WO2017018066A1 - モータおよびモータの製造方法 - Google Patents

モータおよびモータの製造方法 Download PDF

Info

Publication number
WO2017018066A1
WO2017018066A1 PCT/JP2016/067011 JP2016067011W WO2017018066A1 WO 2017018066 A1 WO2017018066 A1 WO 2017018066A1 JP 2016067011 W JP2016067011 W JP 2016067011W WO 2017018066 A1 WO2017018066 A1 WO 2017018066A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal pin
motor
recess
casing
motor according
Prior art date
Application number
PCT/JP2016/067011
Other languages
English (en)
French (fr)
Inventor
吉田達也
山本聖
三科貴史
田中宏忠
Original Assignee
日本電産テクノモータ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産テクノモータ株式会社 filed Critical 日本電産テクノモータ株式会社
Priority to CN201680039969.7A priority Critical patent/CN107852060A/zh
Priority to JP2017531068A priority patent/JPWO2017018066A1/ja
Priority to US15/743,702 priority patent/US20180205281A1/en
Publication of WO2017018066A1 publication Critical patent/WO2017018066A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0056Manufacturing winding connections
    • H02K15/0068Connecting winding sections; Forming leads; Connecting leads to terminals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0056Manufacturing winding connections
    • H02K15/0068Connecting winding sections; Forming leads; Connecting leads to terminals
    • H02K15/0081Connecting winding sections; Forming leads; Connecting leads to terminals for form-wound windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • H02K15/0435Wound windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/14Casings; Enclosures; Supports
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/02Casings or enclosures characterised by the material thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts

Definitions

  • the present invention relates to a motor and a method for manufacturing the motor.
  • the molding die presses the upper end portion of the winding terminal locking portion when the resin mold stator is manufactured. For this reason, there is a possibility that problems such as peeling of the solder, damage to the winding terminal locking portion, loosening of the winding, etc. may occur due to contact with the molding die.
  • An object of the present invention is to provide a technique capable of preventing a lead wire wound around a terminal pin from coming into contact with a mold during molding of a casing in an inner rotor type or outer rotor type molded motor.
  • An exemplary first invention of the present application is a motor, comprising: a stationary part including a stator; and a rotating part including a rotor that is opposed to the stationary part in a radial direction and rotates about a central axis extending vertically.
  • the stationary portion includes an annular core back and a stator core having a plurality of teeth projecting radially from the core back, an insulator that covers at least a part of the stator core, and a winding wound around the teeth via the insulator.
  • the casing has a concave portion that is recessed in the axial direction, and at least a portion of the terminal pin is in the concave portion.
  • the conductor includes a first conductor portion located in a slit provided in said base portion, connected to the first conductor portion, having a second conductor portion that is wound in the lower portion of the terminal pin.
  • An exemplary second invention of the present application is a method of manufacturing a motor in which an insulator is interposed between a stator core and a coil, and the stator core, the coil, and the resin casing that covers the insulator are provided. Attaching the terminal pin to the upper surface of the base portion of the insulator; b) drawing the end of the conducting wire constituting the coil to the terminal pin; c) winding the conducting wire around the terminal pin; d) a step of soldering the conductive wire and the terminal pin; e) a step of preparing an upper mold and a lower mold that form a cavity inside by combining with each other; and f) a step of preparing the upper mold in the base portion.
  • FIG. 1 is a longitudinal sectional view of a motor according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the vicinity of the terminal pin according to the first embodiment.
  • FIG. 3 is a perspective view showing part of the terminal pins and the insulator according to the first embodiment.
  • FIG. 4 is a diagram conceptually showing the shape of the terminal pin and the conductor in the cross section according to the first embodiment.
  • FIG. 5 is a diagram conceptually showing shapes of the conductive plate and the terminal pin according to the first embodiment in a top view.
  • FIG. 6 is a flowchart showing a procedure before injection molding of the casing according to the first embodiment.
  • FIG. 7 is a flowchart showing a procedure at the time of injection molding of the casing according to the first embodiment.
  • FIG. 8 is a view showing a state at the time of injection molding according to the first embodiment.
  • FIG. 9 is a longitudinal sectional view of a motor according to the second embodiment.
  • FIG. 10 is a partial cross-sectional view of a motor according to the second embodiment.
  • FIG. 11 is a perspective view of a stator according to the second embodiment.
  • FIG. 12 is a perspective view showing part of the terminal pins and the insulator according to the second embodiment.
  • FIG. 13 is a partial cross-sectional view of the vicinity of a terminal pin according to the second embodiment.
  • FIG. 14 is a top view of the casing according to the second embodiment.
  • FIG. 15 is a partial cross-sectional view in the vicinity of the position detection element according to the second embodiment.
  • FIG. 16 is a partial vertical cross-sectional view in the vicinity of the end of the conductive plate of the motor according to the modification.
  • FIG. 17 is a top view of a conductive plate according to a modification.
  • FIG. 18 is a longitudinal sectional view of the vicinity of a terminal pin of a motor according to a modification.
  • FIG. 19 is a partial perspective view of a base portion, a casing, and terminal pins of a motor according to a modified example.
  • FIG. 20 is a cross-sectional view showing a state during injection molding of a casing according to a modification.
  • the direction parallel to the central axis of the motor is the “axial direction”
  • the direction orthogonal to the central axis of the motor is the “radial direction”
  • the direction along the arc centered on the central axis of the motor is the “circumferential direction”.
  • the shape and positional relationship of each part will be described with the axial direction as the vertical direction and the conductive plate side as the top with respect to the stator.
  • the definition of the vertical direction is not intended to limit the orientation of the motor according to the present invention during manufacture and use.
  • FIG. 1 is a longitudinal sectional view of the motor 1.
  • the motor 1 is a so-called inner rotor type motor in which a rotor 32 is disposed on the radially inner side of a stator 21.
  • the motor 1 is used for home appliances such as an air conditioner, for example.
  • the motor 1 of the present invention may be used for applications other than home appliances.
  • the motor 1 of the present invention may be mounted on transportation equipment such as automobiles and railways, OA equipment, medical equipment, tools, industrial large equipment, and the like to generate various driving forces.
  • the motor 1 has a stationary part 2 and a rotating part 3.
  • the stationary part 2 is fixed to a frame of a device to be driven.
  • the rotating unit 3 is supported so as to be rotatable with respect to the stationary unit 2.
  • the stationary part 2 of the present embodiment has a stator 21, a casing 22, a cover 23, a conduction plate 24, a lower bearing part 25, an upper bearing part 26, and a terminal pin 27.
  • the rotating unit 3 includes a shaft 31 and a rotor 32.
  • the stator 21 is an armature that generates a magnetic flux in accordance with a drive current supplied from an external power source through the conduction plate 24.
  • the stator 21 surrounds the center axis 9 extending vertically in an annular shape.
  • the stator 21 includes a stator core 211, an insulator 212, and a plurality of coils 213.
  • the stator core 211 has an annular core back 41 and a plurality of teeth 42 protruding radially inward from the core back 41.
  • the core back 41 is disposed substantially coaxially with the central axis 9.
  • the plurality of teeth 42 are arranged at equal intervals in the circumferential direction.
  • a laminated steel plate is used for example.
  • the insulator 212 is attached to the stator core 211.
  • a resin which is an insulator is used as a material of the insulator 212.
  • the insulator 212 covers at least both end surfaces of the teeth 42 in the axial direction and both surfaces in the circumferential direction.
  • the coil 213 includes a conductive wire 70 wound around the teeth 42 via an insulator 212. That is, the insulator 212 is interposed between the tooth 42 and the coil 213.
  • the casing 22 is a resin member that holds the stator 21 and the lower bearing portion 25.
  • the casing 22 includes a wall part 221, a bottom plate part 222, and a lower bearing holding part 223.
  • the wall portion 221 extends in a substantially cylindrical shape in the axial direction.
  • the stator 21 is covered with a resin constituting the wall portion 221.
  • a part of the stator 21 including the end face on the radially inner side of the teeth 42 is exposed from the wall portion 221.
  • a rotor 32 described later is disposed inside the wall portion 221 in the radial direction.
  • the bottom plate portion 222 spreads in a plate shape from the lower end of the wall portion 221 toward the inside in the radial direction.
  • the bottom plate portion 222 is located on the lower side in the axial direction than the stator 21 and the rotor 32.
  • the lower bearing holding part 223 extends from the inner end of the bottom plate part 222 and covers a part of the lower bearing part 25.
  • the lower bearing portion 25 and the lower end portion of the shaft 31 are disposed on the radially inner side of the lower bearing holding portion 223.
  • the cover 23 covers the opening at the top of the casing 22.
  • the conduction plate 24 and the rotor 32 described later are accommodated in a casing constituted by the casing 22 and the cover 23.
  • the cover 23 has an upper plate portion 231 and an upper bearing holding portion 232.
  • the upper plate portion 231 extends substantially perpendicular to the central axis 9 on the upper side in the axial direction from the stator 21, the casing 22, the conduction plate 24, and the rotor 32.
  • the upper bearing holding portion 232 extends from the inner end of the upper plate portion 231 and covers a part of the upper bearing portion 26.
  • the upper bearing portion 26 and a part of the shaft 31 are disposed on the radially inner side of the upper bearing holding portion 232.
  • connection hole 201 through which the lead wire 242 passes is provided in a part in the circumferential direction.
  • a bushing 243 is disposed inside the connection hole 201.
  • the bushing 243 has a wiring groove in contact with the end surface constituting the connection hole 201 of the casing 22 and the cover 23 and in which the lead wire 242 is disposed.
  • the conductive plate 24 is a circuit board disposed substantially perpendicular to the central axis 9.
  • the conduction plate 24 is disposed above the stator 21 and the rotor 32, below the cover 23, and radially inside the wall portion 221 of the casing 22.
  • the lead wire 242 extending from the conduction plate 24 is drawn out of the casing 22 through the wiring groove of the bushing 243 inside the connection hole 201. Then, the end of the lead wire 242 is connected to an external power source. A current supplied from an external power source flows to the coil 213 through the lead wire 242, the conduction plate 24, and a terminal pin 27 described later.
  • the lower bearing portion 25 supports the shaft 31 to be rotatable below the rotor 32.
  • the upper bearing portion 26 rotatably supports the shaft 31 above the rotor 32.
  • ball bearings that rotate the outer ring and the inner ring via a sphere are used.
  • the outer ring of the lower bearing portion 25 is fixed to the lower bearing holding portion 223 of the casing 22.
  • the outer ring of the upper bearing portion 26 is fixed to the upper bearing holding portion 232 of the cover 23.
  • the inner rings of the lower bearing portion 25 and the upper bearing portion 26 are fixed to the shaft 31.
  • other types of bearings such as a slide bearing and a fluid bearing may be used instead of the ball bearing.
  • the shaft 31 is a columnar member that extends through the rotor 32 in the axial direction.
  • the shaft 31 rotates about the central axis 9.
  • the upper end portion of the shaft 31 protrudes upward from the casing 22 and the cover 23.
  • a fan for an air conditioner is attached to the upper end portion of the shaft 31.
  • the upper end portion of the shaft 31 may be coupled to a drive unit other than the fan via a power transmission mechanism such as a gear.
  • the rotor 32 is an annular member that is fixed to the shaft 31 and rotates together with the shaft 31.
  • the rotor 32 is disposed inside the stator 21 in the radial direction.
  • the rotor 32 of the present embodiment is an annular member formed of a magnet-mixed plastic resin. As shown in FIG. 1, the rotor 32 includes an inner cylinder part 321, an outer cylinder part 322, and a connection part 323.
  • the inner cylinder part 321 is a substantially cylindrical part fixed to the shaft 31.
  • a spiral groove 311 is provided on a surface of the outer peripheral surface of the shaft 31 that is fixed to the inner cylindrical portion 321.
  • the rotor 32 is formed by injection molding using the shaft 31 as an insert part. At the time of injection molding, the resin in a fluid state flows into a groove 311 provided on the outer peripheral surface of the shaft 31. Thereby, the rotor 32 is firmly fixed to the shaft 31. Further, relative rotation of the rotor 32 with respect to the shaft 31 is suppressed when the motor 1 is driven.
  • the outer cylinder part 322 is a substantially cylindrical part located radially outside the inner cylinder part 321.
  • the outer peripheral surface of the outer cylindrical portion 322 faces the end surface on the radially inner side of the tooth 42 with a slight gap therebetween.
  • the connection part 323 is a disk-shaped part that connects the inner cylinder part 321 and the outer cylinder part 322.
  • the thickness in the radial direction of the inner cylindrical portion 321 and the outer cylindrical portion 322 is the largest in the vicinity of the boundary with the connecting portion 323.
  • the radial thickness of the inner cylinder part 321 and the outer cylinder part 322 is gradually reduced toward both ends in the axial direction.
  • FIG. 2 is a partial cross-sectional view of the vicinity of the terminal pin 27 of the motor 1.
  • FIG. 3 is a perspective view showing a part of the terminal pin 27 and the insulator 212. In FIG. 3, illustration of the conductive wire 70 and the solder 74 is omitted.
  • the insulator 212 includes a first insulating part 51, a second insulating part 52, a third insulating part 53, and a base part 54.
  • the insulator 212 may be a single member or may be composed of a plurality of members.
  • one or a plurality of parts of the first insulating part 51, the second insulating part 52, the third insulating part 53, and the base part 54 may be members different from other parts.
  • the first insulating portion 51 covers both end surfaces of the teeth 42 in the axial direction and both surfaces in the circumferential direction.
  • the second insulating portion 52 covers at least a part of the upper surface of the core back 41.
  • the third insulating portion 53 covers at least a part of the lower surface of the core back 41.
  • the first insulating portion 51, the second insulating portion 52, and the third insulating portion 53 are connected in the radial direction.
  • the base portion 54 protrudes upward in the axial direction from the second insulating portion 52.
  • a slit 55 that is recessed inward in the radial direction is provided on the side surface of the base portion 54 on the radially outer side. The slit 55 extends in the axial direction from the upper end of the base portion 54 toward the lower side.
  • a terminal pin 27 is provided on the base portion 54.
  • the terminal pin 27 is a columnar conductor extending in the axial direction.
  • the terminal pin 27 is formed of a conductive material such as iron or copper.
  • a lower end portion of the terminal pin 27 is inserted into a hole provided in the base portion 54 and fixed to the base portion 54.
  • the upper end portion of the terminal pin 27 is located above the upper surface of the base portion 54.
  • one terminal pin 27 is fixed to one base portion 54.
  • two or more terminal pins 27 may be fixed to one base portion 54.
  • the stator core 211, the insulator 212, and the coil 213 are at least partially covered by the casing 22.
  • the casing 22 has a recess 224 that is recessed in the axial direction above the base portion 54 of the insulator 212.
  • the upper surface of the base portion 54 is disposed in the recess 224. Accordingly, the upper surface of the base portion 54 is exposed from the casing 22. Further, at least the lower end portion of the terminal pin 27 is disposed in the recess 224 without contacting the casing 22.
  • the casing 22 is obtained by injection molding in which a resin is poured into a cavity in a mold in which the stator 21 and the terminal pins 27 are accommodated to be cured. Details of the injection molding will be described later.
  • the casing 22 of the present embodiment has a conductive plate arrangement surface 225 that contacts the lower surface of the conductive plate 24.
  • the conductive plate arrangement surface 225 is positioned on the upper side in the axial direction from the upper end portion of the rotor 32. The downward displacement of the conductive plate 24 is prevented by the conductive plate arrangement surface 225. This prevents the conductive plate 24 from coming into contact with the rotor 32.
  • the conducting wire 70 extends from the coil 213 located on the radially inner side of the base portion 54 and is drawn out to the slit 55 side.
  • the conducting wire 70 has a first conducting wire portion 71 and a second conducting wire portion 72.
  • the first conductor portion 71 is located in the slit 55.
  • the second conductor portion 72 is connected to the first conductor portion 71 and is wound around the lower portion of the terminal pin 27.
  • the second conductor portion 72 is located in the recess 224.
  • the conductive wire 70 further includes a third conductive wire portion 73 that is connected to the second conductive wire portion 72 and is wound around the upper portion of the terminal pin 27.
  • the third conductor portion 73 is located above the recess 224.
  • the conductive wire 70 extending from the coil 213 may pass through the slit 55 and be wound up above the recess 224 from the lower part to the upper part of the terminal pin 27. By doing so, the winding interval of the conductive wire 70 wound around the terminal pin 27 can be widened, and the electrical reliability can be improved.
  • the lead wire 70 and the mold are not covered without separately covering the lead wire 70 positioned between the base portion 54 and the mold during the injection molding of the casing 22 described later. Keep in contact. For this reason, the conductive wire 70 can be wound up to the vicinity of the upper end portion of the terminal pin 27 without being blocked by such a protective member.
  • the conducting wire 70 is wound around the terminal pin 27 with a gap for each turn. Then, solder 74 is interposed in the gap between the conductive wire 70 wound around the terminal pin 27 and the conductive wire 70.
  • the conducting wire 70 and the terminal pin 27 can be more electrically connected. As a result, the drive current supplied from the external power source can be stably supplied to the stator 21 and the electrical reliability of the motor 1 can be improved.
  • a gap 227 is interposed between the second conductor portion 72 and the solder 74 and the casing 22 in the recess 224. That is, the mold does not come into contact with the terminal pin 27, the conductive wire 70, and the solder 74 during the injection molding of the casing 22. For this reason, it is possible to prevent the terminal pin 27, the conductive wire 70, and the solder 74 from being damaged during the injection molding of the casing 22.
  • FIG. 4 is a diagram conceptually showing the shape of the terminal pin 27 and the conductor 70 in the cross section.
  • the shape of the terminal pin 27 in a cross section perpendicular to the central axis 9 is a rectangle.
  • a gap is easily generated between the terminal pin 27 and the conductive wire 70. Therefore, the solder 74 is likely to enter the gap between the terminal pin 27 and the conductive wire 70. Thereby, the terminal pin 27 and the conducting wire 70 can be more electrically connected.
  • a material of the conducting wire 70 for example, a metal such as an aluminum alloy or copper is used. In particular, if an aluminum alloy is used, the motor 1 can be made lighter than when copper is used.
  • FIG. 5 is a diagram conceptually showing the shape of the conductive plate 24 and the terminal pin 27 in a top view.
  • the conduction plate 24 of the present embodiment has a through hole 244 positioned above the recess 224.
  • a land (first land) 245 from which the copper foil is exposed is provided on the inner periphery of the conductive plate 24 that forms the through hole 244.
  • the terminal pin 27 extends in the axial direction through the inside of the through hole 244.
  • the conductive wire 70 is wound up to a position above the through hole 244. That is, the upper end of the third conducting wire portion 73 is located above the through hole 244.
  • the terminal pin 27 contacts the land 245 directly or via the solder 74. Thereby, the terminal pin 27 and the land 245 of the conductive plate 24 are electrically connected.
  • FIG. 6 is a flowchart showing a procedure before injection molding of the casing 22.
  • the terminal pin 27 is attached to the upper surface of the base portion 54 of the insulator 212 (step S11).
  • press fitting or adhesion may be used for fixing the base portion 54 and the terminal pin 27.
  • the base portion 54 and the terminal pin 27 may be fixed to each other by molding the base portion 54 using the terminal pin 27 as an insert part.
  • the conducting wire 70 constituting the coil 213 is passed through the slit 55, and the end of the conducting wire 70 is pulled out to the terminal pin 27 side (step S12).
  • the first conducting wire portion 71 of the conducting wire 70 is disposed along the slit 55 of the insulator 212. That is, a part of the path of the conducting wire 70 from the coil 213 toward the terminal pin 27 is positioned by the slit 55. Thereby, it can prevent that the conducting wire 70 contacts with another member. As a result, the conductor 70 is prevented from being damaged or broken.
  • the drawn lead wire 70 is wound around the terminal pin 27 (step S13).
  • the conducting wire 70 is wound upward from the vicinity of the lower end portion of the terminal pin 27 to the vicinity of the upper end portion thereof. At this time, the conducting wire 70 is wound around the terminal pin 27 with a gap for each turn.
  • the conducting wire 70 and the terminal pin 27 are subsequently soldered (step S14).
  • the solder is interposed between the conductive wire 70 wound around the terminal pin 27 and the conductive wire 70.
  • the conducting wire 70 and the terminal pin 27 can be favorably conducted.
  • the drive current supplied from the external power source can be stably supplied to the stator 21, and the electrical reliability of the motor 1 can be improved.
  • FIG. 7 is a flowchart showing a procedure at the time of injection molding of the casing 22.
  • FIG. 8 is a view showing a state at the time of injection molding.
  • a mold is prepared (step S21).
  • the mold is composed of an upper mold 90 and a lower mold, which form a cavity inside when combined with each other.
  • the structure containing the stator 21, the terminal pin 27, and the conducting wire 70 obtained by the procedure of FIG. 6 is arrange
  • the lower surface of the upper mold 90 is in contact with the upper surface of the base portion 54 of the insulator 212. Then, the terminal pin 27 is enclosed by the upper mold 90.
  • a mold recess 91 is provided on the lower surface of the upper mold 90.
  • the mold recess 91 is recessed upward in the axial direction above the base portion 54.
  • the insulator 212 has a protruding portion 56 that slightly protrudes from the upper surface of the base portion 54 toward the upper side.
  • the protruding portion 56 extends in an arc shape around the terminal pin 27.
  • the shape of the protruding portion 56 may be other shapes such as a rectangular shape with a part missing.
  • the protruding portion 56 only needs to surround the terminal pin 27 except for a portion overlapping the slit 55.
  • the insulator 212 of the present embodiment further includes a slit protrusion 57 adjacent to the upper portion of the slit 55 and connected to the protrusion 56.
  • the lower surface of the upper mold 90 contacts not only the protrusion 56 described above but also the slit protrusion 57.
  • the slit protrusion 57 is crushed by the upper mold 90 and falls to the slit 55 side. Thereby, the opening of the upper part of the slit 55 becomes narrow. As a result, in a subsequent process, the flowing resin is suppressed from flowing from the slit 55 to the terminal pin 27 side.
  • the protrusion part 56 has the taper part 58 which inclines so that it may leave
  • the slit protrusion part 57 also has the taper part 59 which inclines so that it may leave
  • the taper part 59 is provided, when the slit protrusion part 57 is crushed, the slit protrusion part 57 easily falls down to the slit 55 side. Thereby, the inflow of the resin from the slit 55 to the terminal pin 27 side can be further suppressed.
  • step S24 After closing the upper mold 90 and the lower mold (step S23), the resin in a fluid state is poured into the cavity in the mold (step S24). At this time, the resin in a fluid state is supplied to the outside of the mold recess 91 as indicated by the broken line arrow in FIG. 8, but the space between the upper mold 90 and the base portion 54 is closed as described above. Therefore, the resin in a fluid state is difficult to flow into the mold recess 91. Eventually, when the resin reaches the entire cavity in the mold, the resin in a fluid state is cured (step S25). Thereby, the casing 22 is obtained. A concave portion 224 is formed on the upper side of the base portion 54, and a part of the terminal pin 27 is disposed in the concave portion 224.
  • step S26 the upper mold 90 and the lower mold are separated, and the mold is opened (step S26). And the structure containing the stator 21, the terminal pin 27, the conducting wire 70, and the casing 22 after molding is taken out from the mold (step S27).
  • the extracted structure at least the lower end portion of the terminal pin 27 is disposed in the recess 224.
  • the second conductor portion 72 wound around the lower portion of the terminal pin 27 is also located in the recess 224.
  • the third conductor portion 73 wound around the upper portion of the terminal pin 27 is positioned above the recess 224.
  • the conductive wire 70 wound around the terminal pin 27 can be prevented from coming into contact with the mold when the casing 22 is molded. For this reason, the winding space
  • FIG. 9 is a longitudinal sectional view of the motor 1C.
  • FIG. 10 is an enlarged cross-sectional view of the motor 1C.
  • the motor 1C is a so-called outer rotor type motor in which a magnet 35C is disposed on the radially outer side of the stator 21C.
  • the motor 1C is used for home appliances such as a ceiling fan and an outdoor unit of an air conditioner, for example.
  • the motor of the present invention may be used for applications other than home appliances.
  • the motor 1C of the present invention may be mounted on transportation equipment such as automobiles and railways, OA equipment, medical equipment, tools, industrial large equipment, and the like to generate various driving forces.
  • the motor 1C has a stationary part 2C and a rotating part 3C.
  • the stationary part 2C is fixed to the frame of the device to be driven.
  • the rotating part 3C is supported so as to be rotatable with respect to the stationary part 2C.
  • the stationary part 2C of the present embodiment includes a stator 21C, a casing 22C, a cover 23C, a conduction plate 24C, a lower bearing part 25C, an upper bearing part 26C, and a terminal pin 27C.
  • the rotating part 3C has a shaft 31C and a rotor 32C.
  • the stator 21C is an armature that generates a magnetic flux in accordance with a drive current supplied from an external power source through the conduction plate 24C.
  • FIG. 11 is a perspective view of the stator 21C. In FIG. 11, the conductor 70C and the solder 74C are not shown. As shown in FIGS. 9 to 11, the stator 21C surrounds the central axis 9C extending vertically in an annular shape.
  • the stator 21C includes a stator core 211C, an insulator 212C, and a plurality of coils 213C.
  • the stator core 211C has an annular core back 41C and a plurality of teeth 42C that protrude radially outward from the core back 41C.
  • the core back 41C is disposed substantially coaxially with the central axis 9C.
  • the plurality of teeth 42C are arranged at equal intervals in the circumferential direction. For example, a laminated steel plate is used for the stator core 211C.
  • the insulator 212C is attached to the stator core 211C.
  • a resin that is an insulator is used as the material of the insulator 212C.
  • the insulator 212C covers at least both end surfaces in the axial direction and both surfaces in the circumferential direction of the teeth 42C.
  • the coil 213C includes a conductive wire 70C wound around the teeth 42C via an insulator 212C. That is, the insulator 212C is interposed between the tooth 42C and the coil 213C.
  • the casing 22C is a resin member that holds the stator 21C, the lower bearing portion 25C, and the upper bearing portion 26C.
  • the casing 22C includes a wall portion 221C, a bottom plate portion 222C, an upper plate portion 231C, an upper bearing holding portion 232C, and a lower bearing holding portion 223C.
  • the upper portion of the stator 21C is covered with a resin constituting the upper plate portion 231C.
  • the upper plate portion 231C extends to the outside in the radial direction from the rotor 32C described later.
  • the wall portion 221C extends in a substantially cylindrical shape upward in the axial direction from the radially outer end portion of the upper plate portion 231C.
  • the lower part of the stator 21C is covered with a resin constituting the bottom plate part 222C.
  • the lower bearing holding portion 223C extends from the radially inner side surface of the bottom plate portion 222C toward the shaft 31C and covers a part of the lower bearing portion 25C.
  • the upper bearing holding portion 232C extends from the radially inner side surface of the upper plate portion 231C toward the shaft 31C and covers a part of the upper bearing portion 26C. Thereby, the lower bearing portion 25C and the upper bearing portion 26C are held.
  • the upper bearing holding portion 232C and the lower bearing holding portion 223C may be the same member as the casing 22C or may be separate members.
  • the cover 23C covers the upper opening of the casing 22C.
  • the cover 23C extends substantially perpendicular to the central axis 9C on the axial upper side of the stator 21C, the casing 22C, the conduction plate 24C, and the rotor 32C.
  • the cover 23 ⁇ / b> C has a fixing portion 233 ⁇ / b> C that protrudes in an annular shape downward in the axial direction.
  • the fixing portion 233C contacts the inner peripheral portion of the wall portion 221C in the circumferential direction. Thereby, the cover 23C is fixed at the upper part of the casing 22C.
  • the cover 23C and the casing 22C form a storage portion 28C above the stator 21C. That is, at least a part of the casing 22C is disposed between the storage portion 28C and the rotor 32C.
  • the conductive plate 24C is a circuit board disposed substantially perpendicular to the central axis 9C.
  • the conductive plate 24C is disposed inside the storage portion 28C.
  • the conductive plate 24C is connected to an external power source via a lead wire (not shown). The current supplied from the external power source flows to the coil 213 through the lead wire, the conduction plate 24C, and a terminal pin 27C described later.
  • the lower bearing portion 25C rotatably supports the shaft 31C below the rotor 32C.
  • the upper bearing portion 26C rotatably supports the shaft 31C above the rotor 32C.
  • ball bearings that rotate the outer ring and the inner ring via a sphere are used.
  • the outer ring of the lower bearing portion 25C is fixed to the lower bearing holding portion 223C.
  • the outer ring of the upper bearing portion 26C is fixed to the upper bearing holding portion 232C.
  • the inner rings of the lower bearing portion 25C and the upper bearing portion 26C are fixed to the shaft 31C.
  • other types of bearings such as a slide bearing and a fluid bearing may be used instead of the ball bearing.
  • the upper bearing portion 26C is disposed above the core back 41C.
  • the lower bearing portion 25C is disposed below the core back 41C. At least a part of the upper bearing portion 26C and the lower bearing portion 25C may overlap the core back 41C in the axial direction.
  • the distal end portion on the radially outer side of the teeth 42C is located on the radially outer side with respect to the upper bearing portion 26C and the lower bearing portion 25C.
  • the terminal pin 27C mentioned later is arrange
  • the shaft 31C is a substantially cylindrical member that extends vertically along the central axis 9C.
  • a metal such as stainless steel is used as the material of the shaft 31C.
  • the shaft 31C rotates around the central axis 9C.
  • the rotor 32C is an annular member that is fixed to the shaft 31C and rotates together with the shaft 31C. As shown in FIG. 1, the rotor 32C has a disk portion 33C, a cylindrical portion 34C, and a magnet 35C.
  • the disc portion 33C is a plate-like portion that extends radially outward from the outer peripheral portion of the shaft 31C.
  • the cylindrical portion 34C is a substantially cylindrical portion located on the radially outer side than the disc portion 33C.
  • An impeller 4C is attached to the outer peripheral portion of the cylindrical portion 34C.
  • the magnet 35C is a substantially annular magnetic body located on the radially outer side of the stator 21C.
  • the magnet 35C is fixed to the inner peripheral surface of the cylindrical portion 34C via, for example, an adhesive.
  • the magnet 35C may be fixed to the inner peripheral surface of the cylindrical portion 34C by other methods.
  • the inner peripheral surface of the magnet 35C faces the radially outer end surfaces of the plurality of teeth 42C via a slight gap.
  • N poles and S poles are alternately magnetized in the circumferential direction on the inner peripheral surface of the magnet 35C.
  • a plurality of magnets may be used in place of the annular magnet 35C. When a plurality of magnets are used, the plurality of magnets may be arranged in the circumferential direction so that the N poles and the S poles are alternately arranged.
  • a driving current is supplied from an external power source to the coil 213C through a lead wire (not shown), a conduction plate 24C, and a terminal pin 27C described later.
  • magnetic flux is generated in the plurality of teeth 42 ⁇ / b> C of the stator core 211.
  • a circumferential torque is generated by the action of the magnetic flux between the teeth 42C and the magnet 35C.
  • the rotating unit 3C including the impeller 4C rotates around the central axis 9C.
  • FIG. 12 is a perspective view showing a part of the terminal pin 27C and the insulator 212C.
  • FIG. 13 is a partial cross-sectional view of the vicinity of the terminal pin 27C of the motor 1C. In FIG. 12, illustration of the solder 74C is omitted.
  • the insulator 212C has a first insulating part 51C and a base part 54C.
  • the first insulating portion 51C and the base portion 54C may be a single member or may be composed of a plurality of members.
  • the first insulating portion 51C covers both end surfaces in the axial direction and both surfaces in the circumferential direction of the teeth 42C.
  • a slit 55C that is recessed radially inward is provided on the radially outer side surface of the base portion 54C.
  • the slit 55C extends in the axial direction from the upper end of the base portion 54C toward the lower side. Further, as shown in FIG.
  • the insulator 212C of the present embodiment has a protruding portion 56C that slightly protrudes upward from the upper surface of the base portion 54C.
  • the configuration of the protruding portion 56C is the same as that of the first embodiment, and thus the description thereof is omitted.
  • a terminal pin 27C is provided on the base portion 54C.
  • the terminal pin 27C is a columnar conductor that protrudes upward in the axial direction toward the storage portion 28C.
  • the terminal pin 27C is formed of a conductive material such as iron or copper.
  • the lower end portion of the terminal pin 27C is inserted into a hole provided in the base portion 54C and fixed to the base portion 54C.
  • the upper end portion of the terminal pin 27C is located above the upper surface of the base portion 54C.
  • one terminal pin 27C is fixed to one base portion 54C.
  • two or more terminal pins 27C may be fixed to one base portion 54C.
  • the base portion 54C is disposed above the distal end portion in the radial direction of the teeth 42C. That is, the terminal pin 27C is disposed above the tip of the tooth 42C. Thereby, an insulation distance can be ensured between the upper bearing portion 26C and the terminal pin 27C. Therefore, an electrical short circuit between the upper bearing portion 26C and the terminal pin 27C can be prevented. Further, by arranging the terminal pin 27C above the tip of the tooth 42C, it is possible to secure an insulation distance while suppressing the radial width of the core back 41C. Thereby, a motor can be reduced in size.
  • the stator core 211C, the insulator 212C, and the coil 213C are at least partially covered by the casing 22C.
  • the casing 22C has a recess 224C that is recessed in the axial direction above the base portion 54C of the insulator 212C.
  • the upper surface of the base portion 54C is located in the recess 224C. Therefore, the upper surface of the base portion 54C is exposed from the casing 22C.
  • at least the lower end portion of the terminal pin 27C is arranged in the recess 224C without contacting the casing 22C.
  • the casing 22C is obtained by injection molding in which a resin is poured into a cavity in a mold in which the stator 21C and the terminal pins 27C are accommodated to be cured.
  • the casing 22 ⁇ / b> C of the present embodiment has a conductive plate arrangement surface 225 ⁇ / b> C that contacts the lower surface of the conductive plate 24 ⁇ / b> C. Thereby, the downward displacement of the conduction plate 24C is prevented by the conduction plate arrangement surface 225C.
  • the conducting wire 70C extends from the coil 213C located on the radially inner side of the base portion 54C and is drawn out to the slit 55C side.
  • the conducting wire 70C has a first conducting wire portion 71C and a second conducting wire portion 72C.
  • the first conductor portion 71C is located in the slit 55C.
  • the second conductor portion 72C is connected to the first conductor portion 71C and is wound around the lower portion of the terminal pin 27C.
  • the second conductor portion 72C is located in the recess 224C.
  • the conducting wire 70C may further include a third conducting wire portion that is connected to the second conducting wire portion 72C and is wound around the upper portion of the terminal pin 27C.
  • the conducting wire 70C extending from the coil 213C may pass up through the slit 55C and be wound up above the recess 224C from the lower part to the upper part of the terminal pin 27C.
  • the winding interval of the conducting wire 70C wound around the terminal pin 27C can be widened, and the electrical reliability can be improved.
  • the base portion 54C of the insulator 212C has a base protrusion 59C that protrudes outward in the radial direction.
  • the slit 55C is formed from above to below the base protrusion 59C.
  • the base protrusion 59C has a curved portion 591C that curves in the circumferential direction from the side surface facing the slit 55C to the bottom surface.
  • the first conductor portion 71C is disposed along the curved portion 591C. Thereby, the conductor 70C can be wound around the terminal pin 27C while the conductor 70C is hooked on the base protrusion 59C. For this reason, it becomes easy to wire the conducting wire 70C from the winding portion to the slit 55C. Further, it is possible to prevent the conductor 70C from being damaged by coming into contact with the base protrusion 59C. Therefore, a thin wire with low tension, a lead wire made of aluminum alloy, or the like can be used as the lead wire 70C.
  • the lead wire 70C and the die are not contacted without covering the lead wire 70C positioned between the base portion 54C and the die at the time of injection molding of the casing 22C. maintain. Therefore, the conductive wire 70C can be wound up to the vicinity of the upper end portion of the terminal pin 27C without being blocked by such a protective member.
  • a gap 227C is interposed between the second conductor portion 72C and the solder 74C and the casing 22C in the recess 224C. That is, at the time of injection molding of the casing 22C, the mold does not come into contact with the terminal pins 27C, the conductive wires 70C, and the solder 74C. For this reason, it is possible to prevent the terminal pin 27C, the conductive wire 70C, and the solder 74C from being damaged.
  • the conducting wire 70C is wound around the terminal pin 27C with a gap for each turn. Then, solder 74C is interposed in the gap between the conductive wire 70C wound around the terminal pin 27C and the conductive wire 70C.
  • the conducting wire 70C and the terminal pin 27C can be conducted more favorably. As a result, the drive current supplied from the external power supply can be stably supplied to the stator 21C, and the electrical reliability of the motor 1C can be improved.
  • FIG. 14 is a top view of the casing 22C.
  • FIG. 15 is a partial cross-sectional view of the motor 1C.
  • the casing 22C has a groove portion 226C that is recessed downward between the adjacent terminal pins 27C.
  • the groove 226C overlaps at least a part of the magnet 35C in the axial direction.
  • the position detection element 29C is arrange
  • the position detection element 29C is, for example, a hall sensor, and detects the magnetic flux of the magnet.
  • the position detection element 29C is disposed inside the groove 226C, and thus overlaps the magnet in the axial direction. Thereby, the position detection element 29C can detect the position and rotational speed of the rotor 32C.
  • the rotational speed of the rotor 32C is feedback controlled based on the detection result of the position detection element 29C.
  • the position detection element 29C may be attached to the conduction plate 24C, or may be a separate member from the conduction plate 24C.
  • FIG. 16 is a partial vertical cross-sectional view of the motor according to a modified example near the end of the conductive plate 24A.
  • the casing 22A has a conductive plate arrangement surface 225A and a step surface 226A.
  • the step surface 226A is located on the radially inner side and the axially lower side of the conductive plate arrangement surface 225A.
  • a gap in the axial direction is interposed between the lower surface of the conductive plate 24A and the step surface 226A.
  • the electronic component 246A can be disposed on the lower surface of the conductive plate 24A at a position above the step surface 226A.
  • FIG. 17 is a top view of a conduction plate 24B according to another modification.
  • the conduction plate 24B has a first notch 247B located above the recess 224B.
  • a land (second land) 245B from which the copper foil is exposed is provided at the inner edge of the first notch 247B.
  • the terminal pin 27B extends in the axial direction through the inside of the first notch 247B.
  • the conducting wire is wound up to a position above the first notch 247B. That is, the upper end of the third conductor portion is located above the first notch 247B.
  • the terminal pin 27B contacts the land directly or via solder. Thereby, the terminal pin 27B and the conducting plate 24B are conducted.
  • the conduction plate 24B of FIG. 17 further includes a second notch 248B that opens inward in the radial direction. At least a portion of the shaft 31B is disposed in the second notch 248B.
  • the direction of the opening of the first notch 247B and the direction of the opening of the second notch 248B are the same direction.
  • the conduction plate 24B can be inserted obliquely or laterally with respect to the axial direction. Therefore, after arranging the rotating part to which the lower bearing and the upper bearing are attached inside the casing after the injection molding, the conducting plate 24B is arranged at a position closer to the rotor than the upper bearing, and the conducting plate 24B and the terminal pin 27B Can be soldered. Thereby, the freedom degree of the operation
  • FIG. 18 is a longitudinal sectional view of the vicinity of a terminal pin 27D of a motor 1D according to another modification.
  • FIG. 19 is a partial perspective view of the base portion 54D, the casing 22D, and the terminal pins 27D of the motor 1D.
  • the recess 224D of the casing 22D includes a first recess 81D, a second recess 82D, a pair of third recesses 83D, and a fourth recess 84D.
  • the first recess 81D, the second recess 82D, the third recess 83D, and the fourth recess 84D are connected to each other.
  • 1st recessed part 81D is located above the base part 54D of insulator 212D.
  • the upper surface of the base portion 54D is exposed in the first recess 81D.
  • At least a portion of the terminal pin 27D is located in the first recess 81D.
  • substantially the entire upper surface of the base portion 54D is exposed in the first recess 81D.
  • a part of the upper surface of the base portion 54D may be covered with a resin constituting the casing 22D.
  • 2nd recessed part 82D is located in the radial direction outer side of the base part 54D.
  • the side surface having the slit 55D of the base portion 54D is exposed in the second recess 82D.
  • the lower end portion of the second recess 82D is positioned above the upper surface of the second insulating portion 52D of the insulator 212D. For this reason, only a part including the upper end portion of the side surface having the slit 55D of the base portion 54D is exposed in the second recess 82D.
  • the lower end portion of the second recessed portion 82D may be the same height as the upper surface of the second insulating portion 52D.
  • the whole side surface which has the slit 55D of the base part 54D, and a part of upper surface of 2nd insulating part 52D may be exposed in 2nd recessed part 82D.
  • the pair of third recesses 83D are located on both sides of the base portion 54 in the circumferential direction. Both side surfaces of the base portion 54D in the circumferential direction are exposed in the third recess 83D.
  • the lower end portion of the third recess 83D is positioned above the upper surface of the second insulating portion 52D of the insulator 212D. For this reason, only a part including the upper end portion of the side surface in the circumferential direction of the base portion 54D is exposed in the third recess 83D.
  • the lower end portion of the third recess portion 83D may be the same height as the upper surface of the second insulating portion 52D.
  • the entire circumferential side surface of the base portion 54D and a part of the upper surface of the second insulating portion 52D may be exposed in the third recess 83D.
  • the radially inner end of the third recess 83D is located more radially outward than the radially inner side surface of the base portion 54D. For this reason, only a part of the outer side in the radial direction of the side surface in the circumferential direction of the base portion 54D is exposed in the third recess 83D.
  • the third recess 83D may extend to a radial position equivalent to the radially inner side surface of the base portion 54D.
  • the coil 213D should not be exposed in the third recess 83D.
  • the fourth recess 84D is located on the radially inner side of the terminal pin 27D and above the coil 213D.
  • the lower end of the fourth recess 84D is positioned above the lower end in the axial direction of the second recess 82D and the third recess 83D.
  • the fourth recess 84D does not reach the coil 213D.
  • the height of the lower end portion of the fourth recess 84 ⁇ / b> D is the same as the upper surface of the base portion 54 ⁇ / b> D.
  • the height of the lower end portion of the fourth recess 84D may be a height different from the upper surface of the base portion 54D.
  • FIG. 20 is a cross-sectional view showing a state when the casing 22D is injection-molded in the manufacturing process of the motor 1D.
  • an upper mold 90D and a lower mold 92D corresponding to the shape of the casing 22D are prepared. Then, a structure including the stator 21D, the terminal pins 27D, and the conductive wire 70D is disposed between the upper mold 90D and the lower mold 92D.
  • the lower surface of the upper mold 90D is in contact with the upper surface of the base portion 54D.
  • the terminal pin 27D is enclosed by the upper mold 90D.
  • the terminal pin 27D is accommodated in a mold recess 91D provided in the upper mold 90D.
  • die 90D and conducting wire 70D are maintained in non-contact.
  • the upper mold 90D also contacts the side surface having the slit 55D of the base portion 54D and both side surfaces in the circumferential direction. Thereby, the space in the mold recess 91D is further isolated from the surroundings.
  • the upper mold 90D contacts not only the upper surface of the base portion 54D but also the side surface of the base portion 54D having the slits 55D. Thereby, it can suppress that resin flows into the metal mold
  • the upper mold 90D also contacts the circumferential side surface of the base portion 54D. Thereby, it can suppress more that resin flows into metallic mold crevice 91D. As a result, it is possible to further suppress the resin from entering the periphery of the terminal pin 27D.
  • a part of the upper mold 90D is also arranged at the radially inner side of the terminal pin 27D and above the coil 213D, that is, at the position where the fourth recess 84D is formed after molding. Thereby, it can suppress that resin penetrate
  • the shaft protrudes upward from the casing and the cover.
  • the shaft may protrude downward from the casing, and the lower end portion thereof may be connected to the drive unit.
  • the shaft may protrude both below the casing and above the cover, and both the lower end portion and the upper end portion thereof may be coupled to the drive unit.
  • a rotor made of magnet resin is used.
  • the rotor may be one in which a plurality of magnets are fixed to the outer peripheral surface or inside of a cylindrical rotor core that is a magnetic body.
  • the conductive plate of the above embodiment is a circuit board on which an electronic circuit for supplying a drive current to the coil is mounted.
  • the conductive plate may be a wiring board that supports the lead wires.
  • the lead wire may be disposed along the surface of the wiring board, and the lead wire and the terminal pin may be directly connected.
  • the terminal pins and the conductive wires are electrically connected by soldering.
  • the means for electrically connecting the terminal pins and the conductive wires may be other methods such as heat caulking, conductive adhesive, welding, and the like.
  • the cross-sectional shape perpendicular to the central axis of the metal terminal is rectangular.
  • the cross-sectional shape of the metal terminal may be other shapes such as a circle.
  • each member may be different from the shape shown in each drawing of the present application. Moreover, you may combine suitably each element which appeared in said embodiment and modification in the range which does not produce inconsistency.
  • the present invention can be used for a motor and a method for manufacturing the motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Motor Or Generator Frames (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

モータの製造工程において、まず、ステータのインシュレータに、端子ピンを取り付ける。次に、コイルを構成する導線の端部を、端子ピン側へ引き出して、端子ピンに導線を巻きつける。続いて、導線と端子ピンとを、半田付けする。その後、当該ステータをインサート部品として、ケーシングを射出成型する。その際、金型をインシュレータの上面に接触させ、金型により端子ピンを囲いこむ。これにより、端子ピンに巻かれた導線が金型と接触することを防止する。その結果、導線の損傷を抑制できる。

Description

モータおよびモータの製造方法
 本発明は、モータおよびモータの製造方法に関する。
 従来、樹脂に覆われたステータの径方向内側または外側にロータを配置した、いわゆるインナーロータ型またはアウターロータ型のモールドモータが知られている。従来のモールドモータについては、例えば、特開2000-78804号公報に記載されている。当該公報には、巻線端末を端子ピンの下から上に向かって端子ピンの所定の位置まで巻き上げ、この巻線端末係止部を半田付けし、端子ピンを所定の位置まで再圧入した後、モールド成形金型にて巻線端末係止部の上端部を押さえ、端子ピンの先端部を露出し、固定子鉄心、固定子巻線、インシュレータ、巻線端末係止部を一体的に成形固化して、樹脂モールド固定子を製造する技術が記載されている(要約等参照)。
特開2000-78804号公報
 しかしながら、特開2000-78804号公報の構造では、樹脂モールド固定子の製造時に、モールド成形金型が、巻線端末係止部の上端部を押さえる。このため、モールド成形金型との接触によって、半田の剥離、巻線端末係止部の損傷、巻線の緩みなどの不具合が生じる虞がある。
 本発明の目的は、インナーロータ型またはアウターロータ型のモールドモータにおいて、ケーシングの成型時に、端子ピンに巻かれた導線が金型と接触することを防止できる技術を提供することである。
 本願の例示的な第1発明は、モータであって、ステータを含む静止部と、前記静止部と径方向に対向し、上下に延びる中心軸を中心に回転するロータを含む回転部と、を有し、前記静止部は、環状のコアバックおよび前記コアバックから径方向へ突出する複数のティースを有するステータコアと、前記ステータコアの少なくとも一部を覆うインシュレータと、前記インシュレータを介して前記ティースに巻かれた導線からなるコイルと、前記インシュレータの土台部から上方へ延びる端子ピンと、前記ステータの上方に配置される導通板と、前記ステータコア、前記インシュレータ、および前記コイルを覆う樹脂製のケーシングと、を有し、前記ケーシングは、軸方向に凹む凹部を有し、前記端子ピンの少なくとも一部分が、前記凹部内に位置し、前記導線は、前記土台部に設けられたスリット内に位置する第1導線部と、前記第1導線部と繋がり、前記端子ピンの下部に巻かれる第2導線部と、を有する。
 本願の例示的な第2発明は、ステータコアとコイルとの間にインシュレータが介在し、前記ステータコア、前記コイル、および前記インシュレータを覆う樹脂製のケーシングを有するモータの製造方法であって、a)前記インシュレータの土台部の上面に、端子ピンを取り付ける工程と、b)前記コイルを構成する導線の端部を、前記端子ピンへ引き出す工程と、c)前記端子ピンに、前記導線を巻く工程と、d)前記導線と前記端子ピンとを、半田付けする工程と、e)互いに組み合わせることで内部に空洞が生じる上金型および下金型を用意する工程と、f)前記上金型を前記土台部の上面に接触させ、前記上金型により前記端子ピンを囲いこむ工程と、g)前記上金型と前記下金型とを組み合わせ、前記空洞内に前記ステータ、前記コイル、および前記インシュレータを収容する工程と、h)前記空洞内に流動状態の樹脂を流し込む工程と、i)前記流動状態の樹脂を硬化させて前記ケーシングを得る工程と、j)前記上金型と前記下金型とを分離する工程と、k)前記下金型から、前記ステータおよび前記ケーシングを取り出す工程と、を有する。
 本願の例示的な第1発明および第2発明によれば、ケーシングの成型時に、端子ピンに巻かれた導線が金型と接触することを防止できる。これにより、導線の損傷を抑制できる。
図1は、第1実施形態に係るモータの縦断面図である。 図2は、第1実施形態に係る端子ピン付近の断面図である。 図3は、第1実施形態に係る端子ピンおよびインシュレータの一部分を示す斜視図である。 図4は、第1実施形態に係る端子ピンおよび導線の横断面における形状を、概念的に示した図である。 図5は、第1実施形態に係る導通板および端子ピンの上面視における形状を、概念的に示した図である。 図6は、第1実施形態に係るケーシングの射出成型前の手順を示すフローチャートである。 図7は、第1実施形態に係るケーシングの射出成型時の手順を示すフローチャートである。 図8は、第1実施形態に係る射出成型時の様子を示した図である。 図9は、第2実施形態に係るモータの縦断面図である。 図10は、第2実施形態に係るモータの部分断面図である。 図11は、第2実施形態に係るステータの斜視図である。 図12は、第2実施形態に係る端子ピンおよびインシュレータの一部分を示す斜視図である。 図13は、第2実施形態に係る端子ピン付近の部分断面図である。 図14は、第2実施形態に係るケーシングの上面図である。 図15は、第2実施形態に係る位置検出素子付近の部分断面図である。 図16は、変形例に係るモータの導通板の端部付近における部分縦断面図である。 図17は、変形例に係る導通板の上面図である。 図18は、変形例に係るモータの端子ピン付近の縦断面図である。 図19は、変形例に係るモータの、土台部、ケーシング、および端子ピンの部分斜視図である。 図20は、変形例に係るケーシングの射出成型時の様子を示した断面図である。
 以下、本発明の例示的な実施形態について、図面を参照しながら説明する。なお、本願では、モータの中心軸と平行な方向を「軸方向」、モータの中心軸に直交する方向を「径方向」、モータの中心軸を中心とする円弧に沿う方向を「周方向」、とそれぞれ称する。また、本願では、軸方向を上下方向とし、ステータに対して導通板側を上として、各部の形状や位置関係を説明する。ただし、この上下方向の定義により、本発明に係るモータの製造時および使用時の向きを限定する意図はない。
 <1.第1実施形態>
 <1-1.モータの構造>
 図1は、モータ1の縦断面図である。このモータ1は、ステータ21の径方向内側にロータ32が配置された、いわゆるインナーロータ型のモータである。モータ1は、例えば、空調機等の家電製品に使用される。ただし、本発明のモータ1は、家電製品以外の用途に使用されるものであってもよい。例えば、本発明のモータ1は、自動車や鉄道等の輸送機器、OA機器、医療機器、工具、産業用の大型設備等に搭載されて、種々の駆動力を発生させるものであってもよい。
 図1に示すように、モータ1は、静止部2と回転部3とを有する。静止部2は、駆動対象となる機器の枠体に固定される。回転部3は、静止部2に対して回転可能に支持される。
 本実施形態の静止部2は、ステータ21、ケーシング22、カバー23、導通板24、下軸受部25、上軸受部26、および端子ピン27を有する。回転部3は、シャフト31およびロータ32を有する。
 ステータ21は、外部電源から導通板24を介して供給される駆動電流に応じて、磁束を発生させる電機子である。ステータ21は、上下に延びる中心軸9の周りを環状に取り囲む。ステータ21は、ステータコア211、インシュレータ212、および複数のコイル213を有する。ステータコア211は、円環状のコアバック41と、コアバック41から径方向内側へ向けて突出する複数のティース42と、を有する。コアバック41は、中心軸9と略同軸に配置される。複数のティース42は、周方向に等間隔に配列される。ステータコア211には、例えば、積層鋼板が用いられる。
 インシュレータ212は、ステータコア211に取り付けられる。インシュレータ212の材料には、絶縁体である樹脂が用いられる。インシュレータ212は、少なくとも、ティース42の軸方向の両端面および周方向の両面を覆う。コイル213は、ティース42の周囲にインシュレータ212を介して巻かれた導線70からなる。すなわち、インシュレータ212は、ティース42とコイル213との間に介在する。
 ケーシング22は、ステータ21および下軸受部25を保持する樹脂製の部材である。ケーシング22は、壁部221、底板部222、および下軸受保持部223を有する。壁部221は、軸方向に略円筒状に延びる。ステータ21は、壁部221を構成する樹脂に覆われる。ただし、ティース42の径方向内側の端面を含むステータ21の一部は、壁部221から露出している。また、壁部221の径方向内側には、後述するロータ32が配置される。
 底板部222は、壁部221の下端から径方向内側へ向けて、板状に広がる。底板部222は、ステータ21およびロータ32よりも軸方向下側に位置する。下軸受保持部223は、底板部222の内端から延びて、下軸受部25の一部を覆う。下軸受部25およびシャフト31の下端部は、下軸受保持部223の径方向内側に配置される。
 カバー23は、ケーシング22の上部の開口を覆う。導通板24および後述するロータ32は、ケーシング22およびカバー23により構成される筐体の内部に収容される。カバー23は、上板部231および上軸受保持部232を有する。上板部231は、ステータ21、ケーシング22、導通板24、およびロータ32よりも軸方向上側において、中心軸9に対して略垂直に広がる。上軸受保持部232は、上板部231の内端からから延びて、上軸受部26の一部を覆う。上軸受部26およびシャフト31の一部は、上軸受保持部232の径方向内側に配置される。
 ケーシング22とカバー23との間には、周方向の一部に、リード線242が通る接続孔201が設けられる。接続孔201の内部には、ブッシング243が配置される。ブッシング243は、ケーシング22およびカバー23の接続孔201を構成する端面と接触し、かつ、リード線242が配置される配線溝を有する。
 導通板24は、中心軸9に対して略垂直に配置された回路基板である。導通板24は、ステータ21およびロータ32の上方、カバー23の下方、かつ、ケーシング22の壁部221の径方向内側に配置される。導通板24から延びるリード線242は、接続孔201の内部においてブッシング243の配線溝を通って、ケーシング22の外部へ引き出される。そして、当該リード線242の端部が、外部電源に接続される。外部電源から供給される電流は、リード線242、導通板24、および後述する端子ピン27を通って、コイル213へ流れる。
 下軸受部25は、ロータ32よりも下方において、シャフト31を回転可能に支持する。上軸受部26は、ロータ32よりも上方において、シャフト31を回転可能に支持する。本実施形態の下軸受部25および上軸受部26には、球体を介して外輪と内輪とを回転させるボールベアリングが、使用されている。下軸受部25の外輪は、ケーシング22の下軸受保持部223に固定される。上軸受部26の外輪は、カバー23の上軸受保持部232に固定される。また、下軸受部25および上軸受部26の各々の内輪は、シャフト31に固定される。ただし、ボールベアリングに代えて、すべり軸受や流体軸受等の他方式の軸受が、使用されていてもよい。
 シャフト31は、ロータ32を貫いて軸方向に延びる、柱状の部材である。シャフト31は、中心軸9を中心として回転する。シャフト31の上端部は、ケーシング22およびカバー23よりも上方へ突出している。シャフト31の上端部には、例えば、空調機用のファンが取り付けられる。ただし、シャフト31の上端部は、ギア等の動力伝達機構を介して、ファン以外の駆動部に連結されてもよい。
 ロータ32は、シャフト31に固定されて、シャフト31とともに回転する環状の部材である。ロータ32は、ステータ21の径方向内側に配置される。本実施形態のロータ32は、マグネット配合のプラスチック樹脂により形成された環状の部材である。図1に示すように、ロータ32は、内側筒部321、外側筒部322、および連結部323を有する。
 内側筒部321は、シャフト31に固定される略円筒状の部位である。シャフト31の外周面のうち、内側筒部321との固着面には、螺旋状の溝311が設けられている。ロータ32は、シャフト31をインサート部品とする射出成型により形成される。射出成型時には、シャフト31の外周面に設けられた溝311内に、流動状態の樹脂が流れ込む。これにより、シャフト31に対してロータ32が強固に固着される。また、モータ1の駆動時に、シャフト31に対してロータ32が相対回転することが抑制される。
 外側筒部322は、内側筒部321よりも径方向外側に位置する略円筒状の部位である。外側筒部322の外周面は、ティース42の径方向内側の端面と、僅かな隙間を介して対向する。連結部323は、内側筒部321と外側筒部322とを連結する円板状の部位である。内側筒部321および外側筒部322の径方向の厚みは、連結部323との境界付近において最も大きくなる。また、内側筒部321および外側筒部322の径方向の厚みは、軸方向の両端へ向かうにつれて、徐々に小さくなる。
 モータ1の駆動時には、外部電源から、リード線242、導通板24、および後述する端子ピン27を介して、コイル213に駆動電流が供給される。これにより、ステータコア211の複数のティース42に、磁束が生じる。そして、ティース42とロータ32との間の磁束が及ぼす作用により、周方向のトルクが発生する。その結果、中心軸9を中心として回転部3が回転する。
 <1-2.端子ピン付近の構造について>
 次に、モータ1の端子ピン27付近の構造について、より詳細に説明する。図2は、モータ1の端子ピン27付近の部分断面図である。図3は端子ピン27およびインシュレータ212の一部分を示す斜視図である。なお、図3では、導線70および半田74の図示が省略されている。
 インシュレータ212は、第1絶縁部51と、第2絶縁部52と、第3絶縁部53と、土台部54と、を有する。インシュレータ212は、単一の部材であってもよく、複数の部材で構成されていてもよい。例えば、第1絶縁部51、第2絶縁部52、第3絶縁部53、および土台部54のうちの1つまたは複数の部位が、他の部位とは別の部材であってもよい。
 第1絶縁部51は、ティース42の軸方向の両端面および周方向の両面を覆っている。第2絶縁部52は、コアバック41の上面の少なくとも一部分を覆っている。第3絶縁部53は、コアバック41の下面の少なくとも一部分を覆っている。第1絶縁部51と、第2絶縁部52および第3絶縁部53とは、径方向に繋がっている。土台部54は、第2絶縁部52から軸方向上側へ向けて突出している。土台部54の径方向外側の側面には、径方向内側へ向けて凹むスリット55が設けられている。スリット55は、土台部54の上端から下側へ向けて、軸方向に延びる。
 土台部54上には、端子ピン27が設けられている。端子ピン27は、軸方向に延びる柱状の導体である。端子ピン27は、鉄または銅などの導電性を有する材料で形成される。端子ピン27の下端部は、土台部54に設けられた穴に挿入され、土台部54に固定されている。端子ピン27の上端部は、土台部54の上面よりも上方に位置している。なお、本実施形態では、1つの土台部54に対して1つの端子ピン27が固定されている。ただし、1つの土台部54に対して、2本以上の端子ピン27が固定されていてもよい。
 ステータコア211、インシュレータ212、およびコイル213は、少なくともその表面の一部が、ケーシング22に覆われる。ケーシング22は、インシュレータ212の土台部54の上方に、軸方向に凹む凹部224を有する。土台部54の上面は、凹部224内に配置される。したがって、土台部54の上面は、ケーシング22から露出する。また、端子ピン27の少なくとも下端部は、ケーシング22と接触することなく、凹部224内に配置される。
 ケーシング22は、ステータ21および端子ピン27が収容された金型内の空洞に樹脂を流し込んで硬化させる、射出成型により得られる。射出成型の詳細については、後述する。また、図2に示すように、本実施形態のケーシング22は、導通板24の下面に接触する導通板配置面225を有する。導通板配置面225は、ロータ32の上端部よりも軸方向上側に位置する。導通板24の下方への位置ずれは、導通板配置面225によって防止される。これにより、導通板24がロータ32と接触することが防止される。
 導線70は、土台部54の径方向内側に位置するコイル213から延び、スリット55側へ引き出される。導線70は、第1導線部71および第2導線部72を有する。第1導線部71は、スリット55内に位置する。第2導線部72は、第1導線部71と繋がり、端子ピン27の下部に巻かれる。第2導線部72は、凹部224内に位置する。なお、本実施形態では、導線70は、第2導線部72と繋がり、端子ピン27の上部に巻かれる第3導線部73をさらに有する。第3導線部73は、凹部224よりも上方に位置する。このように、コイル213から延びる導線70は、スリット55内を通り、端子ピン27の下部から上部にかけて、凹部224の上方まで巻き上げられてもよい。こうすることで、端子ピン27に巻かれた導線70の巻線間隔を広くすることができ、電気的信頼性を向上できる。
 なお、本実施形態のモータ1では、後述するケーシング22の射出成型時に、土台部54と金型との間に位置する導線70に別途保護部材を被せることなく、導線70と金型とを非接触に維持する。このため、そのような保護部材に遮られることなく、導線70を、端子ピン27の上端部付近まで巻きつけることができる。
 また、図2に示すように、導線70は、端子ピン27に対して、一巻きごとに間隙をあけて巻かれる。そして、端子ピン27に巻かれた導線70と導線70との間の間隙には、半田74が介在する。こうすることで、導線70と端子ピン27とを、より良好に導通させることができる。その結果、外部電源から供給された駆動電流を、安定してステータ21へ流すことができ、モータ1の電気的信頼性を向上できる。
 なお、本実施形態では、凹部224内で、第2導線部72および半田74とケーシング22との間には、空隙227が介在する。すなわち、ケーシング22の射出成型時に、金型は、端子ピン27、導線70、および半田74と接触しない。このため、ケーシング22の射出成型時に、端子ピン27、導線70、および半田74に傷がつくことを防止できる。
 図4は、端子ピン27および導線70の横断面における形状を、概念的に示した図である。本実施形態では、図4のように、中心軸9に対して垂直な断面における端子ピン27の形状が、矩形である。このため、端子ピン27と導線70との間に隙間が生じやすい。したがって、端子ピン27と導線70との間の当該隙間に、半田74が回り込みやすい。これにより、端子ピン27と導線70とを、より良好に導通させることができる。なお、導線70の材料には、例えば、アルミニウム合金、銅などの金属が用いられる。特に、アルミニウム合金を用いれば、銅を用いる場合よりも、モータ1を軽量化できる。
 図5は、導通板24および端子ピン27の上面視における形状を、概念的に示した図である。図2および図5に示すように、本実施形態の導通板24は、凹部224の上方に位置する貫通孔244を有する。導通板24の、貫通孔244を構成する内周部には、銅箔が露出したランド(第1ランド)245が設けられている。端子ピン27は、貫通孔244の内部を通って、軸方向に延びる。また、導線70は、貫通孔244よりも上方の位置まで巻かれる。すなわち、第3導線部73の上端は、貫通孔244よりも上方に位置する。端子ピン27は、ランド245と直接または半田74を介して接触する。これにより、端子ピン27と導通板24のランド245とが導通する。
 <1-3.ケーシングの射出成型について>
 続いて、ケーシング22の射出成型について説明する。
 図6は、ケーシング22の射出成型前の手順を示すフローチャートである。ケーシング22を射出成型する前には、先ず、インシュレータ212の土台部54の上面に、端子ピン27を取り付ける(ステップS11)。土台部54と端子ピン27との固定には、例えば、圧入または接着を用いればよい。また、端子ピン27をインサート部品として土台部54を成型することにより、土台部54と端子ピン27とを、互いに固定してもよい。
 次に、コイル213を構成する導線70を、スリット55内に通し、導線70の端部を端子ピン27側へ引き出す(ステップS12)。導線70の第1導線部71は、インシュレータ212のスリット55に沿って配置される。すなわち、コイル213から端子ピン27へと向かう導線70の経路の一部分が、スリット55により位置決めされる。これにより、導線70が他の部材と接触することを防止できる。その結果、導線70の損傷や破断が防止される。
 そして、引き出された導線70を、端子ピン27に巻きつける(ステップS13)。導線70は、端子ピン27の下端部付近から上端部付近にかけて、上向きに巻きつけられる。このとき、導線70は、一巻きごとに間隙をあけて端子ピン27に巻きつけられる。導線70の巻きつけが完了すると、続いて、導線70と端子ピン27とを半田付けする(ステップS14)。半田は、端子ピン27に巻きつけられた導線70と導線70との間に介在する。これにより、導線70と端子ピン27とを良好に導通させることができる。その結果、外部電源から供給された駆動電流を、安定してステータ21へ供給でき、モータ1の電気的信頼性を向上できる。
 次に、ケーシング22を射出成型する。図7は、ケーシング22の射出成型時の手順を示すフローチャートである。図8は射出成型時の様子を示した図である。ケーシング22を射出成型するときには、先ず、金型を用意する(ステップS21)。金型は、互いに組み合わせることで内部に空洞が生じる、上金型90および下金型により構成される。そして、図6の手順により得られた、ステータ21、端子ピン27、および導線70を含む構造物を、金型の内部に配置する。
 このとき、図8に示すように、上金型90の下面は、インシュレータ212の土台部54の上面に接触する。そして、上金型90により、端子ピン27が囲いこまれる。
 上金型90の下面には、金型凹部91が設けられている。金型凹部91は、土台部54の上方において軸方向上側へ凹む。上金型90を土台部54に接触させたときには、金型凹部91内に、端子ピン27、第3導線部73、および半田74が収容される。これにより、上金型90と第3導線部73とが、非接触に維持される。
 また、図3および図8に示すように、本実施形態のインシュレータ212は、土台部54の上面から上側へ向けて僅かに突出する突出部56を有する。突出部56は、端子ピン27の周囲において、円弧状に延びている。ただし、突出部56の形状は、一部分が欠けた矩形状などの他の形状であってもよい。突出部56は、スリット55と重なる部分を除いて、端子ピン27の周りを取り囲んでいればよい。上金型90を土台部54の上面に接触させると、上金型90の下面は、突出部56に接触する(ステップS22)。そして、上金型90により、突出部56が押しつぶされる。これにより、上金型90と土台部54との隙間が埋まる。その結果、後続の工程において、流動状態の樹脂が端子ピン27側へと流れ込むことが抑制される。
 また、図3に示すように、本実施形態のインシュレータ212は、スリット55の上部に隣接し、突出部56と繋がるスリット突出部57をさらに有する。上金型90の下面は、上述した突出部56だけではなく、スリット突出部57にも接触する。スリット突出部57は、上金型90により押しつぶされて、スリット55側へ倒れる。これにより、スリット55の上部の開口が狭くなる。その結果、後続の工程において、流動状態の樹脂がスリット55から端子ピン27側へ流れ込むことが抑制される。
 なお、突出部56は、軸方向下側へ向かうにつれて端子ピン27から離れるように傾斜するテーパ部58を有していることが好ましい。テーパ部58を設けておけば、突出部56が押しつぶされたときに、突出部56が端子ピン27側へ倒れやすくなる。これにより、流動状態の樹脂が端子ピン27側へ流れ込むことを、より抑制できる。また、スリット突出部57も、軸方向下側へ向かうにつれてスリット55から離れるように傾斜するテーパ部59を有していることが好ましい。テーパ部59を設けておけば、スリット突出部57が押しつぶされたときに、スリット突出部57がスリット55側へ倒れやすくなる。これにより、スリット55から端子ピン27側への樹脂の流れ込みを、より抑制できる。
 上金型90と下金型とを閉じた後(ステップS23)、金型内の空洞に、流動状態の樹脂を流し込む(ステップS24)。このとき、金型凹部91の外側には、図8中の破線矢印のように、流動状態の樹脂が供給されるが、上金型90と土台部54との間が、上記の通り閉じられているため、流動状態の樹脂は、金型凹部91内には流れ込みにくい。やがて、金型内の空洞全体に樹脂が行き渡ると、流動状態の樹脂を硬化させる(ステップS25)。これにより、ケーシング22が得られる。土台部54の上側には、凹部224が形成され、凹部224内に端子ピン27の一部分が配置された状態となる。
 その後、上金型90と下金型とを分離させて、金型を開く(ステップS26)。そして、金型から、ステータ21、端子ピン27、導線70、および成型後のケーシング22を含む構造物を取り出す(ステップS27)。取り出された構造物においては、端子ピン27の少なくとも下端部が、凹部224内に配置される。また、端子ピン27の下部に巻かれた第2導線部72も、凹部224内に位置する。一方、端子ピン27の上部に巻かれた第3導線部73は、凹部224よりも上方に位置する。
 以上の製造手順によれば、ケーシング22の成型時に、端子ピン27に巻かれた導線70が金型と接触することを防止できる。このため、端子ピン27に巻かれた導線70の巻線間隔を広くとることができる。また、金型との接触による導線70の損傷を防止できる。これにより、モータ1の電気的信頼性を向上できる。
 <2.第2実施形態>
 <2-1.モータの構造>
 次に、第2実施形態に係るモータの構成について説明する。なお、ケーシングの射出成型の方法および導通板の構成については、第1実施形態に係るモータ1と同様であるため、説明を省略する。図9は、モータ1Cの縦断面図である。図10は、モータ1Cの拡大断面図である。このモータ1Cは、ステータ21Cの径方向外側にマグネット35Cが配置される、いわゆるアウターロータ型のモータである。モータ1Cは、例えば、シーリングファンや、エアコンディショナーの室外機等の家電製品に使用される。ただし、本発明のモータは、家電製品以外の用途に使用されるものであってもよい。例えば、本発明のモータ1Cは、自動車や鉄道等の輸送機器、OA機器、医療機器、工具、産業用の大型設備等に搭載されて、種々の駆動力を発生させるものであってもよい。
 図9および図10に示すように、モータ1Cは、静止部2Cと回転部3Cとを有する。静止部2Cは、駆動対象となる機器の枠体に固定される。回転部3Cは、静止部2Cに対して回転可能に支持される。
 本実施形態の静止部2Cは、ステータ21C、ケーシング22C、カバー23C、導通板24C、下軸受部25C、上軸受部26C、および端子ピン27Cを有する。回転部3Cは、シャフト31Cおよびロータ32Cを有する。
 ステータ21Cは、外部電源から導通板24Cを介して供給される駆動電流に応じて、磁束を発生させる電機子である。図11は、ステータ21Cの斜視図である。なお、図11では、導線70Cおよび半田74Cの図示が省略されている。図9~図11に示すように、ステータ21Cは、上下に延びる中心軸9Cの周りを環状に取り囲む。ステータ21Cは、ステータコア211C、インシュレータ212C、および複数のコイル213Cを有する。ステータコア211Cは、円環状のコアバック41Cおよびコアバック41Cから径方向外側へ向けて突出する複数のティース42Cを有する。コアバック41Cは、中心軸9Cと略同軸に配置される。複数のティース42Cは、周方向に等間隔に配列される。ステータコア211Cには、例えば、積層鋼板が用いられる。
 インシュレータ212Cは、ステータコア211Cに取り付けられる。インシュレータ212Cの材料には、絶縁体である樹脂が用いられる。インシュレータ212Cは、少なくとも、ティース42Cの軸方向の両端面および周方向の両面を覆う。コイル213Cは、ティース42Cの周囲にインシュレータ212Cを介して巻かれた導線70Cからなる。すなわち、インシュレータ212Cは、ティース42Cとコイル213Cとの間に介在する。
 ケーシング22Cは、ステータ21C、下軸受部25Cおよび上軸受部26Cを保持する樹脂製の部材である。ケーシング22Cは、壁部221C、底板部222C、上板部231C、上軸受保持部232C、および下軸受保持部223Cを有する。ステータ21Cの上部は、上板部231Cを構成する樹脂に覆われる。そして、上板部231Cは、後述するロータ32Cよりも径方向外側まで延びる。壁部221Cは、上板部231Cの径方向外側端部から、軸方向上方に略円筒状に延びる。ステータ21Cの下部は、底板部222Cを構成する樹脂に覆われる。
 下軸受保持部223Cは、底板部222Cの径方向内側面からシャフト31Cへ向けて延び、下軸受部25Cの一部を覆う。上軸受保持部232Cは、上板部231Cの径方向内側面からシャフト31Cへ向けて延び、上軸受部26Cの一部を覆う。これにより、下軸受部25Cおよび上軸受部26Cは保持される。なお、上軸受保持部232Cおよび下軸受保持部223Cは、ケーシング22Cと同一部材であってもよく、別部材であってもよい。
 カバー23Cは、ケーシング22Cの上部の開口を覆う。カバー23Cは、ステータ21C、ケーシング22C、導通板24C、およびロータ32Cよりも軸方向上側において、中心軸9Cに対して略垂直に広がる。カバー23Cは、軸方向下方に向けて円環状に突出する固定部233Cを有する。固定部233Cは、壁部221Cの内周部と周方向に亘り当接する。これにより、カバー23Cはケーシング22Cの上部で固定される。そして、カバー23Cとケーシング22Cは、ステータ21Cの上方に収納部28Cを形成する。すなわち、ケーシング22Cの少なくとも一部は、収納部28Cとロータ32Cとの間に配置される。
 導通板24Cは、中心軸9Cに対して略垂直に配置された回路基板である。導通板24Cは、収納部28Cの内部に配置される。導通板24Cは、図示を省略したリード線を介して、外部電源に接続される。そして、外部電源から供給される電流は、リード線、導通板24C、および後述する端子ピン27Cを通って、コイル213へ流れる。
 下軸受部25Cは、ロータ32Cよりも下方において、シャフト31Cを回転可能に支持する。上軸受部26Cは、ロータ32Cよりも上方において、シャフト31Cを回転可能に支持する。本実施形態の下軸受部25Cおよび上軸受部26Cには、球体を介して外輪と内輪とを回転させるボールベアリングが、使用されている。下軸受部25Cの外輪は、下軸受保持部223Cに固定される。上軸受部26Cの外輪は、上軸受保持部232Cに固定される。また、下軸受部25Cおよび上軸受部26Cの各々の内輪は、シャフト31Cに固定される。ただし、ボールベアリングに代えて、すべり軸受や流体軸受等の他方式の軸受が、使用されていてもよい。
 図9および図10に示すように、本実施形態では、上軸受部26Cは、コアバック41Cの上方に配置される。また、下軸受部25Cは、コアバック41Cの下方に配置される。なお、上軸受部26Cおよび下軸受部25Cの少なくとも一部は、コアバック41Cと軸方向に重なってもよい。また、ティース42Cの径方向外側の先端部は、上軸受部26Cおよび下軸受部25Cよりも径方向外側に位置する。そして、後述する端子ピン27Cは、ティース42Cの径方向外側の先端部の上方に配置される。
 シャフト31Cは、中心軸9Cに沿って軸方向上下に延びる略円柱状の部材である。シャフト31Cの材料には、例えば、ステンレス等の金属が用いられる。シャフト31Cは、中心軸9Cを中心として回転する。
 ロータ32Cは、シャフト31Cに固定されて、シャフト31Cとともに回転する環状の部材である。図1に示すように、ロータ32Cは、円板部33C、円筒部34C、およびマグネット35Cを有する。円板部33Cは、シャフト31Cの外周部から径方向外側へ拡がる板状の部位である。円筒部34Cは、円板部33Cよりも径方向外側に位置する略円筒状の部位である。円筒部34Cの外周部には、インペラ4Cが取り付けられている。
 マグネット35Cは、ステータ21Cの径方向外側に位置する略円環状の磁性体である。マグネット35Cは、円筒部34Cの内周面に、例えば、接着剤等を介して固定される。ただし、マグネット35Cは、円筒部34Cの内周面に、他の手法により固定されてもよい。マグネット35Cの内周面は、複数のティース42Cの径方向外側の端面と、僅かな隙間を介して対向する。また、マグネット35Cの内周面には、N極とS極とが、周方向に交互に着磁されている。なお、円環状のマグネット35Cに代えて、複数のマグネットが使用されていてもよい。複数のマグネットを使用する場合には、N極とS極とが交互に並ぶように、複数のマグネットを周方向に配列すればよい。
 モータ1Cの駆動時には、外部電源から、図示を省略したリード線、導通板24C、および後述する端子ピン27Cを介して、コイル213Cに駆動電流が供給される。これにより、ステータコア211の複数のティース42Cに、磁束が生じる。そして、ティース42Cとマグネット35Cとの間の磁束が及ぼす作用により、周方向のトルクが発生する。その結果、中心軸9Cを中心としてインペラ4Cを含む回転部3Cが回転する。
 <2-2.端子ピン付近の構造について>
 次に、モータ1Cの端子ピン27C付近の構造について、より詳細に説明する。図12は端子ピン27Cおよびインシュレータ212Cの一部分を示す斜視図である。図13は、モータ1Cの端子ピン27C付近の部分断面図である。なお、図12では、半田74Cの図示が省略されている。
 インシュレータ212Cは、第1絶縁部51Cおよび土台部54Cを有する。第1絶縁部51Cおよび土台部54Cは、単一の部材であってもよく、複数の部材で構成されていてもよい。第1絶縁部51Cは、ティース42Cの軸方向の両端面および周方向の両面を覆っている。土台部54Cの径方向外側の側面には、径方向内側へ向けて凹むスリット55Cが設けられている。スリット55Cは、土台部54Cの上端から下側へ向けて、軸方向に延びる。また、図12に示すように、本実施形態のインシュレータ212Cは、土台部54Cの上面から上側へ向けて僅かに突出する突出部56Cを有する。突出部56Cの構成については、第1実施形態と同様であるため、説明を省略する。
 土台部54C上には、端子ピン27Cが設けられている。端子ピン27Cは、収納部28Cに向けて軸方向上方に突出する柱状の導体である。端子ピン27Cは、鉄または銅などの導電性を有する材料で形成される。端子ピン27Cの下端部は、土台部54Cに設けられた穴に挿入され、土台部54Cに固定されている。端子ピン27Cの上端部は、土台部54Cの上面よりも上方に位置している。なお、本実施形態では、1つの土台部54Cに対して1つの端子ピン27Cが固定されている。ただし、1つの土台部54Cに対して、2本以上の端子ピン27Cが固定されていてもよい。
 また、本実施形態では、土台部54Cは、ティース42Cの径方向先端部の上方に配置される。すなわち、端子ピン27Cは、ティース42Cの先端部の上方に配置される。これにより、上軸受部26Cと、端子ピン27Cとの間に絶縁距離を確保することができる。したがって、上軸受部26Cと、端子ピン27Cとの電気的短絡を防ぐことができる。また、端子ピン27Cをティース42Cの先端部の上方に配置することで、コアバック41Cの径方向の幅を抑えつつ、絶縁距離を確保することができる。これにより、モータを小型化できる。
 ステータコア211C、インシュレータ212C、およびコイル213Cは、少なくともその表面の一部が、ケーシング22Cに覆われる。ケーシング22Cは、インシュレータ212Cの土台部54Cの上方に、軸方向に凹む凹部224Cを有する。土台部54Cの上面は、凹部224C内に位置する。したがって、土台部54Cの上面は、ケーシング22Cから露出する。また、端子ピン27Cの少なくとも下端部は、ケーシング22Cと接触することなく、凹部224C内に配置される。
 ケーシング22Cは、ステータ21Cおよび端子ピン27Cが収容された金型内の空洞に樹脂を流し込んで硬化させる、射出成型により得られる。また、図13に示すように、本実施形態のケーシング22Cは、導通板24Cの下面に接触する導通板配置面225Cを有する。これにより、導通板24Cの下方への位置ずれは、導通板配置面225Cによって防止される。
 導線70Cは、土台部54Cの径方向内側に位置するコイル213Cから延び、スリット55C側へ引き出される。導線70Cは、第1導線部71Cおよび第2導線部72Cを有する。第1導線部71Cは、スリット55C内に位置する。第2導線部72Cは、第1導線部71Cと繋がり、端子ピン27Cの下部に巻かれる。第2導線部72Cは、凹部224C内に位置する。なお、導線70Cは、第2導線部72Cと繋がり、端子ピン27Cの上部に巻かれる第3導線部をさらに有してもよい。このように、コイル213Cから延びる導線70Cは、スリット55C内を通り、端子ピン27Cの下部から上部にかけて、凹部224Cの上方まで巻き上げられてもよい。こうすることで、端子ピン27Cに巻かれた導線70Cの巻線間隔を広くすることができ、電気的信頼性を向上できる。
 図12に示すように、本実施形態では、インシュレータ212Cの土台部54Cは、径方向外側に向けて突出する土台突出部59Cを有する。また、スリット55Cは、土台突出部59Cの上方から下方にかけて形成される。また、土台突出部59Cは、スリット55Cに面する側面から下面にかけて、周方向に湾曲する湾曲部591Cを有する。そして、第1導線部71Cは、湾曲部591Cに沿って配置される。これにより、土台突出部59Cに導線70Cを引っ掛けながら、端子ピン27Cに導線70Cを巻き付けることができる。このため、巻線部からスリット55Cへと、導線70Cを配線しやすくなる。また、導線70Cが土台突出部59Cと接触することにより傷付くことを防止できる。したがって、張力の低い細線や、アルミニウム合金製の導線などを、導線70Cとして使用することができる。
 また、本実施形態のモータ1Cでは、ケーシング22Cの射出成型時に、土台部54Cと金型との間に位置する導線70Cに別途保護部材を被せることなく、導線70Cと金型とを非接触に維持する。このため、そのような保護部材に遮られることなく、導線70Cを、端子ピン27Cの上端部付近まで巻きつけることができる。
 なお、本実施形態では、図13に示すように、凹部224C内で第2導線部72Cおよび半田74Cとケーシング22Cとの間には、空隙227Cが介在する。すなわち、ケーシング22Cの射出成型時に、金型は、端子ピン27C、導線70C、および半田74Cと接触しない。このため、端子ピン27C、導線70C、および半田74Cに傷付くことを防止できる。
 また、図13に示すように、導線70Cは、端子ピン27Cに対して、一巻きごとに間隙をあけて巻かれる。そして、端子ピン27Cに巻かれた導線70Cと導線70Cとの間の間隙には、半田74Cが介在する。こうすることで、導線70Cと端子ピン27Cとを、より良好に導通させることができる。その結果、外部電源から供給された駆動電流を、安定してステータ21Cへ流すことができ、モータ1Cの電気的信頼性を向上できる。
 図14は、ケーシング22Cの上面図である。図15は、モータ1Cの部分断面図である。本実施形態では、ケーシング22Cは、隣接する端子ピン27Cの間に下方に向けて凹む溝部226Cを有する。溝部226Cは、マグネット35Cの少なくとも一部と軸方向に重なる。そして、溝部226Cの内部には、位置検出素子29Cが配置される。こうすることで、位置検出素子29Cおよび端子ピン27Cを、ケーシング22C上に集約して配置することができる。結果、導通板24Cの大きさを小さくすることができる。
 位置検出素子29Cは、例としてホールセンサなどであり、マグネットの磁束を検出する。位置検出素子29Cは、溝部226Cの内部に配置されることで、マグネットと軸方向に重なる。これにより、位置検出素子29Cは、ロータ32Cの位置および回転速度を検出することができる。ロータ32Cの回転速度は、位置検出素子29Cの検出結果に基づいて、フィードバック制御される。なお、位置検出素子29Cは、導通板24Cに取り付けられていてもよく、導通板24Cとは別部材であってもよい。
 <3.変形例>
 以上、本発明の例示的な実施形態について説明したが、本発明は上記の実施形態には限定されない。
 図16は、一変形例に係るモータの、導通板24Aの端部付近における部分縦断面図である。図16の例では、ケーシング22Aが、導通板配置面225Aと段差面226Aとを有する。段差面226Aは、導通板配置面225Aよりも径方向内側かつ軸方向下側に位置する。導通板24Aの下面と、段差面226Aとの間には、軸方向の隙間が介在する。このようにすれば、段差面226Aの上方位置において、導通板24Aの下面に電子部品246Aを配置できる。
 図17は、他の変形例に係る導通板24Bの上面図である。図17の例では、導通板24Bが、凹部224Bの上方に位置する第1切り欠き247Bを有する。第1切り欠き247Bの内側の端縁には、銅箔が露出したランド(第2ランド)245Bが設けられている。端子ピン27Bは、第1切り欠き247Bの内部を通って、軸方向に延びる。また、導線は、第1切り欠き247Bよりも上方の位置まで巻かれる。すなわち、第3導線部の上端は、第1切り欠き247Bよりも上方に位置する。端子ピン27Bは、ランドと直接または半田を介して接触する。これにより、端子ピン27Bと導通板24Bとが導通する。
 また、図17の導通板24Bは、径方向内側へ向けて開いた第2切り欠き248Bをさらに有する。シャフト31Bの少なくとも一部分は、第2切り欠き248B内に配置される。第1切り欠き247Bの開口の向きと、第2切り欠き248Bの開口の向きとは、同方向である。
 図17の構造では、導通板24Bを、軸方向に対して斜め方向または横方向に挿入することができる。したがって、射出成型後のケーシングの内側に、下軸受および上軸受を取り付けた回転部を配置した後に、上軸受よりもロータ側の位置に導通板24Bを配置し、導通板24Bと端子ピン27Bとを半田付けすることができる。これにより、モータの製造工程における作業の自由度が向上する。
 図18は、他の変形例に係るモータ1Dの端子ピン27D付近の縦断面図である。図19は、当該モータ1Dの、土台部54D、ケーシング22D、および端子ピン27Dの部分斜視図である。図18および図19の例では、ケーシング22Dの凹部224Dが、第1凹部81D、第2凹部82D、一対の第3凹部83D、および第4凹部84Dを有する。第1凹部81D、第2凹部82D、第3凹部83D、および第4凹部84Dは、互いに繋がっている。
 第1凹部81Dは、インシュレータ212Dの土台部54Dの上方に位置する。土台部54Dの上面は、第1凹部81D内で露出する。端子ピン27Dの少なくとも一部分は、第1凹部81D内に位置する。図18および図19の例では、土台部54Dの上面の略全体が、第1凹部81D内で露出している。ただし、土台部54Dの上面の一部分は、ケーシング22Dを構成する樹脂に覆われていてもよい。
 第2凹部82Dは、土台部54Dの径方向外側に位置する。土台部54Dのスリット55Dを有する側面は、第2凹部82D内で露出する。図18および図19の例では、第2凹部82Dの下端部が、インシュレータ212Dの第2絶縁部52Dの上面よりも上側に位置する。このため、土台部54Dのスリット55Dを有する側面のうち、上端部を含む一部分のみが、第2凹部82D内で露出する。ただし、第2凹部82Dの下端部は、第2絶縁部52Dの上面と同等の高さであってもよい。そして、土台部54Dのスリット55Dを有する側面の全体と、第2絶縁部52Dの上面の一部分とが、第2凹部82D内で露出していてもよい。
 一対の第3凹部83Dは、土台部54の周方向の両側部に位置する。土台部54Dの周方向の両側面は、第3凹部83D内で露出する。図19の例では、第3凹部83Dの下端部が、インシュレータ212Dの第2絶縁部52Dの上面よりも上側に位置する。このため、土台部54Dの周方向の側面のうち、上端部を含む一部分のみが、第3凹部83D内で露出する。ただし、第3凹部83Dの下端部は、第2絶縁部52Dの上面と同等の高さであってもよい。そして、土台部54Dの周方向の側面の全体と、第2絶縁部52Dの上面の一部分とが、第3凹部83D内で露出していてもよい。
 また、図19の例では、第3凹部83Dの径方向内側の端部は、土台部54Dの径方向内側の側面よりも、径方向外側に位置する。このため、土台部54Dの周方向の側面のうち、径方向外側の一部分のみが、第3凹部83D内で露出する。しかしながら、第3凹部83Dは、土台部54Dの径方向内側の側面と同等の径方向位置まで拡がっていてもよい。ただし、コイル213Dは、第3凹部83D内で露出しない方がよい。
 第4凹部84Dは、端子ピン27Dの径方向内側かつコイル213Dの上方に位置する。第4凹部84Dの下端部は、第2凹部82Dおよび第3凹部83Dの軸方向の下端部よりも上側に位置する。これにより、第4凹部84Dは、コイル213Dまで達しない。図18および図19の例では、第4凹部84Dの下端部の高さが、土台部54Dの上面と同等の高さとなっている。ただし、第4凹部84Dの下端部の高さは、土台部54Dの上面とは異なる高さであってもよい。
 図20は、モータ1Dの製造工程において、ケーシング22Dを射出成型するときの様子を示した断面図である。ケーシング22Dを射出成型するときには、まず、ケーシング22Dの形状に応じた上金型90Dおよび下金型92Dを用意する。そして、ステータ21D、端子ピン27D、および導線70Dを含む構造物を、上金型90Dと下金型92Dとの間に配置する。
 このとき、図20に示すように、上金型90Dの下面は、土台部54Dの上面に接触する。そして、上金型90Dにより、端子ピン27Dが囲いこまれる。具体的には、上金型90Dに設けられた金型凹部91D内に、端子ピン27Dが収容される。これにより、上金型90Dと導線70Dとが、非接触に維持される。また、図20の例では、上金型90Dは、土台部54Dのスリット55Dを有する側面および周方向の両側面にも、接触する。これにより、金型凹部91D内の空間が、より周囲から隔離される。
 その後、上金型90Dと下金型92Dとの間に形成される空洞に、図20中の破線矢印のように、流動状態の樹脂を流し込む。このとき、金型凹部91D内の空間には、樹脂が流れ込みにくい。特に、図20の例では、土台部54Dの上面だけではなく、土台部54Dのスリット55Dを有する側面にも、上金型90Dが接触する。これにより、スリット55D付近を通って金型凹部91D内に樹脂が流れ込むことを、抑制できる。また、この例では、土台部54Dの周方向の側面にも、上金型90Dが接触する。これにより、金型凹部91D内に樹脂が流れ込むことを、より抑制できる。その結果、端子ピン27Dの周囲に樹脂が侵入することを、より抑制できる。
 また、図20の例では、端子ピン27Dの径方向内側かつコイル213Dの上方、すなわち、成型後に第4凹部84Dとなる位置にも、上金型90Dの一部が配置される。これにより、コイル213Dの付近から端子ピン27Dの周囲に樹脂が侵入することを抑制できる。
 やがて、上金型90Dと下金型92Dと間の空洞全体に樹脂が行き渡ると、流動状態の樹脂を硬化させる。これにより、第1凹部81D、第2凹部82D、第3凹部83D、および第4凹部84Dを有するケーシング22Dが得られる。
 また、上記の第1実施形態では、シャフトが、ケーシングおよびカバーよりも上方へ突出していた。しかしながら、シャフトは、ケーシングよりも下方へ突出し、その下端部が駆動部と連結されてもよい。また、シャフトは、ケーシングの下方およびカバーの上方の双方に突出し、その下端部および上端部の双方が、それぞれ駆動部に連結されていてもよい。
 また、上記の第1実施形態では、マグネット樹脂製のロータを使用していた。しかしながら、ロータは、複数のマグネットを、磁性体である円筒状のロータコアの外周面または内部に固定したものであってもよい。
 また、上記の実施形態の導通板は、コイルに駆動電流を供給するための電子回路が搭載された回路基板であった。しかしながら、導通板は、リード線を支持する配線台であってもよい。その場合、リード線を配線台の表面に沿って配置し、リード線と端子ピンとを、直接接続してもよい。
 また、上記の実施形態では、端子ピンと導線とが、半田付けにより電気的に接続されていた。しかしながら、端子ピンと導線とを電気的に接続する手段は、熱カシメ、導電性接着剤、溶着等の他の方法であってもよい。
 また、上記の実施形態では、金属端子の中心軸に対して垂直な断面形状が矩形であった。しかしながら、金属端子の断面形状は、円形等の他の形状であってもよい。
 また、各部材の細部の形状については、本願の各図に示された形状と、相違していてもよい。また、上記の実施形態や変形例に登場した各要素を、矛盾が生じない範囲で、適宜に組み合わせてもよい。
 本発明は、モータおよびモータの製造方法に利用できる。
 1 モータ
 2 静止部
 3 回転部
 9 中心軸
 21 ステータ
 22 ケーシング
 23 カバー
 24 導通板
 25 下軸受部
 26 上軸受部
 27 端子ピン
 29C 位置検出素子
 31 シャフト
 32 ロータ
 35C マグネット
 41 コアバック
 42 ティース
 51 第1絶縁部
 52 第2絶縁部
 53 第3絶縁部
 54 土台部
 55 スリット
 56 突出部
 57 スリット突出部
 58 テーパ部
 59C 土台突出部
 70 導線
 71 第1導線部
 72 第2導線部
 73 第3導線部
 74 半田
 90 上金型
 91 金型凹部
 201 接続孔
 211 ステータコア
 212 インシュレータ
 213 コイル
 221 壁部
 222 底板部
 223 下軸受保持部
 224 凹部
 225 導通板配置面
 226C 溝部226C
 227 空隙 
 231 上板部
 232 上軸受保持部
 242 リード線
 243 ブッシング
 244 貫通孔
 245 ランド 
 311 溝
 321 内側筒部
 322 外側筒部
 323 連結部
 591C 湾曲部

Claims (28)

  1.  ステータを含む静止部と、
     前記静止部と径方向に対向し、上下に延びる中心軸を中心に回転するロータを含む回転部と、
    を有し、
     前記静止部は、
      環状のコアバックおよび前記コアバックから径方向へ突出する複数のティースを有するステータコアと、
      前記ステータコアの少なくとも一部を覆うインシュレータと、
      前記インシュレータを介して前記ティースに巻かれた導線からなるコイルと、
      前記インシュレータの土台部から上方へ延びる端子ピンと、
      前記ステータの上方に配置される導通板と、
      前記ステータコア、前記インシュレータ、および前記コイルを覆う樹脂製のケーシングと、
    を有し、
     前記ケーシングは、軸方向に凹む凹部を有し、
     前記端子ピンの少なくとも一部分が、前記凹部内に位置し、
     前記導線は、
      前記土台部に設けられたスリット内に位置する第1導線部と、
      前記第1導線部と繋がり、前記端子ピンの下部に巻かれる第2導線部と、
    を有する、モータ。
  2.  請求項1に記載のモータであって、
     前記導線は、前記端子ピンに、一巻きごとに間隙をあけて巻かれ、
     前記間隙に半田が介在する、モータ。
  3.  請求項2に記載のモータであって、
     前記凹部内で、前記第2導線部および前記半田と、前記ケーシングとの間に、空隙が介在する、モータ。
  4.  請求項1から請求項3までのいずれか1項に記載のモータであって、
     前記導線は、前記第2導線部と繋がり、前記端子ピンの上部に巻かれる第3導線部をさらに有し、
     前記第3導線部は、前記凹部よりも上方に位置する、モータ。
  5.  請求項1から請求項4までのいずれか1項に記載のモータであって、
     前記凹部は、第1凹部を有し、
     前記土台部の上面は、前記第1凹部内で露出する、モータ。
  6.  請求項5に記載のモータであって、
     前記凹部は、第2凹部をさらに有し、
     前記土台部の前記スリットを有する側面は、前記第2凹部内で露出する、モータ。
  7.  請求項5または請求項6に記載のモータであって、
     前記凹部は、第3凹部をさらに有し、
     前記土台部の周方向の側面は、前記第3凹部内で露出する、モータ。
  8.  請求項6に記載のモータであって、
     前記凹部は、第4凹部をさらに有し、
     前記第4凹部は、前記コイルの上方に位置し、
     前記第4凹部の下端部は、前記第2凹部の下端部よりも上側に位置する、モータ。
  9.  請求項1から請求項8までのいずれか1項に記載のモータであって、
     前記土台部の上面は、前記端子ピンの周囲に位置する突出部を備える、モータ。
  10.  請求項1から請求項9までのいずれか1項に記載のモータであって、
     前記土台部は、径方向外側に向けて突出する土台突出部をさらに有し、
     前記スリットは、前記土台突出部の上方から下方にかけて形成される、モータ。
  11.  請求項10に記載のモータであって、
     前記土台突出部は、前記スリットに面する側面から下面にかけて、周方向に湾曲する湾曲部を有し、
     前記第1導線部は、前記湾曲部に沿って配置される、モータ。
  12.  請求項1から請求項11までのいずれか1項に記載のモータであって、
     前記導線の材料は、アルミニウム合金である、モータ。
  13.  請求項1から請求項12までのいずれか1項に記載のモータであって、
     前記ケーシングは、前記導通板の下面に接触する導通板配置面を有し、
     前記導通板配置面は、前記ロータの少なくとも外周部の上端部よりも軸方向上側に位置する、モータ。
  14.  請求項13に記載のモータであって、
     前記ケーシングは、前記導通板配置面の径方向内側に、前記導通板配置面よりも軸方向下側に位置する段差面を有し、
     前記導通板の下面と、前記段差面との間に、軸方向の隙間が介在する、モータ。
  15.  請求項4に記載のモータであって、
     前記導通板は、前記凹部の上方に位置し、その内周部に第1ランドを備える貫通孔を有し、
     前記端子ピンは、前記貫通孔の内部に配置されるとともに、前記第1ランドと直接または半田を介して接触し、
     前記第3導線部の上端は、前記貫通孔よりも上側に位置する、モータ。
  16.  請求項4に記載のモータであって、
     前記導通板は、前記凹部の上方に位置し、その内側の端縁に第2ランドを備える第1切り欠きを有し、
     前記端子ピンは、前記第1切り欠きの内部に配置されるとともに、前記第2ランドと直接または半田を介して接触し、
     前記第3導線部の上端は、前記第1切り欠きよりも上側に位置する、モータ。
  17.  請求項16に記載のモータであって、
     前記回転部は、
      前記ロータを貫いて軸方向に延びるシャフト
    をさらに有し、
     前記導通板は、径方向内側へ向けて開いた第2切り欠きを有し、
     前記シャフトの少なくとも一部分が、前記第2切り欠き内に配置され、
     前記第1切り欠きの開口の向きと、前記第2切り欠きの開口の向きとが、同方向である、モータ。
  18.  請求項1から請求項17までのいずれか1項に記載のモータであって、
     前記中心軸に対して垂直な断面における前記端子ピンの形状が矩形である、モータ。
  19.  請求項1から請求項18までのいずれか1項に記載のモータであって、
     前記ロータは、前記ステータの径方向外側に配置されたマグネットを有し、
     前記複数のティースは、前記コアバックから径方向外側へ突出する、モータ。
  20.  請求項19に記載のモータであって、
     前記静止部と前記回転部とを回転可能に接続する軸受をさらに有し、
     前記軸受は、前記コアバックの上方に配置され、
     前記ティースの径方向外側の先端部は、前記軸受よりも径方向外側に位置し、
     前記端子ピンは、前記ティースの前記先端部の上方に配置される、モータ。
  21.  請求項19または請求項20に記載のモータであって、
     前記ケーシングは、前記ステータの上方に、収納部を形成し、
     前記導通板は、前記収納部の内部に配置され、
     前記端子ピンは、前記収納部に向けて上方に突出し、
     前記ケーシングの少なくとも一部は、前記収納部と、前記ロータとの間に配置される、モータ。
  22.  請求項19から請求項21までのいずれか1項に記載のモータであって、
     前記ケーシングは、隣接する前記端子ピンの間に、溝部を有し、
     前記溝部は、前記マグネットの少なくとも一部と軸方向に重なり、
     前記溝部の内部には、前記ロータの位置を検出する位置検出素子が配置される、モータ。
  23.  請求項1から請求項18までのいずれか1項に記載のモータであって、
     前記回転部は、前記ステータの径方向内側に配置され、
     前記複数のティースは、前記コアバックから径方向内側へ突出する、モータ。
  24.  ステータコアとコイルとの間にインシュレータが介在し、前記ステータコア、前記コイル、および前記インシュレータを覆う樹脂製のケーシングを有するモータの製造方法であって、
     a)前記インシュレータの土台部の上面に、端子ピンを取り付ける工程と、
     b)前記コイルを構成する導線の端部を、前記端子ピンへ引き出す工程と、
     c)前記端子ピンに、前記導線を巻く工程と、
     d)前記導線と前記端子ピンとを、半田付けする工程と、
     e)互いに組み合わせることで内部に空洞が生じる上金型および下金型を用意する工程と、
     f)前記上金型を前記土台部の上面に接触させ、前記上金型により前記端子ピンを囲いこむ工程と、
     g)前記上金型と前記下金型とを組み合わせ、前記空洞内に前記ステータ、前記コイル、および前記インシュレータを収容する工程と、
     h)前記空洞内に流動状態の樹脂を流し込む工程と、
     i)前記流動状態の樹脂を硬化させて前記ケーシングを得る工程と、
     j)前記上金型と前記下金型とを分離する工程と、
     k)前記下金型から、前記ステータおよび前記ケーシングを取り出す工程と、
    を有する、製造方法。
  25.  請求項24に記載の製造方法であって、
     前記土台部の上面は、前記端子ピンの周囲に位置する突出部を備え、
     前記工程e)では、前記上金型が前記突出部を押しつぶす、製造方法。
  26.  請求項25に記載の製造方法であって、
     前記工程b)では、前記導線が、前記土台部の径方向外側に設けられたスリットを通って、前記端子ピンへ引き出され、
     前記インシュレータは、前記スリットの上部に隣接し、前記突出部と繋がるスリット突出部をさらに有し、
     前記工程e)では、前記上金型が前記スリット突出部を押しつぶす、製造方法。
  27.  請求項24から請求項26までのいずれか1項に記載の製造方法であって、
     前記工程k)の後に、
     l)導通板と前記端子ピンとを半田付けする工程
    をさらに有し、
     前記導通板は、内側の端縁にランドを備える第1切り欠きを有し、
     前記工程l)では、前記第1切り欠きの内部に前記端子ピンを配置するとともに、前記端子ピンと前記ランドとを、直接または半田を介して接触させる、製造方法。
  28.  請求項27に記載の製造方法であって、
     前記モータは、
      前記ケーシングに対して回転可能に支持されるシャフトと、
      前記シャフトに取り付けられた環状のロータと、
    を有し、
     前記工程l)では、前記ケーシングと前記シャフトとを接続する軸受よりも前記ロータ側の位置に、前記導通板を配置する、製造方法。
PCT/JP2016/067011 2015-07-29 2016-06-08 モータおよびモータの製造方法 WO2017018066A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680039969.7A CN107852060A (zh) 2015-07-29 2016-06-08 马达以及马达的制造方法
JP2017531068A JPWO2017018066A1 (ja) 2015-07-29 2016-06-08 モータおよびモータの製造方法
US15/743,702 US20180205281A1 (en) 2015-07-29 2016-06-08 Motor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-149493 2015-07-29
JP2015149493 2015-07-29
JP2016023259 2016-02-10
JP2016-023259 2016-02-10

Publications (1)

Publication Number Publication Date
WO2017018066A1 true WO2017018066A1 (ja) 2017-02-02

Family

ID=57885095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067011 WO2017018066A1 (ja) 2015-07-29 2016-06-08 モータおよびモータの製造方法

Country Status (4)

Country Link
US (1) US20180205281A1 (ja)
JP (1) JPWO2017018066A1 (ja)
CN (1) CN107852060A (ja)
WO (1) WO2017018066A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168090A1 (ja) * 2017-03-14 2018-09-20 日本電産株式会社 ステータ、モータ、電動パワーステアリング装置
JP2019135692A (ja) * 2018-02-05 2019-08-15 東芝ライテック株式会社 車両用照明装置、車両用灯具、およびソケットの製造方法
JP2020054195A (ja) * 2018-09-28 2020-04-02 日本電産サーボ株式会社 モータ装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019180200A (ja) * 2018-03-30 2019-10-17 日本電産株式会社 モータ及び送風装置
JP2020102959A (ja) * 2018-12-21 2020-07-02 株式会社マキタ 電動作業機及び電動作業機用モータにおけるステータへのコイルの形成方法
CN112531948A (zh) * 2019-09-18 2021-03-19 泰科电子(上海)有限公司 线圈骨架和定子骨架

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172932A (ja) * 2007-01-11 2008-07-24 Nippon Densan Corp レゾルバおよびレゾルバの製造方法
WO2013171961A1 (ja) * 2012-05-16 2013-11-21 コベルコ建機株式会社 電動機アセンブリ及びその製造方法
JP3192975U (ja) * 2014-06-27 2014-09-11 ミネベア株式会社 アウターロータ型ブラシレスモータ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6057050B2 (ja) * 2012-03-23 2017-01-11 株式会社富士通ゼネラル モールドモータ
JP6175708B2 (ja) * 2013-02-18 2017-08-09 日本電産テクノモータ株式会社 モータ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172932A (ja) * 2007-01-11 2008-07-24 Nippon Densan Corp レゾルバおよびレゾルバの製造方法
WO2013171961A1 (ja) * 2012-05-16 2013-11-21 コベルコ建機株式会社 電動機アセンブリ及びその製造方法
JP3192975U (ja) * 2014-06-27 2014-09-11 ミネベア株式会社 アウターロータ型ブラシレスモータ

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168090A1 (ja) * 2017-03-14 2018-09-20 日本電産株式会社 ステータ、モータ、電動パワーステアリング装置
CN109964389A (zh) * 2017-03-14 2019-07-02 日本电产株式会社 定子、马达、电动助力转向装置
JPWO2018168090A1 (ja) * 2017-03-14 2020-01-16 日本電産株式会社 ステータ、モータ、電動パワーステアリング装置
CN109964389B (zh) * 2017-03-14 2021-08-20 日本电产株式会社 定子、马达、电动助力转向装置
JP7060007B2 (ja) 2017-03-14 2022-04-26 日本電産株式会社 ステータ、モータ、電動パワーステアリング装置
JP2019135692A (ja) * 2018-02-05 2019-08-15 東芝ライテック株式会社 車両用照明装置、車両用灯具、およびソケットの製造方法
JP2020054195A (ja) * 2018-09-28 2020-04-02 日本電産サーボ株式会社 モータ装置
WO2020067216A1 (ja) * 2018-09-28 2020-04-02 日本電産サーボ株式会社 モータ装置
JP7336182B2 (ja) 2018-09-28 2023-08-31 ニデックアドバンスドモータ株式会社 モータ装置

Also Published As

Publication number Publication date
JPWO2017018066A1 (ja) 2018-05-31
CN107852060A (zh) 2018-03-27
US20180205281A1 (en) 2018-07-19

Similar Documents

Publication Publication Date Title
WO2017018066A1 (ja) モータおよびモータの製造方法
JP6175708B2 (ja) モータ
JP4662200B2 (ja) モータおよびブスバー
US9692270B2 (en) Motor including brackets and fixing members
US8922083B2 (en) Rotor
US20160365779A1 (en) Rotor, motor and method of manufacturing the rotor
JP5842365B2 (ja) ロータユニット、回転電機、およびロータユニットの製造方法
JP6243208B2 (ja) モータおよびモータの製造方法
JP6651545B2 (ja) モータ
JP2013066314A (ja) モータおよびモータの製造方法
CN107846099B (zh) 定子及制造定子的方法
JP4697597B2 (ja) ブスバーおよびモータ
JP6381347B2 (ja) モータ
JP6766535B2 (ja) ステータユニット、モータ、およびファンモータ
JP6184599B2 (ja) 電動機の回転子、電動機、空気調和機、および電動機の回転子の製造方法
JP2017175897A (ja) モータ
JP2018207582A (ja) 静止部、モータ、およびモータの製造方法
JP2019097371A (ja) 静止部、モータ、およびモータの静止部の製造方法
JPWO2020067255A1 (ja) モータ
JP6229331B2 (ja) モータ
JP2019140871A (ja) レゾルバのステータ構造およびレゾルバ
JP2018143048A (ja) 樹脂ケーシングの成型方法およびモータ
JP2018143049A (ja) モータの製造方法およびモータ
JP6402231B2 (ja) モータおよびモータの製造方法
JP2018207581A (ja) 静止部およびモータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830171

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15743702

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017531068

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16830171

Country of ref document: EP

Kind code of ref document: A1