WO2019181649A1 - Poudre pour contact électrique, matériau de contact électrique, contact électrique et procédé de production de poudre pour contact électrique - Google Patents

Poudre pour contact électrique, matériau de contact électrique, contact électrique et procédé de production de poudre pour contact électrique Download PDF

Info

Publication number
WO2019181649A1
WO2019181649A1 PCT/JP2019/009988 JP2019009988W WO2019181649A1 WO 2019181649 A1 WO2019181649 A1 WO 2019181649A1 JP 2019009988 W JP2019009988 W JP 2019009988W WO 2019181649 A1 WO2019181649 A1 WO 2019181649A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical contact
metal oxide
oxide particles
particles
powder
Prior art date
Application number
PCT/JP2019/009988
Other languages
English (en)
Japanese (ja)
Inventor
佑樹 河島
貴大 上田
加本 貴則
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2019181649A1 publication Critical patent/WO2019181649A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • H01H1/0237Composite material having a noble metal as the basic material and containing oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/025Composite material having copper as the basic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/04Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts

Definitions

  • the present invention relates to an electric contact powder, an electric contact material, an electric contact, and a method for producing the electric contact powder.
  • Patent Document 1 a nanocomposite powder obtained by mixing SnO 2 (tin oxide), La 2 O 3 (lanthanum oxide), CuO (copper oxide), and CdO 2 (cadmium oxide) and Ag (silver) powder are used.
  • SnO 2 titanium oxide
  • La 2 O 3 lanthanum oxide
  • CuO copper oxide
  • CdO 2 cadmium oxide
  • Ag silver powder
  • An object of this invention is to provide the manufacturing method of the powder for electrical contacts, electrical contact material, an electrical contact, and the powder for electrical contacts which can make cost reduction and maintenance of electrical conductivity compatible.
  • One aspect of the electric contact powder according to the present invention includes Ag—Cu alloy particles and metal oxide particles. *
  • One embodiment of the electrical contact material according to the present invention includes Ag—Cu alloy particles and metal oxide particles. *
  • One embodiment of the electrical contact according to the present invention includes an Ag—Cu alloy and a metal oxide.
  • One aspect of the method for producing a powder for electrical contacts according to the present invention is a method of mixing metal oxide particles on the surface of Ag-Cu alloy particles by mixing Ag-Cu alloy particles and metal oxide particles. A process is provided.
  • a powder for an electrical contact it is possible to provide a powder for an electrical contact, an electrical contact material, an electrical contact, and a method for producing the electrical contact powder that can achieve both cost reduction and maintenance of electrical conductivity.
  • FIG. 1 is a schematic diagram for explaining a method for producing a powder for electrical contacts, an electrical contact material, and an electrical contact.
  • FIG. 2 is an enlarged image of an example of Ag—Cu alloy particles with an electron microscope.
  • FIG. 3 is an image obtained by enlarging an example of the metal oxide particles with an electron microscope.
  • FIG. 4 is an image obtained by enlarging an example of the electric contact powder with an electron microscope.
  • FIG. 1 is a schematic diagram for explaining a method of manufacturing the electrical contact powder 10, the electrical contact material 20, and the electrical contact 30.
  • the electrical contact powder 10, the electrical contact material 20, and the electrical contact 30 according to the present embodiment will be described according to these manufacturing methods with reference to FIG. 1. *
  • FIG. 2 is an image obtained by enlarging an example of the Ag—Cu alloy particle 11 at a magnification of 2,000 with an electron microscope.
  • FIG. 3 is an image obtained by enlarging an example of the metal oxide particles 12 by 2,000 times with an electron microscope. *
  • the Ag—Cu alloy particles 11 are composed of an alloy of Ag (silver) and Cu (copper). As described above, by using Ag—Cu alloy particles in which part of Ag is replaced with Cu, the electrical conductivity of the electrical contact 30 is maintained as compared with the case of using the conventional Ag-based electrical contact powder. Cost reduction can be achieved. *
  • the metal oxide particles 12 are made of a well-known metal oxide used for improving the welding resistance and arc wear resistance of the electrical contact 30.
  • the metal oxide particles 12 can be composed of, for example, at least one selected from SnO 2 , ZnO, In 2 O 3 , and CdO 2 , and SnO 2 is particularly suitable, but is not limited thereto.
  • the ratio of the Ag—Cu alloy particles 11 can be 85% by mass or more and 99.5% by mass or less, and the ratio of the metal oxide particles 12 can be 0.5% by mass or more and 15% by mass or less. . From the viewpoint of maintaining the electrical conductivity of the electrical contact 30, the ratio of the Ag—Cu alloy particles 11 is preferably 90% by mass or more, and the ratio of the metal oxide particles 12 is preferably 10% by mass or less. From the viewpoint of improving the welding resistance and arc wear resistance of the electrical contact 30, the ratio of the Ag—Cu alloy particles 11 is preferably 10% by mass or less, and the ratio of the metal oxide particles 12 is 0.5% by mass or more. Is preferred. *
  • the proportion of Cu in the Ag—Cu alloy particles 11 can be 20 mass% or more and 90 mass% or less. From the viewpoint of maintaining the oxidation resistance, heat resistance and impact resistance of the electrical contact 30, the ratio of Cu in the Ag—Cu alloy particles 11 is preferably 70% by mass or less. From the viewpoint of cost reduction, the proportion of Cu in the Ag—Cu alloy particles 11 is preferably 30% by mass or more. *
  • the average particle diameter of the Ag—Cu alloy particles 11 can be, for example, 1 ⁇ m or more and 100 ⁇ m or less.
  • the average particle diameter of the metal oxide particles 12 can be, for example, 10 nm or more and 1000 nm or less.
  • the “average particle diameter” is a volume-based cumulative 50% particle diameter measured by a laser diffraction particle size distribution measuring apparatus using a laser diffraction scattering method (for example, model SALD-2300 manufactured by Shimadzu Corporation). (D50 diameter). *
  • the average particle diameter of the metal oxide particles 12 is preferably smaller than the average particle diameter of the Ag—Cu alloy particles 11. Thereby, since the metal oxide particles 12 can be widely distributed inside the electrical contact 30, it is possible to further improve the welding resistance and arc wear resistance.
  • the average particle diameter of the metal oxide particles 12 is particularly preferably 1/10 or less of the average particle diameter of the Ag—Cu alloy particles 11. *
  • FIG. 4 is an image obtained by enlarging an example of the electric contact powder 10 with an electron microscope at a magnification of 10,000 times. As shown in FIG. 4, the metal oxide particles 12 adhere to the surface of the Ag—Cu alloy particles 11. Thereby, since the metal oxide particles 12 can be dispersed inside the electrical contact 30 described later, the welding resistance and arc wear resistance of the electrical contact 30 can be improved. *
  • the metal oxide particles 12 may be merely placed on the surface of the Ag—Cu alloy particles 11 or may be embedded in the surface of the Ag—Cu alloy particles 11. *
  • the metal oxide particles 12 uniformly adhere to the surface of the Ag—Cu alloy particles 11.
  • the metal oxide particles 12 may be continued in layers on the surface of the Ag—Cu alloy particles 11.
  • the metal oxide particles 12 preferably cover at least part of the surface of the Ag—Cu alloy particles 11. More preferably, the metal oxide particles 12 cover the entire surface of the Ag—Cu alloy particles 11.
  • the metal oxide particles 12 are easily separated from the Ag—Cu alloy particles 11. Therefore, it is difficult to attach the metal oxide particles 12 to the surface of the Ag—Cu alloy particles 11 in the electric contact powder.
  • an electrical contact is produced using the electrical contact powder in which the metal oxide particles 12 are separated from the Ag—Cu alloy particles 11 in this way, the metal oxide particles 12 are segregated inside the electrical contacts, resulting in adhesion resistance and resistance. Arc wear is reduced.
  • the high-speed air impact method is a method in which a surface of a certain type of fine particles is surface-modified or compounded with other types of fine particles by a force mainly composed of impact force while dispersing multiple types of powders in a high-speed air flow.
  • a force mainly composed of impact force while dispersing multiple types of powders in a high-speed air flow.
  • Technology By using this high-speed impact-in-air method, the separation of the metal oxide particles 12 is suppressed as compared with the conventional ball milling, and the metal oxide particles 12 are more uniformly formed on the surface of the Ag—Cu alloy particles 11. In addition, it is possible to adhere efficiently and prevent contamination from media (balls).
  • the welding resistance and arc wear resistance of the electrical contact 30 can be further improved, and contamination of the electrical contact 30 can also be suppressed.
  • a hybridization system Naara Machinery Co., Ltd., model NHS-0
  • a hybridization system can be used for the mixer using the high-speed airflow impact method.
  • the mixing method of the Ag—Cu alloy particles 11 and the metal oxide particles 12 is not limited to the high-speed air impact method, and any method that can suppress the separation of the metal oxide particles 12 may be used.
  • the Ag—Cu—metal oxide based electric contact powder 10 is formed through the preparation step and the mixing step.
  • the content of the metal oxide particles 12 in the electrical contact powder 10 is preferably 0.5% by mass or more. Thereby, the welding resistance and arc wear resistance of the electrical contact 30 can be improved.
  • the content of the metal oxide particles 12 in the electrical contact powder 10 is preferably 15% by mass or less. Thereby, the electrical conductivity of the electrical contact 30 can be maintained.
  • the content rate of the metal oxide particles in the electrical contact powder 10 can be measured by observing a reflected electron image of the cross section with an electron microscope. *
  • the content of Cu in the Ag—Cu alloy particles 11 contained in the electric contact powder 10 is preferably 90% by mass or less. Thereby, the oxidation resistance, heat resistance, and impact resistance of the electrical contact 30 can be maintained.
  • the Cu content in the Ag—Cu alloy particles 11 contained in the electric contact powder 10 can be calculated by measuring the density. *
  • the average particle diameter of the metal oxide particles 12 is preferably smaller than the average particle diameter of the Ag—Cu alloy particles 11.
  • the average particle diameter of the metal oxide particles 12 is preferably 1/10 or less of the average particle diameter of the Ag—Cu alloy particles 11.
  • the average particle diameters of the Ag-Cu alloy particles 11 and the metal oxide particles 12 contained in the electric contact powder 10 are determined by cross-sectional observation / analysis using a SEM-EDS (scanning electron microscope / energy dispersive X-ray spectrometer). Can be measured. *
  • the electrical contact material 20 is formed by molding the Ag-Cu-metal oxide based electrical contact powder 10. Specifically, the electric contact powder 10 is press-molded using an isostatic press. The pressure required for press molding is, for example, about 0.5 to 1.5 MPa. *
  • the density (filling rate) of the electrical contact material 20 is not particularly limited, but may be, for example, 70 to 95% by volume.
  • the external shape and size of the electrical contact material 20 are not particularly limited. *
  • the electrical contact 30 is formed by sintering the press-formed electrical contact material 20. Specifically, the electrical contact material 20 is put into a heat treatment furnace in a non-oxidizing atmosphere, and the electrical contact material 20 is sintered at a processing temperature of 650 ° C. to 750 ° C. and a processing time of about 2 hours.
  • the electrical contact 30 is made into a product by performing known wire drawing and wire processing (or rivet processing).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Contacts (AREA)

Abstract

La présente invention a pour objet une poudre pour contact électrique, un matériau de contact électrique, un contact électrique et un procédé de production d'une poudre pour contact électrique qui permettent d'équilibrer une réduction de coût avec le maintien de la conductivité électrique. À cet effet, l'invention porte sur un procédé pour la production d'une poudre (10) pour contact électrique qui comprend une étape de mélange consistant à amener des particules d'oxyde métallique (12) à adhérer sur la surface de particules d'alliage d'Ag-Cu (11) par mélange des particules d'alliage d'Ag-Cu (11) et des particules d'oxyde métallique (12) les unes avec les autres.
PCT/JP2019/009988 2018-03-19 2019-03-12 Poudre pour contact électrique, matériau de contact électrique, contact électrique et procédé de production de poudre pour contact électrique WO2019181649A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018050660 2018-03-19
JP2018-050660 2018-03-19

Publications (1)

Publication Number Publication Date
WO2019181649A1 true WO2019181649A1 (fr) 2019-09-26

Family

ID=67987665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009988 WO2019181649A1 (fr) 2018-03-19 2019-03-12 Poudre pour contact électrique, matériau de contact électrique, contact électrique et procédé de production de poudre pour contact électrique

Country Status (1)

Country Link
WO (1) WO2019181649A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115710653A (zh) * 2022-11-09 2023-02-24 浙江福达合金材料科技有限公司 银金属氧化物电触头材料的制备方法
CN117107100A (zh) * 2023-08-28 2023-11-24 昆明理工大学 一种核壳结构金属氧化物增强银基材料的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56102536A (en) * 1980-01-18 1981-08-17 Tanaka Kikinzoku Kogyo Kk Composite electrical contact material
JPS5873737A (ja) * 1981-10-28 1983-05-04 Omron Tateisi Electronics Co 電気接点材料
JPS5884951A (ja) * 1981-11-17 1983-05-21 Matsushita Electric Ind Co Ltd 電気接点材料
JPH08283882A (ja) * 1995-04-10 1996-10-29 Mitsubishi Materials Corp Ag−酸化錫系電気接点製造用細線の製造法
JP2015196903A (ja) * 2014-03-31 2015-11-09 三菱電機株式会社 Ag/SnO2電気接点用粉末、Ag/SnO2電気接点材料及びそれらの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56102536A (en) * 1980-01-18 1981-08-17 Tanaka Kikinzoku Kogyo Kk Composite electrical contact material
JPS5873737A (ja) * 1981-10-28 1983-05-04 Omron Tateisi Electronics Co 電気接点材料
JPS5884951A (ja) * 1981-11-17 1983-05-21 Matsushita Electric Ind Co Ltd 電気接点材料
JPH08283882A (ja) * 1995-04-10 1996-10-29 Mitsubishi Materials Corp Ag−酸化錫系電気接点製造用細線の製造法
JP2015196903A (ja) * 2014-03-31 2015-11-09 三菱電機株式会社 Ag/SnO2電気接点用粉末、Ag/SnO2電気接点材料及びそれらの製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115710653A (zh) * 2022-11-09 2023-02-24 浙江福达合金材料科技有限公司 银金属氧化物电触头材料的制备方法
CN115710653B (zh) * 2022-11-09 2023-08-29 浙江福达合金材料科技有限公司 银金属氧化物电触头材料的制备方法
CN117107100A (zh) * 2023-08-28 2023-11-24 昆明理工大学 一种核壳结构金属氧化物增强银基材料的方法
CN117107100B (zh) * 2023-08-28 2024-01-30 昆明理工大学 一种核壳结构金属氧化物增强银基材料的方法

Similar Documents

Publication Publication Date Title
JP6333099B2 (ja) Ag/SnO2電気接点用粉末の製造方法及びAg/SnO2電気接点材料の製造方法
JP5614708B2 (ja) 真空遮断器用電極材料の製造方法及び真空遮断器用電極材料
JP5880789B1 (ja) 固溶体粒子を成形した成形体にCuを溶浸した複合金属
WO2015133262A1 (fr) Matériau d'électrode
CN113767182B (zh) 以Ag合金为主要成分的接点用材料、使用该接点用材料的接点及电气设备
WO2019181649A1 (fr) Poudre pour contact électrique, matériau de contact électrique, contact électrique et procédé de production de poudre pour contact électrique
JP6333098B2 (ja) Ag/SnO2電気接点用粉末の製造方法及びAg/SnO2電気接点材料の製造方法
WO2015133263A1 (fr) Procédé permettant la production de matériau d'électrode
CN103695682A (zh) 一种带增强基体性能添加物的银氧化物触点材料及制备方法及其产品
CN104245976B (zh) 触点材料
JP6343447B2 (ja) 電気接点材料およびその製造方法
WO2014136617A1 (fr) Matériaux de contact électrique, et disjoncteur
JP3789304B2 (ja) Ag−ZnO系電気接点材料の製造方法及びその電気接点材料
JP4898977B2 (ja) 電気接点材
JP2007169701A (ja) 電気接点用材料及びその製造方法
CN103667767B (zh) 一种带增强基体性能添加物的银镍触点材料的制备方法及其产品
CN101656160B (zh) 银基金属酸盐电接触复合材料的制备方法
JPWO2010109777A1 (ja) 電気接点材
JP6719300B2 (ja) Ag−Ni−金属酸化物系電気接点材料、その製造方法、遮断器及び電磁接触器
US10861655B2 (en) Method for producing a contact material on the basis of silver-tin oxide or silver-zinc oxide, and contact material
WO2019181650A1 (fr) Poudre de contact électrique, matériau de contact électrique, contact électrique et procédé de production de poudre de contact électrique
CN109593981A (zh) 一种改善锭坯烧结性的银氧化锡触头材料的制备方法
JP2020059906A (ja) 電気接点用粉末、電気接点用成形体、電気接点及び電気接点用粉末の製造方法
JP2016216775A (ja) Ag−ZnO系電気接点材料及びその製造方法
JP5134166B2 (ja) 電気接点材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19771144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP