WO2019178899A1 - 一种复杂曲面电子系统的共形制造设备及方法 - Google Patents

一种复杂曲面电子系统的共形制造设备及方法 Download PDF

Info

Publication number
WO2019178899A1
WO2019178899A1 PCT/CN2018/082255 CN2018082255W WO2019178899A1 WO 2019178899 A1 WO2019178899 A1 WO 2019178899A1 CN 2018082255 W CN2018082255 W CN 2018082255W WO 2019178899 A1 WO2019178899 A1 WO 2019178899A1
Authority
WO
WIPO (PCT)
Prior art keywords
curved
module
transfer
conformal
laser
Prior art date
Application number
PCT/CN2018/082255
Other languages
English (en)
French (fr)
Inventor
黄永安
尹周平
吴昊
陈建魁
李文龙
白坤
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Priority to US16/340,380 priority Critical patent/US11424144B2/en
Publication of WO2019178899A1 publication Critical patent/WO2019178899A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/14Formation of a green body by jetting of binder onto a bed of metal powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/31Calibration of process steps or apparatus settings, e.g. before or during manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/22Driving means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/80Plants, production lines or modules
    • B22F12/82Combination of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/84Parallel processing within single device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/188Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
    • B29C64/194Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control during lay-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0284Details of three-dimensional rigid printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1241Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing
    • H05K3/125Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing by ink-jet printing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • H05K3/207Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern using a prefabricated paste pattern, ink pattern or powder pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/379Handling of additively manufactured objects, e.g. using robots
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09018Rigid curved substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/10Using electric, magnetic and electromagnetic fields; Using laser light
    • H05K2203/107Using laser light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/15Position of the PCB during processing
    • H05K2203/1509Horizontally held PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/16Inspection; Monitoring; Aligning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention belongs to the field of electronic manufacturing technology, and more particularly to a conformal manufacturing device and method for a complex curved electronic system.
  • the traditional planar processing-based microelectronic system mainly adopts the visual method to locate, but the two-dimensional property of the visual image acquisition makes it can only effectively locate the two-dimensional plane.
  • the traditional measurement method mainly uses a three-coordinate machine to measure the surface of the curved surface point by point, which inevitably brings a large amount of measurement data, slow measurement efficiency, slow data processing, And the impact of the light environment is large.
  • a multi-needle stripping technique, etc. due to its need to utilize the brittle characteristics of the microelectronic device and the substrate, it is difficult to apply in the stripping process of the flexible electronic substrate, and at the same time cannot satisfy the high reliability of large-area, ultra-thin, flexible electronic devices. Stripping demand for sex and high compatibility.
  • the transfer technology is needed to transfer the flexible electronic device from the planar substrate to the curved substrate; the current transfer process is usually through the control device and the substrate, and the pick-up device.
  • the relative adhesion between the two interfaces is used to achieve the transfer process.
  • the more common transfer methods include power control transfer, surface relief-assisted transfer, change of transfer head load transfer, electrostatic adsorption transfer, and the like.
  • such a flexible electronic transfer method is more suitable for plane-to-plane transfer, and it is not possible to achieve flat to curved transfer with high precision.
  • the printing of the material (viscosity of 3000-10000 cps) has the disadvantages of low printing resolution, easy nozzle clogging, and incompatibility with high viscosity ink. That is to say, there is no ideal inkjet printing technology that can be compatible with high-viscosity nano-silver and can realize curved conformal printing conductive interconnect structure.
  • the present invention provides a conformal manufacturing apparatus and method for a complex curved electronic system, in which not only the overall structural layout of the conformal manufacturing apparatus is re-examined and designed, but also It improves the specific components and setting working modes of components such as surface transfer module, laser stripping module, conformal printing module, etc., and correspondingly compared with existing electronic manufacturing equipment. It can better meet the high-precision manufacturing requirements of various rigid/flexible complex curved electronic systems, and has the characteristics of high automation and suitable for mass production. It is especially suitable for aerospace intelligent skins, flexible curved displays, Manufacturing applications for complex curved electronic systems such as flexible sensors, household appliances and flexible energy.
  • a conformal manufacturing apparatus for a complex curved electronic system which is suitable for hybrid manufacturing of rigid or flexible curved electronic devices, and includes a support table. And a spherical motor linkage platform, a three-dimensional measurement module, a laser stripping module, a curved transfer module and a conformal printing module respectively mounted on the support table and independently controllable, wherein:
  • the spherical motor linkage platform includes a linear motion portion of the linkage platform and a spherical motor portion, wherein the planar motion portion of the linkage platform is directly disposed on the support platform, and has an X-direction motion axis and a movable edge movable along the X-axis direction a Y-direction moving shaft moving in the Y-axis direction; the spherical motor portion continues to be disposed on the planar moving portion of the linkage platform and moves therewith, and further has a rigid curved substrate or a flexible curved substrate attached thereto a curved substrate and driving the curved substrate or the curved substrate to rotate in space to any desired posture;
  • the three-dimensional measurement module includes a measurement sensor support frame, a measurement module planar motion portion, a three-dimensional laser measurement sensor, and a measurement light source, wherein the measurement sensor support frame is directly disposed on the support table; the planar movement portion of the measurement module is installed in the Measuring the sensor support frame, and having a Y-direction measuring motion axis movable in the Y-axis direction and a Z-direction measuring motion axis movable in the Z-axis direction; further, the 3D laser measuring sensor is continuously mounted on the measuring module Moving on the planar moving portion and moving along with it to a desired position, and using the measuring light source to perform point cloud acquisition on the curved substrate or the curved substrate adhered to the spherical motor portion, and then generating a point The cloud module performs matching calculation with the corresponding design model;
  • the laser stripping module includes a laser, a peeling module plane moving portion, a peeling support jig, and a peeling observation camera, wherein the laser is disposed under the support table and is configured to emit laser radiation through a matching optical path portion, thereby illuminating the light
  • An electronic device engraved on the transparent hard planar substrate is stripped from the planar substrate;
  • the planar moving portion of the stripping module is disposed above the laser and has an X-direction peeling motion axis movable along the X-axis direction and a Y-direction peeling movement axis that moves in the Y-axis direction;
  • the peeling support jig continues to be mounted on the planar moving portion of the peeling module and moves together to a desired position, and is used to fix and hold the above-mentioned electrons on the planar substrate
  • the device is configured to perform a laser stripping operation;
  • the peeling observation camera is disposed near the plane moving portion of the stripping module, and is
  • the curved surface transfer module includes a transfer head support frame, a transfer module planar moving portion, a curved transfer head, and a transfer positioning camera, wherein the transfer head support frame is directly disposed on the support table; the transfer module a planar moving portion is mounted on the transfer head support frame, and has an X-direction transfer movement shaft movable in the X-axis direction and a Z-direction transfer movement shaft movable in the Z-axis direction; The transfer head is further mounted on the planar moving portion of the transfer module and moved together to a desired position, and then used to transfer the electronic device after performing the peeling operation via the laser stripping module onto the curved substrate;
  • the transfer positioning camera is configured to collect position information of the planar moving portion of the transfer module in cooperation with the transfer light source;
  • the conformal printing module includes a nozzle support frame, a printing unit planar moving portion, a nozzle portion, a print observation camera and an ink droplet observation camera, wherein the nozzle support frame is disposed on the support table along a Z-axis direction;
  • the plane moving portion of the printing module is mounted on the nozzle support frame, and has an X-direction printing movement axis movable along the X-axis direction and a Z-direction printing movement axis movable along the Z-axis direction; Part of continuing to be mounted on the planar moving portion of the showerhead module and moving together to a desired position, and then for continuing to print the slurry on the surface of the curved substrate after performing the transfer operation via the curved transfer module, Thereby, the manufacture of the conductive interconnection structure is realized; in addition, the print observation camera is used for collecting the printing track and the effect on the curved substrate in cooperation with the printing light source, and the ink droplet observation camera is in the ink droplet The state of the ink drop
  • the three-dimensional measuring module wherein during the entire point cloud acquisition process of the three-dimensional laser measuring sensor, it is preferably continuously adjusted in position and made with the curved substrate or the curved substrate in the Z
  • the axial direction, that is, the vertical direction spacing remains unchanged.
  • the optical path portion thereof is preferably disposed on the support table along the Z-axis direction through the optical path support frame, and is used to execute a laser beam emitted from the laser Processing such as shaping, homogenizing, and adjusting the direction; in addition, the end of the optical path portion is directly above the planar moving portion of the stripping module.
  • the peeling laser intensity can also be adjusted by using a fine meshing mask, that is, by adjusting the grid feature width and spacing of the gridded mask, the lithography is in a transparent hard plane.
  • the number of laser irradiations received by the electronic devices on the substrate and the laser irradiation energy are controlled.
  • the nozzle portion thereof preferably includes an integrated ink supply assembly and a gas sheath auxiliary nozzle assembly coupled to the integrated ink supply assembly, wherein the integrated ink supply unit
  • the component is configured to automatically supply ink to the gas sheath auxiliary nozzle assembly, and can realize automatic switching between flow driving and pneumatic driving; the air sheath auxiliary nozzle assembly is used for printing ink onto the curved substrate.
  • a ring electrode is provided below its nozzle.
  • the conformal manufacturing apparatus described above further includes a control module for performing a function of receiving, processing, and transmitting electrical control signals throughout the manufacturing process.
  • Step 1 Three-dimensional measurement and positioning operation
  • a rigid or flexible curved substrate is tightly mounted on the planar moving portion of the spherical motor linkage platform, and three-dimensional measurement and positioning process parameters are set to the three-dimensional laser measuring sensor, and the curved substrate is correspondingly according to the measured moving trajectory path.
  • the point scanning is performed to generate a point cloud model; then, the point cloud model is matched with the design model, and it is determined whether the error precision requirement for the subsequent process is met: if the error precision requirement is not met, the surface is re-created or installed. The substrate until the error accuracy requirement is reached;
  • Step 2 Laser stripping operation
  • a laser release layer (such as laser amorphous silicon) is deposited on a planar substrate (such as a transparent quartz glass substrate), and a flexible electronic device is prepared by a microelectronic process above the laser release layer, and then the electronic device lithographically printed on the planar substrate is stripped.
  • a planar substrate such as a transparent quartz glass substrate
  • the support fixture is moved to the desired position and fixedly clamped, and then a transparency-controllable patterned mask having a semi-transparent area is accurately placed at a specified position between the flexible device and the light exit end of the optical path to adjust the control laser
  • the laser light absorbed by the release layer irradiates energy to achieve selective laser lift-off, and then the electronic device is peeled off from the planar substrate by adjusting the laser lift-off process parameters; at the same time, the peeling observation camera is used for positioning and Observation
  • the transfer positioning camera for positioning, moving the curved transfer head to a specified position above the electronic device after the laser stripping operation; then opening the air pressure adsorption function to vertically contact the curved transfer head to the electronic
  • the device picks up up with a negative pressure; then, the transfer positioning camera is called again for positioning, and the curved transfer head is moved to a specified position above the curved substrate, and is adjusted by a six-degree-of-freedom spherical motor linkage platform.
  • the posture and position of the curved substrate are such that the current transfer position is directly below the curved transfer head; then the electronic device is completely transferred to the curved substrate by a quadratic conformal method;
  • Step 4 Conformal printing operation
  • Printing simultaneously calling the printing observation camera to locate and observe the conformal printing process; after the surface conformal printing is completed on demand, the printing observation camera is called again to position and align the pins of the electronic device, And connecting the pin pairs of the electronic device one by one according to the pin position information;
  • step three it preferably operates the secondary conformal in a manner of active-passive coupling:
  • the curved transfer head is moved to a specified position above the curved substrate, and preliminary multi-point active conformal is performed; then, the electronic device and the curved substrate are brought into contact with each other, and the curved transfer head itself is utilized
  • the deformable film performs secondary distributed passive conformal; finally, the deformable film of the curved transfer head is expanded by positive pressure air pressure to separate the electronic device from the curved transfer head, thereby completing the transfer of the electronic device to Operation on a curved substrate.
  • the invention further optimizes the specific structural composition and working mode of the three-dimensional laser measuring module.
  • the limitation of the mature visual positioning measuring system can be effectively overcome, and the invention is also significantly overcome.
  • the traditional 3D measurement system has the advantages of slow measurement speed and vulnerability to the surrounding environment, which can achieve efficient, fast and high-precision point cloud stitching information of the measured surface, and significantly reduce the surface and ambient light requirements of the measured surface. , enhanced its versatility and improved its stability, reliability and success rate;
  • Optimized design of the component structure and its setting working mode corresponding to the conformal printing process can not only significantly improve the convenience and operation efficiency of precision ink supply, but also the use of the gas sheath auxiliary function and the ring electrode.
