WO2019180087A1 - Rohrelement für gasdruckbehälter und gasdruckbehälter - Google Patents

Rohrelement für gasdruckbehälter und gasdruckbehälter Download PDF

Info

Publication number
WO2019180087A1
WO2019180087A1 PCT/EP2019/056973 EP2019056973W WO2019180087A1 WO 2019180087 A1 WO2019180087 A1 WO 2019180087A1 EP 2019056973 W EP2019056973 W EP 2019056973W WO 2019180087 A1 WO2019180087 A1 WO 2019180087A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe element
longitudinal section
recess
outer radius
pipe
Prior art date
Application number
PCT/EP2019/056973
Other languages
English (en)
French (fr)
Inventor
Wigbert Christophliemke
Leonhard Rose
Marcel Wellpott
Original Assignee
Benteler Steel/Tube Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Benteler Steel/Tube Gmbh filed Critical Benteler Steel/Tube Gmbh
Priority to CN201980019785.8A priority Critical patent/CN111868270B/zh
Priority to US16/982,899 priority patent/US11913101B2/en
Publication of WO2019180087A1 publication Critical patent/WO2019180087A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D15/00Corrugating tubes
    • B21D15/04Corrugating tubes transversely, e.g. helically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D17/00Forming single grooves in sheet metal or tubular or hollow articles
    • B21D17/02Forming single grooves in sheet metal or tubular or hollow articles by pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H7/00Making articles not provided for in the preceding groups, e.g. agricultural tools, dinner forks, knives, spoons
    • B21H7/18Making articles not provided for in the preceding groups, e.g. agricultural tools, dinner forks, knives, spoons grooved pins; Rolling grooves, e.g. oil grooves, in articles
    • B21H7/182Rolling annular grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K21/00Making hollow articles not covered by a single preceding sub-group
    • B21K21/12Shaping end portions of hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/26Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
    • B60R21/261Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow with means other than bag structure to diffuse or guide inflation fluid
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/14Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/006Rigid pipes specially profiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/02Rigid pipes of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/22Pipes composed of a plurality of segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/26Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
    • B60R21/261Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow with means other than bag structure to diffuse or guide inflation fluid
    • B60R2021/2612Gas guiding means, e.g. ducts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/26Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12292Workpiece with longitudinal passageway or stopweld material [e.g., for tubular stock, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12354Nonplanar, uniform-thickness material having symmetrical channel shape or reverse fold [e.g., making acute angle, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12382Defined configuration of both thickness and nonthickness surface or angle therebetween [e.g., rounded corners, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component
    • Y10T428/12965Both containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12993Surface feature [e.g., rough, mirror]

