CN117107100B - 一种核壳结构金属氧化物增强银基材料的方法 - Google Patents

一种核壳结构金属氧化物增强银基材料的方法 Download PDF

Info

Publication number
CN117107100B
CN117107100B CN202311087735.8A CN202311087735A CN117107100B CN 117107100 B CN117107100 B CN 117107100B CN 202311087735 A CN202311087735 A CN 202311087735A CN 117107100 B CN117107100 B CN 117107100B
Authority
CN
China
Prior art keywords
powder
silver
zno
core
shell structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311087735.8A
Other languages
English (en)
Other versions
CN117107100A (zh
Inventor
周晓龙
韩绪津
曹建春
黎敬涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202311087735.8A priority Critical patent/CN117107100B/zh
Publication of CN117107100A publication Critical patent/CN117107100A/zh
Application granted granted Critical
Publication of CN117107100B publication Critical patent/CN117107100B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/18Non-metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/23Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces involving a self-propagating high-temperature synthesis or reaction sintering step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • H01H1/0237Composite material having a noble metal as the basic material and containing oxides
    • H01H1/02372Composite material having a noble metal as the basic material and containing oxides containing as major components one or more oxides of the following elements only: Cd, Sn, Zn, In, Bi, Sb or Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/04Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts
    • H01H11/048Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts by powder-metallurgical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开一种核壳结构金属氧化物增强银基材料的方法;本发明采用原位反应合成制备技术获得核壳结构金属氧化物增强银基材料;本发明所述方法以纳米ZnO粉、铟粉、铜粉为原料进行球磨;再与与银粉、氧化银粉球磨,混料均匀得到复合粉体;将复合粉体装入模具中,压制压力条件下成形,并将成形锭坯放入原位反应烧结炉中,在100‑850℃条件下烧结发生原位反应,获得ZnO@In2O3CuO增强银基复合材料烧结坯。本发明所述方法能够通过原位反应合成获得ZnO@In2O3CuO核壳结构增强银基复合材料,所形成的复合材料界面清洁,界面结合牢固,极大发挥了核壳结构的协同效应,最终获得力学性能优异、导电率基本不降低的ZnO@In2O3CuO增强银基复合材料。

