WO2019180780A1 - 電動機の回転子、電動機及び空気調和機 - Google Patents

電動機の回転子、電動機及び空気調和機 Download PDF

Info

Publication number
WO2019180780A1
WO2019180780A1 PCT/JP2018/010805 JP2018010805W WO2019180780A1 WO 2019180780 A1 WO2019180780 A1 WO 2019180780A1 JP 2018010805 W JP2018010805 W JP 2018010805W WO 2019180780 A1 WO2019180780 A1 WO 2019180780A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
magnet
electric motor
rib
mold
Prior art date
Application number
PCT/JP2018/010805
Other languages
English (en)
French (fr)
Inventor
優人 浦辺
山本 峰雄
石井 博幸
隼一郎 尾屋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020508120A priority Critical patent/JPWO2019180780A1/ja
Priority to PCT/JP2018/010805 priority patent/WO2019180780A1/ja
Publication of WO2019180780A1 publication Critical patent/WO2019180780A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies

Definitions

  • the present invention relates to a rotor of an electric motor designed to reduce noise, an electric motor including the rotor of the electric motor, and an air conditioner including the electric motor.
  • An electric motor may be used as a drive source of a blower by attaching an impeller to a shaft portion of a rotor.
  • the resonance of the torsional vibration system is prevented by reducing the natural frequency of the torsional vibration system composed of the rotor and the impeller from the frequency causing the noise.
  • a plurality of types of impellers having different materials and shapes may be attached to the shaft portion of the same type of rotor.
  • the natural frequency of the torsional vibration system composed of the rotor and the impeller exists only for the type of the impeller. It is difficult to keep all these natural frequencies away from the noise-causing frequency by the same type of rotor.
  • a conventional electric motor has been proposed that facilitates adjustment of the natural frequency of a torsional vibration system composed of a rotor and an impeller according to the type of impeller (see Patent Document 1). ).
  • the rotor of the electric motor described in Patent Document 1 includes a cylindrical permanent magnet having a through hole formed in the axial direction, a rotor shaft provided through the through hole of the permanent magnet, and a permanent shaft. And a resin-made rotor coupling member that couples the magnet and the rotating shaft.
  • the rotor coupling member includes a plurality of ribs that couple the permanent magnet and the rotating shaft.
  • the rib auxiliary material which is a metal piece is embedded in each rib.
  • the rotor of the electric motor of patent document 1 adjusts the natural frequency of the torsional vibration system comprised by a rotor and an impeller by changing the quantity of the rib auxiliary material embedded in each rib. .
  • the number of parts of the rotor increases by the amount of the rib auxiliary material.
  • bonding material of the rotor of the electric motor described in patent document 1 is formed by injection molding using a metal mold
  • the rotor of the electric motor described in Patent Document 1 has a complicated mold because the rib auxiliary material must be embedded in each rib. For this reason, the rotor of the electric motor described in Patent Document 1 has a problem that the product cost increases.
  • the present invention has been made to solve the above-described problems, and can suppress an increase in product cost and can easily adjust the natural frequency of a torsional vibration system including a rotor and an impeller.
  • a first object is to obtain a rotor of an electric motor.
  • this invention makes it the 2nd objective to obtain the electric motor provided with the rotor of such an electric motor, and to obtain the air conditioner provided with this electric motor.
  • a shaft portion, a through hole penetrating in the axial direction of the shaft portion is formed, and the cylindrical magnet portion in which the shaft portion passes through the through hole;
  • a hole having a first end and a second end, and at least one of the plurality of ribs having an opening at the first end and extending toward the second end is formed. Yes.
  • the electric motor according to the present invention includes the rotor of the electric motor according to the present invention and a stator.
  • the air conditioner according to the present invention includes a blower, and the blower includes the electric motor according to the present invention and an impeller attached to the shaft portion of the rotor of the electric motor.
  • the rotor of the electric motor according to the present invention can adjust the natural frequency of the torsional vibration system composed of the rotor and the impeller by changing the shape, position, size, etc. of the hole formed in the rib. it can. At this time, the rotor of the electric motor according to the present invention does not increase the number of parts of the rotor. Further, if a pin is provided in the mold, a hole can be formed in the rib, so that the mold is not complicated. For this reason, the rotor of the electric motor which concerns on this invention can suppress that product cost increases. In addition, the pin of the mold for forming a hole in the rib can be processed with high accuracy.
  • the rotor of the electric motor according to the present invention is also manufactured with high accuracy. For this reason, the rotor of the electric motor according to the present invention can easily adjust the natural frequency of the torsional vibration system including the rotor and the impeller.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG. 2.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG. 2.
  • FIG. 1 is a perspective view showing a rotor of an electric motor according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram illustrating the rotor of the electric motor according to Embodiment 1 of the present invention, and is a diagram of the rotor observed in the axial direction of the shaft portion of the rotor.
  • FIG. 3 is an enlarged view of a portion Z in FIG. 4 is a cross-sectional view taken along the line AA in FIG.
  • the rotor 2 constitutes an electric motor 1 that is, for example, a brushless DC motor in combination with the stator 3.
  • the rotor 2 includes a shaft portion 10, a magnet portion 20, and a resin portion 40 that connects the shaft portion 10 and the magnet portion 20.
  • the shaft 10 is provided with an eyelet.
  • the eyelet is generally referred to as a knurled 11 and is a stitch-like groove mainly formed on the outer peripheral portion of a round structure such as the shaft portion 10 or the like.
  • the knurl 11 is provided at a portion in contact with the shaft holding portion 45.
  • the magnet portion 20 has a substantially cylindrical shape, and a through hole 21 is formed through the shaft portion 10 in the axial direction.
  • the through hole 21 penetrates from the end 20a toward the end 20b that is the end opposite to the end 20a.
  • the shaft portion 10 passes through the through hole 21.
  • a resin magnet obtained by injection molding a thermoplastic resin containing ferrite is used as the magnet portion 20. The details of the magnet unit 20 will be described below with reference to FIGS. 5 to 8 described later in addition to FIGS. 1 to 4 described above.
  • 5 to 8 are perspective views showing a magnet portion of the rotor of the electric motor according to Embodiment 1 of the present invention.
  • 5 and 7 are perspective views of the magnet unit 20 observed from the end 20a side.
  • FIG.6 and FIG.8 is the perspective view which observed the magnet part 20 from the edge part 20b side.
  • the runner 33 is formed.
  • the runner 33 is deleted when the shaft portion 10 and the magnet portion 20 are connected by the resin portion 40.
  • 5 and 6 show the magnet unit 20 after the runner 33 has been deleted.
  • FIG.7 and FIG.8 has shown the magnet part 20 before this runner 33 is deleted.
  • the magnet part 20 is obtained by injection molding a thermoplastic resin containing ferrite.
  • a strong magnet is disposed outside the mold that forms the outer periphery of the magnet part 20.
  • the ferrite contained in the magnet portion 20 is oriented anisotropically with respect to the polar direction by the orientation magnetic field of the magnet. That is, the magnet part 20 is oriented anisotropically with respect to the polar direction by the orientation magnetic field outside the part forming the outer periphery of the resin magnet that is a part of the mold.
  • the convex part 22 and the recessed part 23 are alternately arrange
  • the convex portion 22 is formed at a position corresponding to the magnetic pole of the magnet portion 20.
  • the recess 23 is formed at a position corresponding to between the magnetic poles of the magnet unit 20.
  • a rotor 2 having 10 magnetic poles is assumed.
  • the number of the convex parts 22 and the recessed parts 23 is ten each.
  • the number of magnetic poles is not limited to 10 and may be an arbitrary number.
  • a plurality of concave portions 25 are formed in the end portion 20b of the magnet portion 20 at substantially equal intervals in the circumferential direction.
  • Each concave portion 25 has a gate opening left when a thermoplastic resin is injected as a gate processing trace, and has an elliptical shape having a predetermined depth in the axial direction.
  • Each recess 25 is located at a position corresponding to the recess 23 on the outer periphery of the magnet unit 20. That is, each recess 25 is located between the magnetic poles of the magnet unit 20.
  • the rotor 2 since the rotor 2 has 10 poles, 10 recesses 25 are also formed.
  • the injection state at the time of injection of the thermoplastic resin is made uniform with respect to the magnetic poles, and the orientation state can be made uniform.
  • the quality of the magnet unit 20 can be improved.
  • the orientation accuracy of the thermoplastic resin containing ferrite can be improved, and the quality of the magnet unit 20 can be further improved.
  • the inner peripheral surface of the magnet part 20 is tapered from the end 20b of the magnet part 20 to a substantially central position in the axial direction.
  • the part of the mold forming the magnet part 20 is tapered.
  • This tapered portion is referred to as a tapered portion 28.
  • the tapered portion 28 is formed so that the inner diameter of the inner peripheral surface of the magnet portion 20 gradually becomes narrower from the end portion 20b of the magnet portion 20 toward the end portion 20a.
  • the inner peripheral surface of the magnet part 20 includes a straight part 27 having a constant inner diameter between the taper part 28 and the end part 20a.
  • the straight portion 27 is formed of a movable mold. By forming the straight portion 27, the magnet portion 20 sticks to the movable mold when the mold is opened, and the fixed mold is smoothly separated from the magnet section 20. Thereby, the quality improvement in manufacture of the magnet part 20 can be aimed at.
  • a plurality of tapered cutouts 24 are formed at the end 20b of the magnet unit 20.
  • the plurality of notches 24 are provided corresponding to the magnetic poles, and are formed at approximately equal intervals in the circumferential direction. The reason why the notches 24 are provided corresponding to the magnetic poles is to make the magnetic paths for the magnetic poles of the magnet portion 20 substantially the same.
  • the shape of each notch 24 is formed with a predetermined width in the circumferential direction, and is formed so as to be inclined from the end portion 20 b toward the inner peripheral surface of the magnet portion 20.
  • Each notch 24 is formed such that a virtual circle connecting the notches 24 is concentric with the straight portion 27 and the outer peripheral portion of the magnet portion 20 when observed in the axial direction.
  • the resin portion 40 is formed by injection molding after the magnet portion 20 and the shaft portion 10 are arranged in a mold.
  • the mold holds the notches 24 when the resin portion 40 is molded, so that the coaxiality and phase between the shaft portion 10 and the magnet portion 20 can be ensured. .
  • the manufacturing quality of the rotor 2 can be improved.
  • the resin injection trace 34 is a ring-shaped runner formed on the end face of the core part of the lower mold of the mold for molding the magnet part 20 when the magnet injection part 20 is molded. It is what remained in 32.
  • the number of resin injection traces 34 is, for example, half the number of magnetic poles. In the first embodiment, since the number of magnetic poles is 10, there are five resin injection traces 34. These resin injection traces 34 are provided at substantially equal pitches in the circumferential direction. Further, each resin injection trace 34 is provided at a substantially intermediate position between the two rib-shaped runners 31.
  • FIG. 7 shows a runner 33 composed of a rib-like runner 31 and a ring-like runner 32.
  • the “runner” is a portion that does not become the magnet portion 20, and specifically refers to the ring-like runner 32, the rib-like runner 31, and other runners not shown.
  • each rib-like runner 31 in the axial direction is substantially the same as the position of the ring-like runner 32 in the axial direction.
  • each resin injection trace 34 is provided at a substantially intermediate position between the two rib-shaped runners 31.
  • the ring-shaped runner 32 and the rib-shaped runner 31 are formed by an upper mold of a mold. For this reason, it is good for the ring-shaped runner 32 and the rib-shaped runner 31 to make it a taper shape which becomes small toward the moving direction of the upper mold at the time of mold opening from the end surface of the core part of the lower mold of the mold. When the mold is opened, sticking of the ring-shaped runner 32 and the rib-shaped runner 31 to the upper mold can be reduced.
  • the ring-shaped runner 32 by forming a predetermined length straight from the end surface of the core portion of the lower mold of the mold, the resistance of sticking to the upper mold of the ring-shaped runner 32 at the time of mold release As a result, the lower mold is smoothly separated from the ring-shaped runner 32.
  • the rib-shaped runner 31 that extends radially from the ring-shaped runner 32 crosses the end surface in the axial direction of the core part of the lower mold of the mold for molding the magnet part 20, and then to the inner peripheral surface side of the magnet part 20. Reach.
  • thermoplastic resin containing ferrite injected into the resin injection trace 34 of the ring-shaped runner 32 flows in the axial direction through a runner (not shown) up to the resin injection trace 34.
  • the thermoplastic resin containing ferrite changes the flow direction by 90 ° at the resin injection trace 34. That is, the thermoplastic resin containing ferrite is divided into two in a direction perpendicular to the axial direction. Thereafter, each of the two thermoplastic resins containing ferrite enters the rib-like runner 31 closest to the resin injection trace 34, and further flows into the magnet portion 20 by changing the flow direction by 90 °.
  • the ratio of the runner amount to the magnet part 20 can be reduced as compared with the case where the resin injection part of the magnet part 20 is provided by the number of magnetic poles.
  • the amount of runners is the total amount of the ring-like runner 32, the rib-like runner 31, and an unillustrated axial runner. According to the first embodiment, the runner amount can be reduced by about 30% compared to the case where the resin injection portion of the magnet portion 20 is provided for the number of magnetic poles.
  • the reuse ratio at the time of reusing the runner 33 which does not become a product reduces by the amount of runners reducing.
  • the quality of the product can be improved by suppressing the deterioration of the physical properties of the magnet unit 20.
  • the physical property of the magnet unit 20 is, for example, mechanical strength.
  • the resin injection portion is half the number of magnetic poles, but the rib-like runner 31 is the same as the number of magnetic poles, so the injection state of the thermoplastic resin containing ferrite is the same for each magnetic pole, and the orientation state.
  • the quality of manufacturing the magnet unit 20 can be improved.
  • the ring-shaped runner 32 and the rib-shaped runner 31 are cut off after the molding of the magnet portion 20 is completed.
  • the rib-like runner 31 is cut off at a portion between the ring-like runner 32 and the inner peripheral portion 30 of the magnet portion 20. Accordingly, a part of the rib-like runner 31 remains on the inner peripheral portion 30 of the magnet portion 20.
  • a cut mark 29 remains on the inner peripheral portion 30 of the magnet portion 20.
  • the excision trace 29 can also be used as a detent when the magnet portion 20 and the shaft portion 10 are connected by the resin portion 40.
  • the magnet unit 20 includes a magnetic unit 35 for position detection.
  • the magnetic part 35 is formed of a resin magnet injected from the inner peripheral surface side of the magnet part 20 toward the end part 20a of the magnet part 20, that is, a resin magnet injected via the runner 33. Formed. When the runner 33 is cut off after the magnet portion 20 is formed, the magnetic portion 35 remains at the end portion 20a of the magnet portion 20.
  • the position detection element 67 For the position detection element 67, refer to FIG.
  • the rib-like runner 31 is connected to the magnetic part 35, the orientation accuracy of the magnetic part 35 is improved and the position detection accuracy of the rotor 2 is improved. That is, the quality of the electric motor can be improved.
  • the configuration of the runner 33 shown in the first embodiment is merely an example. Although the ring-shaped runner 32 is used as the runner in the first embodiment, the ring-shaped runner 32 may not be used as long as the rib-shaped runner 31 and the axial runner can be connected.
  • the resin part 40 is obtained by placing the shaft part 10 and the magnet part 20 in a mold and then injection-molding a thermoplastic resin such as PBT (polybutylene terephthalate).
  • the resin part 40 includes a shaft holding part 45, a magnet holding part 47, and a plurality of ribs 41.
  • the shaft holding part 45 has a substantially cylindrical shape and holds the shaft part 10.
  • the shaft holding portion 45 is provided so as to cover a portion where the knurl 11 is formed on the outer peripheral portion of the shaft portion 10 from the outer peripheral side.
  • bearings 70 which are ball bearings, for example, are assembled on both ends of the magnet portion 20.
  • the rotor 2 is then combined with the stator 3.
  • Both end portions of the shaft holding portion 45 in the axial center direction are contact stoppers 46 for stopping the bearings 70.
  • the magnet holding portion 47 has a substantially cylindrical shape with a through hole formed in the axial direction.
  • the magnet holding part 47 holds the magnet part 20 from the inner peripheral side of the magnet part 20.
  • the plurality of ribs 41 connect the shaft holding part 45 and the magnet holding part 47. These ribs 41 are arranged, for example, so as to extend radially from the axis of the shaft portion 10. That is, the rib 41 is connected to the shaft portion 10 via the shaft holding portion 45. Further, the rib 41 is connected to the magnet unit 20 via the magnet holding unit 47. That is, each rib 41 connects the shaft portion 10 and the magnet portion 20.
  • the number of ribs 41, the thickness of each rib 41, the length of the shaft portion 10 in each rib 41 in the axial direction, the length in the radial direction of the rotor 2 in each rib 41, and the like are arbitrary. These values should just be the intensity
  • the number of ribs 41 is minimized and each rib 41 is designed to be as thin and short as possible in terms of the torque generated by the motor using the rotor 2 and the strength that can withstand repeated stress applied to the rotor 2 by intermittent operation of the motor.
  • the cost of the rotor 2 may be reduced.
  • an impeller of the blower is attached to a shaft portion of the rotor of the electric motor.
  • the resonance of the torsional vibration system is prevented by reducing the natural frequency of the torsional vibration system composed of the rotor and the impeller from the frequency that causes noise.
  • a plurality of types of impellers having different materials and shapes may be attached to the shaft portion of the same type of rotor.
  • the natural frequency of the torsional vibration system composed of the rotor and the impeller exists only for the type of the impeller. It is difficult to keep all these natural frequencies away from the noise-causing frequency by the same type of rotor.
  • the number of the ribs 41, the thickness of each rib 41, the length of the shaft portion 10 in each rib 41 in the axial direction, and each rib By adjusting the torsional rigidity of the resin portion 40 by varying the radial length of the rotor 2 in 41, the rotor 2 and the impeller are configured according to the impeller attached to the shaft portion 10. It seems possible to adjust the natural frequency of the torsional vibration system.
  • the number of ribs 41, the thickness of each rib 41, the axial length of the shaft portion 10 in each rib 41, the radial length of the rotor 2 in each rib 41, and the like are varied to provide a torsional vibration system.
  • the number of ribs 41, the thickness of each rib 41, the axial length of the shaft portion 10 in each rib 41, the radial length of the rotor 2 in each rib 41, and the like are different. Therefore, it is difficult to adjust the natural frequency of the torsional vibration system.
  • the processing cost of the mold part that forms the outer diameter shape of the rib is high. That is, the cost of the mold becomes high. Therefore, the number of ribs 41, the thickness of each rib 41, the length in the axial direction of the shaft portion 10 in each rib 41, the length in the radial direction of the rotor 2 in each rib 41, and the like are varied torsional vibration. If an attempt is made to adjust the natural frequency of the system, the product cost of the rotor 2 will also increase.
  • each rib 41 has an end portion 41 a and an end portion 41 b in the axial direction of the shaft portion 10.
  • the end 41a is an end that is one of the first end and the second end.
  • the end 41b is an end that is the other of the first end and the second end.
  • Each of the ribs 41 is formed with a plurality of holes 42 penetrating so as to open to the end 41a and the end 41b.
  • each hole 42 has an opening at the end 41a, extends toward the end 41b, and penetrates to the end 41b.
  • each hole 42 has an opening at the end 41b, extends toward the end 41a, and penetrates through the end 41a.
  • the rotor 2 according to the first embodiment can adjust the torsional rigidity of the resin portion 40 by changing the shape, number, position, size, and the like of the holes 42 formed in each rib 41.
  • the natural frequency of the torsional vibration system composed of the rotor 2 and the impeller can be adjusted.
  • a pin is provided in the mold, and a hole 42 is formed in each rib 41 by the pin. That is, when changing the shape, number, position, size, and the like of the holes 42 formed in each rib 41, only the pin specifications are changed, and it is not necessary to perform complicated machining on the mold. As a result, the mold adjustment time can be shortened, and the mold is not expensive. Therefore, the rotor 2 according to the first embodiment can suppress an increase in product cost.
  • the mold pins for forming the holes 42 in each rib 41 can be processed with high accuracy. For this reason, the shape of the resin part 40 can be finely adjusted, and the rotor 2 can be manufactured with high accuracy. For this reason, the rotor 2 according to the first embodiment can easily adjust the natural frequency of the torsional vibration system including the rotor 2 and the impeller.
  • FIGS. 9 and 10 are perspective views showing an example of the rotor of the electric motor according to Embodiment 1 of the present invention, and are diagrams for introducing an example of a method for forming a resin portion of the rotor.
  • 9 is a perspective view of the rotor 2 observed from the end 20a side of the magnet unit 20.
  • FIG. FIG. 10 is a perspective view of the rotor 2 observed from the end 20 b side of the magnet unit 20.
  • an example of a method for forming the resin portion 40 by injection molding will be introduced with reference to FIGS. 9 and 10 and FIGS. 1 to 8 described above.
  • the magnet 20 shown in FIGS. 5 and 6 is inserted from the end 20b side where the recess 25 is formed into the core of the lower mold of the mold installed in the vertical molding machine (not shown). Thereby, the magnet part 20 is integrated in the lower mold of the mold.
  • the lower mold of the mold is formed with a convex portion in which the coaxiality with the mold insertion portion of the shaft portion 10 is ensured.
  • This convex portion is fitted into a tapered notch 24 provided at the end 20 b of the magnet portion 20. When the mold is tightened, this convex portion is pressed against the notch 24, so that the coaxiality between the outer peripheral portion of the magnet portion 20 and the shaft portion 10 is ensured.
  • the plurality of notches 24 provided at the end 20b of the magnet unit 20 are provided corresponding to the magnetic poles, and are formed at approximately equal intervals in the circumferential direction.
  • the number of convex portions of the lower mold to be fitted into the notch 24 is five in the first embodiment. Therefore, the convex part of the lower mold of the mold is fitted into the five notches 24 arranged at substantially equal intervals in the circumferential direction among the ten notches 24.
  • any five of the ten notches 24 may be fitted into the five convex parts of the lower mold. The workability is improved as compared with the case where the five cutouts 24 are formed in the magnet unit 20.
  • the shaft portion 10 to which the knurl 11 is applied is disposed at the center of the magnet portion 20 incorporated in the lower mold of the mold.
  • the lower mold of the mold is installed on the turntable of the vertical molding machine. After the shaft part 10 and the magnet part 20 are arranged on the lower mold, the lower table is arranged below the upper mold by rotating the turntable at a predetermined rotational speed of 180 °, for example. In this state, the upper mold is lowered to the lower mold side, the mold is tightened, and the resin portion 40 is formed by injection molding.
  • burr generated on the outer peripheral side of the magnet part 20 can be prevented by pressing the vicinity of the outer periphery of the end part 20a and the end part 20b of the magnet part 20 with a mold and filling the thermoplastic resin.
  • the productivity of the rotor 2 can be improved and the quality of the rotor 2 can be improved.
  • the resin part 40 when the resin part 40 is formed by injection molding, it is formed on at least a part of the notch 24 of the magnet part 20 and the end part 20b of the magnet part 20 where the convex part of the lower mold of the mold is not fitted.
  • the ten recesses 25 are filled with a thermoplastic resin.
  • the recess 25 of the magnet part 20 is completely filled with a thermoplastic resin, thereby preventing the gap between the resin part 40 and the magnet part 20 from being generated. It is possible to prevent a decrease in the binding force.
  • a plurality of gate convex portions 43 are formed radially from the outer periphery of the shaft holding portion 45 toward the radially outer side.
  • five gate protrusions 43 that are half the number of magnetic poles are formed.
  • the thermoplastic resin that becomes the resin portion 40 is injected from the end 20 a side of the magnet portion 20. For this reason, the gate processing trace 44 remains at one end 43 a of the gate convex portion 43.
  • the gate protrusion 43 extends from the shaft holding part 45 of the resin part 40 by a predetermined length outward in the radial direction.
  • the inner peripheral surface of the magnet holding portion 47 of the resin portion 40 and the radial tip of the gate convex portion 43 are separated by a predetermined distance.
  • the gate convex portion 43 extends in the radial direction toward the magnetic pole of the magnet portion 20.
  • one end 43a of the gate convex portion 43 is positioned inside the magnet portion 20 in the axial direction by a predetermined distance with respect to the magnetic portion 35 of the magnet portion 20.
  • the predetermined distance is, for example, about 1 mm.
  • the other end (not shown) of the gate protrusion 43 is located on the mold-matching surface trace between the upper mold and the lower mold of the mold.
  • the length of the gate protrusion 43 in the axial direction is, for example, approximately half the length of the magnet 20 in the axial direction.
  • the axial length of the gate convex portion 43 varies depending on the mold alignment position between the upper mold and the lower mold of the mold.
  • one end portion 43a of the gate convex portion 43 is located inside the magnet portion 20 by a predetermined distance in the axial direction with respect to the magnetic portion 35 of the magnet portion 20.
  • the thermoplastic resin that becomes the resin portion 40 is injected from the end portion 20 a side of the magnet portion 20, and the gate processing trace 44 remains on the end portion 43 a of the gate convex portion 43.
  • the gate processing trace 44 may protrude outward from the end 43a of the gate protrusion 43 in the axial direction.
  • the protrusion of the gate processing trace 44 is pivoted with respect to the magnetic part 35 of the magnet unit 20. It is preferable that it is located inside the magnet part 20 in the center direction.
  • the stator combined with the rotor 2 may be molded with a thermosetting resin such as BMC (bulk molding compound).
  • BMC bulk molding compound
  • the gate processing trace 44 and the shaft center are formed.
  • the mold of the mold stator may be arranged at a position facing in the direction. In such a case, the gate processing trace 44 and the mold may interfere with each other.
  • one end portion 43a of the gate convex portion 43 and the magnetic portion 35 of the magnet portion 20 are at the same position in the axial direction, all protrusions of the gate processing trace 44 are removed to avoid such interference. There is a need.
  • one end 43a of the gate convex portion 43 is positioned inside the magnet portion 20 in the axial direction with respect to the magnetic portion 35 of the magnet portion 20, so that only a part of the gate processing trace 44 is removed.
  • interference between the gate processing trace 44 and the mold can be prevented.
  • the productivity of the electric motor using the rotor 2 is achieved by positioning one end 43a of the gate convex portion 43 inside the magnet portion 20 in the axial direction with respect to the magnetic portion 35 of the magnet portion 20. Can be improved.
  • a plurality of ribs 41 for connecting the shaft holding portion 45 and the magnet holding portion 47 are formed between the shaft holding portion 45 and the magnet holding portion 47.
  • Each of these ribs 41 is disposed between the two gate protrusions 43 in the circumferential direction.
  • thermoplastic resin injected from the gate convex portion 43 flows in the order of the shaft holding portion 45, the rib 41, and the magnet holding portion 47. Become.
  • thermoplastic resin injected from the gate convex portion 43 is directly injected from the gate convex portion 43 to the shaft holding portion 45, the thermoplastic resin can be filled into the shaft holding portion 45 earliest. . For this reason, the weld strength of the shaft holding portion 45 can be improved.
  • the formation method of the resin part 40 mentioned above is an example to the last.
  • the resin part 40 may be formed by injecting a thermoplastic resin in the order of the magnet holding part 47, the rib 41, and the shaft holding part 45. In this case, the gate protrusion 43 is not formed.
  • the configuration of the resin portion 40 described above is merely an example.
  • the plurality of holes 42 are formed in each rib 41.
  • at least one hole 42 may be formed in each rib 41.
  • the holes 42 need not be formed in all of the plurality of ribs 41. That is, at least one hole 42 may be formed in at least one of the plurality of ribs 41.
  • the torsional rigidity of the resin part 40 can be adjusted more finely by changing the number of the holes 42 to the adjustment of the torsional rigidity of the resin part 40.
  • the natural frequency of the vibration system can be adjusted more finely. For this reason, in the first embodiment, a plurality of holes 42 are formed in each rib 41.
  • the hole 42 formed in each rib 41 has a circular cross section perpendicular to the axis of the shaft portion 10.
  • the cross-sectional shape of the hole 42 perpendicular to the axis of the shaft portion 10 is not limited to a circular shape.
  • the cross-sectional shape of the hole 42 perpendicular to the axial center of the shaft portion 10 can be an arbitrary shape such as a square shape or a triangular shape.
  • the cross-sectional shape of the hole 42 perpendicular to the axis of the shaft portion 10 may be the following shape.
  • FIGS. 11 to 14 are diagrams showing another example of the rotor of the electric motor according to the first embodiment of the present invention.
  • 11 to 14 are diagrams showing another example of the rotor 2 in the same observation direction and observation range as those in FIG.
  • the hole 42 formed in each rib 41 may have an elongated hole shape in a cross-sectional shape perpendicular to the axis of the shaft portion 10.
  • the cross-sectional shape of the hole 42 perpendicular to the shaft center of the shaft portion 10 is a shape having a long hole shape. That is, the cross-sectional shape of the hole 42 perpendicular to the shaft center of the shaft portion 10 is an elongated hole shape.
  • the hole 42 has a longitudinal direction and a short-side direction in a cross section perpendicular to the shaft center of the shaft portion 10. .
  • the cross-sectional shape of the hole 42 perpendicular to the axis of the shaft portion 10 is an elongated hole shape as shown in FIGS. 11 and 12.
  • the cross-sectional shape of the hole 42 perpendicular to the axis of the shaft portion 10 is a long hole shape is a rectangular shape as shown in FIGS. 13 and 14.
  • the torsional rigidity of the resin portion 40 can be adjusted, and the rotor 2 and the impeller are configured.
  • the natural frequency of the torsional vibration system can be adjusted.
  • vertical to the axial center of the axial part 10 is a long hole shape, compared with the case where the cross-sectional shape of the hole 42 perpendicular
  • a large space can be formed by one hole 42.
  • the cross-sectional shape of the hole 42 perpendicular to the shaft center of the shaft portion 10 is a long hole shape, so that the cross-sectional shape of the hole 42 perpendicular to the shaft center of the shaft portion 10 is circular.
  • the number of mold pins for forming the holes 42 can be reduced.
  • FIGS. 15 and 16 are diagrams showing another example of the rotor of the electric motor according to Embodiment 1 of the present invention.
  • FIG. 15 is a view of another example of the rotor 2 observed in the axial direction of the shaft portion 10.
  • FIG. 16 is a cross-sectional view taken along the line BB in FIG.
  • the holes 42 shown in FIGS. 1 to 4 and 9 to 14 have a straight shape that does not spread from the end 41b to the end 41a of the rib 41.
  • the hole 42 may have a tapered shape that widens from the end 41 b side to the end 41 a side of the rib 41.
  • the hole 42 may have a tapered shape that widens from the end 41 a side to the end 41 b side of the rib 41.
  • the torsional rigidity of the resin portion 40 can be adjusted, and the natural frequency of the torsional vibration system including the rotor 2 and the impeller can be adjusted.
  • the hole 42 into a tapered shape, the releasability of the resin portion 40 is improved when the mold is opened. For this reason, when removing the resin part 40 from a metal mold
  • the resin portion 40 is likely to be subjected to a large molding pressure on the upper mold portion that is initially filled with the thermoplastic resin during molding. For this reason, the hole 42 is good to make the side with a small cross-sectional area into an upper mold
  • the strength of the resin part 40 is improved and the quality of the rotor 2 is improved.
  • FIGS. 17 and 18 are diagrams showing another example of the rotor of the electric motor according to Embodiment 1 of the present invention.
  • FIG. 17 is a diagram in which another example of the rotor 2 is observed in the axial direction of the shaft portion 10.
  • 18 is a cross-sectional view taken along the line CC of FIG.
  • the holes 42 shown in FIGS. 1 to 4 and FIGS. 9 to 16 penetrate the ribs 41. Not limited to this, the hole 42 may not penetrate the rib 41.
  • the hole 42 of the rib 41 shown in FIGS. 17 and 18 has an opening at the end 41a and extends toward the end 41b. However, the hole 42 shown in FIGS. 17 and 18 does not open to the end portion 41 b and does not penetrate the rib 41.
  • the torsional rigidity of the resin portion 40 can be adjusted also by the depth of the hole 42, and the natural frequency of the torsional vibration system composed of the rotor 2 and the impeller is set. It becomes easier to adjust.
  • the mold pin for forming the hole 42 is in a cantilever state. For this reason, when the pin is thin, when the resin portion 40 is molded, the pin loses its molding pressure and deforms, and the pin position may not be stable. That is, the formation accuracy of the hole 42 may be slightly reduced. For this reason, by forming the through hole 42 in the rib 41, even if the cross section of the hole 42 is small, the effect that the hole 42 can be formed with high accuracy is obtained.
  • the magnet part 20 may be formed by injection-molding a thermoplastic resin resin magnet containing samarium, which is a rare earth, on the outer periphery of an annular resin magnet called a yoke.
  • the magnet unit 20 may be in the form of an IPM (Interior Permanent Magnet).
  • IPM Interior Permanent Magnet
  • the form of IPM is a form of a magnet part in which a permanent magnet is inserted into an insertion hole of an iron core in which a plurality of electromagnetic steel sheets are laminated.
  • the magnet portion 20 may be formed by bonding a sintered magnet or a molded resin magnet to the yoke.
  • the electric motor 1 according to the first embodiment includes a stator 3 and the rotor 2 described above.
  • the electric motor 1 is, for example, a brushless DC motor (synchronous electric motor).
  • the electric motor 1 using the molded stator 4 in which the stator 3 is molded with a thermosetting resin will be introduced.
  • FIG. 19 is a perspective view showing the electric motor according to Embodiment 1 of the present invention.
  • FIG. 20 is a side view showing the electric motor according to Embodiment 1 of the present invention.
  • FIG. 21 is a view showing the electric motor according to Embodiment 1 of the present invention, and is a side view with a part in cross section.
  • FIG. 22 is a perspective view showing the mold stator of the electric motor according to Embodiment 1 of the present invention.
  • the electric motor 1 includes a rotor 2, a mold stator 4, and a pair of bearings 70 as main components.
  • the mold stator 4 is obtained by molding the stator 3 and the sensor substrate 66 with a thermosetting resin such as BMC (bulk molding compound).
  • the stator 3 includes, as main components, a stator core 62, an insulating portion 61 applied to the teeth of the stator core 62, and a coil 63 obtained by winding a magnet wire around the insulating portion 61. Yes.
  • the stator core 62 can be obtained by, for example, laminating a plurality of members punched out from a magnetic steel sheet in a band shape by caulking, welding, adhesion, or the like.
  • the insulating portion 61 is obtained by molding a thermoplastic resin such as PBT (polybutylene terephthalate) integrally with the teeth of the stator core 62 or by assembling the stator core 62 with the thermoplastic resin.
  • the end of the magnet wire constituting the coil 63 is drawn around the terminal hook and joined to the terminal by fusing or soldering. Then, the stator 3 is formed by bending the band-shaped stator core 62 in a predetermined direction and welding the ends of the stator core 62 to each other.
  • the end portion on the position detection element 67 side is referred to as a connection side
  • the opposite end portion is referred to as an anti-connection side.
  • the outer peripheral wall of the insulating portion 61 prevents the outer peripheral portion of the coil 63 from falling to the outer peripheral side of the stator 3.
  • the outer peripheral wall of the insulating portion 61 is referred to as an outer wall.
  • pins (not shown) for fixing the lead wire wiring components are provided at a plurality of locations.
  • the inner peripheral wall of the insulating portion 61 prevents the inner peripheral portion of the coil 63 from falling to the inner peripheral side of the stator 3.
  • the inner peripheral wall of the insulating portion 61 is referred to as an inner wall.
  • a protrusion (not shown) is provided on the inner wall on the anti-connection side. When the stator 3 is molded, the protrusion is installed in the mold core part and fixed to the axial center direction.
  • the tip of the outer wall in the axial direction end is formed such that its height is higher than the maximum height of the coil 63 in the axial direction. Moreover, it is desirable to form the protrusion on the inner wall so as to have the same height as the tip of the end portion in the axial direction of the outer wall.
  • the coil 63 is formed such that its height in the axial direction decreases as it goes from the outer wall to the inner wall. For this reason, when the height of the protrusion on the inner wall is the same as the height of the outer wall, a sufficient distance from the protrusion on the inner wall to the coil 63 is ensured.
  • stator 3 when the stator 3 is installed on the mold core part with the anti-connection side of the stator core 62 facing down, the stator core 62 can be stabilized without the coil 63 hitting the mold core part. Can be put. As a result, the productivity of the mold stator 4 is improved and the quality of the mold stator 4 is also improved.
  • the power supply lead wire 64 for supplying power to the coil 63 is routed to the terminal to which the end of the magnet wire is joined, and the sheath is peeled off and joined to the terminal by spot welding or soldering.
  • On the sensor substrate 66 electronic components such as a Hall IC, a position detection element 67 of the rotor 2, and the like are mounted.
  • a sensor lead wire 65 is connected to the sensor substrate 66.
  • a board-in connector 68 is connected to the sensor lead wire 65. Further, the terminals of the board-in connector 68 are electrically joined to the electronic component with solder.
  • a lead wire wiring component is used for wiring of the power supply lead wire 64 and the sensor lead wire 65.
  • the lead wire wiring component is formed in a substantially circular shape by a thermoplastic resin such as PBT.
  • a lead wire lead-out component 69 is assembled on the outer periphery of the lead wire wiring component, and the lead wire lead-out component 69 is exposed to the outside from the outer peripheral surface of the mold stator 4.
  • the lead wire wiring parts and the wiring parts such as the sensor substrate 66 are assembled to the stator 3. Thereafter, these parts are molded with a thermosetting resin such as BMC (bulk molding compound) to obtain the mold stator 4. And the electric motor 1 is obtained by inserting the rotor 2 with which the bearing 70 was mounted
  • BMC bulb molding compound
  • the shaft portion 10 and the through hole 21 penetrating in the axial direction of the shaft portion 10 are formed, and the shaft portion 10 passes through the through hole 21.
  • the resin part 40 which connects the shaft part 10 and the magnet part 20.
  • the resin portion 40 includes a plurality of ribs 41 that connect the shaft portion 10 and the magnet portion 20.
  • the plurality of ribs 41 have end portions 41 a and end portions 41 b in the axial direction of the shaft portion 10.
  • the end 41a is an end that is one of the first end and the second end.
  • the end 41b is an end that is the other of the first end and the second end.
  • At least one of the plurality of ribs 41 is formed with a hole 42 having an opening at the first end and extending toward the second end.
  • the natural frequency of the torsional vibration system configured by the rotor 2 and the impeller is changed by changing the shape, position, size, and the like of the hole 42 formed in the rib 41. Can be adjusted.
  • the number of parts of the rotor 2 does not increase.
  • the hole 42 can be formed in the rib 41, so that the mold does not become complicated.
  • the rotor 2 according to the first embodiment can suppress an increase in product cost.
  • the pin of the mold for forming the hole 42 in the rib 41 can be processed with high accuracy.
  • the rotor 2 according to the first embodiment is also manufactured with high accuracy.
  • the rotor 2 according to the first embodiment can easily adjust the natural frequency of the torsional vibration system including the rotor 2 and the impeller.
  • Embodiment 2 an example of an air conditioner in which the electric motor 1 shown in the first embodiment is used as a drive source for a blower will be described.
  • items that are not particularly described are the same as those in Embodiment 1, and the same functions and configurations as those in Embodiment 1 are described using the same reference numerals.
  • FIG. 23 is a diagram showing a configuration of an air conditioner according to Embodiment 2 of the present invention.
  • the air conditioner 100 includes an indoor unit 110 and an outdoor unit 120 connected to the indoor unit 110.
  • the indoor unit 110 includes a blower 111.
  • the blower 111 includes the electric motor 1 described in the first embodiment and the impeller 112 attached to the shaft portion 10 of the rotor 2 of the electric motor 1.
  • the impeller 112 is, for example, a cross flow type impeller. That is, the blower 111 of the indoor unit 110 uses the electric motor 1 shown in Embodiment 1 as a drive source of the blower 111.
  • Rotating the rotor 2 of the electric motor 1 causes the impeller 112 to rotate with the rotor 2.
  • the air in the air-conditioning target space is sucked into the indoor unit 110.
  • the air in the air-conditioning target space sucked into the indoor unit 110 is heated or cooled by the refrigerant flowing in the indoor heat exchanger (not shown) and blown out from the indoor unit 110 to the air-conditioning target space.
  • the air in the air-conditioning target space sucked into the indoor unit 110 is cooled by the refrigerant flowing in the indoor heat exchanger (not shown).
  • the air in the air-conditioning target space sucked into the indoor unit 110 is heated by the refrigerant flowing in the indoor heat exchanger (not shown).
  • the outdoor unit 120 includes a blower 121.
  • the blower 121 includes the electric motor 1 shown in the first embodiment and the impeller 122 attached to the shaft portion 10 of the rotor 2 of the electric motor 1.
  • the impeller 122 is, for example, a propeller type impeller. That is, the blower 121 of the outdoor unit 120 uses the electric motor 1 shown in Embodiment 1 as a drive source of the blower 121.
  • the impeller 122 When the rotor 2 of the electric motor 1 rotates, the impeller 122 also rotates together with the rotor 2. Thereby, outdoor air is sucked into the outdoor unit 120.
  • the outdoor air sucked into the outdoor unit 120 heats or cools the refrigerant flowing in the outdoor heat exchanger (not shown), and is blown out from the outdoor unit 120.
  • the outdoor air sucked into the outdoor unit 120 cools the refrigerant flowing in the outdoor heat exchanger (not shown).
  • the outdoor air sucked into the outdoor unit 120 heats the refrigerant flowing in the outdoor heat exchanger (not shown).
  • the air conditioner 100 according to the second embodiment uses the electric motor 1 shown in the first embodiment as a drive source for the blower 111 and the blower 121, the quality is higher than that of the conventional air conditioner, In addition, a reduction in cost can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

本発明に係る電動機の回転子は、軸部と、前記軸部の軸心方向に貫通する貫通穴が形成され、該貫通穴に前記軸部が貫通している円筒状のマグネット部と、前記軸部と前記マグネット部とを連結する樹脂部と、を備え、前記樹脂部は、前記軸部と前記マグネット部とを連結する複数のリブを備え、複数の前記リブは、前記軸心方向に第1端部及び第2端部を有し、複数の前記リブのうちの少なくとも1つは、前記第1端部に開口部を有して前記第2端部側へ延びる穴が形成されている。

Description

電動機の回転子、電動機及び空気調和機
 本発明は、低騒音化を図った電動機の回転子、該電動機の回転子を備えた電動機、及び該電動機を備えた空気調和機に関する。
 電動機は、回転子の軸部に羽根車を取り付け、送風機の駆動源として用いられる場合がある。このような従来の電動機には、回転子及び羽根車で構成されるねじり振動系の固有周波数を騒音の原因となる周波数から遠ざけることで、ねじり振動系の共振を防止し、低騒音化を図ったものも提案されている。
 ここで、同一種類の回転子の軸部には、材料及び形状が異なる複数種類の羽根車が取り付けられる場合がある。このような場合、羽根車の種類だけ、回転子及び羽根車で構成されるねじり振動系の固有周波数が存在することとなる。同一種類の回転子によって、これら全ての固有振動数を騒音の原因となる周波数から遠ざけることは困難である。そこで、従来の電動機には、羽根車の種類に応じて回転子及び羽根車で構成されるねじり振動系の固有振動数の調整の容易化を図ったものも提案されている(特許文献1参照)。
 詳しくは、特許文献1に記載の電動機の回転子は、軸心方向に貫通穴が形成された円筒状の永久磁石と、永久磁石の貫通穴に貫通して設けられた回転子シャフトと、永久磁石と回転シャフトとを連結する樹脂製の回転子連結材と、を備えている。また、回転子連結材は、永久磁石と回転シャフトとを連結する複数のリブを備えている。また、各リブには、金属片であるリブ補材が埋め込まれている。そして、特許文献1に記載の電動機の回転子は、各リブに埋め込まれるリブ補材の量を変更することにより、回転子及び羽根車で構成されるねじり振動系の固有周波数を調整している。
特開2011-182571号公報
 特許文献1に記載の電動機の回転子は、リブ補材の分だけ、回転子の部品数が増加してしまう。また、特許文献1に記載の電動機の回転子の回転子連結材は、金型を用いた射出成形によって形成される。この際、特許文献1に記載の電動機の回転子は、各リブにリブ補材を埋め込まなければならないため、金型が複雑となる。このため、特許文献1に記載の電動機の回転子は、製品コストが増加してしまうという課題があった。
 ここで、各リブにリブ補材を埋め込む代わりに、リブの厚み、本数及び長さ等を変更することにより、回転子及び羽根車で構成されるねじり振動系の固有周波数を調整することも考えられる。この際、リブの厚み、本数及び長さ等を変更する場合、金型を加工する必要がある。しかしながら、リブの外径形状を形成する金型部分の加工は、金型のサイズによっては難しい。すなわち、回転子を精度良く製作することが難しい。このため、実際には、リブの厚み、本数及び長さ等を変更することにより、回転子及び羽根車で構成されるねじり振動系の固有周波数を調整することは、容易ではない。
 本発明は、上述の課題を解決するためになされたものであり、製品コストが増加することを抑制でき、回転子及び羽根車で構成されるねじり振動系の固有周波数を調整することが容易な電動機の回転子を得ることを第1の目的とする。また、本発明は、このような電動機の回転子を備えた電動機を得ること、及び該電動機を備えた空気調和機を得ることを第2の目的とする。
 本発明に係る電動機の回転子は、軸部と、前記軸部の軸心方向に貫通する貫通穴が形成され、該貫通穴に前記軸部が貫通している円筒状のマグネット部と、前記軸部と前記マグネット部とを連結する樹脂部と、を備え、前記樹脂部は、前記軸部と前記マグネット部とを連結する複数のリブを備え、複数の前記リブは、前記軸心方向に第1端部及び第2端部を有し、複数の前記リブのうちの少なくとも1つは、前記第1端部に開口部を有して前記第2端部側へ延びる穴が形成されている。
 また、本発明に係る電動機は、本発明に係る電動機の回転子と、固定子と、を備えている。
 また、本発明に係る空気調和機は、送風機を備え、前記送風機は、本発明に係る電動機と、前記電動機の前記回転子の前記軸部に取り付けられた羽根車と、を備えている。
 本発明に係る電動機の回転子は、リブに形成された穴の形状、位置及び大きさ等を変更することにより、回転子及び羽根車で構成されるねじり振動系の固有周波数を調整することができる。この際、本発明に係る電動機の回転子は、回転子の部品数が増加しない。また、金型にピンを設ければリブに穴を形成できるので、金型が複雑になることもない。このため、本発明に係る電動機の回転子は、製品コストが増加することを抑制できる。また、リブに穴を形成するための金型のピンは、精度の高い加工が可能である。このため、本発明に係る電動機の回転子も、精度良く製作されることとなる。このため、本発明に係る電動機の回転子は、回転子及び羽根車で構成されるねじり振動系の固有周波数を調整することも容易となる。
本発明の実施の形態1に係る電動機の回転子を示す斜視図である。 本発明の実施の形態1に係る電動機の回転子を示す図であり、回転子の軸部の軸心方向に回転子を観察した図である。 図2のZ部拡大図である。 図2のA-A断面図である。 本発明の実施の形態1に係る電動機の回転子のマグネット部を示す斜視図である。 本発明の実施の形態1に係る電動機の回転子のマグネット部を示す斜視図である。 本発明の実施の形態1に係る電動機の回転子のマグネット部を示す斜視図である。 本発明の実施の形態1に係る電動機の回転子のマグネット部を示す斜視図である。 本発明の実施の形態1に係る電動機の回転子の一例を示す斜視図であり、回転子の樹脂部の形成方法の一例を紹介するための図である。 本発明の実施の形態1に係る電動機の回転子の一例を示す斜視図であり、回転子の樹脂部の形成方法の一例を紹介するための図である。 本発明の実施の形態1に係る電動機の回転子の別の一例を示す図である。 本発明の実施の形態1に係る電動機の回転子の別の一例を示す図である。 本発明の実施の形態1に係る電動機の回転子の別の一例を示す図である。 本発明の実施の形態1に係る電動機の回転子の別の一例を示す図である。 本発明の実施の形態1に係る電動機の回転子の別の一例を示す図である。 本発明の実施の形態1に係る電動機の回転子の別の一例を示す図である。 本発明の実施の形態1に係る電動機の回転子の別の一例を示す図である。 本発明の実施の形態1に係る電動機の回転子の別の一例を示す図である。 本発明の実施の形態1に係る電動機を示す斜視図である。 本発明の実施の形態1に係る電動機を示す側面図である。 本発明の実施の形態1に係る電動機を示す図であり、一部を断面とした側面図である。 本発明の実施の形態1に係る電動機のモールド固定子を示す斜視図である。 本発明の実施の形態2に係る空気調和機の構成を示す図である。
実施の形態1.
 図1は、本発明の実施の形態1に係る電動機の回転子を示す斜視図である。図2は、本発明の実施の形態1に係る電動機の回転子を示す図であり、回転子の軸部の軸心方向に回転子を観察した図である。図3は、図2のZ部拡大図である。また、図4は、図2のA-A断面図である。
 本実施の形態1に係る回転子2は、後述のように、固定子3と組み合わされて、例えばブラシレスDCモータである電動機1を構成する。この回転子2は、軸部10と、マグネット部20と、軸部10とマグネット部20とを連結する樹脂部40と、を備えている。
 軸部10には、アヤ目が施されている。アヤ目は、一般的にローレット11と呼ばれ、主に軸部10等のような丸い構造物の外周部に施される編み目状の溝である。後述のように、軸部10は、樹脂部40の軸保持部45によって、該軸部10の外周部が保持される。ローレット11は、この軸保持部45と接する部分に設けられている。ローレット11によって軸部10と軸保持部45との間の摩擦係数を上げることにより、あるいは軸保持部45の内周部にローレット11を食い付かせることにより、ローレット11は抜け止め及び回り止めとして機能する。
 マグネット部20は、略円筒形状をしており、軸部10の軸心方向に貫通する貫通穴21が形成されている。換言すると、貫通穴21は、端部20aから、該端部20aとは反対側の端部である端部20bに向かって、貫通している。貫通穴21には、軸部10が貫通している。ここで、本実施の形態1では、マグネット部20として、フェライトを含有する熱可塑性樹脂を射出成形して得られる樹脂マグネットを用いている。以下、上述の図1~図4に加え、後述の図5~図8を用いて、マグネット部20の詳細について説明する。
 図5~図8は、本発明の実施の形態1に係る電動機の回転子のマグネット部を示す斜視図である。なお、図5及び図7は、端部20a側からマグネット部20を観察した斜視図となっている。また、図6及び図8は、端部20b側からマグネット部20を観察した斜視図となっている。ここで、射出成形によりマグネット部20を形成した際、ランナー33が形成される。このランナー33は、樹脂部40によって軸部10とマグネット部20を連結する際には削除される。図5及び図6は、このランナー33が削除された後のマグネット部20を示している。また、図7及び図8は、このランナー33が削除される前のマグネット部20を示している。
 上述のように、マグネット部20は、フェライトを含有する熱可塑性樹脂を射出成形して得られる。マグネット部20を成形する際、マグネット部20の外周を形成する金型の外側には、強力な磁石が配置される。マグネット部20に含有されるフェライトは、この磁石の配向磁場により、極方向に対し異方性に配向される。すなわちマグネット部20は、金型の一部である樹脂マグネットの外周を形成する部分の外側の配向磁場により、極方向に対し異方性に配向される。
 マグネット部20の外周には、凸部22と凹部23とが周方向に交互に配置される。凸部22は、マグネット部20の磁極に対応する位置に形成されている。また、凹部23は、マグネット部20の磁極間に対応する位置に形成されている。ここで、本実施の形態1では、磁極数が10極の回転子2を想定している。このため、本実施の形態1では、凸部22及び凹部23の数がそれぞれ10個となっている。なお、磁極数は10極に限定されるものではなく任意の数でよい。
 マグネット部20の端部20bには複数の凹部25が周方向に略等間隔に形成されている。各凹部25は、熱可塑性樹脂を注入する際のゲート口がゲート処理跡として残ったものであり、軸心方向に所定深さを有する楕円状となっている。また各凹部25は、マグネット部20の外周の凹部23と対応する位置となっている。すなわち、各凹部25は、マグネット部20の磁極間に位置する。本実施の形態1では回転子2が10極であるので、凹部25も10個形成されている。
 磁極の数だけの凹部25として残るゲート口を設けることで、熱可塑性樹脂の射出時の注入状態が磁極に対して均一化されると共に、配向の状態の均一化が可能となる。この結果、マグネット部20の品質の向上を図ることができる。さらに、磁極間にゲート口を設けることで、フェライトを含有する熱可塑性樹脂の配向精度の向上が可能となり、マグネット部20のさらなる品質の向上を図ることができる。
 マグネット部20の内周面は、マグネット部20の端部20bから軸心方向の略中心位置までがテーパ状に形成されている。例えば、マグネット部20を形成する金型の合わせ面跡までが、テーパ状に形成されている。このテーパ状の部分をテーパ部28と称する。テーパ部28は、マグネット部20の内周面の内径がマグネット部20の端部20bから端部20aに向かって徐々に狭くなるように形成されている。
 また、マグネット部20の内周面は、テーパ部28から端部20aまでの間において、内径が一定のストレート部27を備える。ストレート部27は可動側の金型で形成される。ストレート部27を形成することにより、型開きの際、可動側の金型にマグネット部20が張り付き、固定側の金型がマグネット部20からスムーズに離れる。これにより、マグネット部20の製造上の品質向上を図ることができる。
 マグネット部20の端部20bには、テーパ状の複数の切り欠き24が形成されている。複数の切り欠き24は、磁極に対応して設けられ、周方向に略等間隔に10個形成されている。切り欠き24が磁極に対応して設けられている理由は、マグネット部20の各磁極に対する磁路を略同一にするためである。各切り欠き24の形状は、周方向に所定巾で形成され、かつ、端部20bからマグネット部20の内周面に向けて傾斜するように形成されている。
 各切り欠き24は、軸心方向に観察した際、各切り欠き24を結ぶ仮想円がマグネット部20のストレート部27及び外周部と同心円となるように形成されている。後述のように、マグネット部20と軸部10とを樹脂部40で連結する場合、マグネット部20及び軸部10を金型に配置した後、射出成形により樹脂部40を形成する。このように各切り欠き24を配置することにより、樹脂部40の成形時に金型が切り欠き24を保持することで、軸部10とマグネット部20との同軸度と位相を確保することができる。この結果、回転子2の製造上の品質の向上を図ることができる。
 図7に示すように、樹脂注入跡34は、マグネット部20を成形する際の樹脂注入部の跡がマグネット部20を成形する金型の下型の芯部の端面に形成されるリング状ランナー32に残ったものである。樹脂注入跡34の数は、例えば磁極数の半分の数である。本実施の形態1では、磁極数が10極なので、5個の樹脂注入跡34がある。これらの樹脂注入跡34は周方向に略等ピッチに設けられる。さらに各樹脂注入跡34は2つのリブ状ランナー31の略中間位置に設けられる。
 図7には、リブ状ランナー31とリング状ランナー32とで構成されるランナー33が示されている。「ランナー」とは、マグネット部20にならない部分であり、具体的にはリング状ランナー32とリブ状ランナー31と図示しないその他のランナーとを指す。
 リング状ランナー32の外周には、リング状ランナー32の外周から径方向外側に向けて放射状に延びる複数のリブ状ランナー31が形成される。図7の例では、マグネット部20の磁極数に対応した10個のリブ状ランナー31が形成されている。各リブ状ランナー31の軸心方向の位置は、リング状ランナー32の軸心方向位置と略同じである。
 既に述べたように、各樹脂注入跡34は2つのリブ状ランナー31の略中間位置に設けられる。リング状ランナー32及びリブ状ランナー31は、金型の上型で形成される。このため、リング状ランナー32及びリブ状ランナー31は、金型の下型の芯部の端面から型開き時の上型の移動方向に向けて小さくなるテーパ形状とするとよい。型開き時に、上型へのリング状ランナー32及びリブ状ランナー31の張り付きを低減することができる。
 さらに、リング状ランナー32について、金型の下型の芯部の端面より所定の長さをストレート状に形成することで、離型の際のリング状ランナー32の上型への張り付きの抵抗となることで、リング状ランナー32から下型がスムーズに離れる。
 リング状ランナー32から放射状に延びるリブ状ランナー31は、マグネット部20を成形する金型の下型の芯部の軸心方向の端面に渡り、その次に、マグネット部20の内周面側まで達する。
 リング状ランナー32の樹脂注入跡34に注入されるフェライトを含有する熱可塑性樹脂は、樹脂注入跡34までは図示しないランナーを軸心方向に流れてくる。そして、フェライトを含有する熱可塑性樹脂は、樹脂注入跡34で流れの方向を90°変える。すなわち、フェライトを含有する熱可塑性樹脂は、軸心方向と直交する方向に二手に分かれる。その後、二手に分かれたフェライトを含有する熱可塑性樹脂のそれぞれは、樹脂注入跡34に最も近いリブ状ランナー31に入り、さらに流れの方向を90°変えてマグネット部20に流れ込む。
 樹脂注入跡34の数を磁極数の半分に減らすことによって、マグネット部20に対するランナー量の比率を、マグネット部20の樹脂注入部を磁極数分設ける場合に比べて低減することができる。ランナー量は、リング状ランナー32とリブ状ランナー31と図示しない軸心方向ランナーとの合計の量である。本実施の形態1によれば、マグネット部20の樹脂注入部を磁極数分設ける場合に比べて、ランナー量を30%程度低減することができる。また、ランナー量が減ることにより、製品にならないランナー33を再利用する際の再利用比率が減少する。したがって、マグネット部20の物性の低下を抑制できることで、製品の品質の向上を図ることができる。なお、マグネット部20の物性とは、例えば機械的強度である。さらに、樹脂注入部は磁極数の半分であるが、リブ状ランナー31は磁極数と同一であるため、それぞれの磁極に対してフェライトを含有する熱可塑性樹脂の注入具合が同様となり、配向の状態も均一化され、マグネット部20の製造上の品質の向上を図ることができる。
 図5及び図6に示すように、リング状ランナー32及びリブ状ランナー31は、マグネット部20の成形完了後に切除される。リブ状ランナー31は、リング状ランナー32とマグネット部20の内周部30との間の部分で切除される。したがって、マグネット部20の内周部30にはリブ状ランナー31の一部が残る。リブ状ランナー31の一部を残すように切除することにより、マグネット部20の内周部30に切除跡29が残る。この切除跡29は、マグネット部20と軸部10とを樹脂部40で連結した際、周り止めとして利用することも可能である。
 また、本実施の形態1に係るマグネット部20は、位置検出用の磁性部35を備える。磁性部35は、マグネット部20の内周面側からマグネット部20の端部20aに向けて注入される樹脂マグネット、すなわちランナー33を介して注入される樹脂マグネットにより、マグネット部20の端部20aに形成される。マグネット部20の形成後にランナー33が切除されることにより、マグネット部20の端部20aには磁性部35が残る。磁性部35を設けることにより、位置検出素子67で磁性部35の磁束の変化を検出することができる。なお、位置検出素子67は、後述の図21を参照されたい。
 また、リブ状ランナー31が磁性部35に接続していることにより、磁性部35の配向精度が向上し、回転子2の位置検出精度が向上する。すなわち、電動機の品質を向上させることができる。
 なお、本実施の形態1で示したランナー33の構成はあくまでも一例である。本実施の形態1ではランナーとしてリング状ランナー32が用いられているが、リブ状ランナー31と軸心方向ランナーとを接続可能な形状であれば、リング状ランナー32を用いなくともよい。
 再び図1~図4に着目して、樹脂部40について説明する。樹脂部40は、軸部10及びマグネット部20を金型に配置した後、PBT(ポリブチレンテレフタレート)等の熱可塑性樹脂を射出成形することによって得られる。この樹脂部40は、軸保持部45、マグネット保持部47、及び複数のリブ41を備えている。
 軸保持部45は、略円筒形状をしており、軸部10を保持している。軸保持部45は、軸部10の外周部におけるローレット11が形成されている箇所を外周側から覆うように設けられている。後述のように、回転子2の軸部10には、マグネット部20の両端側に例えばボールベアリングである軸受70が組み付けられる。そして、回転子2は、その後に固定子3に組み合わされる。軸保持部45の軸心方向の両端部は、軸受70を当て止めする当て止め部46となっている。なお、軸受70の組み付け構成は、後述する図21を参照されたい。
 マグネット保持部47は、軸方向に貫通穴が形成された略円筒形状をしている。マグネット保持部47は、マグネット部20の内周側から該マグネット部20を保持している。
 複数のリブ41は、軸保持部45とマグネット保持部47とを連結している。これらのリブ41は、例えば、軸部10の軸心から放射状に延びるように配置されている。つまり、リブ41は、軸保持部45を介して、軸部10と連結している。また、リブ41は、マグネット保持部47を介して、マグネット部20と連結している。すなわち、各リブ41は、軸部10とマグネット部20とを連結している。
 なお、リブ41の本数、各リブ41の厚み、各リブ41における軸部10の軸心方向の長さ、及び各リブ41における回転子2の径方向の長さ等は、任意である。これらの値は、回転子2が用いられる電動機の発生トルク、該電動機の断続運転によって回転子2にかかる繰り返し応力等に耐えうる強度であればよい。例えば、回転子2が用いられる電動機の発生トルク、該電動機の断続運転によって回転子2にかかる繰り返し応力等に耐えうる強度において、リブ41の本数を極力少なくし、各リブ41を極力薄く短く設計し、回転子2のコストの低減を図ってもよい。
 ところで、電動機が送風機の駆動源として用いられる場合、電動機の回転子の軸部には、送風機の羽根車が取り付けられる。この際、回転子及び羽根車で構成されるねじり振動系の固有周波数を騒音の原因となる周波数から遠ざけることで、ねじり振動系の共振を防止し、低騒音化が図られる。ここで、同一種類の回転子の軸部に、材料及び形状が異なる複数種類の羽根車が取り付けられる場合がある。このような場合、羽根車の種類だけ、回転子及び羽根車で構成されるねじり振動系の固有周波数が存在することとなる。同一種類の回転子によって、これら全ての固有振動数を騒音の原因となる周波数から遠ざけることは困難である。
 本実施の形態1に係る回転子2のように複数のリブ41を有する場合、リブ41の本数、各リブ41の厚み、各リブ41における軸部10の軸心方向の長さ、及び各リブ41における回転子2の径方向の長さ等を異ならせて樹脂部40のねじり剛性を調節することにより、軸部10に取り付けられる羽根車に応じて、回転子2及び羽根車で構成されるねじり振動系の固有周波数を調整することも可能とも思われる。
 この際、リブ41の本数、各リブ41の厚み、各リブ41における軸部10の軸心方向の長さ、及び各リブ41における回転子2の径方向の長さ等を変更するには、金型を加工し、リブの外径形状を形成する部分の形状を変更する必要がある。しかしながら、リブの外径形状を形成する金型部分の加工は、金型のサイズによっては加工方法が限定されるため難しい。このため、リブの外径形状を形成する金型部分の精度が低下してしまう。
 したがって、リブ41の本数、各リブ41の厚み、各リブ41における軸部10の軸心方向の長さ、及び各リブ41における回転子2の径方向の長さ等を異ならせてねじり振動系の固有周波数を調整しようとした場合、回転子2を精度良く製作することが難しい。このため、実際には、リブ41の本数、各リブ41の厚み、各リブ41における軸部10の軸心方向の長さ、及び各リブ41における回転子2の径方向の長さ等を異ならせてねじり振動系の固有周波数を調整することは困難である。
 また、リブの外径形状を形成する金型部分の加工費用は、高額となる。すなわち、金型の費用も高額となる。このため、リブ41の本数、各リブ41の厚み、各リブ41における軸部10の軸心方向の長さ、及び各リブ41における回転子2の径方向の長さ等を異ならせてねじり振動系の固有周波数を調整しようとした場合、回転子2の製品コストも増加してしまう。
 そこで、本実施の形態1に係る回転子2は、リブ41のそれぞれに複数の穴42が形成されている。詳しくは、各リブ41は、軸部10の軸心方向に端部41a及び端部41bを有している。端部41aは、第1端部及び第2端部のうちの一方となる端部である。端部41bは、第1端部及び第2端部のうちの他方となる端部である。そして、リブ41のそれぞれには、端部41a及び端部41bに開口するように貫通する複数の穴42が形成されている。換言すると、各穴42は、端部41aに開口部を有して端部41b側へ延び、端部41bへ貫通している。さらに換言すると、各穴42は、端部41bに開口部を有して端部41a側へ延び、端部41aへ貫通している。
 本実施の形態1に係る回転子2は、各リブ41に形成された穴42の形状、個数、位置及び大きさ等を変更することにより、樹脂部40のねじり剛性を調節することができ、回転子2及び羽根車で構成されるねじり振動系の固有周波数を調整することができる。この際、金型にピンを設け、該ピンによって各リブ41に穴42を形成する。すなわち、各リブ41に形成される穴42の形状、個数、位置及び大きさ等を変更する場合、ピンの仕様を変更するのみであり、金型に複雑な加工を行う必要がない。この結果、金型調整時間を短縮することができ、金型も高額にならない。したがって、本実施の形態1に係る回転子2は、製品コストが増加することを抑制できる。
 また、各リブ41に穴42を形成するための金型のピンは、精度の高い加工が可能である。このため、樹脂部40の形状の微調整が可能となり、回転子2を精度良く製作することができる。このため、本実施の形態1に係る回転子2は、回転子2及び羽根車で構成されるねじり振動系の固有周波数を調整することも容易となる。
 続いて、射出成形による樹脂部40の形成方法の一例を紹介する。なお、以下に示す樹脂部40の形成方法では、各リブ41とは別に、軸保持部45から放射状に延びる複数のゲート凸部43が形成されることとなる。
 図9及び図10は、本発明の実施の形態1に係る電動機の回転子の一例を示す斜視図であり、回転子の樹脂部の形成方法の一例を紹介するための図である。なお、図9は、マグネット部20の端部20a側から回転子2を観察した斜視図となっている。また、図10は、マグネット部20の端部20b側から回転子2を観察した斜視図となっている。
 以下、これら図9及び図10と、上述した図1~図8とを参照しながら、射出成形による樹脂部40の形成方法の一例を紹介する。
 図示せぬ竪型成形機に設置された金型の下型の芯部には、図5及び図6に示すマグネット部20が、凹部25が形成されている端部20b側から挿入される。これにより、マグネット部20が金型の下型に組み込まれる。
 金型の下型には、軸部10の金型挿入部との同軸が確保された凸部が形成されている。この凸部は、マグネット部20の端部20bに設けられたテーパ状の切り欠き24に嵌め合わされる。金型が締められた際、この凸部が、切り欠き24に押し付けられることによって、マグネット部20の外周部と軸部10との同軸が確保される。
 マグネット部20の端部20bに設けられた複数の切り欠き24は、上述のように、磁極に対応して設けられ、周方向に略等間隔に10個形成されている。一方、切り欠き24に嵌め合わされる金型の下型の凸部の数は、本実施の形態1では5個ある。したがって、金型の下型の凸部は、10個の切り欠き24のうち、周方向に略等間隔に配置された5個の切り欠き24に嵌め合わされる。マグネット部20を端部20b側から金型の下型に挿入して組み込む際、下型の5個の凸部に、10個の切り欠き24の内のいずれか5個を嵌めればよいので、マグネット部20に5個の切り欠き24が形成されている場合に比べて作業性がよくなる。
 続いて、樹脂部40となる熱可塑性樹脂が充填される前に、ローレット11を施した軸部10が、金型の下型に組み込まれたマグネット部20の中央に配置される。詳細は省くが、金型の下型は、竪型成形機のターンテーブルに設置されている。下型に軸部10及びマグネット部20が配置された後、ターンテーブルが例えば180°所定の回転速度で回転することにより、下型が上型の下方に配置される。この状態で上型が下型側へ下降して金型が締められ、射出成形によって樹脂部40が形成される。
 この際、マグネット部20の端部20a及び端部20bの外周付近を金型で押えて熱可塑性樹脂を充填することにより、マグネット部20の外周側に発生するバリを防止できる。バリ取り作業を発生させないことで回転子2の生産性を向上でき、回転子2の品質の向上を図ることもできる。
 また、射出成形によって樹脂部40が形成される際、金型の下型の凸部が嵌め合わされないマグネット部20の切り欠き24の少なくとも一部と、マグネット部20の端部20bに形成された10個の凹部25には、熱可塑性樹脂が埋設されるように充填される。これにより、樹脂部40とマグネット部20との間のトルク伝達が良好となり、両者の回転方向の周り止めとなる。
 また、射出成形によって樹脂部40が形成される際、マグネット部20の凹部25を熱可塑性樹脂で完全に埋めることで、樹脂部40とマグネット部20との隙間の発生を防止し、両者の間の結合力の低下を防ぐことができる。
 図9に示すように、射出成形によって樹脂部40を形成した際、軸保持部45の外周から径方向外側に向けて、放射状に複数のゲート凸部43が形成される。本実施の形態1では、磁極数の半分の数である5個のゲート凸部43が形成される。樹脂部40となる熱可塑性樹脂は、マグネット部20の端部20a側から注入される。このため、ゲート凸部43の一方の端部43aにはゲート処理跡44が残る。
 ゲート凸部43は、樹脂部40の軸保持部45から径方向外側に所定長だけ伸びている。そして樹脂部40のマグネット保持部47の内周面とゲート凸部43の径方向先端とは、所定距離だけ離れている。
 ゲート凸部43は、径方向に、概略マグネット部20の磁極に向かって延びている。また、ゲート凸部43の一方の端部43aは、マグネット部20の磁性部35に対して、所定距離だけ、軸心方向においてマグネット部20の内側に位置する。所定距離とは、例えば1mm程度である。ゲート凸部43の図示しない他方の端部は、金型の上型と下型との型合わせ面跡に位置する。本実施の形態1では、ゲート凸部43の軸心方向の長さは、例えばマグネット部20の軸心方向長さの略半分の長さである。なお、金型の上型と下型との型合わせ位置により、ゲート凸部43の軸心方向の長さは、変化する。
 ゲート凸部43の一方の端部43aがマグネット部20の磁性部35に対して軸心方向に所定距離だけマグネット部20の内側に位置する理由について説明する。既に述べたように、樹脂部40となる熱可塑性樹脂は、マグネット部20の端部20a側から注入され、ゲート凸部43の端部43aにはゲート処理跡44が残る。このゲート処理跡44は、ゲート凸部43の端部43aから軸心方向に、外側へ向かって出っ張ることがある。このため、ゲート処理跡44の出っ張りと、該ゲート処理跡44の周辺に配置される構成との干渉を避けるため、ゲート処理跡44の出っ張りは、マグネット部20の磁性部35に対して、軸心方向においてマグネット部20の内側に位置することが好ましい。
 例えば、後述のように、回転子2と組み合わされる固定子は、BMC(バルクモールディングコンパウンド)等の熱硬化性樹脂でモールドされる場合がある。このようなモールド固定子を用いた際、軸保持部45の当て止め部46に当て止めされた軸受70の外径がマグネット保持部47の外径よりも小さい場合、ゲート処理跡44と軸心方向において対向する位置に、モールド固定子のモールドが配置されることがある。このような場合、ゲート処理跡44とモールドとが干渉する虞がある。
 ゲート凸部43の一方の端部43aとマグネット部20の磁性部35とが軸心方向において同位置にある場合、このような干渉を避けるためには、ゲート処理跡44の出っ張りを全て除去する必要がある。一方、ゲート凸部43の一方の端部43aをマグネット部20の磁性部35に対して軸心方向に該マグネット部20の内側に位置させることにより、ゲート処理跡44の一部を除去するだけで、ゲート処理跡44とモールドとの干渉を防ぐことができる。このため、ゲート凸部43の一方の端部43aをマグネット部20の磁性部35に対して軸心方向に該マグネット部20の内側に位置させることにより、回転子2を用いた電動機の生産性の向上を図ることができる。
 上述のように、軸保持部45とマグネット保持部47との間には、軸保持部45とマグネット保持部47とを連結する複数のリブ41が形成されている。これらのリブ41のそれぞれは、周方向において2つのゲート凸部43の間に配置されている。
 ゲート凸部43を設けて樹脂部40を射出成形に形成する方法では、ゲート凸部43から注入された熱可塑性樹脂は、軸保持部45、リブ41及びマグネット保持部47の順で流れることとなる。このような方法では、ゲート凸部43から注入された熱可塑性樹脂がゲート凸部43から軸保持部45に直接射出されるため、熱可塑性樹脂を軸保持部45に最も早く充填させることができる。このため、軸保持部45のウェルド強度の向上を図ることができる。
 なお、上述した樹脂部40の形成方法は、あくまでも一例である。例えば、マグネット保持部47、リブ41及び軸保持部45の順に熱可塑性樹脂を注入し、樹脂部40を形成してもよい。この場合、ゲート凸部43は形成されない。
 また、上述した樹脂部40の構成もあくまでも一例である。上述のように、本実施の形態1では、各リブ41に複数の穴42を形成した。しかしながら、各リブ41には、少なくとも1つの穴42が形成されていればよい。また、穴42は、複数のリブ41の全てに形成されている必要もない。すなわち、複数のリブ41のうちの少なくとも1つに、少なくとも1つの穴42が形成されていればよい。穴42の形状、位置及び大きさ等を変更することにより、樹脂部40のねじり剛性を調節することができ、回転子2及び羽根車で構成されるねじり振動系の固有周波数を調整することができる。なお、樹脂部40のねじり剛性の調節に穴42の個数の変更を加えた方が、樹脂部40のねじり剛性をより細やかに調節することができ、回転子2及び羽根車で構成されるねじり振動系の固有周波数をより細やかに調整することができる。このため、本実施の形態1では、各リブ41に複数の穴42を形成している。
 また、本実施の形態1では、各リブ41に形成された穴42は、軸部10の軸心と垂直な断面形状が円形状となっていた。しかしながら、軸部10の軸心と垂直な穴42の断面形状は、円形状に限定されない。軸部10の軸心と垂直な穴42の断面形状は、正方形状及び三角形状等、任意の形状とできる。また、軸部10の軸心と垂直な穴42の断面形状を、以下のような形状としてもよい。
 図11~図14は、本発明の実施の形態1に係る電動機の回転子の別の一例を示す図である。これら図11~図14は、図3と同じ観察方向及び観察範囲で、回転子2の別の一例を示した図となっている。
 各リブ41に形成された穴42は、軸部10の軸心と垂直な断面形状が長穴形状となっていてもよい。軸部10の軸心と垂直な穴42の断面形状が長穴形状とは、軸部10の軸心と垂直な断面において、穴42の縦横比が異なる形状である。すなわち、軸部10の軸心と垂直な穴42の断面形状が長穴形状とは、軸部10の軸心と垂直な断面において、穴42が長手方向と短手方向とを有する形状である。例えば、軸部10の軸心と垂直な穴42の断面形状が長穴形状とは、図11及び図12に示すような長丸形状である。また例えば、軸部10の軸心と垂直な穴42の断面形状が長穴形状とは、図13及び図14に示すような長方形状である。
 軸部10の軸心と垂直な断面形状が長穴形状となる穴42をリブ41に形成しても、樹脂部40のねじり剛性を調節することができ、回転子2及び羽根車で構成されるねじり振動系の固有周波数を調整することができる。また、軸部10の軸心と垂直な穴42の断面形状が長穴形状となっている場合、軸部10の軸心と垂直な穴42の断面形状が円形状となっている場合と比べ、1つの穴42で大きな空間を形成することができる。このため、軸部10の軸心と垂直な穴42の断面形状を長穴形状とすることにより、軸部10の軸心と垂直な穴42の断面形状が円形状となっている場合と比べ、穴42を形成するための金型のピンの本数を削減できる。
 図15及び図16は、本発明の実施の形態1に係る電動機の回転子の別の一例を示す図である。なお、図15は、軸部10の軸心方向に回転子2の別の一例を観察した図である。また、図16は、図15のB-B断面図である。
 図1~図4,図9~図14に示した穴42は、リブ41の端部41bから端部41aにかけて広がることのないストレート形状となっていた。これに限らず、例えば、図15及び図16に示すように、穴42を、リブ41の端部41b側から端部41a側へ広がるテーパ形状としてもよい。また例えば、穴42を、リブ41の端部41a側から端部41b側へ広がるテーパ形状としてもよい。
 テーパ形状の穴42をリブ41に形成しても、樹脂部40のねじり剛性を調節することができ、回転子2及び羽根車で構成されるねじり振動系の固有周波数を調整することができる。また、穴42をテーパ形状とすることにより、型開きの際に樹脂部40の離型性が向上する。このため、樹脂部40を金型から取り外す際、樹脂部40と一体となったマグネット部20等が変更することを抑制できる。また、樹脂部40成形時のゲート位置によってテーパ形状の方向を変えると、樹脂部40の強度向上に効果的な場合がある。詳しくは、ゲート部は上型側に配置されるので、樹脂部40は、成形時、最初に熱可塑性樹脂が充填される上型部分に大きな成形圧がかかりやすい。このため、穴42は、断面積が小さい側を上型側とし、断面積が大きい側を下型側にするとよい。樹脂部40の強度が向上し、回転子2の品質が向上する。
 図17及び図18は、本発明の実施の形態1に係る電動機の回転子の別の一例を示す図である。なお、図17は、軸部10の軸心方向に回転子2の別の一例を観察した図である。また、図18は、図17のC-C断面図である。
 図1~図4,図9~図16に示した穴42は、リブ41を貫通していた。これに限らず、穴42は、リブ41を貫通していなくてもよい。例えば、図17及び図18に示すリブ41の穴42は、端部41aに開口部を有し、端部41b側へ延びている。しかしながら、図17及び図18に示す穴42は、端部41bには開口しておらず、リブ41を貫通していない。
 貫通しない穴42をリブ41に形成することにより、穴42の深さによっても樹脂部40のねじり剛性を調節することができ、回転子2及び羽根車で構成されるねじり振動系の固有周波数を調整することがさらに容易となる。一方、リブ41に形成される穴42を貫通しない穴とした場合、穴42を形成するための金型のピンは、片持ちの状態となる。このため、ピンが細い場合、樹脂部40の成形時、ピンが成形圧に負けて変形し、ピンの位置が安定しない場合がある。すなわち、穴42の形成精度が若干低下してしまう場合がある。このため、貫通する穴42をリブ41に形成することにより、穴42の断面が小さい場合でも、穴42を精度良く形成できるという効果が得られる。
 また、上述したマグネット部20の構成もあくまでも一例である。例えば、マグネット部20は、ヨークと呼ばれる環状の樹脂マグネットの外周に、例えば希土類であるサマリウムを含有する熱可塑性樹脂の樹脂マグネットを射出成形して形成してもよい。また例えば、マグネット部20は、IPM(Interior Permanent Magnet)の形態でもよい。IPMの形態とは、電磁鋼板が複数枚積層された鉄心の挿入孔に永久磁石を挿入したマグネット部の形態である。また例えば、焼結マグネット又は成形した樹脂マグネットをヨークに接着して、マグネット部20を形成してもよい。
 次に、本実施の形態1に係る電動機1の一例について説明する。本実施の形態1に係る電動機1は、固定子3と、上述の回転子2とを備えている。電動機1は、例えば、ブラシレスDCモータ(同期電動機)である。以下では、本実施の形態1に係る電動機1の一例として、固定子3が熱硬化性樹脂でモールドされたモールド固定子4を用いた電動機1について紹介する。
 図19は、本発明の実施の形態1に係る電動機を示す斜視図である。図20は、本発明の実施の形態1に係る電動機を示す側面図である。図21は、本発明の実施の形態1に係る電動機を示す図であり、一部を断面とした側面図である。また、図22は、本発明の実施の形態1に係る電動機のモールド固定子を示す斜視図である。
 電動機1は、主たる構成として、回転子2と、モールド固定子4と、一対の軸受70とを備えている。モールド固定子4は、固定子3及びセンサ基板66等を、BMC(バルクモールディングコンパウンド)等の熱硬化性樹脂でモールド成形して得られる。
 固定子3は、主たる構成として、固定子鉄心62と、固定子鉄心62のティースに施された絶縁部61と、絶縁部61にマグネットワイヤーを巻付けることで得られるコイル63と、を備えている。
 固定子鉄心62は、例えば電磁鋼板から帯状に打ち抜かれた複数の部材を、かしめ、溶接、又は接着等で積層することで得られる。絶縁部61は、PBT(ポリブチレンテレフタレート)等の熱可塑性樹脂を、固定子鉄心62のティースと一体に成形することで、あるいは固定子鉄心62に組付けることで得られる。
 コイル63を構成するマグネットワイヤーの端末は、端子のフック部に引き回され、ヒュージング又は半田等で端子に接合される。そして、所定の方向に帯状の固定子鉄心62を曲げて、固定子鉄心62の端部同士を溶接することで、固定子3が形成される。なお以下では、固定子鉄心62の軸心方向の端部のうち、位置検出素子67側の端部を結線側と称し、その反対側の端部を反結線側と称する。
 絶縁部61の外周側の壁は、コイル63外周側部分が固定子3の外周側へ倒れることを防止する。以下、絶縁部61の外周側の壁を外壁と称する。結線側の外壁には、複数箇所に、リード線配線部品を固定する図示せぬピンが設けられている。また、絶縁部61の内周側の壁は、コイル63の内周側部分が固定子3の内周側に倒れることを防止する。以下、絶縁部61の内周側の壁を内壁と称する。反結線側の内壁には、図示せぬ突起が設けられている。この突起は、固定子3をモールド成形する際、金型心金部に固定子3を設置して軸心方向に当て止めされるものである。
 外壁の軸心方向端部の先端は、その高さがコイル63の軸心方向における最大高さよりも高くなるように形成されている。また内壁の突起は、外壁の軸心方向端部の先端と同じ高さとなるように形成することが望ましい。コイル63は、その軸心方向における高さが、外壁から内壁に向かうにつれて低くなるように形成される。このため、内壁の突起の高さを外壁の高さと同じにした場合、内壁の突起からコイル63までの距離が十分に確保される。したがって、固定子鉄心62の反結線側を下にした状態で金型心金部に固定子3を設置したとき、金型心金部にコイル63が当たることなく固定子鉄心62を安定して置くことができる。その結果、モールド固定子4の生産性が向上すると共に、モールド固定子4の品質も向上する。
 コイル63に電源を供給する電源リード線64は、マグネットワイヤーの端末が接合された端子まで引き回され、被覆を剥いて端子とスポット溶接又は半田等で接合される。センサ基板66には、ホールIC等の電子部品、及び回転子2の位置検出素子67等が実装されている。また、センサ基板66には、センサリード線65が接続される。センサリード線65には、ボードインコネクタ68が接続される。また、ボードインコネクタ68の端子は半田で電子部品と電気的に接合される。
 電源リード線64及びセンサリード線65の配線には、リード線配線部品が用いられる。リード線配線部品は、PBT等の熱可塑性樹脂によって略円形に形成されている。リード線配線部品の外周にはリード線口出し部品69が組み付けられ、リード線口出し部品69は、モールド固定子4の外周面から外部に表出する。
 リード線配線部品及びセンサ基板66等の結線部品は固定子3に組み付けられる。その後、これらの部品がBMC(バルクモールディングコンパウンド)等の熱硬化性樹脂でモールド成形されて、モールド固定子4が得られる。そして、軸受70が装着された回転子2をモールド固定子4に挿入し、ブラケット71及び防水キャップ72等を組み付けることで電動機1が得られる。このように構成された電動機1は、上述の回転子2が用いられているため、従来の電動機に比べて、品質が高く、かつ、低減コスト化を図ることができる。
 以上、本実施の形態1に係る回転子2は、軸部10と、軸部10の軸心方向に貫通する貫通穴21が形成され、該貫通穴21に軸部10が貫通している円筒状のマグネット部20と、軸部10とマグネット部20とを連結する樹脂部40と、を備えている。樹脂部40は、軸部10とマグネット部20とを連結する複数のリブ41を備えている。複数のリブ41は、軸部10の軸心方向に端部41a及び端部41bを有している。端部41aは、第1端部及び第2端部のうちの一方となる端部である。端部41bは、第1端部及び第2端部のうちの他方となる端部である。そして、複数のリブ41のうちの少なくとも1つは、前記第1端部に開口部を有して前記第2端部側へ延びる穴42が形成されている。
 本実施の形態1に係る回転子2は、リブ41に形成された穴42の形状、位置及び大きさ等を変更することにより、回転子2及び羽根車で構成されるねじり振動系の固有周波数を調整することができる。この際、本実施の形態1に係る回転子2は、回転子2の部品数が増加しない。また、金型にピンを設ければリブ41に穴42を形成できるので、金型が複雑になることもない。このため、本実施の形態1に係る回転子2は、製品コストが増加することを抑制できる。また、リブ41に穴42を形成するための金型のピンは、精度の高い加工が可能である。このため、本実施の形態1に係る回転子2も、精度良く製作されることとなる。このため、本実施の形態1に係る回転子2は、回転子2及び羽根車で構成されるねじり振動系の固有周波数を調整することも容易となる。
実施の形態2.
 本実施の形態2では、実施の形態1で示した電動機1を送風機の駆動源に用いた空気調和機の一例について説明する。なお、本実施の形態2において、特に記述しない項目については実施の形態1と同様とし、実施の形態1と同一の機能及び構成については同一の符号を用いて述べることとする。
 図23は、本発明の実施の形態2に係る空気調和機の構成を示す図である。
 空気調和機100は、室内機110と、室内機110に接続される室外機120とを備えている。
 室内機110は、送風機111を備えている。送風機111は、実施の形態1で示した電動機1と、電動機1の回転子2の軸部10に取り付けられた羽根車112とを備えている。羽根車112は、例えばクロスフロー型の羽根車である。すなわち、室内機110の送風機111は、該送風機111の駆動源として、実施の形態1で示した電動機1を用いている。
 電動機1の回転子2が回転することにより、該回転子2と共に羽根車112も回転する。これにより、空調対象空間の空気が室内機110内に吸い込まれる。そして、室内機110内に吸い込まれた空調対象空間の空気は、図示せぬ室内熱交換器内を流れる冷媒によって加熱又は冷却され、室内機110から空調対象空間に吹き出される。詳しくは、空気調和機100の冷房運転時、室内機110内に吸い込まれた空調対象空間の空気は、図示せぬ室内熱交換器内を流れる冷媒によって冷却される。また、空気調和機100の暖房運転時、室内機110内に吸い込まれた空調対象空間の空気は、図示せぬ室内熱交換器内を流れる冷媒によって加熱される。
 室外機120は、送風機121を備えている。送風機121は、実施の形態1で示した電動機1と、電動機1の回転子2の軸部10に取り付けられた羽根車122とを備えている。羽根車122は、例えばプロペラ型の羽根車である。すなわち、室外機120の送風機121は、該送風機121の駆動源として、実施の形態1で示した電動機1を用いている。
 電動機1の回転子2が回転することにより、該回転子2と共に羽根車122も回転する。これにより、室外空気が室外機120内に吸い込まれる。そして、室外機120内に吸い込まれた室外空気は、図示せぬ室外熱交換器内を流れる冷媒を加熱又は冷却し、室外機120から外部に吹き出される。詳しくは、空気調和機100の冷房運転時、室外機120内に吸い込まれた室外空気は、図示せぬ室外熱交換器内を流れる冷媒を冷却する。また、空気調和機100の暖房運転時、室外機120内に吸い込まれた室外空気は、図示せぬ室外熱交換器内を流れる冷媒を加熱する。
 本実施の形態2に係る空気調和機100は、送風機111及び送風機121の駆動源として実施の形態1で示した電動機1を用いているので、従来の空気調和機に比べて、品質が高く、かつ、低減コスト化を図ることができる。
 1 電動機、2 回転子、3 固定子、4 モールド固定子、10 軸部、11 ローレット、20 マグネット部、20a 端部、20b 端部、21 貫通穴、22 凸部、23 凹部、24 切り欠き、25 凹部、27 ストレート部、28 テーパ部、29 切除跡、30 内周部、31 リブ状ランナー、32 リング状ランナー、33 ランナー、34 樹脂注入跡、35 磁性部、40 樹脂部、41 リブ、41a 端部、41b 端部、42 穴、43 ゲート凸部、43a 端部、44 ゲート処理跡、45 軸保持部、46 当て止め部、47 マグネット保持部、61 絶縁部、62 固定子鉄心、63 コイル、64 電源リード線、65 センサリード線、66 センサ基板、67 位置検出素子、68 ボードインコネクタ、69 リード線口出し部品、70 軸受、71 ブラケット、72 防水キャップ、100 空気調和機、110 室内機、111 送風機、112 羽根車、120 室外機、121 送風機、122 羽根車。

Claims (8)

  1.  軸部と、
     前記軸部の軸心方向に貫通する貫通穴が形成され、該貫通穴に前記軸部が貫通している円筒状のマグネット部と、
     前記軸部と前記マグネット部とを連結する樹脂部と、
     を備え、
     前記樹脂部は、前記軸部と前記マグネット部とを連結する複数のリブを備え、
     複数の前記リブは、前記軸心方向に第1端部及び第2端部を有し、
     複数の前記リブのうちの少なくとも1つは、前記第1端部に開口部を有して前記第2端部側へ延びる穴が形成されている電動機の回転子。
  2.  複数の前記リブのうちの少なくとも1つは、複数の前記穴が形成されている請求項1に記載の電動機の回転子。
  3.  前記穴は、前記軸部の軸心と垂直な断面形状が長穴形状となっている請求項1又は請求項2に記載の電動機の回転子。
  4.  前記穴は、前記第2端部側から前記第1端部側へ広がるテーパ形状となっている請求項1~請求項3のいずれか一項に記載の電動機の回転子。
  5.  前記穴は、前記リブを貫通していない請求項1~請求項4のいずれか一項に記載の電動機の回転子。
  6.  前記穴は、前記リブの前記第2端部へ貫通している請求項1~請求項4のいずれか一項に記載の電動機の回転子。
  7.  請求項1~請求項6のいずれか一項に記載の電動機の回転子と、
     固定子と、
     を備えた電動機。
  8.  送風機を備え、
     前記送風機は、
     請求項7に記載の電動機と、
     前記電動機の前記回転子の前記軸部に取り付けられた羽根車と、
     を備えた空気調和機。
PCT/JP2018/010805 2018-03-19 2018-03-19 電動機の回転子、電動機及び空気調和機 WO2019180780A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020508120A JPWO2019180780A1 (ja) 2018-03-19 2018-03-19 電動機の回転子、電動機及び空気調和機
PCT/JP2018/010805 WO2019180780A1 (ja) 2018-03-19 2018-03-19 電動機の回転子、電動機及び空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/010805 WO2019180780A1 (ja) 2018-03-19 2018-03-19 電動機の回転子、電動機及び空気調和機

Publications (1)

Publication Number Publication Date
WO2019180780A1 true WO2019180780A1 (ja) 2019-09-26

Family

ID=67986926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010805 WO2019180780A1 (ja) 2018-03-19 2018-03-19 電動機の回転子、電動機及び空気調和機

Country Status (2)

Country Link
JP (1) JPWO2019180780A1 (ja)
WO (1) WO2019180780A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023191075A1 (ja) * 2022-03-31 2023-10-05 日本発條株式会社 モータコアの製造装置及びモータコアの製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11308791A (ja) * 1998-04-20 1999-11-05 Aichi Electric Co Ltd 同期電動機の回転子
JP2001268831A (ja) * 2000-03-21 2001-09-28 Matsushita Electric Ind Co Ltd 永久磁石ロータ
JP2001298884A (ja) * 2000-04-17 2001-10-26 Nidec Shibaura Corp 電動機の回転子
JP2001320844A (ja) * 2000-05-09 2001-11-16 Mitsubishi Electric Corp プラスチックマグネットロータ及び空気調和機
WO2010016303A1 (ja) * 2008-08-08 2010-02-11 コニカミノルタオプト株式会社 樹脂製基板、マイクロチップ及び射出成形金型
JP2013088603A (ja) * 2011-10-18 2013-05-13 Seiko Epson Corp 結像光学素子
JP2016135061A (ja) * 2015-01-22 2016-07-25 株式会社富士通ゼネラル 永久磁石電動機
WO2017026065A1 (ja) * 2015-08-12 2017-02-16 三菱電機株式会社 電動機及び空気調和機

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184656A (ja) * 2007-10-11 2009-08-20 Toyota Auto Body Co Ltd インホイールモータ
JP6323031B2 (ja) * 2014-01-24 2018-05-16 日産自動車株式会社 ロータ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11308791A (ja) * 1998-04-20 1999-11-05 Aichi Electric Co Ltd 同期電動機の回転子
JP2001268831A (ja) * 2000-03-21 2001-09-28 Matsushita Electric Ind Co Ltd 永久磁石ロータ
JP2001298884A (ja) * 2000-04-17 2001-10-26 Nidec Shibaura Corp 電動機の回転子
JP2001320844A (ja) * 2000-05-09 2001-11-16 Mitsubishi Electric Corp プラスチックマグネットロータ及び空気調和機
WO2010016303A1 (ja) * 2008-08-08 2010-02-11 コニカミノルタオプト株式会社 樹脂製基板、マイクロチップ及び射出成形金型
JP2013088603A (ja) * 2011-10-18 2013-05-13 Seiko Epson Corp 結像光学素子
JP2016135061A (ja) * 2015-01-22 2016-07-25 株式会社富士通ゼネラル 永久磁石電動機
WO2017026065A1 (ja) * 2015-08-12 2017-02-16 三菱電機株式会社 電動機及び空気調和機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023191075A1 (ja) * 2022-03-31 2023-10-05 日本発條株式会社 モータコアの製造装置及びモータコアの製造方法
JP7451829B2 (ja) 2022-03-31 2024-03-18 日本発條株式会社 モータコアの製造装置及びモータコアの製造方法

Also Published As

Publication number Publication date
JPWO2019180780A1 (ja) 2020-12-17

Similar Documents

Publication Publication Date Title
US7679230B2 (en) Brushless motor and fan unit
JP6184599B2 (ja) 電動機の回転子、電動機、空気調和機、および電動機の回転子の製造方法
TW200830671A (en) Fan and motor used thereto
JP6026000B2 (ja) 電動機の回転子、電動機、及び空気調和機
WO2017018066A1 (ja) モータおよびモータの製造方法
US11502575B2 (en) Motor and air-conditioning apparatus
JP4246136B2 (ja) 電動機の回転子の製造方法及び電動機の回転子及び電動機及び空気調和機及び冷蔵庫及び換気扇及び電動機の回転子の樹脂成形金型
JP4942806B2 (ja) 電動機の回転子及び電動機及び空気調和機及び電動機の製造方法
WO2019180780A1 (ja) 電動機の回転子、電動機及び空気調和機
JP6062068B2 (ja) 電動機及び空気調和機
JP4942802B2 (ja) 電動機の回転子及び電動機及び空気調和機及び電動機の製造方法
JP5159734B2 (ja) 電動機の回転子及び電動機及び空気調和機及び電動機の製造方法
JP2010057300A (ja) モータ及びファン
CN210053260U (zh) 马达
JP2011120334A (ja) 電動機の回転子及び電動機及び空気調和機及び電動機の製造方法
JP2011061936A (ja) 電動機の回転子及び電動機及び空気調和機及び電動機の製造方法
WO2018003114A1 (ja) 回転子、電動機、空気調和機、及び回転子の製造方法
US11996754B2 (en) Motor, fan, air conditioner, and manufacturing method of motor
WO2024194910A1 (ja) ロータ、電動機、送風機、空気調和装置およびロータの製造方法
JP6591076B2 (ja) 電動機及び空気調和機
CN110661350B (zh) 马达
WO2021235017A1 (ja) 回転子、電動機、送風機、及び空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910612

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020508120

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18910612

Country of ref document: EP

Kind code of ref document: A1