Definitions

  • the present invention relates to a pipe element for a
  • Gas pressure vessel for an airbag system and on a gas pressure vessel with such a tubular element.
  • Airbag modules must be used for example gas pressure vessel, which form for example the housing of the gas generator and / or the reaction chamber.
  • gas pressure vessel which form for example the housing of the gas generator and / or the reaction chamber.
  • these gas pressure vessel and the tubular element, which forms the gas generator significantly must be able to withstand a high internal pressure stress.
  • the tube elements can have recesses on the pipe circumference.
  • the invention has for its object a pipe element for a
  • the object is achieved by a tube element for a gas pressure vessel of an airbag system of a motor vehicle, wherein the Pipe element has at least a first longitudinal portion and at least one extending in the circumferential direction recess.
  • the tubular element is characterized
  • tubular element has at least one second longitudinal section, which is formed by the depression which extends over at least part of the circumference of the tubular element,
  • Tube element is greater than the smallest outer radius of the at least one second length section
  • Length section is greater than or equal to the wall thickness in the at least one first longitudinal section of the tubular element
  • the pipe element is made of a material which, in addition to iron and impurities caused by melting, comprises the following alloying elements in the ranges indicated in weight percent:
  • the housing of a gas generator of an airbag system of a motor vehicle is preferably referred to.
  • Gas is stored or generated in the gas pressure vessel.
  • gas is discharged from the gas pressure vessel at high speed.
  • the gas bag (airbag) is then filled with gas via the gas generator.
  • the gas generator may be a cold gas generator or a hybrid gas generator.
  • at least one pipe element is provided, which serves in particular as a compressed gas storage and / or expansion chamber for gas.
  • the tubular element can, for example, represent the housing of an airbag generator, for example the injector. In this case, a large force acts spontaneously on these tubular elements, which must withstand the material of the tubular element in order to burst the
  • a cold gas generator consists of a gas storage, in which gas is stored under high pressure, and an activator.
  • the gas storage is closed by a membrane.
  • Gas generator the membrane, in particular by an explosive device destroyed and the gas can flow out of the gas storage.
  • the gas generator according to the invention can also be a hybrid gas generator. This represents a combination of a pyrotechnic generator and a
  • a hybrid gas generator is in addition to the pressure accumulator for the gas in addition a pyrotechnic assembly for gas production
  • Pipe material transverse to the tube axis This state of stress causes, for example, a crack which arises during the production or deformation of the tubular element to propagate parallel to the tube axis.
  • the tubular element preferably represents a tubular element with a round cross-section.
  • the tubular element has at least a first longitudinal section and at least one recess extending in the circumferential direction.
  • the in the circumferential direction extending recess preferably represents a non-cutting produced recess.
  • the recess can also be referred to as embossing or bead.
  • a part of the length of the tubular element is referred to as the first longitudinal section.
  • This first longitudinal section is according to the invention the length section which is not or only slightly deformed during a deformation of the tubular element for introducing the depression.
  • the outer radius of the tubular element in the at least one first longitudinal section is preferably constant over its length.
  • the tubular element has at least one second longitudinal section, which is formed by the depression.
  • the part of the length of the tubular element is referred to as the second longitudinal section, which is the width, that is the
  • the depression extends over at least part of the circumference of the tubular element.
  • the recess is aligned so that the depression formed by the recess is directed inward in the radial direction of the tubular element.
  • the recess has the geometry that corresponds to the contour of the tool through which the recess is introduced.
  • the smallest outer radius of the second longitudinal section is the outer radius, which is present at the lowest point of the depression.
  • the second length is according to the invention between two first
  • the second longitudinal section may adjoin the first longitudinal sections directly. However, it is also possible that between the second longitudinal section and the adjacent first Length sections each have a third length section, which will be described in more detail later.
  • the pipe element has a tensile strength of> 920 MPa.
  • the pipe element preferably has a tensile strength of> 1000 MPa. This tensile strength is preferably present at least in the first longitudinal sections and / or in the second longitudinal section and / or third longitudinal section.
  • the wall thickness of the tubular element in the at least one second longitudinal section is greater than or equal to the wall thickness in at least a first longitudinal section of the tubular element.
  • the second length section is the part of the length in which the recess is introduced.
  • Forming for the production of the recess for example during a
  • Wall thickness can be adjusted before or during tube forming.
  • a material flow control or an adjustment of the flow of wall material can take place during the production of the depression.
  • a Marterialhne directed towards the depression can be adjusted before or during tube forming.
  • the degree of reduction of the outer radius in the depression is in the range of 5 to 35%, based on the outer radius of at least one first longitudinal segment.
  • the degree of reduction in the depression can be in the range of 10 to 25% based on the outer radius of at least one first length section.
  • the degree of reduction is preferably related to the larger outer radius.
  • the recess has a great depth and installation or attachments can be reliably held.
  • Such a large degree of reduction is possible with the pipe element according to the invention, since the wall thickness in the second longitudinal section is greater than or equal to the wall thickness in the first longitudinal section.
  • the tube element consists of a material which, in addition to iron and impurities caused by melting, comprises the following alloying elements in the ranges indicated in percent by weight:
  • This material is a high-strength and particularly cold-tough material, so that it can withstand the stresses during operation of the gas generator. Due to the material thickness, which is present during and after the introduction of the depression in the second longitudinal section, damage in the second longitudinal section is not to be feared despite the great degree of reduction.
  • the alloying elements of the material constituting the tubular element contribute to the achievement of the required properties of the tubular element for use in a gas pressure vessel.
  • the proportions of the alloying elements are given in weight percent, although this is not explicitly mentioned below, but only referred to percent.
  • the material of which the pipe element is made is also referred to as alloy, steel alloy or steel.
  • Carbon (C) is added in an amount of at least 0.05% to achieve a martensitic structure and a desired strength of the martensite. Excessively high C content, however, would negatively affect the weldability, among other things.
  • the C content is therefore according to the invention to max. 0.2% limited.
  • the carbon content is in a range of 0.08 to 0.2, and more preferably in the range of 0.08 to 0.13%.
  • Manganese (Mn) increases the strength in the steel due to its solid-solution strengthening action. Furthermore, as the content of Mn increases, the austenite transformation is retarded, which leads to an increase in through-hardenability and formation of martensite in tempering. Since alloys solidify over a temperature interval, at the end of the solidification there are local areas, for example intermediate dendritic spaces, which have different chemical compositions.
  • microstructure Distribution of regions with different chemical compositions is also referred to below as microstructure.
  • the pipe from which the pipe member is made is made by, for example, drawing and / or rolling. Due to the tube manufacturing process, therefore, the
  • Microsections in the starting material are rolled out or pulled to length and can lead to microstructure. Alloying elements typically exhibit certain solid solution strengthening effects in the material, which are dependent on how much the crystal lattice of iron is distorted by the corresponding element. Elements that have strong Mischkristallverestigende effect, such as manganese or silicon, cause the longitudinal pronounced structural lines with different elemental proportions have different strengths. In the by
  • Manganese is added according to the invention at least in an amount of 0.2%.
  • sulfur present in the material can be set.
  • the manganese content of the steel alloy is in the range of 0.4 to 0.6 wt%.
  • These low manganese contents are possible according to the invention, since the hardenability, which must be ensured in other alloys by manganese addition, is achieved according to the invention in part by the increased chromium content.
  • manganese can also be added in an amount in the range of 1.2 to 2%.
  • Silicon (Si) has a deoxidizing and strong mixed crystal strengthening effect in the steel, which is stronger than the effect of manganese. Therefore, the content of silicon in the material according to the invention is limited to a maximum of 0.9%, and for example to a maximum of 0.5%, to a maximum of 0.4% or to a maximum of 0.1%.
  • Chromium (Cr) delays in the steel the austenite wall which is necessary to obtain high-strength martensitic structure. Thus, through the addition of chromium, the through-hardenability of the material and thus of the tubular element is improved. Since the alloy according to the invention may contain little manganese, the hardenability is achieved by the addition of chromium. Chromium may be added in an amount of more than 0.05% or more than 0.6% or more than 0.8%. In addition, chromium has a lower mixed-crystal strengthening effect than manganese in steel. Therefore, the weakening of the material is in
  • the cold toughness and the transition temperature can be positively influenced, that is, shifted to lower temperatures.
  • the chromium content in the material is in the range between 0.05 and 2.0% according to the invention.
  • the chromium content in the material is in the range between 0.8% and 1.0%.
  • the chromium content can also be in the range between 0.05 and 0.6%.
  • Molybdenum (Mo) causes an increase in strength in the steel through its
  • molybdenum delays the austenite transformation. Flier barn the through hardenability is improved. In addition, molybdenum acts to avoid temper brittleness (temper embrittlement).
  • the molybdenum content according to the invention is limited to a maximum of 0.5% by weight, and more preferably to 0.3% by weight.
  • Nickel (Ni) is used to improve the toughness of the steels. In order to achieve a noticeable improvement in toughness, it has been found that addition of nickel is advantageous. However, nickel is an expensive element. Therefore, the Ni content is limited according to the invention to a maximum of 1, 0 wt .-%. A nickel content in the range of 0.1-0.4% by weight has proven to be particularly preferred. In this case, a sufficient improvement in the toughness of the material can be achieved with at the same time tolerable costs. According to the invention, niobium (Nb) is added in an amount in the range of 0.005-0.1% by weight. The addition of niobium increases the recrystallization temperature of the material. This has a positive effect on the fine grain formation in the
  • the pipe element according to the invention consists of a high-strength material and has a high degree of reduction in the region of the depression, on the one hand the stresses can be withstood during the use of the pipe element.
  • Embodiment of the invention according to which the wall thickness of the tubular element in the first wall portion is only from 1, 0 to 2.5 mm.
  • the material in addition to iron and impurities caused by melting, the material comprises the following alloying elements in the ranges indicated in percent by weight:
  • the material may optionally comprise at least one of the following alloying elements in the weight percent ranges:
  • Titanium (Ti) has a high affinity to nitrogen. Titanium nitrides already form during solidification and thus become several microns in size (20pm). Titanium nitrides have a higher hardness compared to martensite and act in the material under mechanical stress to form metallurgical notches. The titanium nitrides distribute the stress distribution in the material in an inhomogeneous manner and thus promote an uncontrolled (brittle) failure or an increase in the transition temperature. According to the titanium content is therefore limited to a maximum of 0.035%, preferably at most 0.015%. Preferably, titanium is present at least in an amount of 0.01%, and more preferably in a range of 0.01-0.035%.
  • S Sulfur
  • S is an undesirable element in steel because it adversely affects toughness by forming sulfides. Therefore, the S content is limited to a maximum of 0.005%.
  • the material comprises the following alloying elements in the ranges indicated in percent by weight:
  • the depression in the tubular element which forms a second longitudinal section is a circumferential depression.
  • the recess extends over the entire circumference of the tubular element and provides a continuous recess.
  • the recess is also referred to below as an annular bead.
  • Such a recess can be introduced into the pipe, for example by spin forming, stamping, pressing or crimping.
  • the recess can be introduced by rotating tools, such as spinning rollers having a contour corresponding to the recess.
  • An advantage of a tubular element in which an annular bead is introduced is that it can be an inner component, such as an inner wall of a gas pressure vessel introduced thereto.
  • the tubular element has at least one depression which forms a second longitudinal section and has an in
  • Circumferential represents interrupted recess.
  • the recess comprises a plurality of sub-depressions, which are arranged spaced apart in the circumferential direction.
  • the depression is therefore divided by interruptions.
  • the outer radius of the second corresponds Length section preferably the outer radius of the first longitudinal section.
  • the outer radius of the interruption of the recess is greater than the outer radius of the partial recesses.
  • the second longitudinal section preferably adjoins directly to the first longitudinal sections. This means that the reduction of the outer radius in the second longitudinal section corresponds exclusively to the contour of the tool for introducing the recess.
  • the confiscation is also referred to as the third section of length. According to a preferred embodiment, the between a first
  • Length portion and an adjacent second length portion formed third longitudinal portion, wherein the outer radius of the outer radius of the first
  • Length portion decreases to the axial outer edge of the recess, a maximum length of 2.5 times the wall thickness in the first length section.
  • the pipe element is free of near-surface pipe defects. This can be ensured in particular by the wall thickness of the second length section.
  • the surface defects Pipe defects are in particular sunken walls, internal wrinkles, internal defects (stress cracks) or overlapping.
  • Near-surface pipe defects usually lead to cracking.
  • Near-surface pipe defects which can occur in the production of the pipe, are reinforced when the depression is introduced, in which the wall thickness of the recess is reduced. In the pipe element according to the invention, however, these are
  • the pipe element according to the invention may be made of a seamless pipe or a welded pipe.
  • a seamless tube By using a seamless tube, the risk of failure of the tube member of the gas pressure vessel can be further reduced.
  • Such a seamless tube is for example hot rolled, for example according to the Mannesmann-Erhard method, and then preferably at least once cold drawn to its final dimensions.
  • a hot tube can also be extruded instead of drawn.
  • Heat affected zone to count are in the region of the weld and heat affected zone in the second
  • Length section is present, cracks of a maximum length of 50pm, preferably of a maximum length of 20 pm. Particularly preferably, the region of the weld seam and heat-affected zone is free of cracks. This is ensured inter alia by the wall thickness of the tubular element in the second longitudinal section, which is greater than or equal to the wall thickness in the first longitudinal section.
  • the invention relates to a
  • Gas pressure vessel has at least one inventive pipe element.
  • FIG. 1 shows a schematic perspective view of a first embodiment of the pipe element according to the invention
  • Figure 2 is a schematic sectional view of the first embodiment of the pipe element according to the invention.
  • FIG. 3 shows a detailed view of the detail D from FIG. 2;
  • FIG. 4 shows a schematic detail view of a part of a second one
  • FIG. 5 shows a schematic perspective view of a third embodiment of the pipe element according to the invention.
  • Figure 6 a schematic axial view of the third embodiment of the tube element according to the invention in the production.
  • FIG. 1 shows a schematic perspective view of a first embodiment of the pipe element 10 according to the invention.
  • the schematic sectional view of this pipe element is shown in Figures 2 and 3.
  • the tubular element 10 has a first longitudinal section 100 at a front end. In this first
  • the tube member 10 has an outer radius A1. This outer radius A1 is constant over the length of the first longitudinal section 100.
  • Tube element in the first longitudinal section 100 constant.
  • a second longitudinal section 102 adjoining the first longitudinal section 100 is a second longitudinal section 102, which is formed by a depression 11.
  • the recess 11 is in the first embodiment of the tubular element 10 an annular bead.
  • the outer radius A2 at the lowest point of the recess 11 is less than the outer radius A1 of the first longitudinal section 100.
  • the recess 11 has in the illustrated
  • Embodiment on a circular arc course The wall thickness in the second longitudinal section 102 corresponds to the wall thickness in the first longitudinal section 100.
  • the recess 11 may have been introduced by one or more spinning rollers (not shown) with a corresponding contour on the outer periphery.
  • the recess 11 may have been introduced by spin forming or stamping. Before or during the introduction of the recess 11, a targeted material flow control takes place in order to prevent the reduction of the wall thickness in the second longitudinal section 102.
  • Tube element 10 the recess 11 is introduced, has the outer radius A1 and the wall thickness of the first length portion 100.
  • Length section 102 a further first length portion 101 at.
  • Length section 101 corresponds to the wall thickness and the outer radius A1 of the dimensions of the first longitudinal section 100, which at the end of the
  • Pipe element 10 is located.
  • the tube member 10 except for the second length portion 102 has a constant outer radius A1.
  • FIG. 4 shows a second embodiment of the invention
  • Tube element 10 shown. In this embodiment, between the first two lengths 100, 101 and the second intermediate therebetween
  • a third longitudinal section 103, 104 is formed.
  • the outer radius A1 decreases from the respectively adjacent first longitudinal section 100, 101 to the axially outer end of the second longitudinal section 102.
  • the wall thickness W3 is preferably constant in the third longitudinal sections 103, 104.
  • the third longitudinal sections 103, 104 can also be used as indentation or incidence of the wall of the tubular element 10
  • the tubular element 10 has no third longitudinal sections 103, 104. This can be done, for example, through targeted Material flow control or pressing in the introduction of the recess 11 can be achieved. Also in the second embodiment, which is shown in Figure 4, the third length portions 103, 104 are kept small and the axial length preferably corresponds to a maximum of 2.5 times the wall thickness of the first
  • the wall thickness W3 of the third length section 103 corresponds at least to the wall thickness W1 of the first length sections 100, 101.
  • the wall thickness W2 in the second longitudinal section 102 is preferably equal to or greater than the wall thickness W3 in the third longitudinal sections 103, 104.
  • FIGS. 5 and 6 show a third embodiment of the tubular element 10.
  • the second length portion 102 is formed by a recess 11 having interruptions 12 in the circumferential direction.
  • the recess 11 is therefore formed by individual partial recesses 110, which in
  • FIG. 6 schematically shows the production of the tube element 10 according to the third embodiment.
  • the tool 2 which is used for the production consists of several radially deliverable segments.
  • the tool 2 consists of eight
  • the tool 2 in this case represents a pressing tool. Through the tool 2, part recesses 110 are introduced into the tube wall of the tube. Interruptions 12 are present between these sub-depressions 110.
  • Outer radius A2 of the sub-wells 110 is referred to as the outer radius of the second length portion 102.
  • In the interruptions 12 has the
  • Pipe member 10 has an outer radius of the outer radius A1 of the first
  • Length sections 100, 101 is equal to or slightly smaller than that
  • a tube member for a gas pressure vessel which may be made of a seamless or welded tube made of a high strength material and yet having depressions which may have a large depth, that is a large one
  • the tube element has, despite the large depression few or no pipe defects in the field of
  • the wall thickness of the tubular element in the region of the depression is set equal to or greater than the wall thickness of the tube from which the tubular element is produced.
  • the invention has a number of advantages. In particular, that can
  • Pipe element with depression for example, one or more circumferential beads, manufacturing safe from a tube made of high-strength material and this pipe element can be used in gas pressure vessels, such as a housing tube of an airbag generator, without fear of failure.
  • gas pressure vessels such as a housing tube of an airbag generator

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Fluid Mechanics (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

Die vorliegende Erfindung bezieht sich auf ein Rohrelement für einen Gasdruckbehälter eines Airbagsystems eines Kraftfahrzeuges, wobei das Rohrelement (10) wenigstens einen ersten Längenabschnitt (100, 101) und wenigstens eine in Umfangsrichtung verlaufende Vertiefung (11) aufweist, dadurch gekennzeichnet, dass das Rohrelement (10) mindestens einen zweiten Längenabschnitt (102) aufweist, der durch die Vertiefung (11) gebildet ist, die sich über zumindest einen Teil des Umfangs des Rohrelementes (10) erstreckt, dass der zweite Längenabschnitt (102) zwischen zwei ersten Längenabschnitten (100, 101) liegt, dass in mindestens einem ersten Längenabschnitt (100, 101) der Außenradius (A1) des Rohrelementes (10) größer ist als der kleinste Außenradius (A2) des mindestens einen zweiten Längenabschnittes (102), dass das Rohrelement (10) eine Zugfestigkeit von >920MPa aufweist,dass die Wandstärke (W2) des Rohrelementes (10) in dem mindestens einen zweiten Längenabschnitt (102) größer oder gleich der Wandstärke (W1) in mindestens einem ersten Längenabschnitt (100,101) des Rohrelementes (10) ist,dass der Reduktionsgrad des Außenradius(A2) in der Vertiefung (11) im Bereich von 5 bis 35% bezogen auf den Außenradius (A1) mindestens eines ersten Längenabschnittes (100, 101) liegt, und dass das Rohrelement (10) aus einem Werkstoff besteht, der neben Eisen und erschmelzungsbedingten Verunreinigungen folgende Legierungselemente in den in Gewichtsprozent angegebenen Bereichen umfasst: C0,05 -0,2% Si≤0,9% Mn0,2 -2,0% Cr0,05 –2% Mo< 0,5% Ni<1,0% Nb0,005 –0,10% Al<0,07% Ti<0,035% und B<0,004%.

Description

Beschreibung
Rohrelement für Gasdruckbehälter und Gasdruckbehälter
Die vorliegende Erfindung bezieht sich auf ein Rohrelement für einen
Gasdruckbehälter für ein Airbagsystem sowie auf einen Gasdruckbehälter mit einem solchen Rohrelement.
In einem System, das mit hohem Druck beaufschlagt wird, wie beispielsweise einem Airbagsystem eines Kraftfahrzeuges ist es erforderlich Rohrelemente zu verwenden, die diesem Druck standhalten können. In Airbagsystemen beziehungsweise
Airbagmodulen müssen beispielsweise Gasdruckbehälter verwendet werden, die beispielsweise das Gehäuse des Gasgenerators und/oder die Reaktionskammer bilden. Insbesondere diese Gasdruckbehälter und das Rohrelement, das den Gasgenerator maßgeblich bildet, müssen einer hohen Innendruckbeanspruchung standhalten können.
Aus diesem Grund ist es bekannt, hochfeste Werkstoffe für Rohrelemente für Gasdruckbehälter zu verwenden. Zugleich muss das Rohrelement aber Geometrien aufweisen, die beispielsweise den An- oder Einbau weiterer Bauteile erlauben.
Beispielsweise können dazu die Rohrelemente Vertiefungen am Rohrumfang aufweisen. Allerdings ist es für den sicheren Betrieb des Gasdruckbehälters erforderlich, dass dieser trotz der eingebrachten Geometrie nicht versagt.
Der Erfindung liegt die Aufgabe zugrunde ein Rohrelement für einen
Gasdruckbehälter und einen Gasdruckbehälter zu schaffen, die einen sicheren Betrieb des Gasdruckbehälters erlauben.
Gemäß einem ersten Aspekt wird die Aufgabe gelöst durch ein Rohrelement für einen Gasdruckbehälter eines Airbagsystems eines Kraftfahrzeuges, wobei das Rohrelement wenigstens einen ersten Längenabschnitt und wenigstens eine in Umfangsrichtung verlaufende Vertiefung aufweist. Das Rohrelement ist dadurch gekennzeichnet,
- dass das Rohrelement mindestens einen zweiten Längenabschnitt aufweist, der durch die Vertiefung gebildet ist, die sich über zumindest einen Teil des Umfangs des Rohrelementes erstreckt,
- dass der zweite Längenabschnitten zwischen zwei ersten Längenabschnitten liegt,
- dass in mindestens einem ersten Längenabschnitt der Außenradius des
Rohrelementes größer ist als der kleinste Außenradius des mindestens einen zweiten Längenabschnittes,
- dass das Rohrelement eine Zugfestigkeit von >920MPa aufweist,
- dass die Wandstärke des Rohrelementes in dem mindestens einen zweiten
Längenabschnitt größer oder gleich der Wandstärke in dem mindestens einen ersten Längenabschnitt des Rohrelementes ist,
- dass der Reduktionsgrad des Außenradius in der Vertiefung im Bereich von 5 bis 35% bezogen auf den Außenradius mindestens eines ersten Längenabschnittes liegt, und
- dass das Rohrelement aus einem Werkstoff besteht, der neben Eisen und erschmelzungsbedingten Verunreinigungen folgende Legierungselemente in den in Gewichtsprozent angegebenen Bereichen umfasst:
C 0,05 - 0,2%
Si < 0,9%
Mn 0,2 - 2,0%
Cr 0,05 - 2%
Mo < 0,5%
Ni <1 ,0%
Nb 0,005 - 0,10%
AI <0,07%
Ti <0,035% und
B <0,004%. Als Gasdruckbehälter eines Airbagsystems eines Kraftfahrzeuges wird vorzugsweise das Gehäuse eines Gasgenerators eines Airbagsystems eines Kraftfahrzeuges bezeichnet. In dem Gasdruckbehälter wird Gas gespeichert oder erzeugt. Zudem wird aus dem Gasdruckbehälter Gas mit hoher Geschwindigkeit ausgegeben. Über den Gasgenerator wird dann der Gassack (Airbag) mit Gas befüllt. Der Gasgenerator kann hierbei ein Kaltgasgenerator oder ein Hybridgasgenerator sein. Bei diesen Gasgeneratoren wird zumindest ein Rohrelement vorgesehen, das insbesondere als Druckgasspeicher und/oder Expansionskammer für Gas dient. Das Rohrelement kann beispielsweise das Gehäuse eines Airbaggenerators, beispielsweise den Injektor, darstellen. Auf diese Rohrelemente wirkt dabei spontan eine große Kraft, der der Werkstoff des Rohrelementes standhalten muss, um ein Bersten des
Rohrelementes verhindern zu können. Ein Kaltgasgenerator besteht aus einem Gasspeicher, in dem Gas unter Hochdruck gespeichert ist, und einem Aktivator. Der Gasspeicher ist durch eine Membran verschlossen. Beim Auslösen des
Gasgenerators wird die Membran, insbesondere durch einen Sprengsatz zerstört und das Gas kann aus dem Gasspeicher herausströmen. Alternativ kann der erfindungsgemäße Gasgenerator auch einen Hybridgasgenerator darstellen. Dieser stellt eine Kombination eines pyrotechnischen Generators und eines
Kaltgasgenerators dar. Bei einem Hybridgasgenerator ist außer dem Druckspeicher für das Gas zusätzlich eine pyrotechnische Baugruppe zur Gaserzeugung
vorgesehen.
Durch die Innendruckbeanspruchung des Rohrelementes des Gasgenerators, beispielsweise eines Airbagmoduls, liegt die höchste Belastungsrichtung des
Rohrmaterials quer zu der Rohrachse. Dieser Spannungszustand führt dazu, dass beispielsweise ein bei der Herstellung oder Umformung des Rohrelementes entstandener Riss sich parallel zu der Rohrachse ausbreitet.
Das Rohrelement stellt vorzugsweise ein Rohrelement mit rundem Querschnitt dar. Das Rohrelement weist wenigstens einen ersten Längenabschnitt und wenigstens eine in Umfangsrichtung verlaufende Vertiefung auf. Die in Umfangsrichtung verlaufende Vertiefung stellt vorzugsweise eine spanlos hergestellte Vertiefung dar. Die Vertiefung kann auch als Prägung oder Sicke bezeichnet werden. Als erster Längenabschnitt wird hierbei ein Teil der Länge des Rohrelementes bezeichnet. Dieser erste Längenabschnitt ist erfindungsgemäß der Längenabschnitt, der bei einer Umformung des Rohrelementes zur Einbringung der Vertiefung nicht oder nur geringfügig umgeformt wird. Vorzugsweise ist der Außenradius des Rohrelementes in dem mindestens einen ersten Längenabschnitt über dessen Länge konstant.
Weiter bevorzugt ist auch die Wanddicke des Rohrelementes in dem ersten
Längenabschnitt konstant.
Weiterhin weist das Rohrelement mindestens einen zweiten Längenabschnitt auf, der durch die Vertiefung gebildet ist. Insbesondere wird als zweiter Längenabschnitt der Teil der Länge des Rohrelementes bezeichnet, der der Breite, das heißt der
Abmessung in axialer Richtung, der Vertiefung entspricht. Die Vertiefung erstreckt sich erfindungsgemäß über zumindest einen Teil des Umfangs des Rohrelementes. Die Vertiefung ist dabei so ausgerichtet, dass die durch die Vertiefung gebildete Vertiefung in radialer Richtung des Rohrelementes nach innen gerichtet ist. Die Vertiefung weist die Geometrie auf, die der Kontur des Werkzeuges, durch das die Vertiefung eingebracht wird, entspricht.
In mindestens einem ersten Längenabschnitt ist der Außenradius des
Rohrelementes größer als der kleinste Außenradius des mindestens einen zweiten Längenabschnittes. Als kleinster Außenradius des zweiten Längenabschnittes wird der Außenradius bezeichnet, der an der tiefsten Stelle der Vertiefung vorliegt.
Der zweite Längenabschnitt liegt erfindungsgemäß zwischen zwei ersten
Längenabschnitten. Dies bedeutet, dass die Vertiefung zwischen zwei ersten
Längenabschnitten eingebracht ist. Der zweite Längenabschnitt kann dabei unmittelbar an den ersten Längenabschnitten angrenzen. Allerdings ist es auch möglich, dass zwischen dem zweiten Längenabschnitt und den benachbarten ersten Längenabschnitten jeweils ein dritter Längenabschnitt liegt, der später genauer beschrieben wird.
Erfindungsgemäß weist das Rohrelement eine Zugfestigkeit von >920MPa auf.
Bevorzugt weist das Rohrelement eine Zugfestigkeit von >1000 MPa auf. Diese Zugfestigkeit liegt vorzugsweise zumindest in den ersten Längenabschnitten und/oder in dem zweiten Längenabschnitt und/oder dritten Längenabschnitt vor.
Zudem ist die Wandstärke des Rohrelementes in dem mindestens einen zweiten Längenabschnitt größer oder gleich der Wandstärke in mindestens einem ersten Längenabschnitt des Rohrelementes ist. Bei dem zweiten Längenabschnitt handelt es sich um den Teil der Länge, in dem die Vertiefung eingebracht ist. Bei der
Umformung zur Herstellung der Vertiefung, beispielsweise während eines
Drückwalzens, eines Crimpens oder Pressens, erfolgt in der Regel eine Verringerung der Wandstärke des Rohrelementes in diesem Bereich. Da aber auch dieser Bereich bei dem Betrieb des Gasgenerators den Belastungen ausgesetzt wird, ist gemäß der Erfindung auch in diesem zweiten Längenabschnitt eine Wandstärke vorgesehen, die der Wandstärke des ersten Längenabschnittes entspricht oder größer ist. Die
Wandstärke kann vor oder während der Umformung des Rohres eingestellt werden. Während der Umformung kann dazu eine Materialflusssteuerung beziehungsweise eine Einstellung des Wandmaterialflusses bei der Erzeugung der Vertiefung erfolgen. Insbesondere kann ein auf die Vertiefung hin gerichteter Marterialfluss
beziehungsweise eine Materialverdrängung eingestellt werden. Hierdurch können auch Beschädigungen des Rohres während der Einbringung der Vertiefung verhindert oder ausgeglichen werden.
Erfindungsgemäß liegt der Reduktionsgrad des Außenradius in der Vertiefung im Bereich von 5 bis 35% bezogen auf den Außenradius mindestens eines ersten Längenabschnittes. Insbesondere kann der Reduktionsgrad in der Vertiefung im Bereich von 10 bis 25 % bezogen auf den Außenradius mindestens eines ersten Längenabschnittes liegen. Bei zwei ersten Längenabschnitten, die unterschiedliche Außenradii aufweisen, ist der Reduktionsgrad vorzugsweise auf den größeren Außenradius bezogen. Damit weist die Vertiefung eine große Tiefe auf und Einbau oder Anbauteile können daran zuverlässig gehalten werden. Ein solch großer Reduktionsgrad ist bei dem erfindungsgemäßen Rohrelement möglich, da die Wandstärke in dem zweiten Längenabschnitt größer oder gleich der Wandstärke in dem ersten Längenabschnitt ist.
Zudem besteht das Rohrelement aus einem Werkstoff, der neben Eisen und erschmelzungsbedingten Verunreinigungen folgende Legierungselemente in den in Gewichtsprozent angegebenen Bereichen umfasst:
C 0,05 - 0,2%
Si < 0,9%
Mn 0,2 - 2,0%
Cr 0,05 - 2%
Mo < 0,5%
Ni <1 ,0%
Nb 0,005 - 0,10%
AI <0,07%
Ti <0,035% und
B <0,004%.
Dieser Werkstoff ist ein hochfester und besonders kaltzäher Werkstoff, so dass dieser den Belastungen beim Betrieb des Gasgenerators standhalten kann. Aufgrund der Materialstärke, die während und nach der Einbringung der Vertiefung in dem zweiten Längenabschnitt vorliegt, ist trotz des großen Reduktionsgrades eine Beschädigung in dem zweiten Längenabschnitt nicht zu befürchten.
Die Legierungselemente des Werkstoffes, aus dem das Rohrelement besteht, tragen zu der Erzielung der erforderlichen Eigenschaften des Rohrelementes für den Einsatz in einem Gasdruckbehälter bei. Die Anteilsangaben der Legierungselemente werden in Gewichtsprozent angegeben, auch wenn dies im Folgenden nicht explizit erwähnt ist, sondern nur auf Prozent Bezug genommen wird. Der Werkstoff aus dem das Rohrelement hergestellt ist, wird auch als Legierung, Stahllegierung oder Stahl bezeichnet.
Kohlenstoff (C) wird in einer Menge von mindestens 0,05% zugegeben, um ein martensitisches Gefüge und eine gewünschte Festigkeit des Martensits zu erreichen. Ein zu hoher C-Gehalt würde aber unter anderem die Schweißeignung negativ beeinflussen. Der C-Gehalt ist erfindungsgemäß daher auf max. 0,2% begrenzt. Vorzugsweise liegt der Kohlenstoffgehalt in einem Bereich von 0,08 bis 0,2 und besonders bevorzugt im Bereich von 0,08 bis 0,13%.
Mangan (Mn) erhöht die Festigkeit im Stahl durch seine mischkristallverfestigende Wirkung. Weiterhin wird mit steigendem Mn-Gehalt die Austenitumwandlung verzögert, was zur Erhöhung der Durchhärtbarkeit und Bildung von Martensit beim Vergüten führt. Da Legierungen über ein Temperaturintervall erstarren, liegen am Ende der Erstarrung lokale Bereiche, beispielsweise zwischendendritische Räume, vor, die unterschiedliche chemische Zusammensetzungen aufweisen. Diese
Verteilung von Bereichen mit unterschiedlichen chemischen Zusammensetzungen wird im Folgenden auch als Gefügezeiligkeit bezeichnet. Das Rohr, aus dem das Rohrelement hergestellt wird, wird beispielsweise durch Ziehen und/oder Walzen hergestellt. Bedingt durch den Rohrherstellungsprozess werden daher die
Mikroseigerungen in dem Vormaterial in die Länge ausgewalzt oder gezogen und können zu Gefügezeiligkeit führen. Legierungselemente weisen in der Regel im Werkstoff bestimmte mischkristallverfestigende Wirkungen auf, die davon abhängig sind, wie stark das Kristallgitter von Eisen durch das entsprechende Element verzerrt wird. Elemente, die stark mischkristallverfestigende Wirkung haben, wie Mangan oder Silizium, führen dazu, dass die in Längsrichtung ausgeprägten Gefügezeilen mit unterschiedlichen Elementanteilen andere Festigkeiten haben. Bei dem durch
Innendruck belasteten Rohrelement, insbesondere Airbagrohr, ist dies von
besonderem Nachteil, da die Hauptbelastung durch Innendruck in Rohrumfangsrichtung liegt und damit quer durch die mikroseigerungsbedingten Zeilen verläuft. Die Zeilen mit geringer Festigkeit stellen hierbei eine Schwächung beziehungsweise metallurgische Kerbe dar. Diese Schwächung beeinflusst unter anderem die Übergangstemperatur des Werkstoffes negativ. Mangan wird erfindungsgemäß in einem Gehalt weniger als 2,0% verwendet. Hierdurch kann die starke mischkristallverfestigende Wirkung des Mangans minimiert werden und dadurch auch die Gefügezeilig keit verringert werden. Allerdings wird
erfindungsgemäß Mangan zumindest in einer Menge von 0,2% zugegeben.
Hierdurch kann in dem Werkstoff vorhandener Schwefel abgebunden werden.
Vorzugsweise liegt der Mangangehalt der Stahllegierung im Bereich von 0,4 bis 0,6 Gew.-%. Diese geringen Mangananteile sind erfindungsgemäß möglich, da die Durchhärtbarkeit, die bei anderen Legierungen durch Manganzugabe gewährleistet werden muss, erfindungsgemäß teilweise durch den erhöhten Chromgehalt erzielt wird. Erfindungsgemäß kann Mangan aber auch in einer Menge im Bereich von 1 ,2 bis 2% zugegeben werden.
Silizium (Si) hat eine desoxidierende und stark mischkristallverfestigende Wirkung im Stahl, die stärker ist als die Wirkung von Mangan. Daher ist der Gehalt von Silizium in dem Werkstoff erfindungsgemäß auf maximal 0,9%, und beispielsweise auf maximal 0,5%, auf maximal 0,4% oder auf maximal 0,1 % begrenzt.
Chrom (Cr) verzögert im Stahl die Austenitumwandung die notwendig ist, um hochfestes martensitisches Gefüge zu erhalten. Somit wird durch die Zugabe von Chrom die Durchhärtbarkeit des Werkstoffes und damit des Rohrelementes verbessert. Da die erfindungsgemäße Legierung wenig Mangan enthalten kann, wird die Durchhärtbarkeit durch die Chrom-Zugabe erzielt. Chrom kann in einer Menge von mehr als 0,05% oder von mehr als 0,6% oder von mehr als 0,8% zugegeben werden. Chrom weist zudem im Stahl eine geringere mischkristallverfestigende Wirkung als Mangan auf. Daher ist die Schwächung des Materials in
Rohrumfangsrichtung durch die Mikroseigerung und damit die Gefügezeiligkeit deutlich kleiner als bei der Zugabe von größeren Mengen von Mangan. Hierdurch kann unter anderem die Kaltzähigkeit und die Übergangstemperatur positiv beeinflusst werden, das heißt, hin zu geringeren Temperaturen verschoben werden. Für die Erreichung der notwendigen Durchhärtbarkeit liegt erfindungsgemäß der Chromgehalte in dem Werkstoff im Bereich zwischen 0,05 und 2,0%. Vorzugsweise liegt der Chromgehalt in dem Werkstoff im Bereich zwischen 0,8% und 1 ,0%.
Alternativ kann der Chromgehalt aber auch im Bereich zwischen 0,05 und 0,6% liegen.
Molybdän (Mo) bewirkt im Stahl eine Erhöhung der Festigkeit durch seine
mischkristallverfestigende Wirkung und Karbidausscheidung. Gleichzeitig verzögert Molybdän die Austenitumwandlung. Flierdurch wird die Durchhärtbarkeit verbessert. Zudem wirkt Molybdän zur Vermeidung der Anlaßsprödigkeit (temper embrittlement). Der Molybdängehalt ist erfindungsgemäß auf maximal 0,5 Gew.-%, und weiter bevorzugt auf 0,3 Gew.-% begrenzt.
Bei einem Molybdängehalt von mehr als 0,5 Gew.-% wurde herausgefunden, dass es zu einer intensiven Karbidbildung kommt. Durch das Abbinden von Kohlenstoff in diesen Karbiden, ist nicht genug gelöster Kohlenstoff in der austenitischen Matrix während des Flärtungsprozesses vorhanden. Somit würde dies zur Absenkung der Flärtbarkeit der Stahllegierung und damit der Absenkung der Festigkeit beim Flärten führen.
Nickel (Ni) wird verwendet, um die Zähigkeit der Stähle zu verbessern. Um eine spürbare Verbesserung der Zähigkeit zu erzielen, wurde herausgefunden, dass eine Zugabe von Nickel vorteilhaft ist. Nickel ist jedoch ein teures Element. Daher ist der Ni-Gehalt erfindungsgemäß auf maximal 1 ,0 Gew.-% begrenzt. Als besonders bevorzugt hat sich ein Nickelgehalt im Bereich von 0,1 -0,4 Gew.-% erwiesen. FHierbei kann eine ausreichende Verbesserung der Zähigkeit des Werkstoffes bei gleichzeitig tolerablen Kosten erzielt werden. Erfindungsgemäß wird Niob (Nb) in einer Menge im Bereich von 0,005 - 0,1 Gew.-% zugegeben. Durch die Zugabe von Niob wird die Rekristallationstemperatur des Werkstoffes erhöht. Dies wirkt sich positiv auf die Feinkornbildung bei der
Herstellung des Rohrelementes aus. Das feine Korn erhöht die Zähigkeit des Stahls und trägt zur Absenkung der Übergangstemperatur bei. Es wurde herausgefunden, dass ein Gehalt von mindestens 0,005 Gew.-% Niob notwendig ist, um eine spürbare Verbesserung zu erzielen. Zudem wurde herausgefunden, dass der Niob-Gehalt maximal 0,1 Gew.% betragen sollte. Bei höherem Niobgehalt wurde die Bildung von unerwünschten primären groben Niob-Karbiden erkannt, die die Zähigkeit des Werkstoffes negativ beeinflussen. Ohne die Zugabe von Niob oder einer Zugabe von weniger als 0,005 Gew.-% ist das Erzielen der für ein Rohrelement eines
Gasgenerators erforderlichen Eigenschaften nicht möglich.
Indem das erfindungsgemäße Rohrelement aus einem hochfesten Werkstoff besteht und einen hohen Reduktionsgrad im Bereich der Vertiefung aufweist, kann zum einen den Belastungen bei der Verwendung des Rohrelementes standgehalten werden. Zum anderen kann aufgrund der erfindungsgemäßen Wandstärke im
Bereich der Vertiefung, die beispielsweise durch Materialflusssteuerung während der Einbringung der Vertiefung erzielt werden kann, ein Versagen des Rohrelementes aufgrund von Fehlern in dem Material des Rohrelementes oder aufgrund zu geringer Wandstärke verhindert werden. Dies gilt umso mehr bei einer bevorzugten
Ausführungsform der Erfindung, wonach die Wandstärke des Rohrelements im ersten Wandabschnitt nur von 1 ,0 bis 2,5 mm beträgt.
Gemäß einer bevorzugten Ausführungsform umfasst der Werkstoff neben Eisen und erschmelzungsbedingten Verunreinigungen folgende Legierungselemente in den in Gewichtsprozent angegebenen Bereichen:
C 0,08 - 0,13%
Si < 0,1 %
Mn 0,4 - 0,6%
Cr 0,8 - 1 ,0% Mo 0,1 - 0,5%
Ni 0,1 - 0,4% und
Nb 0,005 - 0,10%.
Der Werkstoff kann optional mindestens eines der folgenden Legierungselemente in den in Gewichtsprozent angegebenen Bereichen umfassen:
P < 0,020%
S < 0,005%
Ti < 0,015% und
AI 0,001 - 0,05%.
Titan (Ti) hat eine große Affinität zu Stickstoff. Titannitride bilden sich bereits während der Erstarrung und werden dadurch mehrere Mikrometer groß (20pm). Titannitride haben eine höhere Härte im Vergleich zu Martensit und wirken in dem Werkstoff bei mechanischer Belastung zur Bildung von metallurgischen Kerben. Durch die Titannitride wird die Spannungsverteilung in dem Werkstoff inhomogen verteilt und fördert somit ein unkontrolliertes (sprödes) Versagen beziehungsweise Erhöhung der Übergangstemperatur. Erfindungsgemäß ist der Titangehalt daher auf maximal 0,035% bevorzugt maximal 0,015% begrenzt. Vorzugsweise liegt Titan zumindest in einer Menge von 0,01 % und besonders bevorzugt in einem Bereich von 0,01 -0,035% vor.
Schwefel (S) ist ein unerwünschtes Element im Stahl, da er durch Bildung der Sulfide die Zähigkeit negativ beeinflusst. Daher wird der S-Gehalt auf maximal 0,005% begrenzt.
Phosphor (P) ist ein unerwünschtes Element im Stahl, da er zur Seigerung und Versprödung beim Anlassen (temper embrittlement) führt und somit die Zähigkeit beziehungsweise Übergangstemperatur negativ beeinflusst. Daher wird der P-Gehalt auf maximal 0,02% begrenzt. Gemäß einer Ausführungsform umfasst der Werkstoff neben Eisen und erschmelzungsbedingten Verunreinigungen folgende Legierungselemente in den in Gewichtsprozent angegebenen Bereichen:
C 0,08 - 0,20%
Si < 0,4%
Mn 1 ,2 - 2%
Cr 0,05 - 0,6%
Mo 0,05 - 0,5%
Ni 0,1 - 0,4%
Nb 0,005 - 0,050%
AI 0,01 - 0,07%
Ti 0,01 - 0,035% und
B 0,001 - 0,004%.
Gemäß einer Ausführungsform ist die Vertiefung in dem Rohrelement, die einen zweiten Längenabschnitt bildet, eine umlaufende Vertiefung. Die Vertiefung erstreckt sich über den gesamten Umfang des Rohrelementes und stellt eine durchgehende Vertiefung. Die Vertiefung wird im Folgenden auch als Ringsicke bezeichnet. Eine solche Vertiefung kann in das Rohr beispielsweise durch Drückwalzen, Prägen, Pressen oder Crimpen eingebracht werden. Insbesondere kann die Vertiefung durch rotierende Werkzeuge, wie Drückwalzen mit einer der Vertiefung entsprechenden Kontur eingebracht werden. Ein Vorteil eines Rohrelementes, in dem eine Ringsicke eingebracht ist, besteht darin, dass diese hieran ein Innenbauteil, wie beispielsweise eine Innenwand eines Gasdruckbehälters eingebracht werden kann.
Alternativ oder zusätzlich zu einer Ringsicke weist das Rohrelement mindestens eine Vertiefung auf, die einen zweiten Längenabschnitt bildet und eine in
Umfangsrichtung unterbrochene Vertiefung darstellt. Bei dieser Ausführungsform umfasst die Vertiefung mehreren Teilvertiefungen, die zueinander beabstandet in Umfangsrichtung angeordnet sind. Die Vertiefung ist daher durch Unterbrechungen geteilt. In den Unterbrechungen entspricht der Außenradius des zweiten Längenabschnittes vorzugsweise dem Außenradius des ersten Längenabschnittes.
In jedem Fall ist der Außenradius der Unterbrechung der Vertiefung größer als der Außenradius der Teil Vertiefungen. Diese Ausführungsform weist den Vorteil auf, dass die Herstellung des Rohrelementes vereinfacht ist. Insbesondere ist die Rotation von Werkzeugen nicht erforderlich.
Vorzugsweise schließt sich der zweite Längenabschnitt unmittelbar an die ersten Längenabschnitte an. Dies bedeutet, dass die Reduktion des Außenradius in dem zweiten Längenabschnitt ausschließlich der Kontur des Werkzeuges zum Einbringen der Vertiefung entspricht.
Sofern durch die Einbringung der Vertiefung eine Einziehung oder ein Einfall benachbart zu dem zweiten Längenabschnitt auftritt, ist diese erfindungsgemäß gering. Die Einziehung wird auch als dritter Längenabschnitt bezeichnet. Gemäß einer bevorzugten Ausführungsform weist der zwischen einem ersten
Längenabschnitt und einem benachbarten zweiten Längenabschnitt gebildete dritte Längenabschnitt, bei dem der Außenradius von dem Außenradius des ersten
Längenabschnitts zu dem axialen äußeren Rand der Vertiefung abnimmt, eine Länge von maximal 2,5 mal der Wandstärke in dem ersten Längenabschnitt auf. Als Länge des dritten Längenabschnittes wird die Erstreckung in axialer Richtung des
Rohrelementes bezeichnet.
Vorzugsweise ist das Rohrelement frei von oberflächennahen Rohrfehlern. Dies kann insbesondere durch die Wandstärke des zweiten Längenabschnittes gewährleistet werden. Die oberflächennahmen Rohrfehler sind insbesondere eingefallene Wand, Innenfältelung, Innenfehler (Spannungsrisse) oder Überwalzung. Diese
oberflächennahe Rohrfehler führen in der Regel zu Rissbildungen. Oberflächennahe Rohrfehler, die bei der Herstellung des Rohres auftreten können, werden bei einer Einbringung der Vertiefung, bei der die Wandstärke der Vertiefung verringert wird, verstärkt. Bei dem erfindungsgemäßen Rohrelement hingegen sind diese
oberflächennahe Rohrfehler eingedämmt oder sogar verringert. Das erfindungsgemäße Rohrelement kann aus einem nahtlosen Rohr oder einem geschweißten Rohr hergestellt sein. Durch die Verwendung eines nahtlosen Rohres kann die Gefahr des Versagens des Rohrelementes des Gasdruckbehälters weiter verringert werden. Ein solches nahtloses Rohr wird beispielsweise warmgewalzt, beispielsweise nach dem Mannesmann-Erhard-Verfahren, und anschließend vorzugsweise wenigstens einmal kalt gezogen bis auf Endmaß. Alternativ kann ein Warmrohr auch fließgepresst statt gezogen werden.
Bei einem Rohrelement, das aus einem geschweißten Rohr herstellt wird, ist insbesondere bei der Einbringung der Vertiefung, die eine Wandstärkenverringerung mit sich bringt, mit Beschädigungen in dem Bereich der Schweißnaht und
Wärmeeinflusszone zu rechnen. Bei dem erfindungsgemäßen Rohrelement liegen im Bereich der Schweißnaht und Wärmeeinflusszone in dem der zweite
Längenabschnitt liegt, Risse von einer maximalen Länge von 50pm, vorzugweise von einer maximale Länge von 20 pm vor. Besonders bevorzugt ist der Bereich der Schweißnaht und Wärmeeinflusszone rissfrei. Dies wird unter anderem durch die Wandstärke des Rohrelementes in dem zweiten Längenabschnitt gewährleistet, die größer oder gleich der Wandstärke in dem ersten Längenabschnitt ist.
Gemäß einem weiteren Aspekt bezieht sich die Erfindung auf einen
Gasdruckbehälter für ein Airbagsystem eines Kraftfahrzeuges, wobei der
Gasdruckbehälter mindestens ein erfindungsgemäßes Rohrelement aufweist.
Vorteile und Merkmale, die bezüglich des Rohrelementes beschrieben werden, gelten - soweit anwendbar - entsprechend für den Gasdruckbehälter und umgekehrt.
Im Folgenden wird die Erfindung erneut unter Bezugnahme auf beiliegenden Figuren erläutert. Hierbei zeigen: Figur 1 : eine schematische Perspektivansicht einer ersten Ausführungsform des erfindungsgemäßen Rohrelementes;
Figur 2: eine schematische Schnittansicht der ersten Ausführungsform des erfindungsgemäßen Rohrelementes;
Figur 3: eine Detailansicht des Details D aus Figur 2;
Figur 4: eine schematische Detailansicht eines Teils einer zweiten
Ausführungsform des erfindungsgemäßen Rohrelementes;
Figur 5: eine schematische Perspektivansicht einer dritten Ausführungsform des erfindungsgemäßen Rohrelementes; und
Figur 6: eine schematische Axialansicht der dritten Ausführungsform des erfindungsgemäßen Rohrelementes bei der Herstellung.
In Figur 1 ist eine schematische Perspektivansicht einer ersten Ausführungsform des erfindungsgemäßen Rohrelementes 10 gezeigt. Die schematische Schnittansicht dieses Rohrelementes ist in den Figuren 2 und 3 gezeigt. Das Rohrelement 10 weist an einem Stirnende einen ersten Längenabschnitt 100 auf. In diesem ersten
Längenabschnitt 100 weist das Rohrelement 10 einen Außenradius A1 auf. Dieser Außenradius A1 ist über die Länge des ersten Längenabschnittes 100 konstant. Zudem ist in der dargestellten Ausführungsform auch die Wandstärke des
Rohrelementes in dem ersten Längenabschnitt 100 konstant. In axialer Richtung schließt sich an den ersten Längenabschnitt 100 ein zweiter Längenabschnitt 102 an, der durch eine Vertiefung 11 gebildet wird. Die Vertiefung 11 stellt in der ersten Ausführungsform des Rohrelementes 10 eine Ringsicke dar. Der Außenradius A2 an der tiefsten Stelle der Vertiefung 11 ist geringer als der Außenradius A1 des ersten Längenabschnittes 100. Die Vertiefung 11 weist in der dargestellten
Ausführungsform einen kreisbogenförmigen Verlauf auf. Die Wandstärke in dem zweiten Längenabschnitt 102 entspricht der Wandstärke in dem ersten Längenabschnitt 100.
Die Vertiefung 11 kann durch eine oder mehrere Drückwalzen (nicht gezeigt) mit einer entsprechenden Kontur an deren Außenumfang eingebracht worden sein. Insbesondere kann die Vertiefung 11 durch Drückwalzen oder Prägen eingebracht worden sein. Vor oder während des Einbringens der Vertiefung 11 erfolgt eine gezielte Materialflusssteuerung, um die Verringerung der Wandstärke in dem zweiten Längenabschnitt 102 zu verhindern. Das Rohr, in das zur Herstellung des
Rohrelementes 10 die Vertiefung 11 eingebracht wird, weist den Außenradius A1 und die Wandstärke des ersten Längenabschnittes 100 auf.
In axialer Richtung schließt sich an die Vertiefung 11 und damit den zweiten
Längenabschnitt 102 ein weiterer erster Längenabschnitt 101 an. Dieser
Längenabschnitt 101 entspricht von der Wandstärke und dem Außenradius A1 den Abmessungen des ersten Längenabschnittes 100, der an der Stirnseite des
Rohrelementes 10 liegt. Somit weist das Rohrelement 10 außer in dem zweiten Längenabschnitt 102 einen konstanten Außenradius A1 auf.
In der Figur 4 ist eine zweite Ausführungsform des erfindungsgemäßen
Rohrelementes 10 gezeigt. Bei dieser Ausführungsform ist zwischen den beiden ersten Längenabschnitten 100, 101 und dem dazwischenliegenden zweiten
Längenabschnitt 102 jeweils ein dritter Längenabschnitt 103, 104 gebildet. In diesen dritten Längenabschnitten 103, 104 nimmt der Außenradius A1 von dem jeweilig angrenzenden ersten Längenabschnitt 100, 101 zu dem axial äußern Ende des zweiten Längenabschnittes 102 ab. Die Wandstärke W3 ist dabei vorzugsweise in den dritten Längenabschnitten 103, 104 konstant. Die dritten Längenabschnitte 103, 104 können auch als Einzug oder Einfall der Wand des Rohrelementes 10
bezeichnet werden und werden durch die Einbringung der Vertiefung 11 erzeugt. Es liegt allerdings auch im Rahmen der Erfindung, dass das Rohrelement 10 keine dritten Längenabschnitte 103, 104 aufweist. Dies kann beispielsweise durch gezielte Materialflusssteuerung oder Andrücken bei der Einbringung der Vertiefung 11 erzielt werden. Auch bei der zweiten Ausführungsform, die in Figur 4 gezeigt ist, sind die dritten Längenbereiche 103, 104 gering gehalten und deren axiale Länge entspricht vorzugsweise maximal der dem 2,5-fachen der Wandstärke der ersten
Längenabschnitte 100, 101. Die Wandstärke W3 des dritten Längenabschnittes 103 entspricht mindestens der Wandstärke W1 der ersten Längenabschnitte 100, 101.
Die Wandstärke W2 in dem zweiten Längenabschnitt 102 ist vorzugsweise gleich oder größer als die Wandstärke W3 in den dritten Längenabschnitten 103, 104.
In den Figuren 5 und 6 ist eine dritte Ausführungsform des Rohrelementes 10 gezeigt. Bei dieser Ausführungsform ist der zweite Längenabschnitt 102 durch eine Vertiefung 11 gebildet, die in Umfangsrichtung Unterbrechungen 12 aufweist. Die Vertiefung 11 wird daher durch einzelne Teilvertiefungen 110 gebildet, die in
Umfangsrichtung des Rohrelementes 10 verteilt liegen. In der Figur 6 ist schematisch die Herstellung des Rohrelementes 10 nach der dritten Ausführungsform gezeigt.
Das Werkzeug 2, das zur Herstellung verwendet wird, besteht aus mehreren radial zustellbaren Segmenten. In der Figur 6 besteht das Werkzeug 2 aus acht
Segmenten, die, wie durch den Pfeil P angedeutet, in radialer Richtung auf das Rohr, aus dem das Rohrelement 10 gebildet werden soll, hin und von diesem weg bewegt werden können. Das Werkzeug 2 stellt hierbei ein Presswerkzeug dar. Durch das Werkzeug 2 werden in die Rohrwand des Rohres Teil Vertiefungen 110 eingebracht. Zwischen diesen Teilvertiefungen 110 liegen Unterbrechungen 12 vor. Der
Außenradius A2 der Teilvertiefungen 110 wird als der Außenradius des zweiten Längenabschnittes 102 bezeichnet. In den Unterbrechungen 12 weist das
Rohrelement 10 einen Außenradius auf, der dem Außenradius A1 der ersten
Längenabschnitte 100, 101 entspricht oder geringfügig kleiner ist als der
Außenradius A1. In jedem Fall ist der Außenradius der Unterbrechungen 12 aber größer als der Außenradius A2 im Bereich der Teilvertiefungen 110. Die Wandstärke des Rohrelementes 10 ist in dem Bereich der Teilvertiefungen 110 gleich oder größer als die Wandstärke in den ersten Längenabschnitten 100, 101. Mit der vorliegenden Erfindung wird ein Rohrelement für einen Gasdruckbehälter geschaffen, das aus einem nahtlosen oder geschweißten Rohr hergestellt sein kann, das aus einem hochfesten Werkstoff besteht und dass dennoch Vertiefungen aufweist, die eine große Tiefe aufweisen können, das heißt einen großen
Reduktionsgrad des Außenradius aufweisen. Das Rohrelement weist dabei trotz der großen Vertiefung wenige oder keine Rohrfehler auch in dem Bereich der
Schweißnaht auf. Hierzu wird insbesondere die Wandstärke des Rohrelementes in dem Bereich der Vertiefung gleich oder größer als die Wandstärke des Rohres, aus dem das Rohrelement hergestellt wird, eingestellt.
Die Erfindung weist eine Reihe von Vorteilen auf. Insbesondere kann das
Rohrelement mit Vertiefung(en), beispielsweise einer oder mehreren umlaufenden Sicken, fertigungssicher aus einem Rohr mit hochfestem Werkstoff hergestellt werden und dieses Rohrelement kann in Gasdruckbehältern, beispielsweise als Gehäuserohr eines Airbaggenerators, eingesetzt werden, ohne ein Versagen befürchten zu müssen. Durch die Vertiefungen kann zum einen der Einbau oder Anbau weiter Teile des Gasdruckbehälters, wie beispielsweise einer Berstscheibe vereinfacht werden. Zudem wird die Stabilität des Rohrelementes durch das
Einbringen der Vertiefung mit großer Wandstärke weiter gesteigert.
Bezugszeichenliste
10 Rohrelement
100 erster Längenabschnitt
101 erster Längenabschnitt
102 zweiter Längenabschnitt
103 dritter Längenabschnitt
11 Vertiefung
110 Teilvertiefung
12 Unterbrechung
A1 Außendurchmesser erster Längenabschnitt
A2 Außendurchmesser zweiter Längenabschnitt
A3 Außendurchmesser dritter Längenabschnitt W1 Wandstärke erster Längenabschnitt
W2 Wandstärke zweiter Längenabschnitt W3 Wandstärke dritter Längenabschnitt
2 Werkzeug
P Pfeil

Claims

Patentansprüche
1. Rohrelement für einen Gasdruckbehälter eines Airbagsystems eines
Kraftfahrzeuges, wobei das Rohrelement (10) wenigstens einen ersten
Längenabschnitt (100, 101 ) und wenigstens eine in Umfangsrichtung verlaufende Vertiefung (11 ) aufweist, dadurch gekennzeichnet,
- dass das Rohrelement (10) mindestens einen zweiten Längenabschnitt (102) aufweist, der durch die Vertiefung (11 ) gebildet ist, die sich über zumindest einen Teil des Umfangs des Rohrelementes (10) erstreckt,
- dass der zweite Längenabschnitt (102) zwischen zwei ersten Längenabschnitten (100, 101 ) liegt,
- dass in mindestens einem ersten Längenabschnitt (100, 101 ) der Außenradius (A1 ) des Rohrelementes (10) größer ist als der kleinste Außenradius (A2) des mindestens einen zweiten Längenabschnittes (102),
- dass das Rohrelement (10) eine Zugfestigkeit von >920MPa aufweist,
- dass die Wandstärke (W2) des Rohrelementes (10) in dem mindestens einen zweiten Längenabschnitt (102) größer oder gleich der Wandstärke (W1 ) in mindestens einem ersten Längenabschnitt (100, 101 ) des Rohrelementes (10) ist,
- dass der Reduktionsgrad des Außenradius (A2) in der Vertiefung (11 ) im
Bereich von 5 bis 35% bezogen auf den Außenradius (A1 ) mindestens eines ersten Längenabschnittes (100, 101 ) liegt, und
- dass das Rohrelement (10) aus einem Werkstoff besteht, der neben Eisen und erschmelzungsbedingten Verunreinigungen folgende Legierungselemente in den in Gewichtsprozent angegebenen Bereichen umfasst:
C 0,05 - 0,2%
Si < 0,9%
Mn 0,2 - 2,0%
Cr 0,05 - 2%
Mo < 0,5%
Ni <1 ,0%
Nb 0,005 - 0,10% AI <0,07%
Ti <0,035% und
B <0,004%.
2. Rohrelement nach Anspruch 1 , dadurch gekennzeichnet, dass das Rohrelement (10) eine Zugfestigkeit Rm von >1000MPa aufweist.
3. Rohrelement nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass der Reduktionsgrad des Außenradius in der Vertiefung (11 ) im Bereich von 10 bis 25 % bezogen auf den Außenradius (A1 ) mindestens eines ersten
Längenabschnittes (100, 101 ) liegt.
4. Rohrelement nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass mindestens eine Vertiefung (11 ), die den zweiten Längsabschnitt (102) bildet, eine umlaufende Vertiefung (11 ) ist.
5. Rohrelement nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass mindestens eine Vertiefung (11 ), die den zweiten Längenabschnitt (102) bildet, eine in Umfangsrichtung unterbrochene Vertiefung (110) darstellt.
6. Rohrelement nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass zwischen einem ersten Längenabschnitt (100, 101 ) und einem benachbarten zweiten Längenabschnitt (102) ein dritter Längenabschnitt (103, 104) gebildet ist, bei dem der Außenradius (A3) von dem Außenradius (A1 ) des ersten
Längenabschnitts (100, 101 ) zu dem axialen äußeren Rand der Vertiefung (11 ) abnimmt und dieser dritte Längenabschnitt (103, 104) eine Länge von maximal 2,5 mal der Wandstärke (W1 ) in dem ersten Längenabschnitt (100, 101 ) aufweist.
7. Rohrelement nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Rohrelement (10) frei von oberflächennahen Rohrfehlern ist.
8. Rohrelement nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Rohrelement (10) aus einem geschweißten Rohr hergestellt ist.
9. Rohrelement nach Anspruch 8, dadurch gekennzeichnet, dass in dem Bereich der Schweißnaht und Wärmeeinflusszone des Rohrelementes (10), der in dem zweiten Längenabschnitt (102) liegt, Risse von einer maximalen Länge von 50pm, vorzugweise von einer maximale Länge von 20 pm vorliegen und besonders bevorzugt der Bereich der Schweißnaht und Wärmeeinflusszone rissfrei ist.
10. Rohrelement nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Werkstoff neben Eisen und erschmelzungsbedingten Verunreinigungen folgende Legierungselemente in den in Gewichtsprozent angegebenen Bereichen umfasst:
C 0,08 - 0,13%
Si < 0,1 %
Mn 0,4 - 0,6%
Cr 0,8 - 1 ,0%
Mo 0,1 - 0,5%
Ni 0,1 - 0,4% und
Nb 0,005 - 0,10%.
11. Rohrelement nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der Werkstoff optional mindestens eines der folgenden Legierungselemente in den in Gewichtsprozent angegebenen Bereichen umfasst:
P < 0,020%
S < 0,005%
Ti < 0,015% und
AI 0,001 - 0,05%
12. Rohrelement nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der Werkstoff neben Eisen und erschmelzungsbedingten Verunreinigungen folgende Legierungselemente in den in Gewichtsprozent angegebenen Bereichen umfasst:
C 0,08 - 0,20%
Si < 0,4%
Mn 1 ,2 - 2%
Cr 0,05 - 0,6%
Mo 0,05 - 0,5%
Ni 0,1 - 0,4%
Nb 0,005 - 0,050%
AI 0,01 - 0,07%
Ti 0,01 - 0,035% und
B 0,001 - 0,004%.
13. Rohrelement nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass der Molybdängehalt weniger als 0,3% beträgt.
14. Gasdruckbehälter für ein Airbagsystem eines Kraftfahrzeuges, dadurch
gekennzeichnet, dass dieser mindestens ein Rohrelement (10) nach einem der Ansprüche 1 bis 13 aufweist.
PCT/EP2019/056973 2018-03-20 2019-03-20 Rohrelement für gasdruckbehälter und gasdruckbehälter WO2019180087A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980019785.8A CN111868270B (zh) 2018-03-20 2019-03-20 用于气体压力容器的管元件和气体压力容器
US16/982,899 US11913101B2 (en) 2018-03-20 2019-03-20 Pipe element for gas pressure vessel, and gas pressure vessel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018106546.9A DE102018106546A1 (de) 2018-03-20 2018-03-20 Rohrelement für Gasdruckbehälter und Gasdruckbehälter
DE102018106546.9 2018-03-20

Publications (1)

Publication Number Publication Date
WO2019180087A1 true WO2019180087A1 (de) 2019-09-26

Family

ID=65951548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/056973 WO2019180087A1 (de) 2018-03-20 2019-03-20 Rohrelement für gasdruckbehälter und gasdruckbehälter

Country Status (4)

Country Link
US (1) US11913101B2 (de)
CN (1) CN111868270B (de)
DE (1) DE102018106546A1 (de)
WO (1) WO2019180087A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019135596A1 (de) * 2019-12-20 2021-06-24 Benteler Steel/Tube Gmbh Rohrprodukt, nämlich Gasgeneratorrohr für Airbagmodul, und Verfahren zu Herstellung des Rohrproduktes
DE102020132822B4 (de) 2020-12-09 2023-03-23 Benteler Steel/Tube Gmbh Verfahren zur Herstellung eines inneren Anschlags in einem Rohrbauteil
DE102021102086A1 (de) 2021-01-29 2022-08-04 Benteler Steel/Tube Gmbh Verfahren zur Herstellung und Prüfung eines hochfesten Rohrproduktes aus Stahl sowie Prüfsonde und Rohrprodukt

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004076034A (ja) * 2002-08-12 2004-03-11 Jfe Steel Kk エアバッグ用高強度高靭性高加工性継目無鋼管の製造方法
EP3036052A1 (de) * 2013-08-22 2016-06-29 Autoliv ASP, Inc. Herstellungsverfahren für doppelgesenk-airbagaufblasgefäss
EP3233577A1 (de) * 2014-12-19 2017-10-25 Benteler Steel/Tube GmbH Gasdruckbehälter und rohrelement für ein airbagsystem sowie verfahren zu dessen herstellung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3100707B2 (ja) * 1990-11-28 2000-10-23 デイナミート ノーベル アクチエンゲゼルシヤフト 膨らませ可能な衝突クッションのためのガス発生器
JP2001192773A (ja) * 2000-01-13 2001-07-17 Sumitomo Metal Ind Ltd ラインパイプ用鋼
US20050000601A1 (en) * 2003-05-21 2005-01-06 Yuji Arai Steel pipe for an airbag system and a method for its manufacture
US20050076975A1 (en) * 2003-10-10 2005-04-14 Tenaris Connections A.G. Low carbon alloy steel tube having ultra high strength and excellent toughness at low temperature and method of manufacturing the same
PL1983065T3 (pl) * 2006-02-09 2015-03-31 Nippon Steel & Sumitomo Metal Corp Metoda wytwarzania butli dla układu napełniania gazem poduszki powietrznej
MX2009004425A (es) 2006-10-27 2009-06-30 Sumitomo Metal Ind Tubo de acero sin costura para un acumulador de bolsa de aire y un proceso para su fabricación.
FR3022164B1 (fr) 2014-06-13 2017-01-27 Luxfer Gas Cylinders Ltd Procede de fabrication de recipients pour fluide pressurise et appareil pour le procede

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004076034A (ja) * 2002-08-12 2004-03-11 Jfe Steel Kk エアバッグ用高強度高靭性高加工性継目無鋼管の製造方法
EP3036052A1 (de) * 2013-08-22 2016-06-29 Autoliv ASP, Inc. Herstellungsverfahren für doppelgesenk-airbagaufblasgefäss
EP3233577A1 (de) * 2014-12-19 2017-10-25 Benteler Steel/Tube GmbH Gasdruckbehälter und rohrelement für ein airbagsystem sowie verfahren zu dessen herstellung

Also Published As

Publication number Publication date
US11913101B2 (en) 2024-02-27
US20210002749A1 (en) 2021-01-07
CN111868270A (zh) 2020-10-30
CN111868270B (zh) 2023-02-17
DE102018106546A1 (de) 2019-09-26

Similar Documents

Publication Publication Date Title
DE102008010168B4 (de) Panzerung für ein Fahrzeug
DE102016013466A1 (de) Karosseriebauteil für ein Kraftfahrzeug und Verfahren zum Herstellen eines Karosseriebauteils
WO2019180087A1 (de) Rohrelement für gasdruckbehälter und gasdruckbehälter
EP2341156B1 (de) Verwendung einer Stahllegierung in einem Warmform- und Presshärteprozess
DE60010997T2 (de) Wärmebeständiges Chrom-Molybdän Stahl
EP3591078B1 (de) Verwendung eines stahls für ein additives fertigungsverfahren, verfahren zur herstellung eines stahlbauteils und stahlbauteil
DE60318277T2 (de) Stahlrohr mit einem niedrigem Streckgrenze/Zugfestigkeit-Verhältnis
WO2006103021A2 (de) Geschweisster wälzlagerring aus wälzlagerstahl
EP3625046A1 (de) DREILAGIGER VERSCHLEIßSTAHL ODER SICHERHEITSSTAHL, VERFAHREN ZUR HERSTELLUNG EINER KOMPONENTE UND VERWENDUNG
DE102007030207A1 (de) Verwendung einer hochfesten Stahllegierung zur Herstellung von Strahlrohren mit hoher Festigkeit und guter Umformbarkeit
WO2020058269A1 (de) Stahl zum oberflächenhärten mit hoher randhärte und mit einem feinen duktilen kerngefüge
EP2414552B1 (de) Kugelzapfen aus bainitischen stählen für pkw und leichte lkw
EP3475009B1 (de) Fahrzeugrad und verwendung
DE102019103502A1 (de) Verfahren zur Herstellung eines nahtlosen Stahlrohres, nahtloses Stahlrohr und Rohrprodukt
WO2017085135A1 (de) Stahllegierung mit hohem energieaufnahmevermögen und stahlrohrprodukt
DE102008020757A1 (de) Verfahren zur Umformung von Blechwerkstücken aus Eisen-Mangan-Stahl
DE102010010321A1 (de) Heißisostatisch gepresster Verbundkörper, Verfahren zu seiner Herstellung sowie dessen Verwendung
EP1992710B1 (de) Verwendung einer Stahllegierung
DE102015119839A1 (de) Stahllegierung mit hohem Energieaufnahmevermögen und Stahlrohrprodukt
DE102016117474A1 (de) Karosseriebauteil mit reduzierter Rissneigung und Verfahren zur Herstellung
DE102020102772A1 (de) Gasgeneratorrohr und Gasgenerator für Airbagmodul
DE102018133034A1 (de) Verfahren zur Herstellung eines Rohres und Rohrprodukt
DE102007019980B4 (de) Herstellung von superplastischen UHC-Leichtbaustählen und deren Verarbeitung durch Warmumformung
EP4190935A1 (de) Perforationspistolenrohr und perforationspistole
DE102017119076A1 (de) Hydraulik- oder Pneumatikleitungsrohrelement und Verwendung einer Stahllegierung zur Herstellung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19713737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19713737

Country of ref document: EP

Kind code of ref document: A1