  • the printing process is more stable, and can accurately deposit the flying droplets to a specified position, thereby avoiding the influence of the non-uniform electric field caused by the rigid curved substrate/curved substrate 230 on the printing precision, and improving the application range and flexibility;
  • the conformal manufacturing equipment designed by the invention also integrates a six-degree-of-freedom spherical motor linkage technology to decouple the complex surface motion, and can realize the rotational displacement transformation by using the spherical motor part, thereby avoiding the accumulation error;
  • the complex and cumbersome vector transformation and post-processing process in the five-axis linkage technology significantly improves the trajectory resolution efficiency; combined with the flexibility of the spherical motor, the overall speed and efficiency of complex surface motion is improved, and the rigid/flexible surface is expanded.
  • the area and range of conformal manufacturing of electronic systems have broken through the barriers of manufacturing curvature and expanded the application range of manufacturing processes;
  • the apparatus and method provided by the present invention can be better applied to the surface transfer process as a whole, and meet the requirements of the integrated curved surface transfer process of the flexible electronic device from the planar substrate to the rigid/flexible curved substrate, and overcome a few In the completely passive transfer mode, the influence of the deformation force on the transfer device and the inability to accurately control the deformation significantly improve the accuracy, efficiency, reliability, and success rate of the surface transfer.
  • FIG. 1 is a schematic view showing the overall configuration of a conformal manufacturing apparatus constructed in accordance with the present invention
  • FIG. 2 is a block diagram showing the constitution and principle of a conformal manufacturing apparatus constructed in accordance with the present invention
  • FIG. 3 is a more detailed structural diagram showing the spherical motor linkage platform module shown in FIG. 1;
  • FIG. 4 is a view showing a specific structure of the three-dimensional measuring module shown in FIG. 1 in more detail;
  • Figure 5 is a side view showing the structure of the three-dimensional measuring module
  • FIG. 6 is a more detailed structural view showing the laser stripping module shown in Figure 1;
  • FIG. 7 is an enlarged schematic view showing a partial structure of the laser stripping module
  • Figure 8 is a more detailed structural view showing the curved transfer module shown in Figure 1;
  • FIG. 9 is an enlarged schematic view showing a partial structure of the curved surface transfer module
  • Figure 10 is a structural view showing more specifically the structure of the conformal printing module shown in Figure 1;
  • Fig. 11 is a schematic view showing a concrete composition of the control module shown in Fig. 1.
  • FIG. 1 is a schematic view showing the overall configuration of a conformal manufacturing apparatus constructed in accordance with the present invention
  • FIG. 2 is a block diagram showing the constitution and principle of a conformal manufacturing apparatus constructed in accordance with the present invention.
  • the conformal manufacturing apparatus is simultaneously suitable for hybrid manufacturing of rigid or flexible curved electronic devices, and includes a support table 100, and balls each mounted on the support table and independently controllable Functional components such as the motor linkage platform 200, the three-dimensional measurement module 300, the laser stripping module 400, the curved surface transfer module 500, and the conformal printing module 600 will be specifically explained below.
  • the spherical motor linkage platform 200 includes a linkage platform plane moving portion 210 and a spherical motor portion 220, wherein the linkage platform plane moving portion 210 is directly disposed on the support table and has an X movable along the X-axis direction. a moving shaft 211 and a Y-direction moving shaft 212 movable in the Y-axis direction; the spherical motor portion 220 continues to be disposed on the moving platform plane moving portion 210 and moves therewith, and further adheres thereto A rigid or flexible curved substrate that drives the curved substrate to rotate in space to any desired posture.
  • the linked platform plane moving portion 210 is disposed on the support table 100, the spherical motor portion 220 is disposed on the plane moving portion 210; the rigid curved substrate 230 (for rigid curved surface electrons) or attached A curved substrate 230 (for flexible curved electrons) of the flexible curved substrate 240 is disposed on the spherical motor portion 220.
  • the spherical motor portion 220 may mainly include a stator assembly 221 fixed to the support table 100, a mover assembly 222 fixed to the curved substrate 230, and the stator assembly 221
  • the coils are regularly distributed, and the permanent magnets are regularly distributed on the mover assembly 222.
  • the spherical motor portion 220 can fully utilize the electromagnetic field to control the rotation angle, and the movement speed is fast and the range of motion is large, which improves the movement flexibility of the conformal manufacturing process of the rigid/flexible curved electronic system and improves the manufacturing efficiency.
  • the six-degree-of-freedom spherical motor linkage technology can decouple the motion, that is, the plane moving part and the spherical motor part respectively.
  • the translation and rotation functions of complex surface motion are avoided, and accumulation errors are avoided.
  • the nested coordinate system is used, which eliminates the complicated and cumbersome vector transformation and post-processing process in the traditional five-axis linkage technology; it reduces the space occupation and motion error accumulation caused by the superposition of the rotation axis.
  • the working head of the spherical motor linkage platform 200 and other modules (the three-dimensional measuring module 300, the curved surface transfer module 500, the conformal printing module 600) (the three-dimensional laser measuring sensor 330, the curved transfer head 530, and the nozzle portion) are pointed out.
  • the vertical axis (the measurement Z motion axis 322, the transfer Z motion axis 522, and the print Z motion axis 622) are combined to form a six-degree-of-freedom linkage for the rigid curved substrate/curved substrate 230. It can perform arbitrarily complex surface motion with the working head in space and provide surface trajectory planning for scanning measurement, surface transfer and conformal printing.
  • the vertical axis has one and only one of the working positions and is in operation at the same time.
  • the planar moving portion 210 is configured to enable the curved substrate to achieve a translational motion within its range of travel; the spherical motor portion 220 is configured to effect rotation of the curved substrate in any direction within a spatial extent.
  • the regularly distributed coils on the stator assembly 221 are electrically connected to different strengths according to the control signals to form electromagnetic fields having different strengths, and are regularly distributed on the mover assembly 222.
  • the permanent magnet interaction enables the spherical motor portion 220 to be quickly rotated to a specified attitude with high precision and high sensitivity in any direction.
  • the spherical motor can increase the gravity balance device, the attitude detecting device and the like to further improve the motion sensitivity and the control precision.
  • the curved substrate 230 is used to support a flexible curved substrate 240 adhered thereto in an adhesive manner.
  • the three-dimensional measurement module 300 includes a measurement sensor support frame 310, a measurement module planar motion portion 320, a three-dimensional laser measurement sensor 330, a measurement light source 340, and the like, wherein the measurement sensor support frame 310 is directly disposed on the support table.
  • the measuring module plane moving portion 320 is mounted on the measuring sensor support frame, and has a Y-direction measuring motion axis 321 movable along the Y-axis direction and a Z-direction measuring motion axis 322 movable in the Z-axis direction;
  • the three-dimensional laser measuring sensor 330 continues to be mounted on the measuring module plane moving portion 320 and moves together with it to a desired position, and is used to adhere to the spherical motor with the cooperation of the measuring light source 340.
  • the curved substrate on part 220 performs point cloud acquisition, and then generates a point cloud module to perform matching calculation with the corresponding design model.
  • the measurement sensor support frame 310 is disposed on the support table 100, and the measurement plane moving portion 320 is disposed on the measurement sensor support frame 310 and may be perpendicular to the planar motion portion 210.
  • the three-dimensional laser measuring sensor 330 is disposed on the measuring plane moving portion 320 and perpendicular to the planar moving portion 210; the measuring light source 340 is disposed on the measuring plane moving portion 320, beside the three-dimensional laser measuring sensor 330 .
  • the measurement plane moving portion 320 further includes a measurement Y motion axis 321 and a measurement Z motion axis 322 that intersect perpendicularly in the same plane.
  • the three-dimensional measurement module 300 is mainly used to obtain point cloud data of the rigid curved substrate/curved substrate 230 after actual installation by means of laser scanning, and to reconstruct and combine surfaces with a point cloud, and CAD The design model is matched to achieve precise positioning of the actual machining model.
  • the test for the post-processing error can also be obtained in the same way.
  • the measurement sensor support frame 310 is used to support, connect and fix the three-dimensional laser measurement sensor 330.
  • the measuring Y motion axis 321 is configured to implement switching between the two different positions of the working state and the non-working state of the three-dimensional laser measuring sensor 330; the measuring Z moving axis 322 is used for the linkage platform 200 with the spherical motor
  • the six-degree-of-freedom linkage mode formed in the working state of the three-dimensional laser measuring module is matched.
  • the three-dimensional laser measurement sensor 330 is configured to perform point cloud acquisition on the rigid curved substrate/curved substrate 230, and transmit the point cloud data collected by the three-dimensional laser measurement sensor 330 to the control module 700. Surface reconstruction and flattening, matching calculation and error analysis.
  • a longitudinal curved surface follow-up mode is adopted; a motion path is planned within the range of motion of the planar motion portion 210 to achieve a complete scan of the rigid curved substrate/curved substrate 230;
  • the Z motion axis 322 continuously adjusts the position according to the vertical height of the local surface in the CAD design model, so that the relative distance between the measurement Z motion axis 322 and the rigid/flexible curved substrate 230/240 in the vertical direction is unchanged, thereby The measured portion is kept in the optimal depth of field range of the three-dimensional laser measuring sensor 330.
  • the three-dimensional laser point cloud scanning measurement technology integrated in the method and the device can increase the longitudinal surface follow-up technology in the process of using the three-dimensional laser measurement sensor 330 for picking point scanning, even if the vertical three-dimensional laser measuring sensor 330 is vertical.
  • the straight position changes continuously with the height of the CAD design model, and the relative distance between the three-dimensional laser measuring sensor 330 and the rigid curved substrate/curved substrate 230 in the vertical direction is kept constant, so that the collected point is always in the three-dimensional laser measuring sensor 330.
  • the accuracy of point cloud measurement can be effectively improved.
  • the measurement technology can also effectively introduce relevant technical parameters and point cloud flattening algorithm, correspondingly better match the measured point cloud with the CAD design model, calculate and display the error condition, and reduce the line structure light to the surface of the measured object. Characteristic requirements ensure measurement accuracy and accurate measurement results.
  • the laser stripping module 400 includes a laser 410, a peeling module plane moving portion 420, a peeling support jig 470, a peeling observation camera 450, and the like, wherein the laser 410 is disposed under the support table 100 and is used for matching
  • the optical path portion 440 emits laser radiation to detach the electronic device lithographically printed on the transparent hard planar substrate from the planar substrate;
  • the stripping module planar moving portion 420 is disposed above the laser 410 and has an axis along the X axis a directional movement X-direction peeling motion shaft 421 and a Y-direction peeling motion shaft 322 movable in the Y-axis direction;
  • the peeling support jig 470 continues to be mounted on the peeling module plane moving portion 420 and moves together to a desired position And for holding and holding the above-mentioned electronic device lithographically mounted on the planar substrate to perform the laser lift-off operation; further, the peeling observation camera
  • the laser 410 is disposed under the support table 100
  • the peeling plane moving portion 420 is disposed on the support table 100
  • the optical path support frame 430 is disposed on the support table 100.
  • the optical path portion 440 is disposed on the optical path support frame 430, and the end thereof is disposed directly above the peeling plane moving portion 420;
  • the peeling observation camera 450 is disposed on the support table 100.
  • a side of the peeling plane moving portion 420; a gas cylinder 460 may be disposed beside the support table 100; and a peeling support jig 470 is disposed on the peeling plane moving portion 420.
  • the peeling plane moving portion 420 includes a peeling X moving shaft 421 and a peeling Y moving shaft 422 that intersect perpendicularly in the same plane.
  • the optical path portion 440 may further include a short-axis homogenizing optical path 441 and a long-axis homogenizing optical path 442, including a mirror, a uniaxial beam expanding compound-eye homogenizing array uniaxial aperture, a field mirror, an objective lens, and the like, and The light exit port 443 at the end of the light path.
  • the peeling observation camera 450 includes a peeling camera frame 451 disposed on the support table 100 and perpendicular to the peeling plane moving portion 420; a peeling observation camera 452 is disposed at the end of the peeling camera frame 451; The opposite position of the observation camera 452 is peeled off.
  • the basic principle of the laser stripping process is to use laser irradiation to change the laser release layer (such as PI, sapphire, PZT, amorphous silicon) between ultra-thin flexible electronic devices (made by microelectronics process) and planar substrates (usually transparent quartz glass).
  • the nature of the laser using the properties of laser energy accumulation, causes the release layer to undergo physicochemical effects such as sintering, gasification, and heat-induced delamination, thereby achieving the purpose of separating the ultra-thin flexible electronic device from the planar substrate.
  • the laser stripping process can further regulate the interface adhesion strength after laser stripping, and the control method preferably uses a fine mesh mask to adjust the feature width and spacing of the mask grid. It is possible to control the number of laser irradiations corresponding to the corresponding transmissive regions and the energy of the laser irradiation, thereby achieving selective laser lift-off.
  • the curved surface transfer module 500 includes a transfer head support frame 510, a transfer module planar moving portion 520, a curved transfer head 530, a transfer positioning camera 540, and the like, wherein the transfer head support frame 310 is directly disposed.
  • the transfer module plane moving portion 520 is mounted on the transfer head support frame, and has an X-direction transfer motion shaft 321 movable along the X-axis direction and a Z-axis direction a moving Z-direction transfer motion shaft 322; further, the curved transfer head 530 continues to be mounted on the planar moving portion of the transfer module and moves therewith to a desired position, and then used to peel the module via the laser Transferring the electronic device after performing the peeling operation to the curved substrate; in addition, the transfer positioning camera 540 is configured to collect the position information of the transfer module planar moving portion 520 with the cooperation of the transfer light source 543 .
  • the transfer head support frame 510 is disposed on the support table 100; the transfer plane moving portion 520 is disposed on the transfer head support frame 510, and can be combined with The planar moving portion 210 and the peeling plane moving portion 420 are perpendicular; a curved transfer head 530 is disposed on the transfer plane moving portion 520, and simultaneously with the plane moving portion 210 and the peeling plane moving portion 420 Vertically, a transfer positioning camera portion 540 is disposed on the transfer plane moving portion 520 beside the curved transfer head 530.
  • the transfer plane moving portion 520 includes a transfer X moving shaft 521 and a transfer Z moving shaft 522 that intersect perpendicularly in the same plane.
  • the transfer positioning camera portion 540 includes a transfer camera holder 541 disposed on the transfer Z movement shaft 522, a transfer positioning camera 542 disposed at an end of the transfer camera holder 541, and The transfer light source 543 at the opposite position of the positioning camera 542 is printed.
  • the curved transfer head 530 mainly includes, for example, a linear drive assembly, a seal assembly, a pneumatic assembly, and an adjustable slide assembly, and the like.
  • the improved curved surface transfer process in the method and the device is a passively combined curved surface transfer method.
  • the most important determinant is the deformability of the transfer head and the conformal precision of the transfer position with the curved substrate, so the surface transfer mode of the active and passive combination is turned on the curved surface.
  • the conformal method and the precision of the transfer head are improved by the conformal method of active conformal and passive conformal two-step superposition.
  • the so-called active conformal or curved transfer head 530 combines the transfer position information with its specific mechanical structure (linear drive assembly) to realize the preliminary multi-point conformality of the curved transfer head 530 and the transfer position; the so-called passive conformal is active On the basis of the shape, the deformation of the deformable film on the curved transfer head 530 is achieved to achieve complete distributed conformality with the transfer position.
  • the active-passive combined surface transfer method transforms the conformal process into a precisely controllable mechanical motion by uncontrollable dependence on the nature of the transfer head, and is supplemented by a secondary passive conformal, which greatly reduces the process.
  • the complexity and the transfer precision are improved, and the flexible electronic device processed by the laser stripping process can be completely and high-quality transferred from the planar substrate to the rigid/flexible curved substrate.
  • the conformal printing module 600 includes a nozzle support frame 610, a print module planar moving portion 620, a spray head portion 630, a print observation camera 640, and an ink droplet observation camera 650, etc., wherein the spray head support frame 610 is along The Z-axis direction is disposed on the support table; the print module planar moving portion 620 is mounted on the nozzle support frame, and has an X-direction printing movement axis 621 movable along the X-axis direction and a Z-direction printing motion axis 622 that moves in the Z-axis direction; the showerhead portion 630 continues to be mounted on the planar moving portion of the showerhead module and moves therewith to a desired position, and is then used to pass through the curved surface transfer module 500 The surface of the curved substrate after performing the transfer operation continues to print the paste, thereby realizing the manufacture of the conductive interconnection structure; further, the print observation camera 640 is used to cooperate with the print source 643 for the curved
  • the nozzle support frame 610 is disposed on the support table 100; a printing plane moving portion 620 is disposed on the nozzle support frame 610, perpendicular to the plane moving portion 210; a portion 630, disposed on the printing plane moving portion 620, perpendicular to the plane moving portion 210; a printing observation camera 640 disposed on the printing plane moving portion 620, adjacent to the head portion 630; The drop observation camera 650 is disposed on the support table 100, adjacent to the print plane moving portion 620, perpendicular to the head portion 630; a high voltage amplifier 660; a function generator 670, and the like.
  • the print plane moving portion 620 includes a jet X moving shaft 621 and a jet Z moving shaft 622 that intersect perpendicularly in the same plane.
  • the showerhead portion 630 preferably includes an integrated ink supply assembly 631 and a gas sheath auxiliary showerhead assembly 632 coupled to the integrated ink supply assembly 631.
  • the integrated ink supply assembly 631 mainly comprises a stepping motor, a lead screw, a cartridge push rod, a micro check valve and the like;
  • the gas sheath auxiliary nozzle assembly 632 mainly comprises an inlet liquid, a gas sheath auxiliary, a ring electrode, a nozzle, and the like. structure.
  • the print observation camera portion 640 includes a print camera holder 641 disposed on the print Z movement shaft 622, a print observation camera 642 disposed at an end of the print camera holder 641, and a spray gun 642 disposed at the end of the print camera holder 641.
  • a printing source 643 at the opposite position of the camera 642 is printed.
  • the ink droplet observation camera 650 includes an ink droplet observation camera holder 651 disposed on the support table 100 next to the printing plane motion 620, and an ink droplet observation camera 652 disposed at an end of the ink droplet observation camera holder 651. And an ink droplet observation light source 653 provided at a position opposite to the ink droplet observation camera 652.
  • the conformal printing module 600 is mainly used to print high quality conductive interconnect structures, basic components and the like on the rigid/flexible curved substrate 230/240 as needed, with high precision and high uniformity.
  • the spray head support frame 610 is used to support, connect and secure the spray head portion 630.
  • the print X motion axis 621 in the print plane moving portion 620 is used to switch between the head portion 630 in two different positions of the working state and the non-working state; the print Z motion axis 622 is used for Cooperating with the spherical motor linkage platform 200 to form a six-degree-of-freedom linkage mode in the working state of the conformal printing module 600.
  • the integrated ink supply assembly 631 is configured to automatically supply ink to the air sheath auxiliary nozzle assembly 632, and can automatically switch between the flow drive and the pneumatic drive modes, and can also automatically clean the ink cartridge.
  • the air sheath auxiliary nozzle assembly 632 is configured to print the ink onto the rigid/flexible curved substrate 230/240 for high-precision, high-stability patterning and device preparation, through a gas sheath auxiliary structure.
  • the focus and positioning are enhanced to improve the smoothness of the printing process, and the ground electrode is integrated into the gas sheath auxiliary nozzle assembly 632 through the ring electrode structure, so that the charged liquid droplets can be accelerated in the stable electric field during the printing process, and the rigidity is reduced.
  • the print observation camera portion 640 can realize real-time observation of the shape and quality of the spray pattern, detect the flight path of the droplet space, and realize the nozzle structure and the rigidity/flexibility by means of visual real-time acquisition. Positioning function between curved substrates 230/240.
  • the ink droplet observation camera portion 650 is used to observe the "Taylor cone" formed at the nozzle structure at the beginning of the printing process, thereby ensuring the stability of the printing process and the uniformity of the line width of the printing pattern.
  • the high voltage amplifier 660 is configured to apply different voltages to the ink and the ring electrode structure to provide an electric field required for a conformal printing process; the function generator 670 is configured to provide different colors to the showerhead portion 630 The voltage signal is matched and satisfied for different printing conditions.
  • the improved conformal printing process in the method and the equipment utilizes the principle and method of electro-printing, and can directly print a slurry such as high-viscosity nano silver paste on the surface of the rigid/flexible curved substrate to form high resolution.
  • the rate structure enables the printing of highly conductive interconnect structures.
  • the electro-jet printing head system needs special design, and the annular electrode is integrated under the nozzle structure, so that the discharged charged droplets can accelerate in the stable electric field;
  • the gas sheath assists the current body print head to enhance focusing and positioning to ensure accurate printing on a non-uniform electric field on the surface of the curved substrate.
  • the conformal printing process and the six-degree-of-freedom spherical motor linkage technology are flexible, fast and accurate, so that high-quality conductive interconnect structures can be directly printed on the curved substrate as needed, with high precision and high uniformity.
  • Basic components and other functions are flexible, fast and accurate, so that high-quality conductive interconnect structures can be directly printed on the curved substrate as needed, with high precision and high uniformity.
  • control module 700 may specifically include a motion control portion, a circuit signal control portion, a pneumatic signal control portion, a laser signal control portion, an image acquisition processing portion, and the like, all of which are integrated in the form of a control card and a software, and the composition thereof may be See Figure 11.
  • control module 700 is configured to control coordinated motion of the three-dimensional measurement module 300, the laser stripping module 400, the curved surface transfer module 500, the conformal printing module 600, and the spherical motor linkage platform 200;
  • the peeling support jig 470 carries the planar substrate of the flexible electronic device and the three-dimensional laser point cloud scanning measurement, laser stripping, curved transfer, conformal on the rigid/flexible curved substrate 230/240 and the curved substrate 230 as required.
  • the electrical signals required by the printing technology, such as printing ultimately achieve coordinated control of the motion distribution, laser signal distribution, electrical signal distribution and gas signal distribution of the entire equipment.
  • the control module 700 simultaneously controls each visual camera portion of the entire equipment, and can process the feedback collected image in real time.
  • Step 1 Three-dimensional measurement and positioning operation
  • a rigid or flexible curved substrate is tightly mounted on the planar planar moving portion (210) of the linkage platform, and three-dimensional measurement and positioning process parameters are set for the three-dimensional laser measuring sensor (330), correspondingly according to the measured motion trajectory path.
  • three-dimensional measurement and positioning process parameters are set for the three-dimensional laser measuring sensor (330), correspondingly according to the measured motion trajectory path.
  • the measurement motion trajectory path of the three-dimensional laser measurement sensor 330 can be imported into the control module 700, the three-dimensional measurement and positioning process parameters are set, and the rigid curved substrate/curved substrate 230 is subjected to a spot scan according to the measurement motion trajectory path.
  • the point cloud model is generated; the three-dimensional measurement and positioning process parameters may specifically include: scanning motion speed, lens size, measurement range, measurement distance, signal to noise ratio, and the like; in addition, a CAD design model may be imported into the control module 700 to perform a point cloud. The position of the model and the CAD design model are matched, and the error deviation is displayed, and the error percentage is calculated to determine whether the error precision requirement for the subsequent process can be achieved.
  • Step 2 Laser stripping operation
  • a laser release layer such as laser amorphous silicon
  • a planar substrate such as a transparent quartz glass substrate
  • gridded mask and adjusting Laser stripping process parameters thereby selectively stripping the electronic device from the planar substrate; at the same time, positioning and observing using the stripping observation camera 450;
  • a transparency-controllable patterned mask having a semi-permeable region can be accurately placed at a specified position between the flexible device and the optical path end light exit opening 443 for adjustment. Controlling the laser irradiation energy absorbed by the laser release layer to achieve selective laser lift-off; then, placing the planar substrate to be peeled off (including the laser release layer and the flexible electronic device) on the peeling support jig 470 in the laser stripping module 400, The stripping observation camera portion 450 is called for positioning and observation, and the laser stripping process parameters are adjusted, and then laser stripping is performed; the laser stripping process parameters may specifically include: laser energy density, spot size and shape, pulse frequency, and patterned mask half. Transparency transparency, peeling motion path, peeling speed, etc.
  • the transfer positioning camera 540 is called to perform positioning, and the curved transfer head 530 is moved to a specified position above the electronic device after the laser stripping operation; then the air pressure adsorption function is turned on, and the curved transfer head 530 is vertically oriented Lower contact electronic device, picking up it with a negative pressure; then, calling the transfer positioning camera 540 again for positioning, moving the curved transfer head 530 to a specified position above the curved substrate, according to the transfer position Information adjusting the curved transfer head to completely transfer electrical components onto the curved substrate;
  • the surface transfer process parameters can be first adjusted, the transfer positioning camera portion 540 is called for positioning, and the curved transfer head 530 is moved to a designated position above the flexible electronic device processed by the laser lift-off process; Function, the curved transfer head 530 is vertically contacted downwardly to the flexible electronic device, and is "picked up" by the negative pressure; then the transfer positioning camera portion 540 is called to perform positioning, and the curved transfer head 530 is moved over the curved substrate.
  • the substrate/curved substrate 230 is positioned and positioned such that the target transfer position is directly below the curved transfer head 530; then, the curved transfer head 530 is "placed" downward to bring the flexible electronic device into contact with the curved substrate.
  • the surface transfer process parameters include: transfer movement speed, "pick up” / “placement” movement distance, attitude adjustment linkage path, air pressure control, adjustable sliding component displacement value, and the like.
  • Step 4 Conformal printing operation
  • the conformal printing process parameters are adjusted, and the flow rate or air pressure supply mode is selected according to requirements, and the nozzle portion 630 is moved to the ink droplet observation camera 650, and the ink droplet observation camera 652 is used to observe the ink droplets under the nozzle.
  • the nozzle portion 630 is moved to the ink droplet observation camera 650, and the ink droplet observation camera 652 is used to observe the ink droplets under the nozzle.
  • the nozzle portion 630 is moved to the ink droplet observation camera 650, and the ink droplet observation camera 652 is used to observe the ink droplets under the nozzle.
  • the ink droplet observation camera 652 is used to observe the ink droplets under the nozzle.
  • the conformal printing process parameters are adjusted, and the flow rate or air pressure supply mode is selected according to requirements, and the nozzle portion 630 is moved to the ink droplet observation camera 650, and the ink droplet observation camera 652 is used to observe the ink droplets under the nozzle.
  • the conformal manufacturing apparatus and the processing method according to the present invention can better combine the processes of conformal current body printing, complex curved surface transfer, large-area laser stripping, and the like, and the curved surface positioning device, compared with the prior art.
  • innovative structure such as six-degree-of-freedom spherical motor linkage is used to solve the existing electronic manufacturing process and equipment is limited to the plane manufacturing method, it is difficult to realize the integration of complex curved electronic systems, mass production, and the bottleneck encountered in each process And the problem; accordingly, the basic manufacturing process of the rigid/flexible curved electronic system can be realized more completely and automatically, including the precise positioning of the rigid/flexible curved substrate and the error detection of the stripped ultra-thin flexible electronic device on the planar substrate, the flexible electronic device The key steps of transferring a planar substrate to a curved substrate, directly preparing an interconnected high performance circuit thereon.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Robotics (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

本发明属于电子制造技术相关领域,更具体地,涉及一种复杂曲面电子系统的共形制造设备,该系统包括支撑台,以及各自安装在该支撑台上且彼此独立可控的六自由度球形电机联动平台、三维测量模块、激光剥离模块、曲面转印模块和共形喷印模块,同时对这些关键组件的具体结构及设置工作方式进行了改进设计。本发明还公开了相应的制造方法。通过本发明,将能够复杂曲面电子系统共形制造过程中所需要的多个工艺流程高效集成于一体化设备中,实现任意面积的刚性/柔性曲面电子系统的共形混合制造,同时还具备高精度、高效率、自动化程度高等优点,显著拓宽了曲面电子制造工艺的应用范围。

Description

一种复杂曲面电子系统的共形制造设备及方法 [技术领域]
本发明属于电子制造技术相关领域,更具体地,涉及一种复杂曲面电子系统的共形制造设备及方法。
[背景技术]
目前对于曲面集成电路、超薄/柔性传感器、刚性微芯片等多类电子器件而言,它们通常是基于平面制造工艺形成的。该工艺过程较为复杂,既要适用于各种不同尺寸及特征的元器件,又要涉及到如光刻、剥离、转印和封装等多项工艺步骤。上述工艺流程目前较为成熟的应用主要针对的仍是平面的、硅基微电子芯片的制造,却难于满足大面积、具备复杂曲面的电子器件的制造要求。更具体展开分析的话,现有技术的电子器件制造技术主要存在以下的不足。
首先,对作为整个制造基础的曲面定位工序来说,传统的基于平面加工的微电子系统主要采用视觉方式来定位,但视觉采集图像的二维属性导致其只能针对二维平面进行有效定位,而无法满足刚性/柔性曲面电子系统的三维定位要求;此外,传统的测量方式主要采用三坐标机对曲面表面逐点测量,相应不可避免地带来测量数据量大、测量效率慢、数据处理慢、以及光环境的影响较大等问题。
其次,曲面电子系统中的高性能电子元件需要采用光刻工艺制备,需要将超薄的柔性电子器件从平面硅/玻璃基板上剥离下来(硅基微电子封装过程也需要将小尺寸的微电子器件从弹性蓝膜上剥离下来),现有技术中较常见的剥离技术主要包括顶针剥离技术,即主要利用顶针使微电子器件和基板在边界处发生断裂,如中国专利申请CN201510531234.3等披露了一种多顶针剥离技术等,然而由于其需要利用微电子器件和基板的脆性特征, 所以难于应用在柔性电子基板的剥离过程中,同时无法满足大面积、超薄、柔性电子器件的高可靠性及高兼容性的剥离需求。
再次,当超薄的柔性电子器件从平面基板上完成剥离后,需要利用转印技术将柔性电子器件从平面基板转移到曲面基板上;目前的转印工艺通常是通过控制器件与基板、拾取装置两个界面之间粘附力相对大小来实现转移过程,较常见的转印方式包括动力控制转印、表面凸纹辅助转印、改变转印头负载转印、静电吸附转移等。然而,这类柔性电子转印方法更适用于平面到平面的转印,无法高精度实现平面到曲面的转印。此外,Haoyi Wu等在《Conformal Pad-Printing Electrically Conductive Composites onto Thermoplastic Hemispheres:Toward Sustainable Fabrication of 3-Cents Volumetric Electrically Small Antennas》中提出了一种曲面转印方法,利用了软性转印头的变形特性可初步实现平面到曲面的转印,但转印过程取决于软性转印头自身的变形,无法控制且过大的变形会加剧转印过程中器件产生内应力;Heung Cho Ko等在《Curvilinear Electronics Formed Using Silicon Membrane Circuits and Elastomeric Transfer Elements》中提出了一种弹性体结构转印法改善了上述问题,但这种方法工艺过程复杂,无法保证转移精度,且无法适用于较高温度的工况。
最后,在完成多个柔性电子器件、微小芯片从平面基板转移到曲面基板之后,需要进行导电互连完成整个柔性电子系统的功能集成,这要求曲面基板上实现低成本制备具有良好导电性的互连结构。然而,目前的光刻工艺需要经过涂胶、掩膜、光刻、显影等繁琐过程,而且整个工艺无法再曲面上完成。喷墨打印技术虽然可以以共形的方式在曲面表面喷印图案,但是传统压电/热泡喷印技术所兼容墨水粘度为5-100cps,无法满足电路板领域最常用的高粘度纳米银浆材料(粘度为3000-10000cps)的喷印,此外存在着喷印分辨率低、喷嘴容易堵塞、不兼容高粘度墨水等缺点。也就是说,目前还没有能够兼容高粘度纳米银浆、可实现曲面共形喷印导电互连 结构的理想喷墨打印技术。
综上,本领域亟需针对以上多个技术难题做出进一步的改善或改进,以便更好地面向各类复杂曲面电子系统的综合生产实现更高自动化、更高质量和更高效率的现代化制造需求。
[发明内容]
针对现有技术的以上缺陷或改进需求,本发明提供了一种复杂曲面电子系统的共形制造设备及方法,其中不仅对该共形制造设备的整体构造布局重新进行了研究和设计,而且还针对其中多个关键组件如曲面转印模块、激光剥离模块、共形喷印模块等元件的具体组成结构和设置工作方式等多个方面进行改进,相应与现有的电子制造设备相比,不仅可更好地满足各类刚性/柔性复杂曲面电子系统的高精度制造需求,而且具备自动化程度高、适于大批量规模生产等特点,因而尤其适用于诸如航空航天智能蒙皮、柔性曲面显示器、柔性传感器、家用电器和柔性能源等复杂曲面电子系统的制造应用。
为实现上述目的,按照本发明的一个方面,提供了一种复杂曲面电子系统的共形制造设备,该共形制造设备同时适用于刚性或者柔性的曲面电子器件的混合制造,并包括支撑台,以及各自安装在该支撑台上且彼此独立可控的球形电机联动平台、三维测量模块、激光剥离模块、曲面转印模块和共形喷印模块,其特征在于:
所述球形电机联动平台包括联动平台平面运动部分和球形电机部分,其中该联动平台平面运动部分直接设置于所述支撑台上,且具备可沿着X轴方向运动的X向运动轴和可沿着Y轴方向运动的Y向运动轴;该球形电机部分继续设置在所述联动平台平面运动部分上且随其一同运动,此外它的上面还粘附有刚性曲面基板或附有柔性曲面基板的曲面衬底,并带动该曲面基板或曲面衬底在空间内旋转至所需的任意姿态;
所述三维测量模块包括测量传感器支撑架、测量模块平面运动部分、 三维激光测量传感器和测量光源,其中该测量传感器支撑架直接设置于所述支撑台上;该测量模块平面运动部分安装在所述测量传感器支撑架上,且具备可沿着Y轴方向运动的Y向测量运动轴和可沿着Z轴方向运动的Z向测量运动轴;此外,该三维激光测量传感器继续安装在所述测量模块平面运动部分上且随其一同运动至所需位置,并在所述测量光源的配合下用于对粘附在所述球形电机部分上的曲面基板或曲面衬底执行点云采集,然后生成点云模块与对应的设计模型进行匹配计算;
所述激光剥离模块包括激光器、剥离模块平面运动部分、剥离支撑夹具和剥离观测相机,其中该激光器布置在所述支撑台的下方,并用于通过配套的光路部分来发射激光辐射,由此将光刻在透明硬质平面基板上的电子器件从平面基板予以剥离;该剥离模块平面运动部分布置在所述激光器的上方,且具备可沿着X轴方向运动的X向剥离运动轴和可沿着Y轴方向运动的Y向剥离运动轴;该剥离支撑夹具继续安装在所述剥离模块平面运动部分且随其一同运动至所需位置,并用于固定夹持住上述光刻在平面基板上的电子器件以便执行激光剥离操作;此外,该剥离观测相机设置在所述剥离模块平面运动部分附近,并在剥离光源的配合下用于对该剥离模块平面运动部分的位置信息予以采集;
所述曲面转印模块包括转印头支撑架、转印模块平面运动部分、曲面转印头和转印定位相机,其中该转印头支撑架直接设置于所述支撑台上;该转印模块平面运动部分安装在所述转印头支撑架上,且具备可沿着X轴方向运动的X向转印运动轴和可沿着Z轴方向运动的Z向转印运动轴;此外,该曲面转印头继续安装在所述转印模块平面运动部分上且随其一同运动至所需位置,然后用于将经由所述激光剥离模块执行剥离操作后的电子器件转印至所述曲面基板上;此外,该转印定位相机在转印光源的配合下用于对所述转印模块平面运动部分的位置信息予以采集;
所述共形喷印模块包括喷头支撑架、喷印模块平面运动部分、喷头部 分、喷印观测相机和墨滴观测相机,其中该喷头支撑架沿着Z轴方向设置于所述支撑台上;该喷印模块平面运动部分安装在所述喷头支撑架上,且具备可沿着X轴方向运动的X向喷印运动轴和可沿着Z轴方向运动的Z向喷印运动轴;该喷头部分继续安装在所述喷头模块平面运动部分上且随其一同运动至所需位置,然后用于对经由所述曲面转印模块执行转印操作后的所述曲面基板表面继续喷印浆料,由此实现导电互连结构的制造;此外,该喷印观测相机在喷印光源的配合下用于对所述曲面基板上的喷印轨迹和效果予以采集,该墨滴观测相机则在墨滴观测光源的配合下用于对所述喷头部分所喷出的墨滴状态予以采集。
作为进一步优选地,对于所述三维测量模块而言,其中在所述三维激光测量传感器的整个点云采集过程中,它优选被不断调整位置,并使得与所述曲面基板或曲面衬底在Z轴方向也即竖直方向间距保持不变。
作为进一步优选地,对于所述激光剥离模块而言,它的所述光路部分优选通过光路支撑架沿着Z轴方向设置于所述支撑台上,并用于将从所述激光器发射的激光束执行整形、匀光及调整方向等处理;此外,该光路部分的末端处于所述剥离模块平面运动部分的正上方。
作为进一步优选地,还可利用精细网格化掩膜版对剥离激光强度进行调控,即通过调节该网格化掩膜版的网格特征宽度和间距,对所述光刻在透明硬质平面基板上的电子器件所受到的激光照射次数和激光照射能量进行控制。
作为进一步优选地,对于所述曲面转印模块而言,它的曲面转印头优选采用主被动结合的方式工作:即首先通过所述曲面转印头内部的可调式滑动组件阵列(例如3×3=9根)和控制其轴向位置的多个直线驱动组件实现与所述曲面基板之间的初步多点主动共形,然后依托该曲面转印头自身的可变性薄膜来实现与所述曲面基板之间的完整分布式被动共形。
作为进一步优选地,对于所述共形喷印模块而言,它的喷头部分优选 包括集成式供墨组件和连接于该集成式供墨组件上的气鞘辅助喷头组件,其中该集成式供墨组件用于自动向所述气鞘辅助喷头组件进行墨液供给,并可实现流量驱动和气压驱动两种模式自动切换;该气鞘辅助喷头组件用于将墨液喷印到所述曲面基板上,并且优选在它的喷嘴下方设置有环形电极。
作为进一步优选地,上述共形制造设备还包括控制模块,并用于执行整个制造过程中对电气控制信号的接收、处理及发送功能。
按照本发明的另一方面,还提供了相应的共形制造方法,其特征在于,该方法包括下列步骤:
步骤一:三维测量与定位操作
首先,将刚性或柔性的曲面基板紧密安装在所述球形电机联动平台平面运动部分上,同时对所述三维激光测量传感器设置三维测量与定位过程参数,相应依照测量运动轨迹路径对所述曲面基板进行采点扫描,生成点云模型;接着,将该点云模型与设计模型进行位置匹配,并判断是否达到进行后续工艺要求的误差精度要求:若不满足误差精度要求,则重新制作或安装曲面基板,直至达到误差精度要求为止;
步骤二:激光剥离操作
在平面基板(如透明石英玻璃基板)上沉积激光释放层(如激光非晶硅),在激光释放层上方利用微电子工艺制备柔性电子器件,之后将光刻在平面基板上的电子器件通过剥离支撑夹具移动至所需位置及固定夹持,然后将一个具有半透区的透明度可调控的图案化掩膜版精准放置在柔性器件和光路末端出光口之间的指定位置,用以调节控制激光释放层所吸收的激光照射能量,以实现选择性激光剥离,然后通过调节激光剥离工艺参数,由此将电子器件从该平面基板上剥离下来;与此同时,采用所述剥离观测相机进行定位和观测;
步骤三:曲面转印操作
调用所述转印定位相机进行定位,将所述曲面转印头移动到经激光剥离操作后的电子器件上方指定位置;然后打开气压吸附功能,将所述曲面转印头竖直向下接触电子器件,利用负压将其向上拾起;接着,再次调用所述转印定位相机进行定位,将所述曲面转印头移动到所述曲面基板上方指定位置,通过六自由度球形电机联动平台调整曲面基板姿态和位置,使目前转印位置位于曲面转印头正下方;之后通过二次共形方式将电子器件完整转移至所述曲面基板上;
步骤四:共形喷印操作
首先调节共形喷印工艺参数,根据需要选择流量或气压供墨方式,将所述喷头部分移动至所述墨滴观测相机处,利用所述墨滴观测相机观测喷嘴下方的墨滴状态,并当形成稳定泰勒锥时,记录稳定喷射所需所有工艺参数;接着,导入共形喷印的六自由度运动轨迹,依照预设的共形喷印轨迹路径在所述曲面基板上进行按需喷印,同时调用所述喷印观测相机对共形喷印过程进行定位和观测;当曲面共形按需喷印完成后,再次调用所述喷印观测相机对电子器件的引脚进行定位标定,并根据引脚位置信息将电子器件的引脚对一一连线;
最后,整个制造系统复位,完成复杂曲面电子系统的共形制造过程。
作为进一步优选地,对于上述步骤三而言,其优选采用主被动结合的方式来操作所述二次共形:
首先,将所述曲面转印头移动到所述曲面基板上方指定位置,并执行初步多点主动共形;接着,使电子器件和所述曲面基板贴合接触,利用所述曲面转印头自身的可变形薄膜执行二次分布式被动共形;最后,利用正压气压使所述曲面转印头的可变形薄膜膨胀以使电子器件与该曲面转印头分离,进而完成电子器件转印至曲面基板上的操作。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,主要具备以下的技术优点:
1、通过对该共形制造设备的整体构造组成及空间布局重新进行了设计,尤其是一些关键组件如激光剥离模块、曲面转印模块和共形喷印模块等元件的具体组成和设置工作方式等多个方面进行改进,相应不仅首次实现刚性/柔性曲面电子系统的共形混合制造,而且可通过激光剥离和曲面转印工艺集成经由光刻工艺制造的柔性电子器件和微电子系统,同时通过共形喷印工艺将分块的光刻柔性电子器件和微电子系统进行互连,实现任意面积的刚性/柔性曲面电子系统的共形制造,突破了传统柔性电子系统的曲面技术壁垒,并可批量化生产,极大地提升了生产效率;
2、本发明还进一步对三维激光测量模块的具体结构组成及工作方式作出了优化设计,通过集成采用三维激光点云扫描技术,不仅可有效突破成熟视觉定位测量系统的局限性,而且还显著克服了传统三维测量系统测量速度慢、易受周围环境影响等缺陷,可实现高效、快速、高精度地得到被测曲面的点云拼合信息,且对被测曲面的表面以及环境光情况要求显著降低,增强了其通用性,提升了其稳定性、可靠度和成功率;
3、通过对激光剥离工序所对应的组件结构及设置工作方式进行优化设计,实际测试表明能够对柔性电子器件和平面基板的界面粘附强度进行高精度调控,达到选择性剥离的目的;并可以使剥离后的柔性电子器件仍粘附在刚性衬底上不完全脱落,避免后续工艺直接对柔性电子器件的损伤,提高工艺良率;
4、通过对共形喷印工序所对应的组件结构及其设置工作方式进行优化设计,不仅可显著提高精密供墨的便捷性和运行效率,而且气鞘辅助功能和环形电极的配合使用,使喷印工艺更加平稳,能够驱动飞行液滴准确沉积到指定位置,避免了刚性曲面基板/曲面衬底230所导致的非均匀电场对喷印精度的影响,提高了应用范围及灵活性;
5、本发明所设计的共形制造设备还集成了六自由度球形电机联动技术,将复杂曲面运动进行解耦,可运用球形电机部分实现旋转位移变换, 避免了积累误差;同时省去了传统五轴联动技术中复杂而又繁琐的矢量变换和后处理过程,显著提升了运动轨迹解析效率;结合球形电机的灵活性优势,提升了复杂曲面运动的整体速度和效率,拓展了刚性/柔性曲面电子系统的共形制造的面积和范围,突破了制造曲率有限的壁垒,扩大了制造工艺的应用范围;
6、按照本发明所提供的设备及方法整体上能够更好地应用于曲面转印工艺过程,满足柔性电子器件从平面基板到刚性/柔性曲面基板的一体化曲面转印工艺需求,克服了少数完全被动转印方式中由于变形力过大对转印器件造成的影响,以及无法精确控制变形的要求,显著提升了曲面转印的精度、效率、可靠度以及成功率。
附图说明
图1是按照本发明所构建的共形制造设备的整体构造示意图;
图2是按照本发明所构建的共形制造设备的模块构成及原理示意图;
图3是更为具体地显示了图1中所示球形电机联动平台模块的具体结构示意图;
图4是更为具体地显示了图1中所示三维测量模块的具体结构示意图;
图5是所述三维测量模块的结构侧视图;
图6是更为具体地显示了图1中所示激光剥离模块的具体结构示意图;
图7是所述激光剥离模块的局部结构放大示意图;
图8是更为具体地显示了图1中所示曲面转印模块的具体结构示意图;
图9是所述曲面转印模块的局部结构放大示意图;
图10是更为具体地显示了图1中所示共形喷印模块的结构装配图;
图11是用于示范性显示图1中所示控制模块的具体组成示意图。
[具体实施方式]
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体 实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
图1是按照本发明所构建的共形制造设备的整体构造示意图,图2是按照本发明所构建的共形制造设备的模块构成及原理示意图。如图1和图2中所示,该共形制造设备同时适用于刚性或者柔性的曲面电子器件的混合制造,并包括支撑台100,以及各自安装在该支撑台上且彼此独立可控的球形电机联动平台200、三维测量模块300、激光剥离模块400、曲面转印模块500和共形喷印模块600等功能组件,下面将对其逐一进行具体解释说明。
参看图1,球形电机联动平台200包括联动平台平面运动部分210和球形电机部分220,其中该联动平台平面运动部分210直接设置于所述支撑台上,且具备可沿着X轴方向运动的X向运动轴211和可沿着Y轴方向运动的Y向运动轴212;该球形电机部分220继续设置在所述联动平台平面运动部分210上且随其一同运动,此外它的上面还粘附有刚性或柔性的曲面基板,并带动该曲面基板在空间旋转至所需的任意姿态。
更具体地,参看图3,联动平台平面运动部分210设于所述支撑台100上,球形电机部分220设于所述平面运动部分210上;刚性曲面基板230(针对刚性曲面电子)或附有柔性曲面基板240的曲面衬底230(针对柔性曲面电子)被设置于所述球形电机部分220上。
按照本发明的一个优选实施例,所述球形电机部分220可主要包括与所述支撑台100固定的定子组件221,与所述曲面衬底230固定的动子组件222;所述定子组件221上有规律地分布线圈,所述动子组件222上有规律地分布永磁体。以此方式,球形电机部分220可充分利用电磁场控制旋转角度,运动速度快、运动范围大,提升了刚性/柔性曲面电子系统共形制造过程的运动灵活性,提升了制造效率。此外,不仅保了证刚性/柔性曲面电 子系统共形制造方向保持为曲面法向方向,而且该六自由度球形电机联动技术还能够对运动进行解耦,即由平面运动部分和球形电机部分分别实现复杂曲面运动的平动和旋转功能,避免了积累误差。在复杂曲面运动信息耦合过程中,使用套嵌坐标系,省去了传统五轴联动技术中复杂繁琐的矢量变换和后处理过程;减小了因旋转轴叠加造成的空间占用和运动误差积累。
需要时指出的是球形电机联动平台200与其他模块(三维测量模块300、曲面转印模块500、共形喷印模块600)的工作头(三维激光测量传感器330、曲面转印头530、喷头部分630)所在的竖直轴(所述测量Z运动轴322、转印Z运动轴522、喷印Z运动轴622)分别联合,形成六自由度联动,用于使刚性曲面基板/曲面衬底230能够在空间范围内与所述工作头按要求进行任意复杂曲面运动,提供面向扫描测量、曲面转印和共形喷印的曲面轨迹规划。所述竖直轴在同一时刻有且只能有一个处在工作位并处于工作状态。所述平面运动部分210用于使曲面基板在其行程范围内实现平移运动;所述球形电机部分220用于实现曲面基板在空间范围内沿任意方向进行转动。所述球形电机部分220工作过程中,所述定子组件221上有规律分布的线圈根据控制信号被通上强度不同的电信号,形成强度不同的电磁场,与所述动子组件222上有规律分布的永磁体相互作用,实现所述球形电机部分220能够按任意方向高精度、高灵敏度地快速旋转到指定姿态。所述球形电机可增加重力平衡装置、姿态检测装置等改进装置进一步提高其运动灵敏度和控制精度。针对柔性曲面电子,所述曲面衬底230用于支撑以附着方式粘附在其上的柔性曲面基板240。
参看图1,所述三维测量模块300包括测量传感器支撑架310、测量模块平面运动部分320、三维激光测量传感器330和测量光源340等,其中该测量传感器支撑架310直接设置于所述支撑台上;该测量模块平面运动部分320安装在所述测量传感器支撑架上,且具备可沿着Y轴方向运动的Y 向测量运动轴321和可沿着Z轴方向运动的Z向测量运动轴322;此外,该三维激光测量传感器330继续安装在所述测量模块平面运动部分320上且随其一同运动至所需位置,并在所述测量光源340的配合下用于对粘附在所述球形电机部分220上的曲面基板执行点云采集,然后生成点云模块与对应的设计模型进行匹配计算。
更具体地,可参看图4和图5,测量传感器支撑架310设于所述支撑台100上,测量平面运动部分320设于测量传感器支撑架310上,并可与所述平面运动部分210垂直;三维激光测量传感器330设于所述测量平面运动部分320上,可与所述平面运动部分210垂直;测量光源340譬如设于所述测量平面运动部分320上、所述三维激光测量传感器330旁边。所述测量平面运动部分320还包括在同一平面垂直相交的测量Y运动轴321和测量Z运动轴322。
也就是说,所述三维测量模块300主要用于通过激光扫描的方式得到实际安装后所述刚性曲面基板/曲面衬底230的点云数据,在利用点云进行曲面重构、拼合,与CAD设计模型进行匹配,实现实际加工模型的精确定位。此外,对于后期加工误差情况的检验也可采取相同方式取得结果。所述测量传感器支撑架310用于支撑、连接和固定所述三维激光测量传感器330。所述测量Y运动轴321用于实现所述三维激光测量传感器330在工作状态和非工作状态的两个不同位置之间切换;所述测量Z运动轴322用于与所述球形电机联动平台200配合形成在所述三维激光测量模块工作状态下的六自由度联动模式。所述三维激光测量传感器330用于实现对所述刚性曲面基板/曲面衬底230进行点云采集,并将所述三维激光测量传感器330所采集的点云数据传递到所述控制模块700,进行曲面重构和拼合,匹配计算与误差分析。在测量过程中,为提高测量精度,采取纵向曲面随动方式;在所述平面运动部分210运动范围内规划运动路径以达到对所述刚性曲面基板/曲面衬底230的完整扫描;所述测量Z运动轴322根据所述CAD设计 模型中的局部曲面竖直高度不断调整位置,保证所述测量Z运动轴322与所述刚性/柔性曲面基板230/240在竖直方向相对距离不变,从而使所述被测处一直处在所述三维激光测量传感器330的最佳景深范围中。
通过以上设计,本方法和装备中集成的三维激光点云扫描测量技术可在利用三维激光测量传感器330进行采点扫描的过程中,增加了纵向曲面随动技术,即使三维激光测量传感器330的竖直位置随CAD设计模型高度变化而不断变化,保持三维激光测量传感器330与刚性曲面基板/曲面衬底230在竖直方向相对距离不变,从而使被采集点一直处在三维激光测量传感器330的最佳景深范围中,可有效提高点云测量精度。此外,本测量技术还可以有效引入相关技术参数和点云拼合算法,相应更好地将所测点云与CAD设计模型进行匹配,计算并显示误差情况,降低了线结构光对被测物体表面特性要求,确保了测量精度、测量结果准确。
参看图1,所述激光剥离模块400包括激光器410、剥离模块平面运动部分420、剥离支撑夹具470和剥离观测相机450等,其中该激光器410布置在所述支撑台100的下方,并用于通过配套的光路部分440来发射激光辐射将光刻在透明硬质平面基板上的电子器件从平面基板予以剥离;该剥离模块平面运动部分420布置在所述激光器410的上方,且具备可沿着X轴方向运动的X向剥离运动轴421和可沿着Y轴方向运动的Y向剥离运动轴322;该剥离支撑夹具470继续安装在所述剥离模块平面运动部分420且随其一同运动至所需位置,并用于固定夹持住上述光刻在平面基板上的电子器件以便执行激光剥离操作;此外,该剥离观测相机450设置在所述剥离模块平面运动部分420附近,并在剥离光源453的配合下用于对该剥离模块平面运动部分420的位置信息予以采集。
更具体地,可同时参看图6和图7,激光器410设于所述支撑台100下方,剥离平面运动部分420设于所述支撑台100上,光路支撑架430设于所述支撑台100上,并可与所述平面运动部分210垂直;光路部分440设 于所述光路支撑架430上,其末端设于所述剥离平面运动部分420正上方;剥离观测相机450设于所述支撑台100上、所述剥离平面运动部分420旁边;气瓶460可设于所述支撑台100旁;剥离支撑夹具470设于所述剥离平面运动部分420上。所述剥离平面运动部分420包括在同一平面垂直相交的剥离X运动轴421和剥离Y运动轴422。
此外,所述光路部分440还可以具体包括短轴匀光光路441和长轴匀光光路442,含有反射镜,单轴扩束复眼式匀光阵列单轴光阑、场镜和物镜等,以及光路末端的出光口443。所述剥离观测相机450包括剥离相机架451,设于所述支撑台100上、与所述剥离平面运动部分420垂直;剥离观测相机452设于所述剥离相机架451末端;剥离光源453,设于所述剥离观测相机452对面位置。
激光剥离工艺的基本原理是利用激光照射改变超薄柔性电子器件(利用微电子工艺制备)与平面基板(通常为透明石英玻璃)之间的激光释放层(如PI、蓝宝石、PZT、非晶硅等)的性质,利用激光聚集能量的性质使释放层发生烧结、气化、热诱导分层等物理化学作用,从而达到超薄柔性电子器件与平面基板分离的目的。按照本发明,上述激光剥离工艺还可以进一步对激光剥离后的界面粘附强度进行调控,调控方法优选为利用精细网格化掩膜版,通过调节掩膜版的网格的特征宽度和间距,能够控制对应半透区受到的激光照射次数和照射激光的能量,从而实现选择性激光剥离。
参看图1,所述曲面转印模块500包括转印头支撑架510、转印模块平面运动部分520、曲面转印头530和转印定位相机540等,其中该转印头支撑架310直接设置于所述支撑台上;该转印模块平面运动部分520安装在所述转印头支撑架上,且具备可沿着X轴方向运动的X向转印运动轴321和可沿着Z轴方向运动的Z向转印运动轴322;此外,该曲面转印头530继续安装在所述转印模块平面运动部分上且随其一同运动至所需位置,然后用于将经由所述激光剥离模块400执行剥离操作后的电子器件转印至所述 曲面基板上;此外,该转印定位相机540在转印光源543的配合下用于对所述转印模块平面运动部分520的位置信息予以采集。
更具体地,可同时参看图8和图9,转印头支撑架510设于所述支撑台100上;转印平面运动部分520,设于所述转印头支撑架510上,同时可与所述平面运动部分210和所述剥离平面运动部分420垂直;曲面转印头530,设于所述转印平面运动部分520上,同时与所述平面运动部分210和所述剥离平面运动部分420垂直;转印定位相机部分540,设于所述转印平面运动部分520上、所述曲面转印头530旁边。所述转印平面运动部分520包括在同一平面垂直相交的转印X运动轴521和转印Z运动轴522。所述转印定位相机部分540包括设于所述转印Z运动轴522上的转印相机架541,设于所述转印相机架541末端的转印定位相机542,和设于所述转印定位相机542对面位置的转印光源543。所述曲面转印头530主要譬如包括直线驱动组件、密封组件、气压组件和可调式滑动组件,等等。
通过以上设计,本方法和装备中改良的曲面转印工艺为主被动结合的曲面转印方式。具体而言,在曲面转印的工艺过程中,最为重要的决定因素即为转印头变形能力和其与曲面基板转印位置的共形精度,所以主被动结合的曲面转印方式在曲面转印过程中利用主动共形和被动共形两步叠加的共形方法提升转移头的共形能力和精度。所谓主动共形即曲面转印头530结合转印位置信息利用自身的特定机械结构(直线驱动组件)实现曲面转印头530与转印位置初步多点共形;所谓被动共形即在主动共形的基础上,依托曲面转印头530上可变形薄膜的形变实现其与转印位置的完整分布式共形。主被动结合的曲面转印方式将共形过程由不可控的依赖转印头自身性质的方式转化为可精确控制的机械运动方式,并且辅以二次被动共形,极大地降低了工艺过程的复杂程度,提高了转印精度,可以达到将经过激光剥离工艺处理后的柔性电子器件完整、高品质地从平面基板转移到刚性/柔性曲面基板的目的。
参看图1,所述共形喷印模块600包括喷头支撑架610、喷印模块平面运动部分620、喷头部分630、喷印观测相机640和墨滴观测相机650等,其中该喷头支撑架610沿着Z轴方向设置于所述支撑台上;该喷印模块平面运动部分620安装在所述喷头支撑架上,且具备可沿着X轴方向运动的X向喷印运动轴621和可沿着Z轴方向运动的Z向喷印运动轴622;该喷头部分630继续安装在所述喷头模块平面运动部分上且随其一同运动至所需位置,然后用于对经由所述曲面转印模块500执行转印操作后的所述曲面基板表面继续喷印浆料,由此实现导电互连结构的制造;此外,该喷印观测相机640在喷印光源643的配合下用于对所述曲面基板上的喷印轨迹和效果予以采集,该墨滴观测相机650则在墨滴观测光源653的配合下用于对所述喷头部分所喷出的墨滴效果予以采集。
更具体地,可同时参看图10,喷头支撑架610设于所述支撑台100上;喷印平面运动部分620,设于所述喷头支撑架610上,与所述平面运动部分210垂直;喷头部分630,设于所述喷印平面运动部分620上,与所述平面运动部分210垂直;喷印观测相机640,设于所述喷印平面运动部分620上、所述喷头部分630旁边;墨滴观测相机650,设于所述支撑台100上,喷印平面运动部分620旁,与喷头部分630垂直;高压放大器660;函数发生器670等。所述喷印平面运动部分620包括在同一平面垂直相交的喷印X运动轴621和喷印Z运动轴622。
此外,所述喷头部分630优选包括集成式供墨组件631和连接于所述集成式供墨组件631上的气鞘辅助喷头组件632。所述集成式供墨组件631主要包括步进电机,丝杠,墨盒推杆,微型止回阀等结构;所述气鞘辅助喷头组件632主要包括进液、气鞘辅助、环形电极、喷嘴等结构。所述喷印观测相机部分640包括设于所述喷印Z运动轴622上的喷印相机架641,设于所述喷印相机架641末端的喷印观测相机642,和设于所述喷印观测相机642对面位置的喷印光源643。所述墨滴观测相机650包括设于所述支撑 台100上、所述喷印平面运动620旁的墨滴观测相机架651,设于所述墨滴观测相机架651末端的墨滴观测相机652,和设于所述墨滴观测相机652对面位置的墨滴观测光源653。
换而言之,所述共形喷印模块600主要用于在所述刚性/柔性曲面基板230/240上按需、高精度、高均匀地打印高品质导电互连结构、基本元器件等。所述喷头支撑架610用于支撑、连接和固定所述喷头部分630。所述喷印平面运动部分620中的喷印X运动轴621用于实现所述喷头部分630在工作状态和非工作状态的两个不同位置之间切换;所述喷印Z运动轴622用于与所述球形电机联动平台200配合形成在所述共形喷印模块600工作状态下的六自由度联动模式。所述集成式供墨组件631用于自动向所述气鞘辅助喷头组件632进行墨液供给,可以实现流量驱动和气压驱动两种模式自动切换,也可实现墨盒的自动清洗。所述气鞘辅助喷头组件632用于将所述墨液喷印到所述刚性/柔性曲面基板230/240上进行高精度、高稳定性的图案化、器件化制备,其通过气鞘辅助结构强化聚焦、定位,提升喷印过程平稳性,通过环形电极结构将接地电极集成在所述气鞘辅助喷头组件632内,使喷印工艺过程中带电液滴能够在稳定电场中加速,减少刚性/柔性曲面基板230/240表面非均匀电场的干扰。所述喷印观测相机部分640通过视觉实时采集的方式,可以实现对喷印图案的形貌、品质进行实时观测、检测液滴空间飞行轨迹,也可以实现所述喷嘴结构和所述刚性/柔性曲面基板230/240之间的定位功能。所述墨滴观测相机部分650用于在喷印工艺开始时对所述喷嘴结构处形成的“泰勒锥”进行观测,从而保证喷印工艺过程的稳定性和喷印图案线宽的均匀性。所述高压放大器660用于为所述墨液和所述环形电极结构施加不同电压,从而提供共形喷印工艺所需电场;所述函数发生器670用于向所述喷头部分630提供不同的电压信号,针对不同的喷印工况需求进行匹配和满足。
通过以上设计,本方法和装备中改良的共形喷印工艺利用电喷印的原 理和方法,可在刚性/柔性曲面基板表面直接喷印高粘度纳米银浆之类的浆料来形成高分辨率结构,实现高导电性互连结构的喷印制造。为实现曲面共形喷印,克服曲面基板不均匀电场的影响,电喷印的喷头系统需要进行特殊设计,喷嘴结构下方集成环形电极,使喷出的带电液滴能够在稳定电场中加速;提出气鞘辅助电流体喷印头,强化聚焦、定位以保证在曲面基板表面非均匀电场中精确喷印。此外,共形喷印工艺与六自由度球形电机联动技术灵活、快速、准确的进行运动配合,从而实现在曲面基板上按需、高精度、高均匀地直接喷印高品质导电互连结构、基本元器件等功能。
最后,所述控制模块700可具体包括运动控制部分、电路信号控制部分、气路信号控制部分、激光信号控制部分、图像采集处理部分等等,均以控制卡和软件形式集成,其组成形式可参看图11所示。总的来说,所述控制模块700用于控制所述三维测量模块300、激光剥离模块400、曲面转印模块500、共形喷印模块600、球形电机联动平台200的协同运动;以及提供所述剥离支撑夹具470上载有柔性电子器件的平面基板与所述刚性/柔性曲面基板230/240及曲面衬底230上按要求进行的三维激光点云扫描测量、激光剥离、曲面转印、共形喷印等工艺技术所需要的电气信号,最终实现对整个装备的运动分布、激光信号分布、电信号分布和气信号分布进行协同控制。此外,所述控制模块700同时对整个装备中各视觉相机部分进行控制,能够实时处理反馈采集图像。
下面将具体说明按照本发明的上述共形制造设备的工艺流程。
步骤一:三维测量与定位操作
首先,将刚性或柔性的曲面基板紧密安装在所述联动平台平面平面运动部分(210)上,同时对所述三维激光测量传感器(330)设置三维测量与定位过程参数,相应依照测量运动轨迹路径对所述曲面基板进行采点扫描,生成点云模型;接着,将该点云模型与设计模型进行位置匹配,并判断是否达到进行后续工艺要求的误差精度要求:若不满足误差精度要求, 则重新制作或安装曲面基板,直至达到误差精度要求为止;
在以上步骤中,将三维激光测量传感器330的测量运动轨迹路径譬如可以导入控制模块700,设置三维测量与定位过程参数,依照测量运动轨迹路径对刚性曲面基板/曲面衬底230进行采点扫描,生成点云模型;三维测量与定位过程参数具体可包括:扫描运动速度、镜头规格、测量范围、测量距离、信噪比等等;此外,还可以在控制模块700导入CAD设计模型,进行点云模型和CAD设计模型的位置匹配,显示其误差偏差情况,并计算误差百分比,判断能否达到进行后续工艺过程的误差精度要求等。
步骤二:激光剥离操作
在平面基板(如透明石英玻璃基板)上沉积激光释放层(如激光非晶硅),在激光释放层上方利用微电子工艺制备柔性电子器件,然后通过放置所述网格化掩膜版和调节激光剥离工艺参数,由此将电子器件从该平面基板上予以选择性剥离;与此同时,采用所述剥离观测相机450进行定位和观测;
更具体地,按照本发明的一个优选实施例,可将一个具有半透区的透明度可调控的图案化掩膜版精准放置在柔性器件和光路末端出光口443之间的指定位置,用以调节控制激光释放层所吸收的激光照射能量,以实现选择性激光剥离;然后,将待剥离的平面基板(含激光释放层和柔性电子器件)放置在激光剥离模块400中的剥离支撑夹具470上,调用剥离观测相机部分450进行定位和观测,调节激光剥离工艺参数后,对其进行激光剥离;激光剥离工艺参数具体可包括:激光能量密度、光斑尺寸和形状、脉冲频率,图案化掩膜版半透区透明度,剥离运动路径、剥离运动速度等等。
步骤三:曲面转印操作
调用所述转印定位相机540进行定位,将所述曲面转印头530移动到经激光剥离操作后的电子器件上方指定位置;然后打开气压吸附功能,将 所述曲面转印头530竖直向下接触电子器件,利用负压将其向上拾起;接着,再次调用所述转印定位相机540进行定位,将所述曲面转印头530移动到所述曲面基板上方指定位置,根据转印位置信息调整该曲面转印头将电气器件完整转移至所述曲面基板上;
更具体地,首先可调节曲面转印工艺参数,调用转印定位相机部分540进行定位,将曲面转印头530移动到经激光剥离工艺加工过的柔性电子器件上方指定位置;接着可打开气压吸附功能,将曲面转印头530竖直向下接触柔性电子器件,利用负压将其向上“拾起”;然后调用转印定位相机部分540进行定位,将曲面转印头530移动到曲面基板上方指定位置,根据转印位置信息调整曲面转印头530的具体机械结构(例如可包括可调式滑动组件阵列、直线驱动组件等)实现初步多点共形,之后通过六自由度联动模式调整刚性曲面基板/曲面衬底230姿态和位置,使其上的目标转印位置位于曲面转印头530正下方;接着,曲面转印头530向下“放置”,使柔性电子器件和曲面基板贴合接触,利用曲面转印头530可变形薄膜实现上述两者的完整分布式共形,之后利用正压气压使曲面转印头530的可变形薄膜膨胀,以使柔性电子器件与曲面转印头530分离,进而完成柔性电子器件完整、高精度、高品质地转印至曲面基板上。
曲面转印工艺参数包括:转印运动速度、“拾起”/“放置”运动距离、姿态调整联动路径、气压控制、可调式滑动组件位移值等等。
步骤四:共形喷印操作
首先调节共形喷印工艺参数,根据需要选择流量或气压供墨方式,将所述喷头部分630移动至所述墨滴观测相机650处,利用所述墨滴观测相机652观测喷嘴下方的墨滴状态,并当形成稳定泰勒锥时,记录稳定喷射所需所有工艺参数;接着,导入共形喷印的六自由度运动轨迹,依照预设的共形喷印轨迹路径在所述曲面基板上进行按需喷印,同时调用所述喷印观测相机640对共形喷印过程进行定位和观测;当曲面共形按需喷印完成 后,再次调用所述喷印观测相机640对电子器件的引脚进行定位标定,并根据引脚位置信息将电子器件的引脚对一一连线;
最后,整个制造系统复位,完成复杂曲面电子系统的共形制造过程。
综上,按照本发明的共形制造设备及工艺方法,与现有技术相比能够更好地结合共形电流体喷印、复杂曲面转印、大面积激光剥离等工艺,以及曲面定位装置、六自由度球形电机联动等创新结构,用于解决现有电子制造工艺和装备只限于平面制造方式,难以实现复杂曲面电子系统一体化、批量化制造的现状,以及各工艺过程所遇到的瓶颈和问题;相应地,能够更为完整、自动化地实现刚性/柔性曲面电子系统的基本制造过程,包括刚性/柔性曲面基板的精确定位和误差检测平面基板上剥离超薄柔性电子器件、柔性电子器件从平面基板到曲面基板的转印、在其上直接制备互连高性能电路等关键步骤。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种复杂曲面电子系统的共形制造设备,该共形制造设备同时适用于刚性或者柔性的曲面电子器件的混合制造,并包括支撑台(100),以及各自安装在该支撑台上且彼此独立可控的球形电机联动平台(200)、三维测量模块(300)、激光剥离模块(400)、曲面转印模块(500)和共形喷印模块(600),其特征在于:
    所述球形电机联动平台(200)包括联动平台平面运动部分(210)和球形电机部分(220),其中该联动平台平面运动部分(210)直接设置于所述支撑台上,且具备可沿着X轴方向运动的X向运动轴(211)和可沿着Y轴方向运动的Y向运动轴(212);该球形电机部分(220)继续设置在所述联动平台平面运动部分(210)上且随其一同运动,此外它的上面还粘附有刚性曲面基板或承载柔性曲面基板的曲面衬底,并带动该曲面基板或衬底在空间内旋转至所需的任意姿态;
    所述三维测量模块(300)包括测量传感器支撑架(310)、测量模块平面运动部分(320)、三维激光测量传感器(330)和测量光源(340),其中该测量传感器支撑架(310)直接设置于所述支撑台上;该测量模块平面运动部分(320)安装在所述测量传感器支撑架上,且具备可沿着Y轴方向运动的Y向测量运动轴(321)和可沿着Z轴方向运动的Z向测量运动轴(322);此外,该三维激光测量传感器(330)继续安装在所述测量模块平面运动部分(320)上且随其一同运动至所需位置,并在所述测量光源(340)的配合下用于对粘附在所述球形电机部分(220)上的曲面基板或曲面衬底执行点云采集,然后生成点云模块与对应的设计模型进行匹配计算;
    所述激光剥离模块(400)包括激光器(410)、剥离模块平面运动部分(420)、剥离支撑夹具(470)和剥离观测相机(450),其中该激光器 (410)布置在所述支撑台(100)的下方,并用于通过配套的光路部分(440)来发射激光辐射,由此将光刻在透明硬质平面基板上的电子器件从平面基板予以剥离;该剥离模块平面运动部分(420)布置在所述激光器(410)的上方,且具备可沿着X轴方向运动的X向剥离运动轴(421)和可沿着Y轴方向运动的Y向剥离运动轴(322);该剥离支撑夹具(470)继续安装在所述剥离模块平面运动部分(420)且随其一同运动至所需位置,并用于固定夹持住上述光刻在平面基板上的电子器件以便执行激光剥离操作;此外,该剥离观测相机(450)设置在所述剥离模块平面运动部分(420)附近,并在剥离光源(453)的配合下用于对该剥离模块平面运动部分(420)的位置信息予以采集;
    所述曲面转印模块(500)包括转印头支撑架(510)、转印模块平面运动部分(520)、曲面转印头(530)和转印定位相机(540),其中该转印头支撑架(310)直接设置于所述支撑台上;该转印模块平面运动部分(520)安装在所述转印头支撑架上,且具备可沿着X轴方向运动的X向转印运动轴(321)和可沿着Z轴方向运动的Z向转印运动轴(322);此外,该曲面转印头(530)继续安装在所述转印模块平面运动部分上且随其一同运动至所需位置,然后用于将经由所述激光剥离模块(400)执行剥离操作后的电子器件转印至所述曲面基板上;此外,该转印定位相机(540)在转印光源(543)的配合下用于对所述转印模块平面运动部分(520)的位置信息予以采集;
    所述共形喷印模块(600)包括喷头支撑架(610)、喷印模块平面运动部分(620)、喷头部分(630)、喷印观测相机(640)和墨滴观测相机(650),其中该喷头支撑架(610)沿着Z轴方向设置于所述支撑台上;该喷印模块平面运动部分(620)安装在所述喷头支撑架上,且具备可沿着X轴方向运动的X向喷印运动轴(621)和可沿着Z轴方向运动的Z向喷印运动轴(622);该喷头部分(630)继续安装在所述喷头模块平面运动部 分上且随其一同运动至所需位置,然后用于对经由所述曲面转印模块(500)执行转印操作后的所述曲面基板表面继续喷印浆料,由此实现导电互连结构的制造;此外,该喷印观测相机(640)在喷印光源(643)的配合下用于对所述曲面基板上的喷印轨迹和效果予以采集,该墨滴观测相机(650)则在墨滴观测光源(653)的配合下用于对所述喷头部分所喷出的墨滴状态予以采集。
  2. 如权利要求1所述的共形制造设备,其特征在于,对于所述三维测量模块(300)而言,其中在所述三维激光测量传感器(330)的整个点云采集过程中,它优选被不断调整位置,并使得与所述曲面基板或曲面衬底在Z轴方向也即竖直方向间距保持不变。
  3. 如权利要求1或2所述的共形制造设备,其特征在于,对于所述激光剥离模块(400)而言,它的所述光路部分优选通过光路支撑架(430)沿着Z轴方向设置于所述支撑台上,并用于将从所述激光器(410)发射的激光束执行整形、匀光及调整方向等处理;此外,该光路部分的末端处于所述剥离模块平面运动部分(420)的正上方。
  4. 如权利要求3所述的共形制造设备,其特征在于,优选还可利用精细网格化掩膜版对剥离激光强度进行调控,即通过调节该网格化掩膜版的网格特征宽度和间距,对所述光刻在透明硬质平面基板上的电子器件所受到的激光照射次数和激光照射能量进行控制。
  5. 如权利要求1-4任意一项所述的共形制造设备,其特征在于,对于所述曲面转印模块(500)而言,它的曲面转印头(530)优选采用主被动结合的方式工作:即首先通过所述曲面转印头内部的机械运动结构实现与所述曲面基板之间的初步多点主动共形,然后依托该曲面转印头自身的可变形薄膜来实现与所述曲面基板之间的完整分布式被动共形。
  6. 如权利要求1-5任意一项所述的共形制造设备,其特征在于,对于所述共形喷印模块(600)而言,它的喷头部分(630)优选包括集成式供 墨组件(631)和连接于该集成式供墨组件(631)上的气鞘辅助喷头组件(632),其中该集成式供墨组件(631)用于自动向所述气鞘辅助喷头组件进行墨液供给,并可实现流量驱动和气压驱动两种模式自动切换;该气鞘辅助喷头组件(632)用于将墨液喷印到所述曲面基板上,并且优选在它的喷嘴下方设置有环形电极。
  7. 如权利要求1-6任意一项所述的共形制造设备,其特征在于,上述共形制造设备还包括控制模块(700),并用于执行整个制造过程中对电气控制信号的接收、处理及发送功能。
  8. 一种采用如权利要求1-7任意一项所述的系统来制造复杂曲面电子系统的方法,其特征在于,该方法包括下列步骤:
    步骤一:三维测量与定位操作
    首先,将刚性或柔性的曲面基板紧密安装在所述球形电机联动平台平面运动部分(210)上,同时对所述三维激光测量传感器(330)设置三维测量与定位过程参数,相应依照测量运动轨迹路径对所述曲面基板进行采点扫描,生成点云模型;接着,将该点云模型与设计模型进行位置匹配,并判断是否达到进行后续工艺要求的误差精度要求:若不满足误差精度要求,则重新制作或安装曲面基板,直至达到误差精度要求为止;
    步骤二:激光剥离操作
    在平面基板上沉积激光释放层,在激光释放层上方利用微电子工艺制备电子器件,之后将光刻在平面基板上的电子器件通过剥离支撑夹具(470)移动至所需位置及固定夹持,然后通过放置所述网格化掩膜版和调节激光剥离工艺参数,由此将电子器件从该平面基板上予以选择性剥离;与此同时,采用所述剥离观测相机(450)进行定位和观测;
    步骤三:曲面转印操作
    调用所述转印定位相机(540)进行定位,将所述曲面转印头(530)移动到经激光剥离操作后的电子器件上方指定位置;然后打开气压吸附功 能,将所述曲面转印头(530)竖直向下接触电子器件,利用负压将其向上拾起;接着,再次调用所述转印定位相机(540)进行定位,将所述曲面转印头(530)移动到所述曲面基板上方指定位置;通过六自由度球形电机联动平台(200)调整曲面基板姿态和位置,使目标转印位置位于曲面转印头(530)正下方;之后通过二次共形方式将电子器件完整转移至所述曲面基板上;
    步骤四:共形喷印操作
    首先调节共形喷印工艺参数,根据需要选择流量或气压供墨方式,将所述喷头部分(630)移动至所述墨滴观测相机(650)处,利用所述墨滴观测相机(652)观测喷嘴下方的墨滴状态,并当形成稳定泰勒锥时,记录稳定喷射所需所有工艺参数;接着,导入共形喷印的六自由度运动轨迹,依照预设的共形喷印轨迹路径在所述曲面基板上进行按需喷印,同时调用所述喷印观测相机(640)对共形喷印过程进行定位和观测;当曲面共形按需喷印完成后,再次调用所述喷印观测相机(640)对电子器件的引脚进行定位标定,并根据引脚位置信息将电子器件的引脚对一一连线;
    最后,整个制造系统复位,完成复杂曲面电子系统的共形制造过程。
  9. 如权利要求8所述的方法,其特征在于,对于上述步骤三而言,其优选采用主被动结合的方式来操作所述二次共形:
    首先,将所述曲面转印头(530)移动到所述曲面基板上方指定位置,并执行初步多点主动共形;接着,使电子器件和所述曲面基板贴合接触,利用所述曲面转印头自身的可变形薄膜执行二次分布式被动共形;最后,利用正压气压使所述曲面转印头的可变形薄膜膨胀以使电子器件与该曲面转印头分离,进而完成电子器件转印至曲面基板上的操作。
PCT/CN2018/082255 2018-03-22 2018-04-09 一种复杂曲面电子系统的共形制造设备及方法 WO2019178899A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/340,380 US11424144B2 (en) 2018-03-22 2018-04-09 Conformal manufacturing device and method for complex curved-surface electronic system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810238266.8 2018-03-22
CN201810238266.8A CN108538755B (zh) 2018-03-22 2018-03-22 一种复杂曲面电子系统的共形制造设备及方法

Publications (1)

Publication Number Publication Date
WO2019178899A1 true WO2019178899A1 (zh) 2019-09-26

Family

ID=63485108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082255 WO2019178899A1 (zh) 2018-03-22 2018-04-09 一种复杂曲面电子系统的共形制造设备及方法

Country Status (3)

Country Link
US (1) US11424144B2 (zh)
CN (1) CN108538755B (zh)
WO (1) WO2019178899A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114985772A (zh) * 2022-06-02 2022-09-02 临沂大学 一种基于微纳电子制造的复杂曲面打印装置及成形方法
CN115105166A (zh) * 2022-06-12 2022-09-27 喀秋莎(厦门)医疗科技有限公司 一种超声刀刀头弯头及制作方法和三维打印装置
CN116507037A (zh) * 2023-06-25 2023-07-28 湖北芯研投资合伙企业(有限合伙) 一种适用于柔性电子器件的曲面转印装置及方法
CN117433454A (zh) * 2023-12-15 2024-01-23 成都匠泰建筑工程设计有限公司 一种景观园林面积计量设备

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110961633A (zh) * 2018-09-28 2020-04-07 安世亚太科技股份有限公司 一种三维打印方法及装置
CN110044305B (zh) * 2019-04-03 2024-02-02 信义汽车玻璃(深圳)有限公司 玻璃曲率检测装置及玻璃曲率检测方法
CN110588186B (zh) * 2019-08-07 2020-07-10 华中科技大学 一种喷墨打印柔性显示器件制造系统及方法
CN111050474A (zh) * 2019-12-12 2020-04-21 荆门微田智能科技有限公司 柔性曲面电子膜非接触式高精度共形贴合头
CN111037909A (zh) * 2019-12-12 2020-04-21 荆门微田智能科技有限公司 柔性曲面电子膜非接触式高精度共形贴合机械手
CN112297423B (zh) * 2020-10-13 2022-03-22 青岛五维智造科技有限公司 一种用于柔性混合电子制造的3d打印系统及方法
CN112461091B (zh) * 2020-12-03 2022-05-10 巩树君 曲面数字定形器
CN113477945B (zh) * 2021-06-30 2022-11-04 湖南华曙高科技股份有限公司 用于扫描系统的故障处理方法、装置及增材制造设备
CN113834438B (zh) * 2021-08-12 2024-03-01 浙江大学 基于三维测量框架的高精度自由曲面仿形测量装置及方法
CN113843498B (zh) * 2021-09-22 2022-06-28 厦门大学 一种柔性传感器三维曲面的激光保形制造方法
US11833760B2 (en) 2021-09-22 2023-12-05 Xiamen University Laser conformal manufacturing method of flexible sensor
CN114491840A (zh) * 2022-01-17 2022-05-13 成都飞机工业(集团)有限责任公司 一种框类零件制备方法、系统、存储介质及装置
WO2023182035A1 (ja) * 2022-03-23 2023-09-28 富士フイルム株式会社 印刷システム、及び機能性パターンを有する電気部品実装基板の製造方法
CN114698359B (zh) * 2022-03-25 2023-06-09 中国电子科技集团公司第十研究所 曲面天线高精度自动组装方法
CN117198896A (zh) * 2022-05-31 2023-12-08 长沙瑶华半导体科技有限公司 一种曲面法兰表面多点测高贴片方法
CN115709567B (zh) * 2022-10-20 2023-05-26 华中科技大学 一种基于自由曲面切片的三维打印路径规划方法和系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103407290A (zh) * 2013-07-18 2013-11-27 华中科技大学 一种基于电喷印的立体结构的制备方法及装置
CN106671584A (zh) * 2016-12-22 2017-05-17 华中科技大学 一种适用于柔性电子曲面共形转移的多插针转印头
CN107512083A (zh) * 2017-09-30 2017-12-26 华中科技大学 一种复杂曲面电路共形喷印方法和设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7658603B2 (en) * 2005-03-31 2010-02-09 Board Of Regents, The University Of Texas System Methods and systems for integrating fluid dispensing technology with stereolithography
US7658831B2 (en) * 2005-12-21 2010-02-09 Formfactor, Inc Three dimensional microstructures and methods for making three dimensional microstructures
EP2255378B1 (en) * 2008-03-05 2015-08-05 The Board of Trustees of the University of Illinois Stretchable and foldable electronic devices
US10518490B2 (en) * 2013-03-14 2019-12-31 Board Of Regents, The University Of Texas System Methods and systems for embedding filaments in 3D structures, structural components, and structural electronic, electromagnetic and electromechanical components/devices
US20130342592A1 (en) * 2012-06-26 2013-12-26 Apple Inc. Inkjet printer for printing on a three-dimensional object and related apparatus and method
WO2014209994A2 (en) * 2013-06-24 2014-12-31 President And Fellows Of Harvard College Printed three-dimensional (3d) functional part and method of making
JP6403785B2 (ja) * 2014-09-19 2018-10-10 株式会社Fuji 製造装置及び製造方法
CN104465474B (zh) * 2014-11-14 2017-09-15 昆山工研院新型平板显示技术中心有限公司 显示器件转印定位装置及其方法
US10155313B2 (en) * 2015-04-23 2018-12-18 Massachusetts Institute Of Technology Discrete assemblers utilizing conventional motion systems
KR101741339B1 (ko) * 2015-12-29 2017-05-30 엔젯 주식회사 다기능 3d 프린터
US10569464B2 (en) * 2016-02-08 2020-02-25 Board Of Regents, The University Of Texas System Connecting metal foils/wires at different layers in 3D printed substrates with wire spanning

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103407290A (zh) * 2013-07-18 2013-11-27 华中科技大学 一种基于电喷印的立体结构的制备方法及装置
CN106671584A (zh) * 2016-12-22 2017-05-17 华中科技大学 一种适用于柔性电子曲面共形转移的多插针转印头
CN107512083A (zh) * 2017-09-30 2017-12-26 华中科技大学 一种复杂曲面电路共形喷印方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DING, YAJIANG: "Flexible small-channel thin-film transistors by electro-hydrodynamic lithography", NANOSCALE, vol. 9, no. 48, 28 December 2017 (2017-12-28), pages 19050 - 19055, XP055641119 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114985772A (zh) * 2022-06-02 2022-09-02 临沂大学 一种基于微纳电子制造的复杂曲面打印装置及成形方法
CN115105166A (zh) * 2022-06-12 2022-09-27 喀秋莎(厦门)医疗科技有限公司 一种超声刀刀头弯头及制作方法和三维打印装置
CN116507037A (zh) * 2023-06-25 2023-07-28 湖北芯研投资合伙企业(有限合伙) 一种适用于柔性电子器件的曲面转印装置及方法
CN116507037B (zh) * 2023-06-25 2023-09-19 湖北芯研投资合伙企业(有限合伙) 一种适用于柔性电子器件的曲面转印装置及方法
CN117433454A (zh) * 2023-12-15 2024-01-23 成都匠泰建筑工程设计有限公司 一种景观园林面积计量设备
CN117433454B (zh) * 2023-12-15 2024-03-22 成都匠泰建筑工程设计有限公司 一种景观园林面积计量设备

Also Published As

Publication number Publication date
US20210076503A1 (en) 2021-03-11
CN108538755A (zh) 2018-09-14
US11424144B2 (en) 2022-08-23
CN108538755B (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
WO2019178899A1 (zh) 一种复杂曲面电子系统的共形制造设备及方法
WO2021022864A1 (zh) 一种喷墨打印柔性显示器件制造系统及方法
CN106684022B (zh) 一种面向柔性电子制备的高速转塔对称布置贴装系统
TWI712351B (zh) 用於半導體裝置接合的設備與方法及用於對準多個半導體裝置的機構
CN106605453B (zh) 喷墨印刷系统和处理晶圆的方法
CN108701631A (zh) 用于处理基体的喷墨打印系统和方法
CN110509395B (zh) 一种电喷射打印曲面压电陶瓷的方法
JP7084981B2 (ja) フラックスフリーはんだボール実装機構
CN103411681A (zh) 多模块面阵红外探测器三维拼接结构及实现方法
CN109366980B (zh) 一种激光辅助电喷射原位打印制造方法
KR20160013708A (ko) 전기수력학적 잉크젯을 이용한 리페어 장치
WO2015100730A1 (zh) 一种直写式真空蒸发系统及其方法
CN109016864B (zh) 一种精准定位静电打印系统和方法
CN110576679A (zh) 一种用于飞行墨滴状态观测的装置
US20200404793A1 (en) Method for forming electrical circuits populated with electronic components on non-planar objects
CN110509394B (zh) 曲面压电陶瓷电流体喷射打印成型装置
KR101599040B1 (ko) 전기수력학적 잉크젯을 이용한 리페어 장치
CN109263252B (zh) 一种晶硅光伏太阳能电池的换网自适应印刷方法及装置
CN220050052U (zh) 一种共形电路打印机
CN220050051U (zh) 一种共形电路打印机
CN114585449A (zh) 粘接剂涂布装置以及粘接剂涂布方法、转子的制造方法
CN206340531U (zh) 面向柔性电子制备的高速转塔对称布置贴装系统
KR20200102073A (ko) 3차원 표면 프린팅 방법
KR102638010B1 (ko) 마이크로 LED 디스플레이의 칩 리페어를 위한 픽앤플레이스(Pick-and-Place) 장치
CN109159422A (zh) 一种激光辅助电喷射原位打印装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18910323

Country of ref document: EP

Kind code of ref document: A1