Description

一种核壳结构金属氧化物增强银基材料的方法
技术领域
本发明涉及一种核壳结构金属氧化物增强银基材料的方法,属于电子信息新材料领域。
背景技术
银基电触头材料具有良好的抗熔焊性,优良的导热导电性能,所以低压电器开关中的触头材料大多会选用银基复合材料为主。根据第二相的种类可以将银基电触头分为纯金属弥散强化相Ag/纯金属电触头材料;以石墨作为弥散强化相的Ag/C电触头材料;以氧化物为弥散强化相的Ag/MeO电触头材料。其中研究最为广泛的就是以氧化物为弥散强化相的Ag/MeO电触头材料。
关于金属氧化物复合材料制备工艺,研究人员相继开发化学镀、化学共沉淀法、溶胶-凝胶法、高能球磨等新型金属氧化物材料制备工艺为了解决传统制备工艺的不足。但是新型的方法并不能实际解决相应的问题,主要原因在所获得的银基电触头材料的综合性无法媲美传统电触头材料Ag/CdO的优异性能。
发明内容
本发明的目的在于提供一种核壳结构金属氧化物增强银基材料的方法,能够通过壳CuO与银具有良好界面润湿性的特点,改善了ZnO增强银基复合材料界面润湿性,提高了银基复合材料的加工性能与成材率;所获得的ZnO@In2O3CuO增强银基复合材料具有优异的力学性能,具体包括以下步骤:
(1)将纳米ZnO粉与铟粉、铜粉按ZnO粉与InCu粉质量比为12:(0.5-3.5)或10:(2.5-4.5)的比例混合,在惰性氩气保护下,以转速为450-550r/min球磨0.5-2h,获得ZnO@InCu粉体。
(2)将步骤(1)中的ZnO@InCu粉体与银粉、氧化银粉按照在银基体中生成质量百分比为13%-16%的ZnO@In2O3CuO为准来配制,并以转速为100-500r/min球磨0.5-2h获得混料均匀的复合粉体。
(3)将步骤(2)中的复合粉体装入模具中,以150-500MPa压制压力条件下成形,并将成形锭坯放入原位反应烧结炉中,在100-850℃条件下烧结发生原位反应,获得ZnO@In2O3CuO增强银基复合材料烧结坯;最后对该烧结坯进行致密化、挤压轧制制备成带材。
优选的,本发明所述市售的纳米ZnO粉的粒度为30~70nm,纯度为99.9%;铜粉、铟粉粒度为0.5-50μm,纯度为99.9%;银粉粒度为10-80μm,纯度为99.9%;氧化银粉粒度为10-50μm,纯度为99.9%。
优选的,本发明步骤(1)中铟粉、铜粉质量比为1:1。
优选的,本发明步骤(3)中压制成型的条件为:在300-400MPa压制压力条件下成形。
优选的,本发明步骤(3)中烧结条件为100℃保温1h,然后升温到300℃保温1h,然后升温到830℃保温1h。
本发明的原理在于:利用金属(In、Cu)硬度低于陶瓷(ZnO),且金属在球磨过程中会发生焊合的机理,通过球磨得到ZnO@InCu核壳结构的粉体(核是ZnO,壳是InCu合金);再通过原位反应合成中InCu与Ag2O反应获得In2O3CuO和Ag,从而得到ZnO@In2O3CuO核壳结构增强银基复合材料;这种核壳结构的主要优点在于:既可以通In2O3、CuO与银界面润湿角低于ZnO与银界面润湿角,改善增强相与银的界面润湿性,使得增强相与银的界面结合牢固,从而提高复合材料的力学性能;又可以将ZnO与In2O3CuO组成整体的氧化物增强相,能够保证氧化物在银基体中分布的均匀性,有利于在加工过程中,充分发挥整体氧化物对位错的阻碍作用,从而提高复合材料的力学性能;也有利于ZnO@In2O3CuO核壳结构增强银基复合材料在电接触应用过程中的电侵蚀稳定性。
本发明的有益效果:
与传统银金属氧化物相比,获得了一种核壳结构的金属氧化物增强银基复合材料;与AgZnO复合材料相比,该复合材料既改善ZnO与银的界面润湿性,提高了复合材料的加工性能,又获得了力学性能优异的ZnO@In2O3CuO核壳结构增强银基复合材料。
附图说明
图1是实施例1制备的ZnO@In2O3CuO核壳结构增强银基复合材料的高分辨透射电镜图。
具体实施方案
以下结合附图和实施例对本发明作进一步阐述,但本发明的保护内容不限于实施例所述范围。
实施例1
将市售的纳米ZnO与Cu粉按ZnO:InCu=12:2.5比例(质量百分比)混合后,在惰性氩气保护下,以转速为500r/min球磨1.5h,获得ZnO@InCu粉体;然后将ZnO@InCu粉体与Ag粉、Ag2O粉按照在银基体中生成14.7%(质量百分比)的ZnO@In2O3CuO为准来配制,并以转速为300r/min球磨1h获得混料均匀的复合粉体;再将复合粉体装入模具中,以350MPa压制压力条件下成形,并将成形锭坯放入原位反应烧结炉中,按照100℃(保温1h)→300℃(保温1h)→830℃(保温1h)的烧结工艺烧结,获得ZnO@In2O3CuO增强银基复合材料烧结坯;最后对该烧结坯进行致密化、轧制制备成带材。通过此工艺,可以获得抗拉强度达380MPa的银金属氧化物复合材料。
实施例2
将市售的纳米ZnO与Cu粉按ZnO:InCu=12:0.5比例(质量百分比)混合后,在惰性氩气保护下,以转速为400r/min球磨3h,获得ZnO@InCu粉体;然后将ZnO@InCu粉体与Ag粉、Ag2O粉按照在银基体中生成13%(质量百分比)的ZnO@In2O3CuO为准来配制,并以转速为200r/min球磨2h获得混料均匀的复合粉体;再将复合粉体装入模具中,以500MPa压制压力条件下成形,并将成形锭坯放入原位反应烧结炉中,按照150℃(保温1h)→360℃(保温1h)→840℃(保温1h)的烧结工艺烧结,获得ZnO@In2O3CuO增强银基复合材料烧结坯;最后对该烧结坯进行致密化、轧制制备成带材;通过此工艺,可以获得抗拉强度达370MPa的银金属氧化物复合材料。
实施例3
将市售的纳米ZnO与铜粉按ZnO:InCu=12:3.5比例(质量百分比)混合后,在惰性氩气保护下,以转速为800r/min球磨0.5h,获得ZnO@InCu粉体;然后将ZnO@InCu粉体与银粉、氧化银粉按照在银基体中生成16%(质量百分比)的ZnO@In2O3CuO为准来配制,并以转速为500r/min球磨0.5h获得混料均匀的复合粉体;再将复合粉体装入模具中,以500MPa压制压力条件下成形,并将成形锭坯放入原位反应烧结炉中,按照200℃(保温2h)→500℃(保温1h)→850℃(保温0.5h)的烧结工艺烧结,获得ZnO@In2O3CuO增强银基复合材料烧结坯;最后对该烧结坯进行致密化、轧制制备成带材。通过此工艺,可以获得抗拉强度达375MPa的银金属氧化物复合材料。
实施例4
将市售的纳米ZnO与铜粉按ZnO:InCu=10:4.5比例(质量百分比)混合后,在惰性氩气保护下,以转速为600r/min球磨3h,获得ZnO@InCu粉体;然后将ZnO@InCu粉体与银粉、氧化银粉按照在银基体中生成16%(质量百分比)的ZnO@In2O3CuO为准来配制,并以转速为400r/min球磨1h获得混料均匀的复合粉体;再将复合粉体装入模具中,以500MPa压制压力条件下成形,并将成形锭坯放入原位反应烧结炉中,按照100℃(保温2h)→380℃(保温1h)→830℃(保温3h)的烧结工艺烧结,获得ZnO@In2O3CuO增强银基复合材料烧结坯;最后对该烧结坯进行致密化、轧制制备成带材。通过此工艺,可以获得抗拉强度达360MPa的银金属氧化物复合材料。

Claims (5)

1.一种核壳结构金属氧化物增强银基材料的方法,其特征在于,具体包括以下步骤:
(1)将纳米ZnO粉与铟粉、铜粉按ZnO粉与InCu粉质量比为12:(0.5-3.5)或10:(2.5-4.5)的比例混合,在惰性氩气保护下,以转速为450-550r/min球磨0.5-3h,获得ZnO@InCu粉体;
(2)将步骤(1)中的ZnO@InCu粉体与银粉、氧化银粉按照在银基体中生成质量百分比为13%-16%的ZnO@In2O3CuO为准来配制,并以转速为100-500r/min球磨0.5-2h获得混料均匀的复合粉体;
(3)将步骤(2)中的复合粉体装入模具中,以150-500MPa压制压力条件下成形,并将成形锭坯放入原位反应烧结炉中,在100-850℃条件下烧结发生原位反应,获得ZnO@In2O3CuO增强银基复合材料烧结坯;最后对该烧结坯进行致密化、挤压轧制制备成带材。
2.根据权利要求1所述核壳结构金属氧化物增强银基材料的方法,其特征在于:市售的纳米ZnO粉的粒度为30~70nm,纯度为99.9%;铜粉、铟粉粒度为0.5-50μm,纯度为99.9%;银粉粒度为10-80μm,纯度为99.9%;氧化银粉粒度为10-50μm,纯度为99.9%。
3.根据权利要求1所述核壳结构金属氧化物增强银基材料的方法,其特征在于:步骤(1)中铟粉、铜粉质量比为1:1。
4.根据权利要求1所述核壳结构金属氧化物增强银基材料的方法,其特征在于:步骤(3)中压制成型的条件为:在300-400MPa压制压力条件下成形。
5.根据权利要求1所述核壳结构金属氧化物增强银基材料的方法,其特征在于:步骤(3)中烧结条件为100℃保温1h,然后升温到300℃保温1h,然后升温到830℃保温1h。
CN202311087735.8A 2023-08-28 2023-08-28 一种核壳结构金属氧化物增强银基材料的方法 Active CN117107100B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311087735.8A CN117107100B (zh) 2023-08-28 2023-08-28 一种核壳结构金属氧化物增强银基材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311087735.8A CN117107100B (zh) 2023-08-28 2023-08-28 一种核壳结构金属氧化物增强银基材料的方法

Publications (2)

Publication Number Publication Date
CN117107100A CN117107100A (zh) 2023-11-24
CN117107100B true CN117107100B (zh) 2024-01-30

Family

ID=88794444

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311087735.8A Active CN117107100B (zh) 2023-08-28 2023-08-28 一种核壳结构金属氧化物增强银基材料的方法

Country Status (1)

Country Link
CN (1) CN117107100B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3146972A1 (de) * 1981-11-26 1983-06-01 Siemens AG, 1000 Berlin und 8000 München Verfahren zum herstellen von formteilen aus cadmiumfreien silber-metalloxid-verbundwerkstoffen fuer elektrische kontaktstuecke
WO2007112926A2 (en) * 2006-03-31 2007-10-11 Umicore S.A. Process for manufacture of silver-based particles and electrical contact materials
CN103681015A (zh) * 2013-11-28 2014-03-26 昆明理工大学 一种复相金属氧化物增强银基电触头材料的制备方法
CN103695696A (zh) * 2013-12-30 2014-04-02 桂林电器科学研究院有限公司 一种含添加剂银氧化锡电触头材料的制备方法
CN103710608A (zh) * 2013-12-30 2014-04-09 桂林电器科学研究院有限公司 一种含添加剂银氧化锌电触头材料的制备方法
JP2016054139A (ja) * 2014-04-25 2016-04-14 三菱電機株式会社 Ag−酸化物系電気接点材料、その製造方法及び製造装置、並びに遮断器及び電磁接触器
CN107130134A (zh) * 2017-04-28 2017-09-05 重庆鼎诚电子元件有限公司 一种银氧化铜复合电接触材料及其制备方法和应用
CN107385267A (zh) * 2017-07-07 2017-11-24 福达合金材料股份有限公司 银金属氧化物氮化钛复合电触头材料及其制备方法
CN107794389A (zh) * 2017-10-20 2018-03-13 温州宏丰电工合金股份有限公司 一种银氧化锡氧化铟电接触材料及其制备方法
WO2019181649A1 (ja) * 2018-03-19 2019-09-26 日本電産株式会社 電気接点用粉末、電気接点材料、電気接点、及び電気接点用粉末の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3146972A1 (de) * 1981-11-26 1983-06-01 Siemens AG, 1000 Berlin und 8000 München Verfahren zum herstellen von formteilen aus cadmiumfreien silber-metalloxid-verbundwerkstoffen fuer elektrische kontaktstuecke
WO2007112926A2 (en) * 2006-03-31 2007-10-11 Umicore S.A. Process for manufacture of silver-based particles and electrical contact materials
CN103681015A (zh) * 2013-11-28 2014-03-26 昆明理工大学 一种复相金属氧化物增强银基电触头材料的制备方法
CN103695696A (zh) * 2013-12-30 2014-04-02 桂林电器科学研究院有限公司 一种含添加剂银氧化锡电触头材料的制备方法
CN103710608A (zh) * 2013-12-30 2014-04-09 桂林电器科学研究院有限公司 一种含添加剂银氧化锌电触头材料的制备方法
JP2016054139A (ja) * 2014-04-25 2016-04-14 三菱電機株式会社 Ag−酸化物系電気接点材料、その製造方法及び製造装置、並びに遮断器及び電磁接触器
CN107130134A (zh) * 2017-04-28 2017-09-05 重庆鼎诚电子元件有限公司 一种银氧化铜复合电接触材料及其制备方法和应用
CN107385267A (zh) * 2017-07-07 2017-11-24 福达合金材料股份有限公司 银金属氧化物氮化钛复合电触头材料及其制备方法
CN107794389A (zh) * 2017-10-20 2018-03-13 温州宏丰电工合金股份有限公司 一种银氧化锡氧化铟电接触材料及其制备方法
WO2019181649A1 (ja) * 2018-03-19 2019-09-26 日本電産株式会社 電気接点用粉末、電気接点材料、電気接点、及び電気接点用粉末の製造方法

Also Published As

Publication number Publication date
CN117107100A (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
CN108251685B (zh) 一种钨弥散强化铜基复合材料及其制备方法
CN110157932B (zh) 一种基于原位合成的石墨烯改性铜基电触头材料的制备方法
CN110257684B (zh) 一种FeCrCoMnNi高熵合金基复合材料的制备工艺
CN111455204B (zh) 一种制备NiAl金属间化合物的方法
CN110983210A (zh) 一种碳纤维复合铜钨合金材料及其制备方法和应用
CN116287911A (zh) 双尺度陶瓷颗粒增强铝基复合材料及其制备方法
CN117107100B (zh) 一种核壳结构金属氧化物增强银基材料的方法
CN108823444B (zh) 一种铜碳复合材料短流程制备方法
CN108546843B (zh) 一种耐电弧侵蚀的银基电触头材料及其制备方法
CN111363947A (zh) 一种添加镍合金的银碳化钨石墨复合材料及制备方法
CN101967660B (zh) 共电脱氧法制取Nb3Al超导材料的方法
CN116287833A (zh) 原位自生二维碳化物弥散强韧化钼合金的制备方法
JP3168630B2 (ja) 電極材料の製造方法
CN114605158A (zh) 一种钛合金熔炼用氮化物复合耐火材料及其制备方法
CN115710653A (zh) 银金属氧化物电触头材料的制备方法
CN112427644B (zh) 一种自生陶瓷颗粒增强铜基梯度点焊电极帽的制备方法
CN117127046B (zh) 一种SnO2@In2O3增强银基复合材料的制备方法
JP3067318B2 (ja) 電極材料の製造方法
US4386970A (en) Production method of compound-type superconducting wire
CN117026004B (zh) 一种ZnO@In2O3增强银基复合材料及其制备方法
CN109093113B (zh) 一种稀土金属间化合物增强铜基复合材料及其制备方法
CN117210713A (zh) 一种SnO2@CuO增强银基复合材料的制备方法
CN117089738A (zh) 一种SnO2@In2O3CuO增强银基复合材料的制备方法
CN1260385C (zh) 硅化物合金-碳化钛金属陶瓷
CN113512661B (zh) 一种金刚石@TiC增强高强导电铜基复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant