared with the case where the negative pressure air for adsorbing and holding the workpiece is supplied to the fluid guide path, and the pressure is high when the workpiece is dechucked. Even if a liquid such as water is supplied to the fluid guide path, deformation of the porous adsorbent 12 can be prevented. However, depending on the usage environment of the vacuum chuck, compressed air may be supplied without supplying liquid to the fluid guide path for dechucking. Further, the vacuum chuck 10 may supply only the negative pressure air for adsorbing and holding the fluid guide path without supplying the pressurized fluid to the fluid guide path when the workpiece is dechucked.

本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。例えば、図2に示すように、同一の幅の流体案内路を等ピッチで多孔質吸着体12の内部に形成した場合においても、中央部における流体案内路の幅を周辺部よりも大きく設定し、図3と同様の吸着保持時の機能を達成するようにしても良い。また、図4および図5に示す多孔質吸着体においては、中央部における流体案内路と周辺部における流体案内路とに2分割しているが、中央部から周辺部に向けて3分割以上に流体案内路を分離独立して形成するようにしても良い。さらに、真空チャック10は図示する場合には吸着面13が上向きとなって示されており、被加工物Wを真空チャック10の上面で支持するようになっているが、真空チャック10をその吸着面13が下向きになるようにして使用して、下面で被加工物Wを支持するようにしても良い。   The present invention is not limited to the embodiment described above, and various modifications can be made without departing from the scope of the invention. For example, as shown in FIG. 2, even when fluid guide channels having the same width are formed in the porous adsorbent body 12 at an equal pitch, the width of the fluid guide channel in the central part is set larger than that in the peripheral part. The function at the time of adsorption holding similar to FIG. 3 may be achieved. Moreover, in the porous adsorbent shown in FIG. 4 and FIG. 5, the fluid guide path in the central part and the fluid guide path in the peripheral part are divided into two, but it is divided into three or more parts from the central part toward the peripheral part. The fluid guide path may be formed separately and independently. Further, in the case of the vacuum chuck 10, the suction surface 13 is shown facing upward, and the workpiece W is supported on the upper surface of the vacuum chuck 10. It may be used with the surface 13 facing downward to support the workpiece W on the lower surface.

(A)は本発明の一実施の形態である真空チャックの外観を示す斜視図であり、(B)は本発明の他の実施の形態である真空チャックの外観を示す斜視図である。(A) is a perspective view which shows the external appearance of the vacuum chuck which is one embodiment of this invention, (B) is a perspective view which shows the external appearance of the vacuum chuck which is other embodiment of this invention. (A)は図1(A)における2A−2A線拡大断面図であり、(B)は図2(A)における2B−2B線断面図である。(A) is the 2A-2A line expanded sectional view in FIG. 1 (A), (B) is the 2B-2B sectional view taken on the line in FIG. 2 (A). (A)は本発明の他の実施の形態である真空チャックを示す断面図であり、(B)は図3(A)における3B−3B線断面図である。(A) is sectional drawing which shows the vacuum chuck which is other embodiment of this invention, (B) is the 3B-3B sectional view taken on the line in FIG. 3 (A). (A)は本発明の他の実施の形態である真空チャックを示す断面図であり、(B)は図4(A)における4B−4B線断面図である。(A) is sectional drawing which shows the vacuum chuck which is other embodiment of this invention, (B) is the 4B-4B sectional view taken on the line in FIG. 4 (A). 本発明の他の実施の形態である真空チャックを示す断面図である。It is sectional drawing which shows the vacuum chuck which is other embodiment of this invention.

符号の説明Explanation of symbols

10 真空チャック
11 ベース
12 多孔質吸着体
13 吸着面
14,15 封止層
16 流体案内路
17 吸着側領域
18 支持側領域
19 流路形成領域
21,22 連通ポート
23 接続ポート
24 真空ポンプ(真空供給源)
25 真空配管
31 液体容器
32 加圧ポンプ(加圧流体供給源)
33 液体配管
DESCRIPTION OF SYMBOLS 10 Vacuum chuck 11 Base 12 Porous adsorption body 13 Adsorption surface 14, 15 Sealing layer 16 Fluid guide path 17 Adsorption side area 18 Support side area 19 Flow path formation area 21, 22 Communication port 23 Connection port 24 Vacuum pump (vacuum supply) source)
25 Vacuum piping 31 Liquid container 32 Pressurizing pump (pressurized fluid supply source)
33 Liquid piping

Claims (6)

被加工物を真空吸着する真空チャックであって、
無機質材料の粉粒体からなる骨材と当該骨材相互を連結する結合材との混合物を焼結して形成され、表面に被加工物を吸着保持する吸着面が設けられた多孔質吸着体を有し、
前記吸着面に透過して連通する流体案内路を前記多孔質吸着体の内部に形成し、
前記流体案内路に連通するとともに真空供給源に接続される連通ポートを前記多孔質吸着体に形成することを特徴とする真空チャック。
A vacuum chuck for vacuum-sucking a workpiece,
A porous adsorbent formed by sintering a mixture of an aggregate composed of granular material of inorganic material and a binder for connecting the aggregates, and having an adsorption surface for adsorbing and holding a workpiece on the surface Have
Forming a fluid guide path that penetrates and communicates with the adsorption surface inside the porous adsorbent;
A vacuum chuck characterized in that a communication port communicating with the fluid guide path and connected to a vacuum supply source is formed in the porous adsorbent.
請求項1記載の真空チャックにおいて、前記吸着面に吸着保持された被加工物を前記吸着面から離す際に前記流体案内路に加圧流体を供給することを特徴とする真空チャック。   2. The vacuum chuck according to claim 1, wherein a pressurized fluid is supplied to the fluid guide path when the work piece held by the suction surface is separated from the suction surface. 請求項1または2記載の真空チャックにおいて、前記流体案内路を前記多孔質吸着体の内部に格子状、同心円状または螺旋状に分散して形成することを特徴とする真空チャック。   3. The vacuum chuck according to claim 1, wherein the fluid guide path is formed in the porous adsorbent so as to be dispersed in a lattice shape, a concentric circle shape, or a spiral shape. 請求項1〜3のいずれか1項に記載の真空チャックにおいて、前記多孔質吸着体の中央部における流体の透過量と周辺部における流体の透過量とを相違させることを特徴とする真空チャック。   4. The vacuum chuck according to claim 1, wherein a permeation amount of fluid in a central portion of the porous adsorbent is different from a permeation amount of fluid in a peripheral portion. 5. 請求項1〜4のいずれか1項に記載の真空チャックにおいて、前記流体案内路を前記吸着体の中央部における流体案内路と、周辺部における流体案内路との複数の独立案内路に分離し、前記吸着面に被加工物を吸着保持する際に、それぞれの独立案内路に時間差を持たせて真空を供給することを特徴とする真空チャック。   5. The vacuum chuck according to claim 1, wherein the fluid guide path is divided into a plurality of independent guide paths including a fluid guide path in a central portion of the adsorbent and a fluid guide path in a peripheral portion. A vacuum chuck for supplying a vacuum with a time difference between the independent guide paths when the workpiece is sucked and held on the suction surface. 請求項1〜4のいずれか1項に記載の真空チャックにおいて、前記流体案内路を前記多孔質吸着体の中央部における流体案内路と、周辺部における流体案内路との複数の独立案内路に分離し、前記吸着面に被加工物を吸着保持する際に、それぞれの独立案内路に供給される真空の圧力を相違させることを特徴とする真空チャック。   The vacuum chuck according to any one of claims 1 to 4, wherein the fluid guide path is formed into a plurality of independent guide paths including a fluid guide path in a central portion of the porous adsorbent and a fluid guide path in a peripheral portion. A vacuum chuck characterized in that when the workpiece is separated and held on the suction surface by suction, the vacuum pressure supplied to each independent guide path is made different.
JP2005330550A 2005-11-15 2005-11-15 Vacuum chuck Expired - Fee Related JP4214147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005330550A JP4214147B2 (en) 2005-11-15 2005-11-15 Vacuum chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005330550A JP4214147B2 (en) 2005-11-15 2005-11-15 Vacuum chuck

Publications (2)

Publication Number Publication Date
JP2007136569A true JP2007136569A (en) 2007-06-07
JP4214147B2 JP4214147B2 (en) 2009-01-28

Family

ID=38200040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005330550A Expired - Fee Related JP4214147B2 (en) 2005-11-15 2005-11-15 Vacuum chuck

Country Status (1)

Country Link
JP (1) JP4214147B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253636A (en) * 2009-04-27 2010-11-11 Murata Machinery Ltd Article holding device
JP2011003691A (en) * 2009-06-18 2011-01-06 Okamoto Machine Tool Works Ltd Pad transfer mechanism for semiconductor substrate
JP2011009423A (en) * 2009-06-25 2011-01-13 Disco Abrasive Syst Ltd Holding table assembly and method of manufacturing holding table
JP2011009424A (en) * 2009-06-25 2011-01-13 Disco Abrasive Syst Ltd Holding table assembly and method of manufacturing holding table
EP2520415A1 (en) * 2011-05-03 2012-11-07 S.E.T. Vacuum component support and corresponding component assembly machine
CN102837211A (en) * 2012-09-04 2012-12-26 大连职业技术学院 Vacuum clamp for machining thin-plate type part
KR101323453B1 (en) 2011-10-28 2013-11-04 임권현 Adsorption cover for vacuum-chuck

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6226596B2 (en) * 2013-07-11 2017-11-08 東京応化工業株式会社 Support separator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253636A (en) * 2009-04-27 2010-11-11 Murata Machinery Ltd Article holding device
JP2011003691A (en) * 2009-06-18 2011-01-06 Okamoto Machine Tool Works Ltd Pad transfer mechanism for semiconductor substrate
JP2011009423A (en) * 2009-06-25 2011-01-13 Disco Abrasive Syst Ltd Holding table assembly and method of manufacturing holding table
JP2011009424A (en) * 2009-06-25 2011-01-13 Disco Abrasive Syst Ltd Holding table assembly and method of manufacturing holding table
EP2520415A1 (en) * 2011-05-03 2012-11-07 S.E.T. Vacuum component support and corresponding component assembly machine
FR2974943A1 (en) * 2011-05-03 2012-11-09 S E T COMPONENT SUPPORT BY AIR LOW PRESSURE AND MACHINE FOR THE ASSEMBLY OF CORRESPONDING COMPONENTS
KR101323453B1 (en) 2011-10-28 2013-11-04 임권현 Adsorption cover for vacuum-chuck
CN102837211A (en) * 2012-09-04 2012-12-26 大连职业技术学院 Vacuum clamp for machining thin-plate type part

Also Published As

Publication number Publication date
JP4214147B2 (en) 2009-01-28

Similar Documents

Publication Publication Date Title
JP4214147B2 (en) Vacuum chuck
JP5730071B2 (en) Adsorption member
JP2021167251A (en) Non-contact transport device and non-contact adsorption disk
JP2008187098A (en) Suction method and suction device for substrate
TWI513548B (en) A grindstone and a grinding and polishing device using the grindstone
JP4908263B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP6154173B2 (en) Vacuum suction device and suction plate
KR101166430B1 (en) A porous chuck of fixing semiconductor wafer with vacuum suction
TW201637782A (en) Grinding wheel
JP2004298970A (en) Vacuum chuck
CN109890563A (en) Grinding stone
JPH11243135A (en) Vacuum chucking board
JP2001341042A (en) Vacuum chuck and method for manufacturing the same
JP2005135940A (en) Universal chucking mechanism of semiconductor wafer and wafer mounting plate
JP2007180102A (en) Suction body and manufacturing method thereof
TWI680827B (en) Manufacturing method of polishing head, polishing head and polishing device
JP2010017786A (en) Holding jig
TWI686266B (en) Dresser with porous structure
JP2009297817A (en) Method of manufacturing polishing pad, polishing pad, and method of manufacturing substrate using the same
JP2008204995A (en) Method of polishing semiconductor wafer
TWI667102B (en) Grinding tools
JP2012135838A (en) Member for placing
JP2003234317A (en) Wafer-mounting plate for universal chuck
JP2000021959A (en) Vacuum chuck disk
JP6231334B2 (en) Thin plate substrate grinding method and grinding apparatus used therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070510

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080922

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080922

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20081016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4214147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees