WO2019181182A1 - 自律走行式掃除機およびその制御方法 - Google Patents

自律走行式掃除機およびその制御方法 Download PDF

Info

Publication number
WO2019181182A1
WO2019181182A1 PCT/JP2019/002085 JP2019002085W WO2019181182A1 WO 2019181182 A1 WO2019181182 A1 WO 2019181182A1 JP 2019002085 W JP2019002085 W JP 2019002085W WO 2019181182 A1 WO2019181182 A1 WO 2019181182A1
Authority
WO
WIPO (PCT)
Prior art keywords
main body
obstacle
traveling
shape
vacuum cleaner
Prior art date
Application number
PCT/JP2019/002085
Other languages
English (en)
French (fr)
Inventor
俊洋 鹿山
裕司 大塚
福地 克己
穣 上田
賢二 山口
Original Assignee
東芝ライフスタイル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝ライフスタイル株式会社 filed Critical 東芝ライフスタイル株式会社
Priority to CN201980017123.7A priority Critical patent/CN111801041A/zh
Priority to US16/978,876 priority patent/US20210007570A1/en
Publication of WO2019181182A1 publication Critical patent/WO2019181182A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/009Carrying-vehicles; Arrangements of trollies or wheels; Means for avoiding mechanical obstacles
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2836Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means characterised by the parts which are controlled
    • A47L9/2852Elements for displacement of the vacuum cleaner or the accessories therefor, e.g. wheels, casters or nozzles
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2868Arrangements for power supply of vacuum cleaners or the accessories thereof
    • A47L9/2873Docking units or charging stations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0219Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0227Control of position or course in two dimensions specially adapted to land vehicles using mechanical sensing means, e.g. for sensing treated area
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/02Docking stations; Docking operations
    • A47L2201/022Recharging of batteries
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours

Definitions

  • Embodiments of the present invention relate to an autonomous traveling cleaner that autonomously travels and cleans and a control method thereof.
  • a so-called autonomous traveling type cleaner that cleans the floor surface while autonomously traveling on the floor surface as a surface to be cleaned.
  • Such vacuum cleaners use a limited capacity of a battery as a power source for efficient cleaning, and the number of products equipped with map technology is increasing due to improvements in sensor and processor capabilities and cost reduction. Due to the improvement and cost reduction of such sensor technology, the functions of obstacle detection and obstacle avoidance in the autonomously traveling cleaner are also improved. For this reason, vacuum cleaners having a main body shape that is not captured by conventional assumptions such as a shape whose radius does not change by turning (round shape or rouleau triangle) are also being commercialized.
  • a D-shaped vacuum cleaner in which the front surface of the main body is straight and a dust suction head (consisting of a floor brush and a suction port) similar to a manual vacuum cleaner is provided in the forefront.
  • the cleaner is controlled so as to turn at a position where it does not collide with the obstacle and to run in the vicinity of the obstacle along the obstacle. Therefore, it is difficult to clean the floor surface at the time of an obstacle.
  • the problem to be solved by the present invention is to provide an autonomously traveling cleaner that can clean the surface to be cleaned in the case of an obstacle and a control method therefor.
  • the autonomous traveling type vacuum cleaner of the embodiment has a main body, a detection means, a traveling means, and a cleaning means.
  • the main body includes a front portion formed in a straight line.
  • the detecting means detects an obstacle in the traveling direction of the main body. Based on the detection result detected by the detection means, the traveling means moves the main body to the obstacle with the front portion of the main body facing the obstacle.
  • the cleaning means is disposed at the front part of the main body, and cleans the surface to be cleaned in a state where the main body has traveled to the obstacle by the traveling means.
  • control method of the autonomous traveling vacuum cleaner is a control method of the autonomous traveling vacuum cleaner capable of autonomous traveling in which the front portion of the main body is formed in a straight line, and the detection step is performed in the traveling direction of the main body. An obstacle is detected, and based on the detection result, the front surface of the main body is made to face the obstacle so that the main body travels to the obstacle, and the surface to be cleaned is cleaned with the main body traveling to the obstacle.
  • FIG. 1 It is a top view which shows the autonomous running type vacuum cleaner of 1st Embodiment from the downward direction. It is a perspective view which shows an autonomous traveling type vacuum cleaner same as the above.
  • (a) is a block diagram showing an example of the internal structure of the autonomous traveling vacuum cleaner
  • (b) is a block diagram showing a part of another example of the internal structure of the autonomous traveling cleaner
  • (c) is the same as above.
  • (d) is a block diagram which shows a part of other example of the internal structure of an autonomous traveling type cleaner same as the above.
  • (a) is an explanatory diagram schematically showing an example of an obstacle detection operation of the autonomous traveling vacuum cleaner
  • (b) is a schematic diagram of another example of the obstacle detection operation of the autonomous traveling cleaner.
  • Explanatory drawing which shows is explanatory drawing which shows typically the further another example of the detection operation of the obstruction of an autonomous traveling type vacuum cleaner same as the above.
  • (a) is an explanatory view schematically showing a method for determining the shape of an obstacle on the main body side of the autonomous traveling vacuum cleaner, and (b) is a convex curve where the shape of the obstacle on the main body side of the autonomous traveling vacuum cleaner is the same.
  • (C) is an explanatory view schematically showing a judgment method when the shape of the obstacle on the main body side of the autonomously traveling vacuum cleaner is a concave curved surface. It is.
  • (a) is an explanatory view schematically showing the operation of the traveling control in which the front part of the main body of the autonomous traveling vacuum cleaner is made to face an obstacle, and (b) is the front part of the main body of the autonomous traveling vacuum cleaner.
  • (C) is an explanatory diagram schematically showing the operation following (a) of the travel control for making the vehicle face the obstacle, and (c) is the travel control for making the front part of the main body of the autonomous running type vacuum cleaner relative to the obstacle.
  • (D) is an explanatory view schematically showing the operation following (b), and (d) is an explanatory view schematically showing a state in which the front part of the main body of the autonomously traveling cleaner is in close contact with an obstacle.
  • (a) is an explanatory view schematically showing the operation of an example of traveling control for an obstacle whose width of the autonomous traveling cleaner is not more than a predetermined value
  • (b) is an obstacle whose width of the autonomous traveling cleaner is not larger than a predetermined value.
  • (c) is following (b) of an example of traveling control for an obstacle whose width of the autonomous traveling cleaner is not more than a predetermined value.
  • (d) is an explanatory diagram schematically showing the operation following (c) of an example of traveling control for an obstacle whose width of the autonomous traveling type vacuum cleaner is not more than a predetermined value.
  • (a) is an explanatory view schematically showing the operation of an example of traveling control when the shape of the obstacle on the main body side of the autonomous traveling vacuum cleaner is a convex curved surface, and (b) is the autonomous traveling vacuum cleaner according to the above.
  • (c) is the shape of the obstacle on the main body side of the autonomous traveling vacuum cleaner same as above
  • (d) is a traveling control when the shape of the obstacle on the main body side of the autonomous traveling vacuum cleaner is a concave curved surface
  • FIG. (a) is explanatory drawing which shows typically the operation
  • (b) is the operation
  • Explanatory diagram showing (c) is an explanatory diagram schematically showing an operation following (b) of an example of the same lateral deviation control
  • (d) is an explanation schematically showing an operation following (c) of the exemplary lateral deviation control
  • FIG. (a) is an explanatory view schematically showing the operation of another example of the lateral deviation control of the autonomous traveling vacuum cleaner, and (b) schematically shows the operation following (a) of the other example of the lateral deviation control.
  • (c) is an explanatory view schematically showing the operation following (b) of another example of the lateral deviation control
  • (d) is a schematic illustration of the operation following (c) of another example of the lateral deviation control
  • It is explanatory drawing shown in. (a) is an explanatory view schematically showing the operation of still another example of lateral deviation control of the autonomous traveling vacuum cleaner same as above
  • (b) is a schematic illustration of the operation following (a) of still another example of lateral deviation control same as above
  • FIG. 4C is an explanatory diagram schematically showing an operation following (b) of still another example of the lateral deviation control.
  • 11 is an autonomously traveling vacuum cleaner.
  • the autonomously traveling cleaner 11 is simply referred to as a cleaner 11.
  • the vacuum cleaner 11 cleans the floor surface while autonomously traveling on the floor surface, which is a surface to be cleaned as a traveling surface.
  • the cleaner 11 is referred to as a robot cleaner or a cleaning robot.
  • the vacuum cleaner 11 may constitute an electric cleaning device as an autonomous traveling body device together with a charging device (not shown) as a base device serving as a charging base.
  • the vacuum cleaner 11 includes a main body 13.
  • the vacuum cleaner 11 includes travel driving means 14. Further, the cleaner 11 is provided with a cleaning drive means 17. Furthermore, the vacuum cleaner 11 includes control means 18 that is a controller.
  • the vacuum cleaner 11 includes detection means 19.
  • the vacuum cleaner 11 may include a power supply battery serving as a power supply unit.
  • the cleaner 11 may include a communication unit for communicating with an external device and an input unit that receives an external input by a user.
  • the front-rear direction arrow FR, RR direction shown in FIG. 1 and the like
  • the left-right direction or both-side direction intersecting or orthogonal to the front-rear direction will be described as the width direction or the lateral direction To do.
  • the main body 13 includes a casing (case body) 21 and a front cover 22.
  • the main body 13 may also include a member such as a buffer member that constitutes the appearance.
  • the casing 21 is formed in a substantially D shape when viewed from above, that is, from above or below.
  • the housing 21 includes a front surface portion 23 formed linearly along the width direction and a rear surface portion 24 formed in an arc shape.
  • the housing 21 further includes a side surface portion 25 between the front surface portion 23 and the rear surface portion 24.
  • these side surface portions 25 are not essential components, and the rear surface portion is provided on both sides of the front surface portion 23. Both sides of 24 may be directly connected.
  • the casing 21 is not limited to a substantially D shape as long as it includes a front surface portion 23 formed linearly along the width direction.
  • the housing 21 also includes a bottom surface portion 26. Further, the housing 21 includes an upper surface part 27.
  • the housing 21 includes a suction port 28 that is a dust collection port.
  • the front part 23 constitutes the foremost part of the main body 13.
  • corrugation, etc. may be formed in the surface.
  • the rear surface portion 24 is formed in a convex shape rearward across the side surface portion 25 of the main body 13.
  • the rear surface portion 24 is formed in a semicircular arc shape.
  • the side surface portion 25 is formed to extend linearly along the front-rear direction from both sides of the front surface portion 23 to the rear.
  • a front surface portion 23 is located between the front end portions of the side surface portions 25, and a rear surface portion 24 is located between the rear end portions.
  • the bottom surface portion 26 is a portion facing the floor surface.
  • the bottom surface portion 26 does not necessarily have a planar shape, and includes the bottom surface portion 26 including those having an uneven shape.
  • the suction port 28 is formed in the bottom surface portion 26 facing the floor surface.
  • the suction port 28 is located closer to the front side of the main body 13.
  • the suction port 28 is formed in a longitudinal shape in the width direction, that is, horizontally or broadly. Further, the suction port 28 is arranged according to the width of the casing 21.
  • the suction ports 28 are arranged symmetrically with respect to the center line in the width direction of the main body 13, for example. That is, in the present embodiment, the central portion of the suction port 28 in the width direction coincides with the central portion of the main body 13 in the width direction, but they may be shifted from each other.
  • the front cover 22 is separate from the casing 21 and is attached to the front portion of the casing 21 and protrudes forward from the front surface section 23.
  • the front cover 22 is formed in a horizontally long flap shape and covers the front portion of the suction port 28.
  • the front cover 22 has an upper end supported to be rotatable with respect to the casing 21 and a lower end having a free end that rotates in the front-rear direction with respect to the casing 21. For this reason, the front cover 22 is a vacuum degree adjusting member that adjusts the degree of vacuum of the suction port 28 by rotating the lower end portion back and forth with respect to the suction port 28.
  • the front cover 22 is urged in a direction in which the lower end portion rotates forward by an urging means such as a torsion spring (not shown). For this reason, the front cover 22 is a buffer member that alleviates an impact at the time of contact between the main body 13 and the wall by rotating the lower end portion backward against the bias by contact with the wall or the like.
  • the traveling drive means 14 drives the traveling of the main body 13.
  • the travel drive means 14 includes a motor 31 as drive means for driving the drive wheels 15.
  • the vacuum cleaner 11 includes drive wheels 15.
  • the drive wheel 15 makes the main body 13 autonomously travel in the forward and backward directions on the floor surface.
  • the drive wheel 15 is a wheel that can move in all directions.
  • the drive wheel 15 is disposed on the bottom surface portion 26 of the main body 13.
  • the drive wheels 15 are provided, for example, in pairs on the left and right sides of the main body 13 at a position behind the suction port 28, but are not limited to such an arrangement.
  • Each drive wheel 15 is driven by a motor 31.
  • Each drive wheel 15 may be a drive device that enables the body 13 to move in the lateral direction, such as an omni wheel or a Mecanum wheel.
  • an endless track as a traveling wheel as a driven portion can be used.
  • the vacuum cleaner 11 may include a turning wheel 16.
  • the turning wheel 16 supports the main body 13 together with the driving wheel 15 against the floor surface.
  • the swivel wheel 16 is disposed on the bottom surface portion 26 of the main body 13 facing the floor surface.
  • the swivel wheel 16 is a driven wheel, and is rotatably disposed in the lower part of the main body 13 in contact with the floor surface.
  • the swivel wheel 16 can be swung in parallel or substantially parallel to the floor surface as a unit.
  • the swivel wheel 16 is located behind the drive wheel 15 and is disposed at the center in the width direction of the main body 13, but is not limited to such an arrangement.
  • the cleaning drive means 17 removes dust on the floor surface.
  • the cleaning drive means 17 has a function of collecting and collecting dust on the floor surface from the suction port 28 or wiping and cleaning the wall surface, for example.
  • the cleaning drive means 17 includes an electric blower 35 that sucks and discharges air.
  • the cleaning drive means 17 includes a brush motor 37 which is a rotation drive means for rotationally driving a rotary brush 36 as a rotary cleaning body rotatably attached to a suction port 28 disposed at the front portion of the main body 13. ing.
  • the electric blower 35 sucks dust together with air into the dust collecting unit 40 by applying a negative pressure to the floor surface from the suction port 28.
  • the electric blower 35 is accommodated in the main body 13, and the suction side communicates with the suction port 28 via the dust collection unit 40.
  • Rotating brush 36 scrapes or scrapes off dust on the floor surface.
  • the rotary brush 36 has an axial direction along the longitudinal direction of the suction port 28. That is, the rotating brush 36 has an axial direction along a direction parallel to or substantially parallel to the floor surface, and is arranged to rotate in the vertical direction.
  • the rotating brush 36 and the suction port 28 constitute the cleaning means 41 of this embodiment.
  • the cleaning means 41 cleans dust on the floor surface facing the position of the foremost end of the lower part of the main body 13.
  • the dust collecting unit 40 is provided detachably with respect to the main body 13, for example.
  • the dust collection part 40 is located at the rear part of the main body 13, for example.
  • the control means 18 is a microcomputer including a CPU, a ROM, a RAM, and the like, which are control means bodies.
  • the control means 18 is electrically connected to the travel drive means 14, the cleaning drive means 17, the detection means 19, and the like. More specifically, the control means 18 includes a travel control unit 43 that is a travel control means. Further, the control means 18 includes a cleaning control unit 44 which is a cleaning control means. Further, the control means 18 may include a processing unit 45 having functions of a map creation means and a self-position estimation means. Furthermore, the control means 18 includes a memory 46 as a storage means. Since the control means 18 is electrically connected to the battery, the control means 18 may include a charge control unit that controls charging of the battery.
  • the traveling control unit 43 controls the traveling drive means 14. Specifically, the travel control unit 43 is electrically connected to the motor 31 and controls the drive of the drive wheels 15 by controlling the motor 31. For example, the traveling control unit 43 controls the motor 31 so as to rotate the paired drive wheels 15 in the same direction at the same rotation speed or rotation speed, so that the main body 13 goes straight in the rotation direction. That is, it can be moved forward or backward. In addition, the traveling control unit 43 controls the motor 31 so as to rotate the paired drive wheels 15 in opposite directions, so that the main body 13 can be moved beyond the center point of the paired drive wheels 15. It can be swiveled.
  • the traveling control unit 43 controls the motor 31 so as to rotate the paired drive wheels 15 in opposite directions, so that the main body 13 can be moved beyond the center point of the paired drive wheels 15. It can be swiveled.
  • the main body 13 simply turns, it is assumed that the super turn is performed.
  • the traveling control unit 43 controls the motor 31 so that the rotational speed or rotational speed of one drive wheel 15 is larger than the rotational speed or rotational speed of the other drive wheel 15, thereby moving the main body 13 left and right. It is possible to run while turning. Hereinafter, this operation is referred to as wraparound or round turn. At this time, the other driving wheel 15 may be stopped, for example. By appropriately combining these operations, the main body 13 can freely run on the floor surface. Therefore, the travel control unit 43, the travel drive means 14, and the drive wheels 15 constitute a travel means 48 that causes the main body 13 to travel.
  • the cleaning control unit 44 controls the cleaning driving means 17.
  • the cleaning control unit 44 controls the electric blower 35 and the brush motor 37.
  • the processing unit 45 recognizes the obstacles and the arrangement of steps detected by the detecting means 19, and creates map data and self-position estimation of a traveling area or a cleaning target area where the main body 13 can travel.
  • the creation of the map data and the self-location estimation can use a known SLAM (simultaneousanelocalization and mapping) technique or the like, and the details are omitted.
  • SLAM Simultaneousanelocalization and mapping
  • the memory 46 is a non-volatile memory such as a flash memory.
  • the memory 46 stores various data referred to by the travel control unit 43, the cleaning control unit 44, the processing unit 45, or the like.
  • the memory 46 may store map data created by the processing unit 45.
  • the vacuum cleaner 11 includes a dust amount detection unit
  • the memory 46 reflects the dust amount detected by the dust amount detection unit at each position on the map data created by the processing unit 45.
  • Quantity map data that is, a garbage map may be stored.
  • Detecting means 19 detects information related to the object in the traveling direction of the main body 13.
  • the information related to the object is the distance between the front surface portion 23 of the main body 13 and the object, the width of the object, the shape of the object, and the like.
  • the object is an obstacle such as a wall, a pillar, or a step.
  • the detection means 19 is an information detection unit 51.
  • the information detection unit 51 is an obstacle detection unit that detects an obstacle such as a wall or a column in the traveling direction of the main body 13 or a step below.
  • a contact type or a non-contact type can be used as the information detection unit 51.
  • the information detection unit 51 will be described by taking a non-contact type as an example.
  • the information detection unit 51 a sensor that detects the distance between the main body 13 and the obstacle, the width of the obstacle, and the shape of the obstacle, such as an infrared sensor or an ultrasonic sensor, or Image capturing using one or more cameras, extracting feature points and pixel brightness in the image, and acquiring various types of information such as obstacles, steps, and floor types based on the extracted information Means or combinations thereof are used.
  • the information detected by the information detection unit 51 includes, for example, the distance between the front surface part 23 of the main body 13 and the object, relative coordinates, and the like. It is preferable that the information detection unit 51 can detect information at a plurality of locations in front of the main body 13.
  • the information detection unit 51 when an infrared sensor or an ultrasonic sensor is used as the information detection unit 51, it is preferable that detection signals can be output from a plurality of locations or in a plurality of directions with respect to an object in front of the main body 13.
  • the front of the main body 13 refers to a direction in front of the front surface portion 23 with respect to the front surface portion 23.
  • the information detection unit 51 is arranged at a plurality of different locations in the width direction of the main body 13, and the detection signal DS is perpendicular or substantially perpendicular to the front surface part 23 from each position. You may output ahead.
  • the information detection unit 51 is preferably arranged on both sides in the width direction of the main body 13 and the central part.
  • the information detection unit 51 may be one if it can detect an obstacle in front of the main body 13.
  • the information detection unit 51 is arranged so as to output detection signals DS in different directions in the width direction by turning, rotating, or moving left and right with respect to the main body 13. May be.
  • the information detection unit 51 is preferably arranged at the center of the main body 13 or the like. For example, as shown in FIG.
  • the information detection unit 51 when a camera is used as the information detection unit 51, it is preferable to have a horizontal angle of view VA that can capture at least a range corresponding to the width dimension of the main body 13.
  • the information detection unit 51 is preferably arranged on the front surface part 23, for example, at a position where coordinates are known in advance with reference to the front surface part 23, or a position having a predetermined positional relationship with the front surface part 23. May be.
  • the information detection unit 51 may be disposed, for example, on the upper part of the main body 13 as long as it can measure the distance to the object in front of the main body 13.
  • the information detection unit 51 detects the distance between the object in the traveling direction of the main body 13 and the main body 13 and determines whether the object is an obstacle based on the detected distance.
  • the information detection unit 51 compares the distance between the main body 13 and the object in the traveling direction of the main body 13 with a predetermined first threshold value, and the distance between the main body 13 and the object is equal to or less than the predetermined first threshold value. Is detected, it is determined that the object is an obstacle.
  • the first threshold value is a numerical value indicating the distance between the main body 13 and the object in the traveling direction of the main body 13.
  • the information detection unit 51 when there are a plurality of information detection units 51, when the distance between the main body 13 detected by the detection signal output in any direction and the object is equal to or less than a predetermined first threshold, the object is an obstacle. It is judged that.
  • the information detection unit 51 outputs the detection signal in a direction perpendicular or substantially perpendicular to the front surface part 23, in other words, parallel or substantially parallel to the traveling front-rear direction of the main body 13.
  • the output direction of the detection signal may be inclined with respect to the traveling direction of the main body 13.
  • a first threshold value for determining that the object is an obstacle may be set according to the inclination angle of the detection signal with respect to the traveling front-rear direction of the main body 13. That is, the first threshold value may be set larger as the inclination angle of the detection signal with respect to the front-rear direction of the main body 13 is larger.
  • the information detection unit 51 may include a detection unit 53 and a detection processing unit 54 as in the example illustrated in FIG.
  • the detection unit 53 detects an object in the traveling direction of the main body 13.
  • the detection processing unit 54 processes the information acquired by the detection unit 53, and determines whether or not the object is an obstacle.
  • the detection processing unit 54 can acquire the result detected by the detection unit 53 and output the result to the travel control unit 43 and the cleaning control unit 44. For example, when detecting the distance by the detection unit 53, the detection processing unit 54 determines that the object is an obstacle when the distance is equal to or less than a predetermined first threshold value.
  • the detection processing unit 54 determines whether the object is detected when the distance from the object detected by any of the detection units 53 is equal to or less than a predetermined first threshold value. Is determined to be an obstacle.
  • the detection processing unit 54 has a first predetermined distance from the object detected by the detection signal output in any direction. If it is less than or equal to the threshold, it is determined that the object is an obstacle.
  • the first threshold value for judging that the object is an obstacle may be changed according to the output angle of the detection signal with respect to the traveling direction of the main body 13. That is, the first threshold value may be set larger as the output angle of the detection signal is larger.
  • the information detection unit 51 can also serve as a width detection unit.
  • the width detecting means detects whether or not the width of the obstacle in the traveling direction of the main body 13 is equal to or larger than a second threshold value set in advance in the horizontal direction, and what kind of obstacle is based on the detection result Judging.
  • the second threshold value is a numerical value indicating the width of the obstacle in the traveling direction of the main body 13.
  • the width detecting means determines that the obstacle is an obstacle such as a wall when detecting that the width of the obstacle in the traveling direction of the main body 13 is equal to or greater than a second threshold value set in advance in the lateral direction.
  • the width detecting means detects that the width of the obstacle in the traveling direction of the main body 13 is less than a second threshold value set in the lateral direction, the width detecting means determines that the obstacle is an obstacle such as a stick. To do. Further, when there are a plurality of width detecting means, and the width of the obstacle detected by the detection signal output in any direction is equal to or larger than a predetermined second threshold, the obstacle is an obstacle such as a wall. Judge that there is.
  • the information detection unit 51 when the information detection unit 51 also functions as a width detection unit, the information detection unit 51 may include a detection unit 53 and a detection processing unit 54 as in the example illustrated in FIG.
  • the detection unit 53 detects the width of the obstacle in the traveling direction of the main body 13.
  • the detection processing unit 54 compares the width of the obstacle detected by the detection unit 53 with a predetermined second threshold value, and determines whether the obstacle is like a wall.
  • the width detection means detects the distance between the main body 13 and the object by detecting the distance between the main body 13 and the object by the detection units 53 located at a plurality of positions in the width direction.
  • the width detection means may determine the width of the object based on the distance between the main body 13 and the object detected by outputting the detection signal from the detection unit 53 while turning the main body 13 by the traveling means 48.
  • the information detection unit 51 is set to detect that the width of the obstacle is in the horizontal direction from half the horizontal width of the main body 13 to equal to or greater than the same size. Therefore, it is preferable that the information detection unit 51 be able to detect information at a plurality of locations in the width direction at intervals equal to or smaller than the second threshold, in this embodiment, at least equal to or smaller than half the width dimension of the main body 13.
  • the information detection unit 51 is a shape detection unit that detects the shape of an object that is determined to be an obstacle. Specifically, as shown in FIG. 5, the shape detection means determines whether the shape of the obstacle on the main body 13 side is a flat shape or a curved surface shape. For example, the shape detection means determines whether the shape of the obstacle on the side of the main body 13 is flat or curved by determining whether three or more points in the width direction of the obstacle are on the same plane or substantially on the same plane. May be. For example, when the vacuum cleaner 11 includes three or more shape detection means, a virtual vertical plane including at least two points P1 and P2 obtained from the distance to the obstacle O detected by at least two of these shape detection means.
  • the remaining point P3 of the obstacle O whose distance is detected by the remaining shape detection means is included with respect to VP, or the distance from the remaining shape detection means to the virtual vertical plane VP is the shape detection means As shown by the solid line in FIG. 5 (a), it can be determined that the main body 13 side of the obstacle O is planar as long as the distance to the point P3 of the obstacle O actually detected by FIG. Yes, if not included, or if the distance from the remaining shape detection means to the virtual vertical plane VP does not match the distance to the point P3 of the obstacle O actually detected by the shape detection means Can be judged as curved as shown by the two-dot chain line in 5 (a) It is.
  • the shape detecting means determines whether the curved surface is a convex curved surface or a concave curved surface. You may do it. That is, the information detection unit 51 has the remaining shape up to the virtual vertical plane VP including at least two points P1 and P2 obtained from the distance to the obstacle O detected by at least two of the three or more shape detection means. Based on the size of the distance from the detection means and the distance to the point P3 of the obstacle O actually detected by the shape detection means, the shape of the obstacle O on the main body 13 side is a convex curved surface or a concave curved surface. Can be determined.
  • the shape of the obstacle O on the main body 13 side is a convex curved surface protruding toward the main body 13 side, and if larger, as shown in FIG. 5 (c). It can be determined that the shape of the obstacle O on the main body 13 side is a concave curved surface.
  • the magnitude relationship between the distance from the shape detection means to the virtual vertical plane VP and the distance to the point actually detected by the shape detection means for determining the curved surface shape of the obstacle on the main body 13 side is as follows. Depending on the position of the point on the obstacle to detect the distance. For example, in FIG. 5 (b) and FIG. 5 (c), when the virtual vertical plane VP is set based on the points P1 and P3, the shape with respect to the distance from the shape detecting means to the virtual vertical plane VP is shown.
  • the magnitude relationship is preferably set according to the positions of a plurality of points on the main body 13 side of the obstacle to be detected. Further, for example, when the cleaner 11 outputs detection signals in a plurality of directions from the shape detection means, the shape detection means detects the distance of three or more points in the width direction of the obstacle so that the obstacle on the main body 13 side can be detected. The shape can be determined similarly.
  • the information detection unit 51 when the information detection unit 51 also functions as a shape detection unit, the information detection unit 51 may be configured by a detection unit 53 and a detection processing unit 54 as in the example shown in FIG.
  • the traveling means 48 is cleaned.
  • the main body 13 of the machine 11 may be temporarily stopped or may be moved at a lower speed than during cleaning.
  • the information detection unit 51 can also serve as the step detection unit 55 that detects a running obstacle on the floor surface below the main body 13, but FIG. 3 (c) As shown in the example, the detecting means 19 may be provided with a level difference detecting unit 55 separately from the information detecting unit 51 in order to detect a traveling obstacle on the floor more reliably.
  • the level difference detection unit 55 detects information on an object on the floor surface.
  • the step detection unit 55 can detect a concave step and / or a convex step on the floor surface.
  • the detection unit 19 includes the step detection unit 55, for example, a non-contact type is used as in the information detection unit 51 shown in FIG.
  • the step detection unit 55 is preferably disposed in front of and behind the drive wheel 15 on the bottom surface part 26 of the main body 13. Further, it is preferable that the level difference detection unit 55 is arranged in a pair on the left and right sides in order to more reliably detect a traveling obstacle at the front portion of the main body 13.
  • the level difference detection unit 55 is located on both sides of the suction port 28 in the vicinity of the front end of the main body 13, on both sides of the suction port 28 and in front of the drive wheel 15, and on the rear side of the drive wheel 15 and the swivel wheel 16. Are arranged at positions in the vicinity of the outer edge portion of the main body 13 on both sides in front of the main body 13, respectively.
  • the level difference detection unit 55 determines that there is a convex level that cannot be overcome when it detects that the distance between the lower portion of the main body 13 and the floor surface is equal to or less than a predetermined distance. To do.
  • the step detection unit 55 detects that the distance between the lower portion of the main body 13 and the floor surface is equal to or more than a predetermined distance, for example, if there is a concave step that cannot be climbed, such as a descending staircase, to decide.
  • the level difference detection unit 55 is a travel failure detection unit serving as a travel failure detection unit that detects a travel failure on the floor surface below the main body 13.
  • the detection means 19 may be provided with an obstacle detection means 61, a width detection means 62, and a shape detection means 63, respectively.
  • the obstacle detection unit 61, the width detection unit 62, and the shape detection unit 63 detect and determine information about the object, respectively. Even if comprised in this way, it is possible to show the effect similar to the above. Further, only two arbitrary functions of the obstacle detection means 61, the width detection means 62, and the shape detection means 63 may be used in the same configuration, and the remaining one function may be provided separately.
  • the detection means 19 may include dust amount detection means for detecting the amount of dust on the floor surface collected by the dust collection unit 40 from the suction port 28. Furthermore, the detection means 19 may include a floor surface detection means for detecting the type of the floor surface, for example.
  • the battery supplies power to the cleaning drive means 17, the control means 18, and the detection means 19.
  • a rechargeable secondary battery is used as the battery.
  • the main body 13 is provided with a charging terminal 59 for charging the battery.
  • the charging terminal 59 is electrically connected to the charging terminal on the charging device side so that the battery can be charged by power feeding from the charging device.
  • a pair of left and right charging terminals 59 are arranged on the bottom surface portion 26 of the main body 13.
  • the cleaner 11 starts cleaning from a predetermined position, for example, when it is detached from the charging device, the cleaner 11 cleans the floor surface by the cleaner 41 while autonomously traveling in the travel area by the driver 48. And if it drive
  • cleaning is completed, charging of the battery is started at a predetermined timing.
  • the traveling unit 48 causes the front surface portion 23 of the main body 13 to face the obstacle and causes the main body 13 to travel to the obstacle.
  • the cleaner 11 when the detection means 19 detects the obstacle O, the cleaner 11 is located between the front surface portion 23 of the main body 13 and the obstacle O. Based on the distance, it is determined whether or not the front surface 23 of the main body 13 is opposed to the obstacle O.
  • the traveling means 48 turns the main body 13 so that the front surface portion 23 of the main body 13 faces the obstacle O, and the main body 13 with respect to the obstacle O The front surface portion 23 of each other is opposed. Thereafter, the traveling means 48 causes the main body 13 to travel to the obstacle O, and the cleaning means 41 cleans the front floor of the main body 13 that has traveled to the obstacle O.
  • the cleaner 11 causes the traveling means 48 to move the main body 13 to the obstacle O with the front surface portion 23 of the main body 13 facing the obstacle O and the front surface of the main body 13. With the part 23 facing the obstacle, the floor surface of the front part of the main body 13 is cleaned by the cleaning means 41 arranged at the front part of the main body 13.
  • the cleaning means 41 arranged at the front part of the main body 13.
  • the traveling means 48 may cause the main body 13 to travel to the obstacle O, or may cause the front surface portion 23 to travel until it contacts the obstacle O.
  • the cleaner 11 is arranged in front of the main body 13 by the cleaning means 41 in a state where the front surface 23 of the main body 13 that has traveled to the obstacle O is in close contact with and in close contact with the obstacle O.
  • the floor of the part may be cleaned. In this way, by bringing the front surface portion 23 into close contact with the obstacle, it is possible to clean even the position adjacent to the obstacle on the floor surface, improve the cleaning efficiency, and reliably suck in dust.
  • the front cover 22 protrudes forward from the front surface portion 23, so that the front cover 22 first comes into contact with an obstacle and rotates backward against the biasing force.
  • the impact at the time of contact can be mitigated, and the front cover 22 is pushed backward by the reaction force of the contact to reduce the opening amount of the suction port 28 and increase the vacuum degree of the suction port 28. Suction can be more reliably performed from the suction port 28.
  • the cleaner 11 temporarily stops the main body 13 that has traveled to the obstacle with the front surface portion 23 of the main body 13 facing the obstacle, while the cleaning means 41 is in front of the main body 13. You may clean the floor. As a result, the floor surface can be intensively cleaned while the obstacle surface is stopped, and the floor surface can be cleaned more neatly.
  • the vacuum cleaner 11 may change the traveling control according to the size of the obstacle in the width direction. That is, when the width of the obstacle detected by the detection means 19 is equal to or larger than a second threshold value set in advance in the lateral direction, the main body 13 may be caused to travel to the obstacle.
  • the obstacle has a shape suitable for cleaning at the position of the front portion of the main body 13 in which the front surface portion 23 is formed in a straight line, and the information detection unit 51 detects the detected obstacle.
  • the traveling means 48 travels the body 13 to the obstacle and is cleaned by the cleaning means 41, thereby extending in the lateral direction. You can clean the floor in the case of wall-like obstacles.
  • the traveling means 48 temporarily stops the main body 13 and cleans it by the cleaning means 41, so that the floor surface in the case of an obstacle can be intensively cleaned, and the floor surface is cleaned more neatly. it can.
  • the detection means 19 does not detect that the width of the detected obstacle is greater than or equal to a second threshold value predetermined in the lateral direction, that is, when the obstacle is not larger than a predetermined size in the width direction.
  • the obstacle is not a shape effective for cleaning, for example, at the position of the straight front part 23 in the front part of the main body 13 in which the front part 23 is formed in a straight line. It is assumed to be a leg or the like. In this case, as described above, if the front surface portion 23 of the main body 13 is temporarily stopped and kept in contact with the obstacle and cleaned by the cleaning means 41, the power that should be originally used for cleaning is wasted. Can also be. Therefore, in this case, as shown in FIGS.
  • the main body 13 traveled to the obstacle O by the traveling means 48 is temporarily retracted, turned, or turned around.
  • the obstacle O may be avoided.
  • optimal travel control can be set according to the shape of the obstacle.
  • the traveling means 48 performs traveling control depending on whether the shape of the obstacle on the body 13 side is a flat surface or a curved surface. By changing, the floor surface in the case of an obstacle can be efficiently cleaned even at a location where the front surface portion 23 is away from the obstacle.
  • the traveling means 48 causes the main body 13 to travel to the obstacle
  • the width of the obstacle detected by the detecting means 19 is equal to or larger than a second threshold value predetermined in the lateral direction and
  • the body 13 travels so that the front surface 23 of the body 13 traveled to the obstacle by the traveling means 48 follows the shape of the obstacle on the body 13 side. You may make it make it.
  • the distance between the obstacle and the both sides in the width direction of the front surface portion 23 of the main body 13 and the central portion is different. It is more preferable that the cleaner 11 changes the traveling control according to the curved surface shape of the obstacle on the main body 13 side.
  • the traveling means 48 has a front surface portion 23 of the main body 13 as shown in FIG.
  • the main body 13 may be bent so that it follows the shape of the obstruction O on the main body 13 side, that is, it may be turned around. As shown in FIG.
  • the main body 13 may be caused to travel so as to follow the shape of O.
  • the traveling means 48 is connected to the front portion 23 of the main body 13 as shown in FIG.
  • the main body 13 may be rotated so as to follow the shape of the obstruction O on the main body 13 side, and the side of the main body 13 is changed to the shape of the obstruction O on the main body 13 side as shown in FIG.
  • the main body 13 may be caused to travel along the line.
  • the front part of the main body 13 where the suction port 28 is located can be positioned on the floor surface at the time of the obstacle. It can be cleaned more evenly.
  • the detecting means 19 when detecting the distance between the main body 13 and the obstacle, detecting the width of the obstacle, or detecting the shape of the obstacle on the main body 13 side, the detecting means 19 If it is the structure provided with two or more, since the information to a several point can be measured simultaneously, the detection and judgment in a short time are attained. On the other hand, if the configuration is such that one detection means 19 detects information in a plurality of directions, the configuration can be further simplified.
  • the travel control unit 43 sets the travel route along the stored map data, for example, when the map data of the travel region is created by the processing unit 45 and stored in the memory 46 during the previous cleaning. May be.
  • the processing unit 45 may update the map data as needed based on the obstacle detection by the information detection unit 51 during autonomous traveling of the main body 13.
  • the detection means 19 detects the obstacle detection means for detecting an obstacle in front of the main body 13, the function of the width detection means for detecting and judging the width of the obstacle, and the shape of the obstacle.
  • the configuration can be simplified and the cleaner 11 can be manufactured at a low cost, and the processing load on the control means 18 can be reduced as compared with the configuration having these separately. .
  • the width of the obstacle is equal to or greater than a second threshold value set in advance in the horizontal direction. In some cases, cleaning is performed by shifting in the width direction along the obstacle.
  • the traveling means 48 performs lateral displacement control, that is, N-shaped traveling control, in which the main body 13 that has traveled to the obstacle is temporarily moved backward with respect to the obstacle and is repeatedly moved to the obstacle when shifted in the width direction. carry out.
  • the traveling means 48 causes the main body 13 to recede straight with respect to the obstacle O, turn left and turn right, The travel control may be repeated so that the vehicle travels (forwards) toward O.
  • the traveling means 48 causes the main body 13 to recede straight with respect to the obstacle O, turn left, and turn right further. Then, the travel control may be repeated so that the vehicle travels or moves forward toward the obstacle O.
  • the traveling means 48 turns the main body 13 left rearward, turns left, and turns right toward the obstacle O. Travel control may be repeated so that
  • the lateral deviation control by the traveling means 48 is not only illustrated in FIGS. 9 to 11, but also moves forward so as to repeat the operation of retreating the obstacle once and moving to the obstacle when displaced in the width direction. It can be configured with any combination of reverse, turn, and wraparound.
  • the side means 13 that has traveled to the obstacle is temporarily moved backward with respect to the obstacle and shifted to the obstacle when it is displaced in the width direction, and the lateral movement control is repeated by the traveling means 48.
  • the floor surface can be efficiently cleaned by the cleaning means 41 over a wide range.
  • this lateral shift control for an obstacle that is large in the width direction, such as a wall the floor surface of the obstacle can be efficiently cleaned by the cleaning means 41 over a wide range.
  • the traveling means 48 controls the traveling so that the front surface portion 23 of the main body 13 traveled to the obstacle O follows the shape of the obstacle O on the main body 13 side.
  • the cleaning means 41 cleans the floor surface at a position where at least the main body 13 has traveled to the obstacle during lateral deviation control, but when cleaning the floor surface at other positions, the floor surface of the traveling region is used. If the cleaning means 41 is not cleaned, for example, the cleaning means 41 is stopped at other positions, battery consumption can be suppressed.
  • the main body 13 of the vacuum cleaner 11 is caused to travel while being displaced in the width direction along the obstacle without once retracting the obstacle.
  • such control is possible by using wheels or traveling wheels that are movable in all directions as the drive wheels 15.
  • the driving wheel 15 for example, an omni wheel or two pairs of mecanum wheels may be used. That is, by controlling each drive wheel 15, the main body 13 can run in all directions while facing a certain direction.
  • the vacuum cleaner 11 can shift in the width direction along the obstacle while keeping the front surface portion 23 of the main body 13 relative to the obstacle.
  • the floor surface of the front portion of the main body 13 is cleaned by the cleaning means 41 while being displaced.
  • traveling control such as retreating, turning, and approaching to the obstacle is no longer necessary, and the floor surface at the time of the obstacle can be efficiently and quickly removed by the cleaning means 41 in a wider range in a shorter time.
  • the case where the shape of the obstacle O on the main body 13 side is a plane is described as an example.
  • the shape of the obstacle O on the main body 13 side is a convex curved surface or a concave curved surface.
  • the floor surface of the obstacle O can be similarly cleaned by the cleaning means 41 by controlling the traveling means 48 so that the main body 13 is displaced in the width direction along the curved surface shape of the obstacle O. .
  • Each lateral deviation control of the second and third embodiments is performed only at a predetermined condition, and is run along a so-called wall, for example, by running along the side of the main body 13 with respect to an obstacle other than the predetermined condition. You may make it implement driving
  • the lateral deviation control may be performed only at a location where the amount of dust detected by the dust amount detection means is large, or predetermined from the previous cleaning to the current cleaning.
  • the lateral deviation control may be performed when the period or more has elapsed, and when the cleaner 11 includes the floor surface detection means, the type of floor surface detected by the floor surface detection means is a carpet.
  • the lateral shift control may be performed only on the area, or when the cleaner 11 holds the dust amount map data, the lateral shift control may be performed only at a portion where the dust amount is large.
  • the cleaning means 41 is not limited to the one that sucks dust on the floor surface into the dust collection unit 40 as long as the floor surface of the front portion of the main body 13 can be cleaned. It may be scraped up or simply cleaned by wiping or polishing the floor.
  • the detection means 19 a contact sensor that detects contact with an object such as an obstacle may be used.
  • the detection means 19 is preferably arranged at a plurality of locations different in the width direction of the main body 13, for example, at positions including both widthwise side portions of the front surface portion 23 of the main body 13. Then, for example, when any of the detection means 19 detects that an object such as an obstacle has been contacted, the traveling means 48 advances the main body 13 until the detection means 19 on both sides come into contact with the object, thereby causing the main body 13 to move forward.
  • the front surface portion 23 of the can be made to be relative to the object.
  • the traveling means 48 advances the other side of the main body 13 until the detection means 19 on the other side detects contact with the object.
  • the 13 front portions 23 can also be made to be opposed to the obstacle.
  • the traveling means 48 can travel the main body 13 so as to avoid an obstacle in that case.
  • the detection means 19 As described above, by using a contact sensor as the detection means 19, it is possible to realize the functions of the obstacle detection means, the width detection means, and the shape detection means. That is, the obstacle detection means, the width detection means, or the shape detection means may be configured to directly detect the obstacle, its width, and the shape on the main body 13 side by sensors serving as detection means. In this case, the configuration and control of the cleaner 11 can be further simplified.
  • the fourth embodiment relates to the control of the vacuum cleaner 11 of each of the above embodiments.
  • the fourth embodiment generally includes a detection step for detecting an obstacle in the traveling direction of the main body 13 by the detection means 19 and a detection result detected by the detection step.
  • a traveling step in which the main body 13 travels to an obstacle with the front portion 23 of the vehicle 13 facing each other, and a cleaning step in which the cleaning means 41 cleans the floor surface in a state where the main body 13 has traveled to the obstacle by the traveling step.
  • step S1 the detection means 19 determines whether or not the distance between the front surface portion 23 of the main body 13 and the detected object is equal to or less than a predetermined first threshold value.
  • step S1 If it is determined in step S1 that the distance between the front surface portion 23 of the main body 13 and the detected object is not equal to or less than a predetermined first threshold value, the process returns to step S1. If it is determined in step S1 that the distance between the front surface portion 23 of the main body 13 and the detected object is equal to or smaller than a predetermined first threshold value, in step S2, the detection means 19 detects the object as an obstacle. Judge.
  • step S3 the detection means 19 detects the distance between the front surface portion 23 of the main body 13 and the detected object, and based on the distance, whether or not the front surface portion 23 of the main body 13 is opposed to the obstacle. Judging.
  • step S3 when the detection means 19 determines that the front surface portion 23 of the main body 13 is not opposed to the obstacle, the traveling means 48 causes the front surface portion 23 of the main body 13 to be opposed to the obstacle in step S4. Then, the process proceeds to step S5.
  • step S3 when the detection means 19 determines that the front surface portion 23 of the main body 13 is opposed to the obstacle, in step S5, the traveling means 48 cleans while driving the main body 13 to the obstacle.
  • the floor is cleaned by means 41.
  • the cleaner 11 is moved by the cleaning means 41 located at the front of the main body 13 with the front surface portion 23 of the main body 13 that has traveled to the obstacle facing the obstacle. Since the front floor surface of the main body 13 is cleaned, the front surface portion 23 is formed in a straight line and the cleaning means 41 effectively utilizes the shape of the main body 13 located at the front portion to clean the floor surface in the event of an obstacle. it can.
  • the fifth embodiment relates to the control of the vacuum cleaner 11 of each of the above embodiments.
  • the detection means 19 causes the obstacle width to be equal to or greater than a second threshold value set in advance in the horizontal direction. It is determined whether or not.
  • step S11 when the detection unit 19 determines that the width of the obstacle is not equal to or greater than the second threshold value predetermined in the horizontal direction, in step S12, the detection unit 19 determines that the obstacle is a rod-shaped object. Then, in step S13, the traveling means 48 causes the main body 13 to travel so as to avoid the obstacle, and further proceeds to step S1.
  • step S11 determines in step S11 that the width of the obstacle is equal to or greater than a second threshold value set in advance in the horizontal direction
  • step S14 judges that it is.
  • step S15 the detection means 19 determines the shape of the obstacle on the main body 13 side. Specifically, in step S15, the detection means 19 determines whether the shape of the obstacle on the main body 13 side is a flat shape or a curved surface shape.
  • step S15 when the detection unit 19 determines that the shape of the obstacle on the main body 13 side is a flat shape, the process proceeds to step S5.
  • step S15 when the detection means 19 determines in step S15 that the shape of the obstacle on the main body 13 side is a curved surface, in step S16, the detection means 19 further determines that the shape of the obstacle on the main body 13 side is convex. It is determined whether the shape is curved or concave.
  • step S16 when the detecting means 19 determines that the shape of the obstacle on the main body 13 side is a convex curved surface, in step S17, the traveling means 48 is a part of the front portion 23 of the main body 13 with respect to the obstacle.
  • the cleaning means 41 cleans the floor surface while turning the main body 13 while keeping it in close contact with the front portion 23 along the curved surface of the obstacle.
  • step S16 when the detection means 19 determines that the shape of the obstacle on the main body 13 side is a concave curved surface, in step S18, the traveling means 48 detects the obstacle on the front surface portion 23 of the main body 13.
  • the cleaning means 41 cleans the floor surface while keeping the front part 23 along the curved surface of the obstacle by moving around the main body 13 and moving forward with a part in close contact.
  • the traveling means 48 causes the front surface portion 23 of the main body 13 to face the obstacle, and the main body 13 is moved along the shape of the obstacle.
  • the main body 13 may be further traveled, or the main body 13 may be traveled after being temporarily stopped with the front surface 23 of the main body 13 in close contact with the obstacle.
  • the travel means 48 causes the main body 13 that has traveled to the obstacle to retreat with respect to the obstacle and shifts in the width direction to travel to the obstacle. You may control as follows.
  • the autonomously traveling vacuum cleaner according to the present invention has an effect that dust and the like at the time of an obstacle can be further cleaned according to the obstacle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Robotics (AREA)
  • Electric Vacuum Cleaner (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

障害物(O)の際の床面を掃除できる自律走行式掃除機(11)およびその制御方法を提供する。本体(13)は、直線状に形成された前面部(23)を備える。検出手段(19)は、本体(13)の走行方向の障害物(O)を検出する。走行手段(48)は、検出手段(19)の検出結果に基づき、障害物(O)に対して本体(13)の前面部(23)を相対させて障害物(O)まで本体(13)を走行させる。掃除手段(41)は、本体(13)の前部に配置され、走行手段(48)により本体(13)が障害物(O)まで走行された状態で被掃除面を掃除する。

Description

自律走行式掃除機およびその制御方法
 本発明の実施形態は、自律走行して掃除をする自律走行式掃除機およびその制御方法に関する。
 従来、被掃除面としての床面上を自律走行しながら床面を掃除する、いわゆる自律走行型の掃除機(掃除ロボット)が知られている。このような掃除機は、電源となる電池の限られた容量を効率的に利用して掃除するため、またセンサやプロセッサの能力向上と低廉化により、マップ技術を搭載する製品が増えつつある。このようなセンサ技術の向上と低廉化により、自律走行式の掃除機における障害物検出および障害物回避の機能も向上している。そのため、旋回によって半径が変化しない形状(丸型あるいはルーロー三角形)など、従来の前提に捕らわれない本体形状を備える掃除機も製品化されつつある。
 例えば、本体の前面部を直線状とし、手動の掃除機と同様の吸塵ヘッド(床ブラシと吸引口から構成される)を最前部に備えたD型形状の掃除機がある。この掃除機は、障害物を検出すると、この障害物と衝突しない位置で旋回して、障害物の近傍を障害物に沿って走行させるように制御される。そのため、障害物の際の床面を掃除することが困難である。
特表2017-503267号公報
 本発明が解決しようとする課題は、障害物の際の被掃除面を掃除できる自律走行式掃除機およびその制御方法を提供することである。
 実施形態の自律走行式掃除機は、本体と、検出手段と、走行手段と、掃除手段とを有する。本体は、直線状に形成された前面部を備える。検出手段は、本体の走行方向の障害物を検出する。走行手段は、検出手段により検出された検出結果に基づき、障害物に対して本体の前面部を相対させて障害物まで本体を走行させる。掃除手段は、本体の前部に配置され、走行手段により本体が障害物まで走行された状態で被掃除面を掃除する。
 また、実施形態の自律走行式掃除機の制御方法は、本体の前面部が直線状に形成される自律走行可能な自律走行式掃除機の制御方法であって、検出ステップが本体の走行方向の障害物を検出し、検出結果に基づき、障害物に対して本体の前面部を相対させて障害物まで本体を走行させ、本体が障害物まで走行された状態で被掃除面を掃除する。
第1の実施形態の自律走行式掃除機を下方から示す平面図である。 同上自律走行式掃除機を示す斜視図である。 (a)は同上自律走行式掃除機の内部構造の一例を示すブロック図、(b)は同上自律走行式掃除機の内部構造の他の例の一部を示すブロック図、(c)は同上自律走行式掃除機の内部構造のさらに他の例の一部を示すブロック図、(d)は同上自律走行式掃除機の内部構造のさらに他の例の一部を示すブロック図である。 (a)は同上自律走行式掃除機の障害物の検出動作の一例を模式的に示す説明図、(b)は同上自律走行式掃除機の障害物の検出動作の他の例を模式的に示す説明図、(c)は同上自律走行式掃除機の障害物の検出動作のさらに他の例を模式的に示す説明図である。 (a)は同上自律走行式掃除機の本体側の障害物の形状の判断方法を模式的に示す説明図、(b)は同上自律走行式掃除機の本体側の障害物の形状が凸曲面状である場合の判断方法を模式的に示す説明図、(c)は同上自律走行式掃除機の本体側の障害物の形状が凹曲面状である場合の判断方法を模式的に示す説明図である。 (a)は同上自律走行式掃除機の本体の前面部を障害物に対して相対させる走行制御の動作を模式的に示す説明図、(b)は同上自律走行式掃除機の本体の前面部を障害物に対して相対させる走行制御の(a)に続く動作を模式的に示す説明図、(c)は同上自律走行式掃除機の本体の前面部を障害物に対して相対させる走行制御の(b)に続く動作を模式的に示す説明図、(d)は同上自律走行式掃除機の本体の前面部を障害物に対して密着させた状態を模式的に示す説明図である。 (a)は同上自律走行式掃除機の幅が所定以上でない障害物に対する走行制御の一例の動作を模式的に示す説明図、(b)は同上自律走行式掃除機の幅が所定以上でない障害物に対する走行制御の一例の(a)に続く動作を模式的に示す説明図、(c)は同上自律走行式掃除機の幅が所定以上でない障害物に対する走行制御の一例の(b)に続く動作を模式的に示す説明図、(d)は同上自律走行式掃除機の幅が所定以上でない障害物に対する走行制御の一例の(c)に続く動作を模式的に示す説明図である。 (a)は同上自律走行式掃除機の本体側の障害物の形状が凸曲面状である場合の走行制御の一例の動作を模式的に示す説明図、(b)は同上自律走行式掃除機の本体側の障害物の形状が凸曲面状である場合の走行制御の他の例の動作を模式的に示す説明図、(c)は同上自律走行式掃除機の本体側の障害物の形状が凹曲面状である場合の走行制御の一例の動作を模式的に示す説明図、(d)は同上自律走行式掃除機の本体側の障害物の形状が凹曲面状である場合の走行制御の他の例の動作を模式的に示す説明図である。 (a)は第2の実施形態の自律走行式掃除機の横ずれ制御の一例の動作を模式的に示す説明図、(b)は同上横ずれ制御の一例の(a)に続く動作を模式的に示す説明図、(c)は同上横ずれ制御の一例の(b)に続く動作を模式的に示す説明図、(d)は同上横ずれ制御の一例の(c)に続く動作を模式的に示す説明図である。 (a)は同上自律走行式掃除機の横ずれ制御の他の例の動作を模式的に示す説明図、(b)は同上横ずれ制御の他の例の(a)に続く動作を模式的に示す説明図、(c)は同上横ずれ制御の他の例の(b)に続く動作を模式的に示す説明図、(d)は同上横ずれ制御の他の例の(c)に続く動作を模式的に示す説明図である。 (a)は同上自律走行式掃除機の横ずれ制御のさらに他の例の動作を模式的に示す説明図、(b)は同上横ずれ制御のさらに他の例の(a)に続く動作を模式的に示す説明図、(c)は同上横ずれ制御のさらに他の例の(b)に続く動作を模式的に示す説明図である。 第3の実施形態の自律走行式掃除機の横ずれ制御の動作を模式的に示す説明図である。 第4の実施形態の自律走行式掃除機の制御方法を示すフローチャートである。 第5の実施形態の自律走行式掃除機の制御方法を示すフローチャートである。
実施形態
(第1の実施形態)
 以下、第1の実施形態の構成を、図面を参照して説明する。
 図1ないし図3において、11は自律走行式掃除機である。以下、自律走行式掃除機11を単に掃除機11という。掃除機11は、走行面としての被掃除面である床面上を自律走行しつつ床面を掃除する。掃除機11は、本実施形態において、ロボットクリーナ又は掃除ロボットと称する。掃除機11は、充電用の基地部となる基地装置として図示しない充電装置とともに自律走行体装置としての電気掃除装置を構成してもよい。
 掃除機11は、本体13を備えている。また、掃除機11は、走行駆動手段14を備えている。さらに、掃除機11は、掃除駆動手段17を備えている。さらにまた、掃除機11は、コントローラである制御手段18を備えている。掃除機11は、検出手段19を備えている。そして、掃除機11は、電源部となる給電用の電池を備えていてもよい。なお、掃除機11は、他に、外部機器との通信をするための通信部や、ユーザによる外部入力を受け付ける入力部を備えていてもよい。以下、本体13の走行方向に沿った方向を前後方向(図1などに示す矢印FR,RR方向)とし、前後方向に対して交差又は直交する左右方向又は両側方向を幅方向又は横方向として説明する。
 図1および図2に示すように、本実施形態において、本体13は、筐体(ケース体)21と、前カバー22とを備えている。また、本体13は、外観を構成する緩衝部材などの部材も含んでいてもよい。
 本実施形態において、筐体21は、平面視で、すなわち上方又は下方から見て略D字状に形成されている。筐体21は、幅方向に沿って直線状に形成された前面部23と、円弧状に形成された後面部24とを備えている。本実施形態において、筐体21は、前面部23と後面部24との間に側面部25をさらに備えているが、これら側面部25は必須の構成ではなく、前面部23の両側に後面部24の両側が直接連結されていてもよい。なお、筐体21は、幅方向に沿って直線状に形成された前面部23を備えていれば、略D字状に限定されない。また、筐体21は、底面部26を備えている。さらに、筐体21は、上面部27を備えている。そして、筐体21は、集塵口である吸込口28を備えている。
 前面部23は、本体13の最前部を構成している。なお、前面部23は、全体として幅方向に沿って直線状であれば、突起物や凹凸などが表面に形成されていてもよい。
 本実施形態において、後面部24は、本体13の側面部25に亘って、後方に凸状に形成されている。また、後面部24は、半円弧状に形成されている。
 側面部25は、前面部23の両側部から後方へと、前後方向に沿って直線状に延びて形成されている。これら側面部25の前端部間に前面部23が位置し、後端部間に後面部24が位置している。
 底面部26は、床面に対向する部分である。底面部26は、必ずしも面状でなくてもよく、凹凸形状などが形成されているものも含めて底面部26というものとする。
 本実施形態において、吸込口28は、床面に対向する底面部26に形成されている。吸込口28は、本体13の前側寄りに位置している。吸込口28は、幅方向に長手状、すなわち横長又は幅広に形成されている。また、吸込口28は、筐体21の幅の大きさに合わせて配置されている。本実施形態において、吸込口28は、例えば本体13の幅方向の中心線に対して左右対称に配置されているが、左右対称のみではなく少しずれていても構わない。すなわち、本実施形態において、吸込口28の幅方向の中央部は、本体13の幅方向の中央部と一致しているが、これらは互いにずれていてもよい。
 前カバー22は、筐体21とは別体で、筐体21の前部に取り付けられて前面部23から前方に突出している。前カバー22は、横長のフラップ状に形成されており、吸込口28の前部を覆っている。また、前カバー22は、上端部が筐体21に対して回動可能に支持され、下端部が筐体21に対して前後方向に回動する自由端状となっている。このため、前カバー22は、下端部が吸込口28に対して前後に回動することで吸込口28の真空度を調整する真空度調整部材である。さらに、前カバー22は、図示しないトーションばねなどの付勢手段により、下端部が前方に向けて回動する方向に付勢されている。このため、前カバー22は、壁などとの接触により付勢に抗して下端部が後方へと回動することで本体13と壁との接触時の衝撃を緩和する緩衝部材である。
 走行駆動手段14は、本体13の走行を駆動するものである。走行駆動手段14は、駆動輪15を駆動する駆動手段としてのモータ31を備えている。
 図1に示すように、掃除機11は、駆動輪15を備えている。駆動輪15は、本体13を床面上で前進方向および後退方向に自律走行させるものである。例えば、駆動輪15は、全方向移動可能な車輪である。駆動輪15は、本体13の底面部26に配置されている。本実施形態において、駆動輪15は、吸込口28の後方の位置に例えば本体13の左右に対をなして設けられているが、このような配置には限定されない。各駆動輪15は、モータ31によりそれぞれ駆動される。各駆動輪15は、例えばオムニホイールやメカナムホイールなどの、本体13の横方向移動を可能とする駆動装置でもよい。なお、駆動輪15に代えて、被駆動部としての走行輪としての無限軌道などを用いることもできる。
 また、掃除機11は、旋回輪16を備えてもよい。旋回輪16は、駆動輪15とともに本体13を床面に対して支持するものである。旋回輪16は、床面に対向する本体13の底面部26に配置されている。旋回輪16は、従動輪であり、本体13の下部に、床面と接触して回転自在に配置されているとともに、ユニットとして床面に対して平行又は略平行に旋回可能となっている。本実施形態において、旋回輪16は、駆動輪15よりも後方に位置しているとともに、本体13の幅方向の中央部に配置されているが、このような配置には限定されない。
 掃除駆動手段17は、床面の塵埃を除去するものである。掃除駆動手段17は、例えば床面上の塵埃を吸込口28から集めて捕集したり、壁面を拭き掃除したりする機能を有している。本実施形態において、掃除駆動手段17は、空気を吸い込み排出する電動送風機35を備えている。また、掃除駆動手段17は、本体13の前部に配置された吸込口28に回転可能に取り付けられた回転清掃体としての回転ブラシ36を回転駆動させる回転駆動手段であるブラシ用モータ37を備えている。
 電動送風機35は、吸込口28から床面に負圧を作用させることで空気とともに塵埃を集塵部40へと吸い込むものである。電動送風機35は、本体13に収容され、集塵部40を介して吸込側が吸込口28と連通している。
 回転ブラシ36は、床面の塵埃を掻き取る、又は掻き出すものである。回転ブラシ36は、吸込口28の長手方向に沿って軸方向を有している。すなわち、回転ブラシ36は、床面に対して平行又は略平行な方向に沿って軸方向を有し、上下方向に回動するように配置されている。そして、回転ブラシ36と吸込口28とにより、本実施形態の掃除手段41が構成されている。本実施形態において、掃除手段41は、本体13の下部の最前端の位置に対向する床面の塵埃を掃除するようになっている。
 集塵部40は、例えば本体13に対して着脱可能に設けられている。本実施形態において、集塵部40は、例えば本体13の後部に位置している。
 図3(a)ないし図3(c)に例を示すように、制御手段18は、例えば制御手段本体であるCPUやROMおよびRAMなどを備えるマイコンが用いられる。制御手段18は、走行駆動手段14、掃除駆動手段17、検出手段19などと電気的に接続されている。より詳細に、制御手段18は、走行制御手段である走行制御部43を備えている。また、制御手段18は、掃除制御手段である掃除制御部44を備えている。さらに、制御手段18は、地図作成手段および自己位置推定手段の機能を有する処理部45を備えていてもよい。さらにまた、制御手段18は、記憶手段としてのメモリ46を備えている。制御手段18は、電池と電気的に接続されているので、電池の充電を制御する充電制御部を備えていてもよい。
 走行制御部43は、走行駆動手段14を制御する。具体的に、走行制御部43は、モータ31と電気的に接続され、モータ31を制御することで駆動輪15の駆動を制御する。例えば、走行制御部43は、対をなす駆動輪15を同方向に同回転数又は同回転速度で回動させるようにモータ31を制御することで、その回動方向へと本体13を直進、すなわち前進あるいは後退させることができる。また、走行制御部43は、対をなす駆動輪15を互いに反対方向に回動させるようにモータ31を制御することで、本体13を、対をなす駆動輪15の中間点を中心とする超信地旋回させることができる。以下、本実施形態において、本体13が単に旋回のみをする場合、超信地旋回をするものとする。さらに、走行制御部43は、一方の駆動輪15の回転数又は回転速度を他方の駆動輪15の回転数又は回転速度よりも大きくするようにモータ31を制御することで、本体13を左右に曲がりながら走行させることが可能となる。以下、この動作を回り込み又はラウンドターンという。このとき、他方の駆動輪15は例えば停止させていてもよい。これらの動作を適宜組み合わせることで、本体13を床面上で自在に走行させることが可能となっている。したがって、走行制御部43と走行駆動手段14と駆動輪15とにより、本体13を走行させる走行手段48が構成されている。
 掃除制御部44は、掃除駆動手段17を制御するものである。本実施形態において、掃除制御部44は、電動送風機35およびブラシ用モータ37を制御する。
 処理部45は、検出手段19により検出された障害物や段差の配置などを認識し、本体13が走行可能な走行領域又は掃除対象領域の地図データの作成および自己位置推定をするものである。地図データの作成および自己位置推定は、既知のSLAM(simultaneous localization and mapping)技術などを用いることができるので、詳細については省略する。なお、処理部45は、本実施形態において必須の構成ではない。
 メモリ46は、例えばフラッシュメモリなどの不揮発性のものが用いられる。メモリ46には、走行制御部43、掃除制御部44、あるいは処理部45などにより参照される各種データが記憶されている。例えば、メモリ46には、処理部45により作成された地図データが記憶されていてもよい。また、掃除機11が塵埃量検出手段を備える場合、メモリ46には、処理部45により作成された地図データに対して、各位置で塵埃量検出手段により検出した塵埃量を反映させた、塵埃量地図データ、つまりごみマップが記憶されていてもよい。
 検出手段19は、本体13の走行方向の物体に関する情報を検出する。本実施形態では、物体に関する情報は、本体13の前面部23と物体との間の距離、物体の幅、物体の形状などである。物体は、壁や柱や段差などの障害物である。図3(a)に示すように、本実施形態において、検出手段19は、情報検出部51である。
 情報検出部51は、本体13の走行方向の前方の壁や柱、又は下方の段差などの障害物を検出する障害物検出手段である。情報検出部51としては、例えば接触式、あるいは非接触式のものを用いることができる。本実施形態において、情報検出部51としては、非接触式のものを例に挙げて説明する。情報検出部51としては、赤外線センサや超音波センサなど、検出信号を利用して本体13と障害物との間の距離、障害物の幅、および、障害物の形状を検出するセンサ、又は、1つ又は複数のカメラを用いて撮像し、画像中の特徴点や画素の明度などを抽出して、抽出した情報に基づき、障害物や段差、床面の種類などの各種情報を取得する撮像手段、又は、これらの組み合わせなどが用いられる。そして、情報検出部51が検出する情報としては、例えば本体13の前面部23と物体との距離や相対座標などが挙げられる。情報検出部51は、本体13の前方の複数箇所の情報を検出できることが好ましい。このため、例えば情報検出部51として赤外線センサや超音波センサなどを用いる場合、本体13の前方の物体に対して複数箇所から、あるいは複数方向に検出信号を出力できるようにすることが好ましい。本実施形態において、本体13の前方とは、前面部23を基準としてこの前面部23よりも前の方向をいう。例えば、図4(a)に示すように、情報検出部51は、本体13の幅方向に異なる複数箇所に配置されてそれぞれの位置から検出信号DSを前面部23に対して垂直又は略垂直な前方に出力してもよい。この場合、情報検出部51は、本体13の幅方向両側部および中央部などに配置されることが好ましい。一方、情報検出部51は、本体13の前方にある障害物を検出できれば、1つでもよい。例えば、図4(b)に示すように、情報検出部51は、本体13に対して左右に旋回又は回動や移動をすることにより幅方向に異なる方向に検出信号DSを出力するように配置してもよい。この場合、情報検出部51は、本体13の中央部などに配置されることが好ましい。また、例えば、図4(c)に示すように、情報検出部51としてカメラを用いる場合には、少なくとも本体13の幅寸法に対応する範囲を撮像可能な水平画角VAを有するものが好ましい。情報検出部51は、好ましくは前面部23に配置されているが、例えば前面部23を基準として予め座標が分かっている位置、又は、前面部23に対して所定の位置関係を有する位置に配置されていてもよい。一方、本体13の前方の物体との距離を測定できる位置であれば、情報検出部51は例えば本体13の上部などに配置されていてもよい。
 情報検出部51は、本体13の進行方向の物体と本体13との距離を検出し、検出した距離により物体が障害物であるか否かを判断する。情報検出部51は、本体13と本体13の進行方向の物体との間の距離と予め定められた第1閾値とを比較し、本体13と物体との距離が予め定められた第1閾値以下であることを検出した場合、物体が障害物であると判断する。第1閾値は、本体13と本体13の進行方向の物体との間の距離を示す数値である。また、情報検出部51は、複数であるとき、いずれかの方向に出力した検出信号によって検出された本体13と物体との距離が予め定められた第1閾値以下である場合、物体が障害物であると判断する。なお、図3(a)に示す例では、情報検出部51が検出信号を前面部23に対して垂直又は略垂直な方向、言い換えると本体13の走行前後方向と平行又は略平行に出力する構成としているが、検出信号の出力方向は、本体13の走行方向に対して傾斜していてもよい。この場合、本体13の走行前後方向に対する検出信号の傾斜角度に応じて、物体が障害物であると判断するための第1閾値を設定してもよい。すなわち、本体13の走行前後方向に対する検出信号の傾斜角度が大きいほど、第1閾値を大きく設定してもよい。
 一方、情報検出部51は、図3(b)に示す例のように、検出部53と検出処理部54とで構成されていてもよい。検出部53は、本体13の進行方向の物体を検出する。検出処理部54は、検出部53により取得された情報を処理し、物体が障害物であるか否かを判断する。また、検出処理部54は、検出部53により検出された結果を取得し、走行制御部43や掃除制御部44に出力可能となっている。例えば、検出処理部54は、検出部53により距離を検出する場合、距離が予め定められた第1閾値以下である場合に、物体が障害物であると判断する。また、掃除機11が複数の検出部53を備える場合、検出処理部54は、これら検出部53のいずれかが検出した物体との距離が予め定められた第1閾値以下である場合に、物体が障害物であると判断する。あるいは、掃除機11が検出部53から複数方向に検出信号を出力する場合、検出処理部54は、いずれかの方向に出力した検出信号によって検出された物体との距離が予め定められた第1閾値以下である場合に、物体が障害物であると判断する。障害物の判断の際には、本体13の走行前後方向に対する検出信号の出力角度に応じて、物体が障害物であると判断するための第1閾値を変えてもよい。すなわち、検出信号の出力角度が大きいほど、第1閾値を大きく設定してもよい。
 また、情報検出部51は、幅検出手段の機能を兼ねることができる。幅検出手段は、本体13の走行方向の障害物の幅が横方向に予め定められた第2閾値以上であるか否かを検出し、その検出結果に基づき、どのような障害物であるかを判断する。第2閾値は、本体13の走行方向の障害物の幅を示す数値である。幅検出手段は、本体13の走行方向の障害物の幅が横方向に予め定められた第2閾値以上であることを検出した場合、障害物が壁のような障害物であると判断する。また、幅検出手段は、本体13の走行方向の障害物の幅が横方向に予め定められた第2閾値未満であることを検出した場合、障害物が棒のような障害物であると判断する。また、幅検出手段は複数であるとき、いずれかの方向に出力した検出信号によって検出した障害物の幅が予め定められた第2閾値以上である場合、障害物が壁のような障害物であると判断する。
 一方、情報検出部51は幅検出手段の機能を兼ねる場合、図3(b)に示す例のように、検出部53と検出処理部54とにより構成されてもよい。検出部53は、本体13の進行方向の障害物の幅を検出する。検出処理部54は、検出部53が検出した障害物の幅と予め定められた第2閾値とを比較し、障害物が壁のようなものであるかを判断する。例えば、本体13が障害物に対して相対している場合には、幅方向の複数箇所に位置する検出部53により本体13と物体との距離を検出することで、幅検出手段は、物体の幅が横方向に予め定められた第2閾値以上であるか否かを判断してもよい。また、本体13を走行手段48により旋回させつつ検出部53から検出信号を出力して検出した本体13と物体との距離に基づいて幅検出手段が物体の幅を判断してもよい。本実施形態において、情報検出部51は、障害物の幅が横方向に本体13の横幅寸法の半分から等倍以上であることを検出するように設定されている。したがって、情報検出部51は、上記第2閾値以下の間隔、本実施形態では少なくとも本体13の幅寸法の半分以下の間隔で幅方向の複数箇所の情報を検出可能とすることが好ましい。
 また、情報検出部51は、障害物と判断した物体の形状を検出する形状検出手段である。具体的に、図5に示すように、形状検出手段は、本体13側の障害物の形状が平面状であるか曲面状であるかを判断するようになっている。例えば、形状検出手段は、障害物の幅方向の3点以上が同一平面上又は略同一平面上にあるかを判断することで本体13側の障害物の形状が平面状か曲面状かを判断してもよい。例えば、掃除機11が3つ以上の形状検出手段を備える場合、これら形状検出手段のうち少なくとも2つにより検出された障害物Oまでの距離から求めた少なくとも2点P1,P2を含む仮想鉛直面VPに対し、残りの形状検出手段により距離が検出された障害物Oの残りの点P3が含まれていれば、又は、残りの形状検出手段から仮想鉛直面VPまでの距離が、形状検出手段により実際に検出された障害物Oの点P3までの距離と一致又は略一致すれば、図5(a)の実線に示すように、障害物Oの本体13側が平面状であると判断可能であり、含まれていなければ、又は、残りの形状検出手段から仮想鉛直面VPまでの距離が、形状検出手段により実際に検出された障害物Oの点P3までの距離と一致しなければ、図5(a)の二点鎖線に示すように、曲面状であると判断可能である。また、これを応用して、形状検出手段は、本体13側の障害物の形状が曲面状であることを検出した場合、その曲面が凸曲面状であるか凹曲面状であるかを判断するようにしてもよい。すなわち、情報検出部51は、3つ以上の形状検出手段のうち少なくとも2つにより検出された障害物Oまでの距離から求めた少なくとも2点P1,P2を含む仮想鉛直面VPまでの残りの形状検出手段からの距離と、形状検出手段により実際に検出された障害物Oの点P3までの距離との大小に基づき、本体13側の障害物Oの形状が凸曲面状であるか凹曲面状であるかを判断可能である。例えば、障害物Oの点P1,P2間の点P3までの距離を検出する形状検出手段から仮想鉛直面VPまでの距離が、形状検出手段により実際に検出された点P3までの距離より小さければ、図5(b)に示すように、本体13側の障害物Oの形状が本体13側に突出する凸曲面状であると判断可能であり、大きければ、図5(c)に示すように、本体13側の障害物Oの形状が凹曲面状であると判断可能である。
 なお、本体13側の障害物の曲面形状を判断するための、形状検出手段から仮想鉛直面VPまでの距離と、その形状検出手段により実際に検出された点までの距離との大小関係については、距離を検出する障害物上の点の位置に応じて異なる。例えば、図5(b)および図5(c)において、仮想鉛直面VPを点P1,P3に基づいて設定する場合には、形状検出手段から仮想鉛直面VPまでの距離に対して、その形状検出手段により実際に検出された点P2までの距離が大きければ、本体13側の障害物Oの形状がこの本体13側に突出する凸曲面状であると判断可能であり、小さければ、本体13側の障害物Oの形状が凹曲面状であると判断可能である。したがって、上記の大小関係については、検出する障害物の本体13側の複数の点の位置に応じて設定されることが好ましい。また、例えば、掃除機11が形状検出手段から複数方向に検出信号を出力する場合も、形状検出手段が障害物の幅方向の3点以上の距離を検出することで本体13側の障害物の形状を同様に判断可能である。
 また、情報検出部51は、形状検出手段の機能を兼ねる場合、図3(b)に示す例のように、検出部53と検出処理部54とにより構成されていてもよい。
 なお、情報検出部51により本体13と障害物との距離を検出する場合、障害物の幅を検出する場合、および、本体13側の障害物の形状を検出する場合、走行手段48はそれぞれ掃除機11の本体13を一旦停止させてもよいし、掃除の際よりも低速で移動させてもよい。
 また、情報検出部51が撮像手段を用いる場合には、情報検出部51が本体13の下部の床面の走行障害を検出する段差検出部55を兼ねることができるが、図3(c)に例を示すように、床面の走行障害をより確実に検出するために、検出手段19には段差検出部55が情報検出部51とは別個に備えられていてもよい。
 段差検出部55は、床面の物体の情報を検出するものである。例えば、段差検出部55は、床面の凹段差および/又は凸段差を検出可能となっている。検出手段19は、段差検出部55を備える場合、例えば図2に示す情報検出部51と同様に、非接触式のものが用いられる。段差検出部55は、本体13の底面部26にて駆動輪15の前方および後方に配置されていることが好ましい。また、段差検出部55は、本体13の前部の走行障害をより確実に検出するために、左右に対をなして配置されていることが好ましい。本実施形態において、段差検出部55は、本体13の前端近傍で吸込口28の両側の位置、吸込口28の後方かつ駆動輪15の前方の両側、および、駆動輪15の後方かつ旋回輪16の前方の両側にて、本体13の外縁部近傍の位置などにそれぞれ配置されている。そして、本実施形態において、段差検出部55は、本体13の下部と床面との距離が予め定められた所定距離以下であることを検出した場合に、乗り越え不可能な凸段差があると判断する。また、段差検出部55は、本体13の下部と床面との距離が予め定められた所定距離以上であることを検出した場合に、例えば下り階段などの、乗り越え不可能な凹段差があると判断する。このように、段差検出部55は、本体13の下部の床面の走行障害を検出する走行障害検出手段としての走行障害検出部である。
 図3(d)に示すように、検出手段19は、障害物検出手段61、幅検出手段62、および、形状検出手段63がそれぞれ別個に備えられるものでもよい。障害物検出手段61、幅検出手段62、および形状検出手段63は、物体に関する情報をそれぞれ検出して判断する。このように構成しても、上記と同様の作用効果を奏することが可能である。また、障害物検出手段61、幅検出手段62、および、形状検出手段63のうちの任意の2つのみの機能を同一の構成で兼ね、残りの1つの機能を別個に備える構成としてもよい。
 また、検出手段19は、吸込口28から集塵部40に捕集される床面の塵埃量を検出する塵埃量検出手段を備えていてもよい。さらにまた、検出手段19は、例えば床面の種類を検出する床面検出手段を備えていてもよい。
 電池は、掃除駆動手段17、制御手段18、および、検出手段19などに給電するものである。電池としては、本実施形態において、例えば充電可能な二次電池が用いられる。このため、本実施形態では、例えば本体13に、電池を充電するための充電端子59が配置されている。充電端子59は、例えば掃除機11が充電装置に帰還した際に、この充電装置側の充電用端子と電気的に接続され、充電装置からの給電によって電池を充電可能とするものである。充電端子59は、例えば本体13の底面部26に左右一対配置されている。
 次に、上記第1の実施形態の動作を説明する。
 まず、掃除機11による掃除の開始から終了までの概略を説明する。掃除機11は、例えば充電装置から離脱するなど、所定の位置から掃除を開始すると、走行手段48により走行領域内を自律走行しつつ掃除手段41により床面を掃除する。そして、走行領域全体を走行すると、充電装置に帰還し、充電装置と接続されて掃除を終了する。掃除を終了すると、所定のタイミングで電池の充電を開始する。
 掃除機11は、上記自律走行の際、検出手段19による検出された結果に基づき、走行手段48が障害物に対して本体13の前面部23を相対させ、障害物まで本体13を走行させる。
 図6(a)ないし図6(c)に示すように、本実施形態において、掃除機11は、検出手段19が障害物Oを検出すると、本体13の前面部23と障害物Oとの間の距離により本体13の前面部23が障害物Oに相対しているか否かを判断する。本体13の前面部23が障害物Oに相対していない場合、走行手段48は本体13の前面部23を障害物O側に向けるように本体13を旋回させ、障害物Oに対して本体13の前面部23を相対させる。その後、走行手段48が、本体13を障害物Oまで走行させ、掃除手段41が、障害物Oまで走行された本体13の前部の床面を掃除する。すなわち、掃除機11は、検出手段19の検出結果に基づき、走行手段48が障害物Oに対して本体13の前面部23を相対させて障害物Oまで本体13を走行させ、本体13の前面部23が障害物に対して相対した状態で、本体13の前部に配置された掃除手段41により本体13の前部の床面を掃除する。この結果、前面部23が直線状に形成され掃除手段41が前部に位置する本体13の形状を有効に利用し、障害物の際の床面を掃除できる。
 このとき、走行手段48は、本体13を、障害物Oまで走行させてもよいし、前面部23を障害物Oに密着するまで走行させてもよい。図6(d)に示すように、掃除機11は、障害物Oまで走行した本体13の前面部23が障害物Oに対して相対しかつ密着した状態で、掃除手段41により本体13の前部の床面を掃除してもよい。このように、障害物に対して前面部23を密着させることで、床面の障害物と隣接する位置までも掃除可能となるとともに、掃除効率を向上でき、塵埃を確実に吸い込むことができる。また、本実施形態では、前カバー22が前面部23よりも前方に突出しているため、前カバー22が障害物と最初に接触し、後方へと付勢に抗して回動することで、接触時の衝撃を緩和できるとともに、前カバー22が接触の反力によって後方へと押し込まれて吸込口28の開口量を低減させ、吸込口28の真空度を増加させるので、床面の塵埃を吸込口28から、より確実に吸い込むことができる。
 さらに、掃除機11は、障害物まで走行させた本体13を、障害物に対して本体13の前面部23が相対した状態で一時的に停止させ、その間、掃除手段41が本体13の前部の床面を掃除してもよい。この結果、障害物の際の床面を停止した状態で集中的に掃除でき、床面をより綺麗に掃除できる。
 ここで、掃除機11は、障害物の幅方向の大きさに応じて走行制御を変えてもよい。すなわち、検出手段19により検出した障害物の幅が横方向に予め定められた第2閾値以上の大きさである場合に、本体13を障害物まで走行させるようにしてもよい。
 具体的に、障害物が、前面部23が直線状に形成された本体13の前部の位置での掃除に適した形状であることが想定され、情報検出部51が、検出した障害物の幅が横方向に予め定められた第2閾値以上であることを検出した場合には、走行手段48が本体13を障害物まで走行させて掃除手段41により掃除をすることで、横方向に延びる壁状の障害物の際の床面を掃除できる。このとき、走行手段48が本体13を一時的に停止させて掃除手段41により掃除をすることで障害物の際の床面を停止した状態で集中的に掃除でき、床面をより綺麗に掃除できる。
 一方、検出手段19は、検出した障害物の幅が横方向に予め定められた第2閾値以上であることを検出しない場合、すなわち、障害物が幅方向に所定以上の大きさでない場合には、その障害物が、前面部23が直線状に形成された本体13の前部の例えば直線状の前面部23の位置での掃除に有効な形状でない、例えば障害物が棒状の柱や椅子の脚などであることが想定される。この場合に、上記のように本体13の前面部23を障害物に近接あるいは密着させたまま一時停止をして掃除手段41により掃除をすると、本来掃除に使用すべき電力を無駄使いすることにもなり得る。そのため、この場合には、図7(a)ないし図7(d)に示すように、走行手段48が障害物Oまで走行させた本体13を、例えば一旦後退させ、旋回、あるいは回り込みなどをさせて、障害物Oを回避させてもよい。この結果、障害物の形状に応じて最適な走行制御を設定できる。
 また、障害物が幅広で、かつ、本体13側が平面状であれば、障害物の際の床面を最も効率よく掃除できる。一方、障害物が幅広であっても、本体13側が曲面状であれば、本体13側の障害物の形状が平面状であるか曲面状であるかに応じて走行手段48での走行制御を変えることで、前面部23が障害物に対して離れている箇所でも障害物の際の床面を効率よく掃除できる。
 そこで、検出手段19が検出した障害物の幅が横方向に予め定められた第2閾値以上の大きさでありかつ本体13側の障害物の形状が平面状であることを検出した場合には、走行手段48が障害物まで本体13を走行させるようにする一方、検出手段19が検出した障害物の幅が横方向に予め定められた第2閾値以上の大きさでありかつ本体13側の障害物の形状が曲面状であることを検出した場合には、走行手段48が障害物まで走行させた本体13の前面部23が本体13側の障害物の形状に沿うように本体13を走行させるようにしてもよい。
 さらに、本体13側の障害物の形状が凸曲面状であるか凹曲面状であるかによって、本体13の前面部23の幅方向の両側部および中央部と障害物との距離は異なるので、掃除機11は、本体13側の障害物の曲面形状に応じて走行制御を変えることが、より好ましい。
 そこで、本体13側の形状が凸曲面状であることが検出手段19により検出された障害物Oに対しては、走行手段48が、図8(a)に示すように本体13の前面部23が本体13側の障害物Oの形状に沿うように本体13を曲がって前進、すなわち回り込みさせてもよく、図8(b)に示すように、本体13の側部を本体13側の障害物Oの形状に沿わせるように本体13を走行させてもよい。また、本体13側の形状が凹曲面状であることが検出手段19により検出された障害物Oに対しては、走行手段48が、図8(c)に示すように本体13の前面部23が本体13側の障害物Oの形状に沿うように本体13を旋回させるようにしてもよく、図8(d)に示すように本体13の側部を本体13側の障害物Oの形状に沿わせるように本体13を走行させてもよい。
 この結果、本体13側の障害物の形状に応じて、障害物の際の床面に、吸込口28が位置する本体13の前部を位置させることができ、障害物の際の床面をよりむらなく掃除できる。
 また、上記のように本体13と障害物との距離を検出したり、障害物の幅の大きさを検出したり、本体13側の障害物の形状を検出したりする際に、検出手段19を複数備える構成であれば、複数の点までの情報を同時に計測できるので、短時間での検出や判断が可能になる。一方、1つの検出手段19で複数方向の情報を検出する構成であれば、構成をより簡略化できる。
 なお、走行制御部43は、例えば走行領域の地図データが以前の掃除の際に処理部45により作成されてメモリ46に記憶されている場合、記憶されている地図データに沿って走行経路を設定してもよい。この場合、前回の掃除時と基本的に同一の走行制御および掃除制御となることが想定されるため、前回の制御を参照して、基本的に同様に走行および掃除するように制御することにより、都度走行制御および掃除制御を実施する場合と比較して、制御手段18での処理負担が軽くなるとともに、掃除時間も短縮可能となる。このとき、処理部45は、本体13の自律走行中の情報検出部51による障害物検出に基づき、地図データを随時更新してもよい。
 そして、検出手段19が、本体13の前方の障害物を検出する障害物検出手段の機能と、障害物の幅を検出して判断する幅検出手段の機能と、障害物の形状を検出して判断する形状検出手段の機能とを兼ねることにより、これらを別個に備える構成と比較して、構成をより簡略化して掃除機11を安価に製造できるとともに、制御手段18での処理負荷を軽減できる。
(第2の実施形態)
 次に、第2の実施形態を図9ないし図11を参照して説明する。なお、上記第1の実施形態と同様の構成および作用については、同一符号を付してその説明を省略する。
 第2の実施形態は、掃除機11が、障害物に向けて走行して障害物の際の床面を掃除する際に、障害物の幅が横方向に予め定められた第2閾値以上である場合には、障害物に沿って幅方向にずれて掃除をするものである。
 具体的に、走行手段48は、障害物まで走行させた本体13を障害物に対して一旦後退させて幅方向にずれては障害物まで走行させる動作を繰り返す横ずれ制御、すなわちN字走行制御を実施する。
 この場合、図9(a)ないし図9(d)に一例を示すように、走行手段48は、本体13を障害物Oに対してまっすぐ後退させ、左旋回させ、右に回り込ませ、障害物Oに向けて走行(前進)させるように走行制御を繰り返してもよい。
 また、図10(a)ないし図10(d)に他の例を示すように、走行手段48は、本体13を障害物Oに対してまっすぐ後退させ、左に回り込ませ、さらに、右に回り込ませた後、障害物Oに向けて走行又は前進させるように走行制御を繰り返してもよい。
 さらに、図11(a)ないし図11(c)にさらに他の例を示すように、走行手段48は、本体13を左後方に回り込ませ、左旋回させ、障害物Oに向けて右に回り込ませるように走行制御を繰り返してもよい。
 なお、図9ないし図11においては、障害物Oに向かって左方向へと掃除を進める場合の走行制御を図示しているが、右方向へと掃除を進める場合には単に左右を反転させるのみでよいから、図示や説明を省略する。
 また、走行手段48による横ずれ制御は、図9ないし図11に図示するのみでなく、障害物に対して一旦後退させて幅方向にずれては障害物まで走行させる動作を繰り返すように、前進、後退、旋回、回り込みなどを任意に組み合わせて構成できる。
 このように、障害物まで走行させた本体13を障害物に対して一旦後退させて幅方向にずれては障害物まで走行させる動作を繰り返す横ずれ制御を走行手段48により実施することで、障害物の際の床面を広い範囲で掃除手段41によって効率よく掃除できる。特に、壁などの幅方向に大きい障害物に対してこの横ずれ制御を用いることで、広い範囲で障害物の際の床面を掃除手段41によって効率よく掃除できる。
 なお、図9ないし図11では、障害物Oが平面状である場合を例に挙げて説明しているが、本体13側の障害物Oの形状が曲面状、例えば凸曲面状又は凹曲面状である場合には、上記第1の実施形態と同様に、障害物Oまで走行させた本体13の前面部23が本体13側の障害物Oの形状に沿うように走行手段48が走行制御する動作を加えることで、同様に障害物Oの際の床面を広い範囲で掃除手段41によって効率よく掃除できる。
 また、掃除手段41では、横ずれ制御の際に、少なくとも本体13が障害物まで走行した位置で床面を掃除するが、それ以外の位置で床面を掃除する場合には、走行領域の床面をより綺麗に掃除できるし、それ以外の位置で掃除手段41を停止させるなど掃除をしない場合には、電池の消費を抑制できる。
(第3の実施形態)
 次に、第3の実施形態を、図12を参照して説明する。なお、上記各実施形態と同様の構成および作用については、同一符号を付してその説明を省略する。
 第3の実施形態は、掃除機11の本体13を、障害物に対して一旦後退させずに、障害物に沿って幅方向にずれながら走行させるものである。本実施形態では、駆動輪15として、全方向移動可能な車輪又は走行輪を用いることで、このような制御が可能になる。例えば、駆動輪15としては、例えばオムニホイール、あるいは二対のメカナムホイールなどを用いてもよい。すなわち、各駆動輪15を制御することにより、本体13が一定の方向を向いたまま全方向に走行自在となっている。
 このため、掃除機11は、本体13の前面部23を障害物に対して相対させた状態のまま、障害物に沿って幅方向にずれていくことが可能で、このように障害物に沿ってずれながら本体13の前部の床面を掃除手段41により掃除する。この結果、障害物に対して一旦後退、旋回、および、接近などの走行制御が不要となり、より短時間で障害物の際の床面を広い範囲で掃除手段41によって効率よく、かつより短時間で掃除できるとともに、電池の消費を抑制でき、電池を長持ちさせることができる。
 なお、図12では、本体13側の障害物Oの形状が平面状である場合を例に挙げて説明しているが、本体13側の障害物Oの形状が凸曲面状又は凹曲面状である場合には、障害物Oの曲面形状に沿って本体13を幅方向にずれるように走行手段48が走行制御することで、同様に障害物Oの際の床面を掃除手段41によって掃除できる。
 上記第2および第3の実施形態の各横ずれ制御は、所定条件時にのみ実施し、所定条件時以外には、例えば障害物に対して本体13の側部を沿わせつつ走行させる、いわゆる壁沿い走行制御を実施するようにしてもよい。例えば、掃除機11が塵埃量検出手段を備える場合、塵埃量検出手段により検出された塵埃量が多い箇所でのみ横ずれ制御を実施するようにしてもよいし、前回の掃除から今回の掃除まで所定期間以上が経過している場合に横ずれ制御を実施するようにしてもよいし、掃除機11が床面検出手段を備える場合、床面検出手段により検出された床面の種類が絨毯である走行領域にのみ横ずれ制御を実施するようにしてもよいし、掃除機11が塵埃量地図データを保持している場合、塵埃量が多い箇所でのみ横ずれ制御を実施するようにしてもよい。
 そして、上記各実施形態において、掃除手段41は、本体13の前部の床面を掃除できれば、床面の塵埃を集塵部40に吸い込むものに限らず、床面の塵埃を集塵部40に掻き上げるものでもよいし、単に床面を拭いたり磨いたりして掃除するものでもよい。
 また、検出手段19としては、障害物などの物体との接触を検出する接触センサを用いてもよい。この場合、検出手段19は、本体13の幅方向に異なる複数箇所、例えば本体13の前面部23の幅方向両側部を含む位置に配置されることが好ましい。そして、例えばいずれかの検出手段19が障害物などの物体と接触したことを検出すると、両側部の検出手段19がそれぞれ物体と接触するまで走行手段48が本体13を前進させることにより、本体13の前面部23を物体に対して相対させることができる。あるいは、一側の検出手段19が物体と接触したことを検出すると、他側の検出手段19がその物体との接触を検出するまで走行手段48が本体13の他側を前進させることにより、本体13の前面部23を障害物に対して相対させることもできる。この場合、本体13の他側を所定距離以上前進させても他側が物体との接触を検出しないときには、障害物の幅が予め定められた第2閾値以上でないもの、すなわち障害物が柱などの幅寸法が小さい棒状のものである可能性が高いため、その場合には障害物を回避するように走行手段48が本体13を走行させることができる。このように、検出手段19として接触センサを用いることによって、障害物検出手段、幅検出手段、および、形状検出手段の機能を実現することも可能である。すなわち、障害物検出手段、幅検出手段、あるいは形状検出手段は、それぞれ検出手段となるセンサによって障害物やその幅、本体13側の形状を直接検出する構成としてもよい。この場合、掃除機11の構成や制御をより簡略化することが可能になる。
(第4の実施形態)
 次に、第4の実施形態を、図13を参照して説明する。なお、上記各実施形態と同様の構成および作用については、同一符号を付してその説明を省略する。
 第4の実施形態は、上記各実施形態の掃除機11の制御に関するものである。第4の実施形態は、概略として、本体13の走行方向の障害物を検出手段19により検出する検出ステップと、検出ステップが検出した検出結果に基づき、走行手段48により、障害物に対して本体13の前面部23を相対させて障害物まで本体13を走行させる走行ステップと、走行ステップにより本体13が障害物まで走行された状態で床面を掃除手段41により掃除する掃除ステップとを備える。
 より詳細に、ステップS1において、検出手段19は、本体13の前面部23と検出した物体との距離が予め定められた第1閾値以下であるか否かを判断する。
 ステップS1において、本体13の前面部23と検出した物体との距離が予め定められた第1閾値以下でないと判断した場合には、ステップS1に戻る。また、ステップS1において、本体13の前面部23と検出した物体との距離が予め定められた第1閾値以下であると判断した場合、ステップS2において、検出手段19は、物体を障害物であると判断する。
 次いで、ステップS3において、検出手段19は、本体13の前面部23と検出した物体との距離を検出して、その距離に基づいて本体13の前面部23が障害物に相対しているか否かを判断する。
 ステップS3において、検出手段19が、本体13の前面部23が障害物に相対していないと判断した場合には、ステップS4において、走行手段48が本体13の前面部23を障害物に相対させ、その後、ステップS5に進む。
 一方、ステップS3において、検出手段19が、本体13の前面部23が障害物に相対していると判断した場合には、ステップS5において、走行手段48が本体13を障害物まで走行させながら掃除手段41により床面を掃除する。
 このように、本実施形態によれば、掃除機11が、障害物まで走行した本体13の前面部23が障害物に対して相対した状態で、本体13の前部に位置する掃除手段41により本体13の前部の床面を掃除するので、前面部23が直線状に形成され掃除手段41が前部に位置する本体13の形状を有効に利用し、障害物の際の床面を掃除できる。
(第5の実施形態)
 次に、第5の実施形態を、図14を参照して説明する。なお、上記各実施形態と同様の構成および作用については、同一符号を付してその説明を省略する。
 第5の実施形態は、上記各実施形態の掃除機11の制御に関するものである。本実施形態では、上記第4の実施形態の検出ステップにおいて、障害物の幅が予め定められた第2閾値以上であるか否かの判断と、本体13側の障害物の形状、すなわち本体13側の障害物の形状が平面状であるか曲面状であるかの判断と、本体13側の障害物の形状が曲面状である場合に、その曲面が凸曲面状であるか凹曲面状であるかの判断とが含まれている。
 より詳細に、本実施形態では、上記第4の実施形態のステップS1~S4の制御の後、ステップS11において、検出手段19が、障害物の幅が横方向に予め定められた第2閾値以上であるか否かを判断する。
 ステップS11において、検出手段19が、障害物の幅が横方向に予め定められた第2閾値以上でないと判断した場合、ステップS12において、検出手段19は、障害物が棒状のものであると判断し、その後、ステップS13において、障害物を回避するように走行手段48が本体13を走行させ、さらに、ステップS1に進む。
 一方、ステップS11において、検出手段19が、障害物の幅が横方向に予め定められた第2閾値以上であると判断した場合、ステップS14において、検出手段19は、障害物が壁のようなものであると判断する。次いで、ステップS15において、検出手段19は、本体13側の障害物の形状を判断する。具体的に、ステップS15において、検出手段19は、本体13側の障害物の形状が平面状であるか曲面状であるかを判断する。
 ステップS15において、検出手段19が、本体13側の障害物の形状が平面状であると判断した場合、ステップS5に進む。
 一方、ステップS15において、検出手段19が、本体13側の障害物の形状が曲面状であると判断した場合、ステップS16において、検出手段19は、さらに、本体13側の障害物の形状が凸曲面状であるか凹曲面状であるかを判断する。
 ステップS16において、検出手段19が、本体13側の障害物の形状が凸曲面状であると判断した場合、ステップS17において、走行手段48が障害物に対して本体13の前面部23の一部を密着させたまま本体13を旋回させることで前面部23を障害物の曲面に沿わせつつ、掃除手段41が床面を掃除する。
 一方、ステップS16において、検出手段19が、本体13側の障害物の形状が凹曲面状であると判断した場合、ステップS18において、走行手段48が障害物に対して本体13の前面部23の一部を密着させたまま本体13を回り込み前進させることで前面部23を障害物の曲面に沿わせつつ、掃除手段41が床面を掃除する。
 このように、本実施形態によれば、障害物の形状に応じて最適な走行制御を設定でき、掃除の効率や精度を向上できる。
 上記第4および第5の実施形態において、検出ステップの検出結果に基づき、走行手段48が、障害物に対して本体13の前面部23を相対させ、障害物の形状に沿うように本体13を障害物まで走行させ、又は、本体13の前面部23が密着した状態で、本体13をさらに走行、又は、本体13を一時停止後走行させてもよい。
 また、上記第2の実施形態の横ずれ制御のように、走行手段48が、障害物まで走行させた本体13を障害物に対して一旦後退させて幅方向にずれさせては障害物まで走行させるように制御してもよい。
 以上のように、本発明に係る自律走行式掃除機は、障害物に応じて、障害物の際の塵埃などをより掃除できるという効果を奏する。
 本発明のいくつかの実施形態を説明したが、これらの実施形態の構成および制御方法は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (14)

  1.  直線状に形成された前面部を備えた本体と、
     前記本体の走行方向の障害物を検出する検出手段と、
     前記検出手段の検出結果に基づき、前記障害物に対して前記本体の前面部を相対させて前記障害物まで前記本体を走行させる走行手段と、
     前記本体の前部に配置され、前記走行手段により前記本体が前記障害物まで走行された状態で被掃除面を掃除する掃除手段と
     を具備したことを特徴とした自律走行式掃除機。
  2.  前記走行手段は、前記本体の前面部が前記障害物に密着するまで前記本体を走行させる
     ことを特徴とした請求項1記載の自律走行式掃除機。
  3.  前記走行手段は、障害物まで走行させた前記本体を一時的に停止させる
     ことを特徴とした請求項1又は2記載の自律走行式掃除機。
  4.  前記検出手段は、前記本体の走行方向の障害物の幅が横方向に予め定められた閾値以上であるか否かを検出する幅検出手段であって、
     前記走行手段は、前記障害物の幅が横方向に前記閾値以上の大きさであることを前記検出手段により検出した場合、前記本体を前記障害物まで走行させる
     ことを特徴とした請求項1ないし3いずれか一記載の自律走行式掃除機。
  5.  前記検出手段は、前記本体の走行方向の前記本体側の障害物の形状が平面状か曲面状かを検出する形状検出手段であって、
     前記走行手段は、前記本体側の前記障害物の形状が曲面状であることを前記検出手段により検出した場合、前記障害物の形状に沿うように前記本体を走行させる
     ことを特徴とした請求項1ないし4いずれか一記載の自律走行式掃除機。
  6.  前記形状検出手段は、前記本体の走行方向の前記本体側の前記障害物の形状が平面状か凸曲面状か凹曲面状かを検出可能であり、
     前記走行手段は、前記形状検出手段により凸曲面状であることを検出した場合、前記本体の前面部が前記本体側の前記障害物の形状に沿うように前記本体を曲がって前進させ、前記形状検出手段により凹曲面状であることを検出した場合、前記本体の前面部が前記本体側の前記障害物の形状に沿うように前記本体を旋回させる
     ことを特徴とした請求項5記載の自律走行式掃除機。
  7.  前記検出手段は、前記障害物を検出する障害物検出手段と、前記障害物の幅を検出する幅検出手段と、前記本体側の前記障害物の形状を検出する形状検出手段との少なくともいずれかを2つ以上備えている
     ことを特徴とした請求項1記載の自律走行式掃除機。
  8.  前記走行手段は、前記本体を前記障害物に対して一旦後退させて幅方向にずれては前記障害物まで走行させる動作を繰り返す横ずれ制御を実施可能である
     ことを特徴とした請求項1ないし7いずれか一記載の自律走行式掃除機。
  9.  前記走行手段は、全方向移動可能な車輪を備えている
     ことを特徴とした請求項1ないし8いずれか一記載の自律走行式掃除機。
  10.  前記本体は、円弧状に形成された後面部を備えている
     ことを特徴とした請求項1ないし9いずれか一記載の自律走行式掃除機。
  11.  本体の前面部が直線状に形成された自律走行可能な自律走行式掃除機の制御方法であって、
     前記本体の走行方向の障害物を検出する検出ステップと、
     前記検出ステップが検出した結果に基づき、前記障害物に対して前記本体の前面部を相対させて前記障害物まで前記本体を走行させる走行ステップと、
     前記走行ステップにより前記本体が前記障害物まで走行された状態で被掃除面を掃除する掃除ステップと
     を具備したことを特徴とした自律走行式掃除機の制御方法。
  12.  前記走行ステップにおいて、前記検出ステップの検出結果に基づき、前記障害物に相対させた前記本体の前面部が前記障害物に対して密着するまで前記本体を走行させ、かつ、前記本体の前面部が密着した状態で前記本体を走行又は前記本体を一時停止した後走行させる
     ことを特徴とした請求項11記載の自律走行式掃除機の制御方法。
  13.  前記走行ステップにおいて、前記障害物まで走行させた前記本体を前記障害物に対して一旦後退させて幅方向にずれさせては前記障害物まで走行させる
     ことを特徴とした請求項11又は12記載の自律走行式掃除機の制御方法。
  14.  前記走行ステップにおいて、前記検出ステップが検出した結果により、前記障害物の形状に沿うように前記本体を走行させる
     ことを特徴とした請求項11ないし13いずれか一記載の自律走行式掃除機の制御方法。
PCT/JP2019/002085 2018-03-23 2019-01-23 自律走行式掃除機およびその制御方法 WO2019181182A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980017123.7A CN111801041A (zh) 2018-03-23 2019-01-23 自主行进式清扫机及其控制方法
US16/978,876 US20210007570A1 (en) 2018-03-23 2019-01-23 Autonomous traveling type vacuum cleaner and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-056542 2018-03-23
JP2018056542A JP7445381B2 (ja) 2018-03-23 2018-03-23 自律走行式掃除機およびその制御方法

Publications (1)

Publication Number Publication Date
WO2019181182A1 true WO2019181182A1 (ja) 2019-09-26

Family

ID=67986426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002085 WO2019181182A1 (ja) 2018-03-23 2019-01-23 自律走行式掃除機およびその制御方法

Country Status (4)

Country Link
US (1) US20210007570A1 (ja)
JP (1) JP7445381B2 (ja)
CN (1) CN111801041A (ja)
WO (1) WO2019181182A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2612567A (en) * 2021-01-22 2023-05-10 Dyson Technology Ltd Autonomous surface treatment apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7328913B2 (ja) * 2020-02-04 2023-08-17 東芝ライフスタイル株式会社 自律型掃除機
CN116348022A (zh) * 2020-10-23 2023-06-27 尚科宁家运营有限公司 机器人清洁器
US20230369872A1 (en) * 2022-05-12 2023-11-16 Techtronic Cordless Gp Robotic tool and charging station

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183032A (ja) * 1987-01-26 1988-07-28 松下電器産業株式会社 掃除ロボツト
JP2003079550A (ja) * 2001-09-17 2003-03-18 Toshiba Tec Corp 掃除装置
JP2013106820A (ja) * 2011-11-22 2013-06-06 Mitsubishi Electric Corp 自走式掃除機
JP2014204891A (ja) * 2013-04-15 2014-10-30 三菱電機株式会社 自走式掃除機
JP2017126367A (ja) * 2010-12-30 2017-07-20 アイロボット コーポレイション カバレッジロボットナビゲーション

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01232209A (ja) * 1988-03-14 1989-09-18 Ishikawajima Harima Heavy Ind Co Ltd 積山形状の検出方法
JPH0736541A (ja) * 1993-06-14 1995-02-07 Medoman Kk 無人走行台車の走行制御方法
JP2003256043A (ja) * 2002-02-28 2003-09-10 Matsushita Electric Ind Co Ltd 自走作業機器及び自走式掃除機並びに自走作業機器の走行データ配信方法
JP2004355208A (ja) * 2003-05-28 2004-12-16 Matsushita Electric Ind Co Ltd 自律走行装置
WO2006026436A2 (en) * 2004-08-27 2006-03-09 Sharper Image Corporation Robot cleaner with improved vacuum unit
KR100772907B1 (ko) * 2006-05-01 2007-11-05 삼성전자주식회사 장애물 감지 기능을 가지는 로봇 및 그 제어 방법
KR101361562B1 (ko) * 2007-05-31 2014-02-13 삼성전자주식회사 청소로봇
CN111419121B (zh) * 2014-07-01 2022-11-29 三星电子株式会社 清洁机器人及其控制方法
KR102527645B1 (ko) * 2014-08-20 2023-05-03 삼성전자주식회사 청소 로봇 및 그 제어 방법
KR102374718B1 (ko) * 2015-06-03 2022-03-16 삼성전자주식회사 로봇 청소기
JP6779677B2 (ja) * 2016-06-30 2020-11-04 クリナップ株式会社 ガスコンロ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183032A (ja) * 1987-01-26 1988-07-28 松下電器産業株式会社 掃除ロボツト
JP2003079550A (ja) * 2001-09-17 2003-03-18 Toshiba Tec Corp 掃除装置
JP2017126367A (ja) * 2010-12-30 2017-07-20 アイロボット コーポレイション カバレッジロボットナビゲーション
JP2013106820A (ja) * 2011-11-22 2013-06-06 Mitsubishi Electric Corp 自走式掃除機
JP2014204891A (ja) * 2013-04-15 2014-10-30 三菱電機株式会社 自走式掃除機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2612567A (en) * 2021-01-22 2023-05-10 Dyson Technology Ltd Autonomous surface treatment apparatus
GB2612567B (en) * 2021-01-22 2023-11-22 Dyson Technology Ltd Autonomous surface treatment apparatus

Also Published As

Publication number Publication date
US20210007570A1 (en) 2021-01-14
CN111801041A (zh) 2020-10-20
JP2019166110A (ja) 2019-10-03
JP7445381B2 (ja) 2024-03-07

Similar Documents

Publication Publication Date Title
WO2019181182A1 (ja) 自律走行式掃除機およびその制御方法
KR101832076B1 (ko) 전기청소기
US9867516B2 (en) Robot cleaner and method for controlling the same
EP3187956B1 (en) Autonomous travel body and vacuum cleaner
JP6599604B2 (ja) 電気掃除機
JP4677888B2 (ja) 自律移動掃除機
JP5891736B2 (ja) 自走式掃除機
JP7036531B2 (ja) 自律走行体
US20140283326A1 (en) Robot cleaner and control method thereof
JP2017213009A (ja) 自律走行型掃除機
CN110507238B (zh) 自主行走式吸尘器
JP6480776B2 (ja) 電気掃除機
KR101397103B1 (ko) 로봇청소기 및 그 주행 제어 방법
KR100947364B1 (ko) 로봇 청소기
JP6685740B2 (ja) 電気掃除機
JP2004049592A (ja) 自走式掃除機
JP6764652B2 (ja) 自律走行体
JP2017131557A (ja) 電気掃除機
JP6941764B2 (ja) 自律走行型掃除機
JP6690948B2 (ja) 自律走行体
JP2004021775A (ja) 移動装置
KR20050123226A (ko) 로봇 청소기용 확장 브러쉬

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770716

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19770716

Country of ref document: EP

Kind code of ref document: A1