WO2019177232A1 - 구동부의 정밀 예지 보전방법 - Google Patents

구동부의 정밀 예지 보전방법 Download PDF

Info

Publication number
WO2019177232A1
WO2019177232A1 PCT/KR2018/015266 KR2018015266W WO2019177232A1 WO 2019177232 A1 WO2019177232 A1 WO 2019177232A1 KR 2018015266 W KR2018015266 W KR 2018015266W WO 2019177232 A1 WO2019177232 A1 WO 2019177232A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
peak
value
energy
unit
Prior art date
Application number
PCT/KR2018/015266
Other languages
English (en)
French (fr)
Inventor
이영규
Original Assignee
주식회사 아이티공간
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이티공간 filed Critical 주식회사 아이티공간
Priority to CN201880091107.8A priority Critical patent/CN111837081B/zh
Publication of WO2019177232A1 publication Critical patent/WO2019177232A1/ko
Priority to US17/018,428 priority patent/US10962967B2/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0283Predictive maintenance, e.g. involving the monitoring of a system and, based on the monitoring results, taking decisions on the maintenance schedule of the monitored system; Estimating remaining useful life [RUL]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0221Preprocessing measurements, e.g. data collection rate adjustment; Standardization of measurements; Time series or signal analysis, e.g. frequency analysis or wavelets; Trustworthiness of measurements; Indexes therefor; Measurements using easily measured parameters to estimate parameters difficult to measure; Virtual sensor creation; De-noising; Sensor fusion; Unconventional preprocessing inherently present in specific fault detection methods like PCA-based methods
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/0227Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions
    • G05B23/0235Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions based on a comparison with predetermined threshold or range, e.g. "classical methods", carried out during normal operation; threshold adaptation or choice; when or how to compare with the threshold
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection

Definitions

  • the present invention relates to a precise predictive maintenance method of a drive unit, and more specifically, to measure and collect a time interval value between a first peak and a second peak in the drive unit drive information in a normal state and the drive unit drive information before a failure occurs, Based on the collected information, alarm upper and lower limits and alarm inclination values for time interval values are set to compare the time interval and inclination values collected in real time through driving of the drive unit against alarm upper and lower limits and alarm slope values.
  • the present invention relates to a precise predictive maintenance method of the drive unit that can prevent the enormous loss due to the failure of the drive unit by inducing alarms when the condition of suspected abnormality of the drive unit is satisfied and performing maintenance and replacement of the drive unit at an appropriate time. .
  • hundreds of driving units are installed in the facilities of a large-scale transfer plant to continuously transfer materials to be transported while interlocking with each other. If any one of the plurality of driving units fails, the operation of the facility is stopped. This can be a huge situation.
  • the present invention has been proposed to solve the above-mentioned problems, and an object thereof is to measure a time interval value between the first peak and the second peak in the driving unit driving information in a normal state and the driving unit driving information before a failure occurs. Collect and set the alarm upper limit, lower limit and alarm inclination value for the time interval value based on the collected information to display the time interval value and inclination value collected in real time through the driving part. In contrast, when the condition of suspecting abnormality of the driving part is satisfied, it can alarm and guide the maintenance and replacement of the driving part in a timely manner. In providing.
  • the present invention provides a precision predictive maintenance method of the driving unit that can secure excellent reliability of the detection result.
  • the precision predictive maintenance method of the drive unit collects the change information of the energy size with time measured in the normal driving state of the drive unit, the value of the largest energy in the change information of the energy size to the first peak
  • the time interval value between the first peak and the second peak is measured from the change in energy magnitude with time measured in the real time driving state of the driving unit, and the measured time interval value is an alarm set in
  • the search section is set in the change information of the energy magnitude according to the time measured in the driving state of the driving unit, the largest energy value is extracted as the first peak in the set search section, and the energy measured by the driving unit is Select one of the current consumed for driving, vibration generated when driving the driving unit, noise generated when driving the driving unit, frequency of the driving unit supply power, temperature, humidity, and pressure of the driving unit when driving the driving unit. It features.
  • the change information of the energy size with respect to the time of the drive unit is formed by repeatedly driving section including a first peak and a second peak, the first base information In the collecting step (S10), the time between the drive section at the set unit time interval by connecting the time interval value of the first and second peaks of the drive section and the time interval value of the other repetitive drive section in the normal driving state of the drive unit In the second base information collecting step (S20), the time interval values of the first peak and the second peak of the driving section and the driving period in the driving state of the driving unit before the failure of the driving unit is issued.
  • the slope information of the time interval values between the driving sections is collected at the set unit time interval.
  • the alarm inclination value for the time interval value between the drive intervals according to the unit time is set based on the inclination information collected in the base information collection step (S10, S20), and the detection step (
  • the driving unit may be detected as an abnormal state.
  • the unit time may be set to a time including at least two driving sections.
  • the change information of the energy size with respect to the time of the drive unit is formed by repeatedly driving section including a first peak and a second peak, the first base information
  • the first peak between the drive sections is set at unit time intervals by connecting the energy value of the first peak of the drive section and the energy value of the first peak of the other drive section repetitively in a normal driving state of the drive unit.
  • inclination information on energy values of, and in the second base information collecting step (S20) another energy that is repeatedly different from the energy value of the first peak of the driving section in the driving state of the driving unit before the failure of the driving unit is issued.
  • the setting step (S30) sets the alarm slope value for the energy value of the first peak between the driving intervals according to the unit time set based on the slope information collected in the base information collection steps (S10, S20),
  • the detecting step (S40) if the inclination value for the energy value of the first peak between the drive interval measured in the unit time interval set in the real-time driving state of the drive unit exceeds the alarm inclination value set in the setting step (S30)
  • the apparatus may be detected as an abnormal state of the driving unit, and the unit time may be set to a time including at least two driving sections.
  • the change information of the energy size with respect to the time of the drive unit is formed by repeatedly driving section including a first peak and a second peak, the first base information
  • the second peak between the driving sections is set at unit time intervals by connecting the energy value of the second peak of the driving section and the energy value of the second peak of the other driving section repeatedly in the normal driving state of the driving unit.
  • collecting slope information on an energy value of, and in the second base information collecting step (S20), another energy that is repeatedly different from an energy value of a second peak of a driving section in a driving state of the driving unit before a failure of the driving unit is issued.
  • the alarm slope value for the energy value of the second peak between the driving intervals according to the unit time is set based on the slope information collected in the base information collection step, and the detection step (S40) ) Detects an abnormal state of the driving unit when the slope value of the energy value of the second peak between the driving intervals measured at the unit time interval set in the real time driving state of the driving unit exceeds the alarm slope value set in the setting step.
  • the unit time may be set to a time including at least two driving sections.
  • the driving section is a driving point of the start point and the end point with the start point of the point that the energy value of the driving unit exceeds the set value (off set) is exceeded, and the point going down below the offset value as the end point Set the section to extract the repetitive driving section, or forcibly partitioning the change information of the energy magnitude over time of the driving unit according to the set time interval, and set the partitioned section as the driving section to repeat the drive section Characterized in that to extract.
  • the base information collection step (S10) the information on the energy value of the first peak and the energy value of the second peak in the normal driving state of the drive unit, respectively, and collects the second base information collection step (S20) ) Collects information on the energy value of the first peak and the energy value of the second peak in the driving state of the drive unit before the failure of the drive unit is issued, and in the setting step (S30), the base information collection step ( On the basis of the information collected in S10, S20, the alarm upper limit and the alarm lower limit for the energy values of the first and second peaks are respectively set, and in the detecting step S40, the time measured in the real-time driving state of the driving unit.
  • the time interval value between the first peak and the second peak is measured and collected from the drive unit drive information in the normal state and the drive unit drive information before the failure occurs, and the collected information Set the alarm upper limit, lower limit and alarm inclination value for the time interval value based on the time interval value and the inclination value collected in real time through the drive of the drive unit against the alarm upper limit value, the lower limit value and the alarm inclination value.
  • the alarm can be induced to perform the maintenance and replacement of the drive at the appropriate time, thereby preventing the enormous loss due to the failure of the drive.
  • FIG. 1 is a block diagram of a precision predictive maintenance method of a drive unit according to an embodiment of the present invention
  • 2 and 3 are diagrams of detecting an abnormal state of the driving unit based on a time interval value between the first peak and the second peak measured in the real-time driving state of the driving unit;
  • FIG. 4 is a diagram illustrating a peak section of a driving unit as a search section
  • FIG. 5 is a diagram illustrating a constant speed section of a driving unit as a search section
  • FIG. 6 is a diagram illustrating a time interval value between a first peak and a second peak of a drive section
  • FIG. 7 is a numerical representation of the time interval value shown in FIG.
  • FIG. 8 is a diagram for extracting a slope value with respect to the time interval value shown in FIG. 7;
  • FIG. 10 is a diagram for extracting a driving section from the driving unit in which driving and pause are repeated;
  • 11 is a diagram for extracting a driving section from a driving unit that is continuously driven
  • FIG. 12 is a diagram for extracting a first peak value from a repetitive driving section of a driving unit
  • FIG. 13 is a diagram for extracting a slope value with respect to the first peak value extracted from FIG. 12.
  • FIG. 14 is a diagram illustrating an average slope value of first peak values between driving sections measured at unit time intervals
  • 15 is a diagram for extracting a second peak value from a repetitive driving section of a driving unit
  • FIG. 16 is a diagram for extracting a slope value with respect to the second peak value extracted from FIG. 15.
  • FIG. 16 is a diagram for extracting a slope value with respect to the second peak value extracted from FIG. 15.
  • FIG. 17 is a diagram illustrating an average slope value of second peak values between driving sections measured at unit time intervals
  • 18 and 19 are diagrams for detecting an abnormal state of the driving unit based on the first and second peak values measured in the real-time driving state of the driving unit.
  • the present invention relates to a precision predictive maintenance method of a drive unit, the configuration of which collects the change information of the energy size with time measured in the normal driving state of the drive unit, the energy size is the largest in the change information of the energy size
  • a setting step (S30); and measuring a time interval value between the first peak and the second peak from the change in energy magnitude according to time measured in the real time driving state of the driving unit, and the measured time interval value is It is characterized in that it comprises a; detecting step (S40) for detecting the drive unit in an abnormal state if the alarm upper limit value set in the setting step (S30) or less than the alarm lower limit value.
  • FIG. 1 to 19 show a precision predictive maintenance method of the drive unit according to an embodiment of the present invention
  • Figure 1 is a block diagram of a precision predictive maintenance method of the drive unit according to an embodiment of the present invention
  • Figures 2 and 3 Is a diagram for detecting an abnormal state of the driving unit based on a time interval value between the first peak and the second peak measured in the real-time driving state of the driving unit
  • FIG. 5 is a diagram illustrating a constant speed section of a driving unit as a search section
  • FIG. 6 is a diagram illustrating a time interval value between a first peak and a second peak of a drive section
  • FIG. 7 is a time interval shown in FIG. 6.
  • FIG. 8 is a diagram illustrating values extracted numerically
  • FIG. 8 is a diagram for extracting a slope value with respect to a time interval value shown in FIG. 10 is a drawing
  • FIG. 11 is a diagram for extracting a driving section from a driving unit in which the driving and rest are repeated
  • FIG. 11 is a diagram for extracting a driving section from a driving unit which is continuously driven
  • FIG. 13 is a diagram for extracting a slope value with respect to the first peak value extracted in FIG. 12
  • FIG. 14 is a diagram for extracting an average slope value of a first peak value between driving sections measured at unit time intervals.
  • FIG. 15 is a diagram for extracting a second peak value from a repetitive driving section of the driving unit
  • FIG. 16 is a diagram for extracting a slope value with respect to the second peak value extracted from FIG. 15,
  • FIG. 17 is measured at unit time intervals.
  • 18 and 19 illustrate an abnormal state of the driving unit based on the first peak and the second peak value measured in the real-time driving state of the driving unit. It shows a
  • the precision predictive maintenance method 100 of the drive unit As shown in Figure 1, the precision predictive maintenance method 100 of the drive unit according to an embodiment of the present invention, the first base information collection step (S10), the second base information collection step (S20), and the setting step ( S30 and a detection step S40.
  • the first base information collection step (S10) collects the change information of the energy size according to the time measured in the normal driving state of the drive unit, the value of the largest energy in the change information of the energy size is the first peak ( collecting a peak interval between the first peak and the second peak by setting a first peak and a second peak after the first peak as a second peak. to be.
  • the search section is arbitrarily set in the change information of the energy magnitude with time measured in the driving state of the driver, and the largest energy value is extracted as the first peak in the set search section. Therefore, the largest energy value after the search period is naturally extracted to the second peak.
  • the search section as described above is set to the same section in the second base information collection step (S20) and the detection step (S40) to be described later, so that the first peak is extracted.
  • the information collected as described above is based on various alarm values set to detect abnormal symptoms of the driving unit in the setting step S30 and the detecting step S40 to be described later.
  • the energy measured by the driving unit is the current consumed to drive the driving unit, vibration generated when driving the driving unit, noise generated when driving the driving unit, the frequency of the driving unit supply power, the temperature of the driving unit when driving the driving unit, Any one of humidity and pressure is selected and used, but it is of course not limited to this kind.
  • the second base information collecting step (S20) collects a time interval value between the first peak and the second peak in the change information of the energy magnitude according to the time measured in the driving state of the driving unit before the failure of the driving unit is issued. It's a step.
  • the information collected as described above is based on various alarm values set to detect abnormal symptoms of the driving unit in the setting step S30 and the detecting step S40, as the information collected in the first base information collecting step S10. do.
  • the setting step (S30) is based on the information collected in the base information collecting step (S10, S20) of the alarm upper limit (alarm upper limit) and the alarm lower limit (alarm lower) for the time interval value between the first peak and the second peak limit).
  • the alarm upper limit value and the lower limit value for the time interval value between the first peak and the second peak are based on the information collected for a long time in the base information collection steps S10 and S20 before the failure of the drive unit occurs.
  • the time interval value is abnormally changed, that is, the time interval value of the drive unit is set based on an abnormally changed value in a situation such as deterioration of the drive unit, aging, load due to the foreign matter.
  • the detecting step (S40) measures a time interval value between the first peak and the second peak from the change in energy magnitude with time measured in the real time driving state of the drive unit, the measured time interval value is set If the upper limit of the alarm set in step (S30) or less than the lower limit of the alarm value is the step of detecting the drive unit in an abnormal state.
  • the energy of the driving unit is a current consumed to operate the driving unit, typically, when the driving unit starts to drive, the use of a high current is required to form the maximum energy level of the driving unit. Looking at the peak section, the driving unit is stabilized to maintain a constant range of energy values can be seen as a constant speed section.
  • the search section is set as the peak section, and the first peak is extracted from the peak section, and the second peak is extracted from the constant speed section. Collects and compares time interval values to predict the state of the drive.
  • the search section may be set to a range of any particular section in consideration of an environment, a condition, etc. in which the driver is used, and the setting of the search section may detect a state of the driver section under various conditions. Predictive maintenance can be performed.
  • the search section is set within a peak section to extract both the first peak and the second peak from the peak section.
  • the driving unit may detect a state of the driving unit, and when the driving unit requires precise predictive maintenance in the constant speed section, as illustrated in FIG. Both peaks may be extracted in the constant speed section to detect the state of the driving unit.
  • the change information of the amount of energy according to time of the driving unit collected in the base information collecting step is formed by a drive section including a first peak and a second peak repeatedly,
  • the time interval between the driving intervals is connected by connecting the time interval values of the first and second peaks of the driving section and the time interval values of the other driving sections which are repeatedly repeated in the normal driving state of the driving unit. Collects slope information for interval values,
  • the time interval value of the first and second peaks of the driving section and the time interval value of the other driving section repeatedly are generated in the driving state of the driving unit. It connects to each other and collects slope information about the time interval value between driving sections.
  • step (S30) setting the alarm slope value for the time interval value between the driving intervals based on the slope information collected in the base information collection steps (S10, S20),
  • the drive unit Detects as an abnormal state of the unit time, the unit time is set to a time such that at least two drive sections are included.
  • time interval values between the first peak and the second peak are collected in the repetitive driving section of the driving unit, and the respective driving sections are collected.
  • This time interval value is shown according to time, and for convenience of description, the repetition of the driving section is sequentially performed on the first driving section, the second driving section,. If it is determined as the nth driving section, it can be represented as shown in FIG.
  • a predetermined inclination value may be obtained, and the inclination value is a rising inclination value (positive value) in which the inclination increases and a inclination in which the inclination falls. It can be classified as a falling slope value (negative), but all are collected by quantifying the slope value as an absolute value.
  • the collected information about the slope value is recognized as information that the driving unit is stably driven in the normal state.
  • the second base information collecting step (S20) in the same manner as the first base information collecting step (S10), before the failure of the drive unit is generated, the gradient information on the time interval value between the drive section of the drive unit, In the setting step (S30) it is to set the alarm slope value for the time interval value between the driving interval based on the slope information collected in the base information collection step (S10, S20).
  • the average slope value connecting the time interval values between the driving sections measured at unit time intervals set in the real time driving state of the driving unit is set in the setting step S30.
  • the set alarm slope value is exceeded, an abnormal state of the driving unit is detected.
  • the unit time is a time set in the setting step (S30) so that at least two or more driving sections are included, and as a few seconds in consideration of the driving conditions of the driving unit, the surrounding environment, etc., as many days, months, years, etc. Can be set in units.
  • the driving section is the starting point to the starting point to the point that the energy value of the driving unit exceeds the offset (off set) set in the setting step (S30) as the starting point and the lower point to the lower point below the offset value as the starting point
  • the driving section of the driving unit based on the point where the energy value of the driving unit falls below the offset value. It can be forcibly extracted can be induced to make easy maintenance of the driving unit having a variety of driving conditions.
  • the driving section may be forcibly partitioning the change information of the energy size with respect to the time of the driving unit according to a set time interval, and the partitioned section may be set as the driving section to extract the repetitive driving section.
  • the method of extracting the driving section of the driving unit by setting the offset value or the time interval may be applied to the predictive maintenance method of the driving unit to be described below.
  • the change information of the amount of energy according to time of the driving unit collected in the base information collecting step is formed by a drive section including a first peak and a second peak repeatedly,
  • the first peak between the driving sections is connected by connecting the energy value of the first peak of the driving section with the energy value of the first peak of the other driving section repeatedly. Collects slope information for the energy value of,
  • the energy value of the first peak of the driving section and the energy value of the first peak of the other driving section are repeatedly connected in the driving state of the driving section before the failure of the driving unit is issued. Collecting slope information on the energy value of the first peak between the driving sections,
  • the unit time is set to a time including at least two driving sections.
  • the first peak energy value of the driving section and the first peak energy value of the other driving section are collected in the repetitive driving section of the driving unit.
  • the first driving section, the second driving section,. If it is determined as the nth driving section, as shown in FIG. 13, the first peak energy value of the repetitive driving section may be represented.
  • a predetermined inclination value may be obtained, and the inclination value is a rising inclination value (positive value) in which the inclination increases and the inclination is increased.
  • Descending slope can be classified as a negative slope value (negative), but all are collected by quantifying the slope value as an absolute value.
  • the collected information about the slope value is recognized as information that the driving unit is stably driven in the normal state.
  • the second base information collection step (S20) inclination information on the first peak energy value between driving sections of the drive unit before the failure of the drive unit is generated in the same manner as the first base information collection step (S10).
  • the setting step (S30) the alarm inclination value for the first peak energy value between driving sections is set based on the inclination information collected in the base information collecting steps S10 and S20.
  • the detecting step S40 includes an average slope value connecting the first peak energy value between driving sections measured at unit time intervals set in the real time driving state of the driving unit.
  • the alarm tilt value set in S30 is exceeded, an abnormal state of the driving unit is detected.
  • the unit time is a time set in the setting step (S30) so that at least two or more driving sections are included, and as a few seconds in consideration of the driving conditions of the driving unit, the surrounding environment, etc., as many days, months, years, etc. Can be set in units.
  • the change information of the amount of energy according to time of the driving unit collected in the base information collecting step is formed by a drive section including a first peak and a second peak repeatedly,
  • the second peak between the driving sections is connected by connecting the energy value of the second peak of the driving section with the energy value of the second peak of the other driving section repeatedly in the normal driving state of the driving unit. Collects slope information for the energy value of,
  • the energy value of the second peak of the driving section and the second peak of the second driving section are repeatedly connected to each other in the driving state of the driving section before the failure of the driving unit is issued. Slope information on the energy value of the second peak between the driving section,
  • the alarm inclination value for the energy value of the second peak between the driving section is set based on the inclination information collected in the base information collection step,
  • the unit time is set to a time including at least two driving sections.
  • a second peak energy value different from the second peak energy value of the driving section is collected in the repetitive driving section of the driving unit.
  • a predetermined inclination value may be obtained, and the inclination value is a rising inclination value (positive value) in which the inclination increases and the inclination is increased.
  • Descending slope can be classified as a negative slope value (negative), but all are collected by quantifying the slope value as an absolute value.
  • the collected information about the slope value is recognized as information that the driving unit is stably driven in the normal state.
  • the second base information collection step (S20) inclination information on the second peak energy value between driving sections of the drive unit before the failure of the drive unit is generated in the same manner as the first base information collection step (S10).
  • the setting step (S30) the alarm slope value for the second peak energy value between driving sections is set based on the slope information collected in the base information collection steps S10 and S20.
  • the average slope value connecting the second peak energy value between driving sections measured at unit time intervals set in the real-time driving state of the driving unit is set in the setting step ( When the alarm tilt value set in S30 is exceeded, an abnormal state of the driving unit is detected.
  • the unit time is a time set in the setting step (S30) so that at least two or more driving sections are included, and as a few seconds in consideration of the driving conditions of the driving unit, the surrounding environment, etc., as many days, months, years, etc. Can be set in units.
  • the first base information collection step (S10) the information on the energy value of the first peak and the energy value of the second peak in the normal driving state of the drive unit, respectively,
  • the alarm upper limit value and the alarm lower limit value for the energy value of the first and second peaks are respectively set,
  • the first peak or the second peak energy value is set in the setting step (S30) of the first peak or the second peak energy value from the change in energy magnitude according to time measured in the real-time driving state of the driving unit. If the peak upper limit alarm value is below or lower than the lower limit alarm value, the driving unit is detected as an abnormal state.
  • the driving unit when driving the driving unit, when the energy value of the first peak or the energy value of the second peak exceeds the set upper limit or lower than the lower limit, the driving unit is formed.
  • the driving unit By detecting an abnormal state and performing management such as replacement or repair before failure of the drive unit occurs, it is possible to prevent economic losses caused by the failure of the facility due to the failure of the drive unit.
  • the precision predictive maintenance method 100 of the driving unit according to the present invention for detecting abnormal symptoms of the driving unit as described above is performed between the first and second peaks in the driving unit driving information in a normal state and the driving unit driving information before a failure occurs. Measure and collect the time interval value, and set the alarm upper and lower limits and the alarm slope value for the time interval value based on the collected information to determine the time interval and slope values collected in real time through the drive.
  • the alarm can be alerted so that maintenance and replacement of the driving part can be performed at an appropriate time to prevent enormous loss due to the failure of the driving part. There is.
  • the precision predictive maintenance method 100 of the driving unit can be implemented through a combination of various electronic devices and programs that can collect, detect, contrast, and alarm the energy value of the driving unit. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Alarm Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

본 발명은 구동부의 정밀 예지 보전방법에 관한 것으로, 그 구성은 상기 구동부의 정상적인 구동 상태에서 측정한 시간에 따른 에너지 크기의 변화정보를 수집하되, 그 에너지 크기의 변화정보에서 에너지의 크기가 가장 큰 값을 제1피크으로 하고, 상기 제1피크 이후에 에너지의 크기가 가장 큰 값을 제2피크으로 하여 상기 제1피크와 제2피크 사이의 시간 간격 값을 수집하는 제1베이스 정보 수집단계(S10);와, 상기 구동부의 고장이 발행하기 전 상기 구동부의 구동 상태에서 측정한 시간에 따른 에너지 크기의 변화 정보에서 제1피크와 제2피크 사이의 시간 간격 값을 수집하는 제2베이스 정보 수집단계(S20);와, 상기 베이스 정보 수집단계(S10,S20)에서 수집된 정보를 기반으로 제1피크과 제2피크 사이의 시간 간격 값에 대한 경보 상한값과 경보 하한값을 설정하는 설정단계(S30);와, 상기 구동부의 실시간 구동 상태에서 측정한 시간에 따른 에너지 크기의 변화 정보에서 제1피크와 제2피크 사이의 시간 간격 값을 측정하고, 그 측정된 시간 간격 값이 상기 설정단계(S30)에서 설정된 경보 상한값을 초과하거나 경보 하한값 미만이면 상기 구동부를 이상상태로 검출하는 검출단계(S40);로 이루어지는 것을 특징으로 하는 것이다.

Description

구동부의 정밀 예지 보전방법
본 발명은 구동부의 정밀 예지 보전방법에 관한 것으로, 더욱 상세하게는 정상적인 상태의 구동부 구동정보와 고장이 발생하기 전의 구동부 구동정보에서 제1피크와 제2피크 사이의 시간 간격 값을 측정 수집하고, 그 수집된 정보를 기반으로 시간 간격 값에 대한 경보 상한값과 하한값 및 경보 기울기 값을 설정하여 구동부의 구동을 통해 실시간으로 수집되는 시간 간격 값과 기울기 값을 경보 상한값과 하한값 및 경보 기울기 값과 대비하여 구동부의 이상징후가 의심되는 조건이 만족되면 경보하여 적합한 시기에 구동부의 정비 및 교체를 수행할 수 있도록 유도하여 구동부의 고장으로 인한 막대한 손실을 미연에 예방할 수 있는 구동부의 정밀 예지 보전방법에 관한 것이다.
일반적으로 설비의 자동화 공정을 위해 사용되는 구동부(모터, 펌프, 컨베이어, 콤프레샤 등)는 안정적인 구동이 매우 중요하다.
일 예로, 대규모의 이송 공장의 설비에는 수백 개의 구동부가 설치되어 서로 연동 동작하면서 이송하고자 하는 자재를 연속 이송하게 되는데, 만약 다수의 구동부 중에서 어느 하나의 구동부가 고장이 발생하면 설비의 동작이 전체적으로 중단되는 엄청난 상황이 발생할 수 있다.
이때는 구동부의 고장으로 인한 다운 타임의 발생으로 구동부의 수리비용뿐만 아니라, 설비가 중단되는 동안 낭비되는 운영비와 비즈니스 효과에 의해 엄청난 손실이 발생될 수밖에 없다.
최근 고용노동부와 산업안전 관리공단의 자료에 따르면 연간 산업 안전사고로 인한 사상자는 총 10만 명 수준으로 집게 되고 있으며, 이를 비용으로 환산시 연간 18조원의 손실이 발생하고 있다고 집계되고 있다.
이러한 예기치 않은 다운 타임 비용을 피하기 위한 방법으로 사전 예지 보전시스템의 도입이 시급한 실정이다. 이미 예지 보전이라는 명목하에 문제점을 개선하고자 노력하고 있으나 보다 효율적인 예지 보전을 위해 더 차원 높은 예지 보전방법의 개발이 필요한 실정이다.
본 발명은 상기한 바와 같은 제반 문제점을 해결하기 위하여 제안된 것으로, 그 목적은 정상적인 상태의 구동부 구동정보와 고장이 발생하기 전의 구동부 구동정보에서 제1피크와 제2피크 사이의 시간 간격 값을 측정 수집하고, 그 수집된 정보를 기반으로 시간 간격 값에 대한 경보 상한값과 하한값 및 경보 기울기 값을 설정하여 구동부의 구동을 통해 실시간으로 수집되는 시간 간격 값과 기울기 값을 경보 상한값과 하한값 및 경보 기울기 값과 대비하여 구동부의 이상징후가 의심되는 조건이 만족되면 경보하여 적합한 시기에 구동부의 정비 및 교체를 수행할 수 있도록 유도하여 구동부의 고장으로 인한 막대한 손실을 미연에 예방할 수 있는 구동부의 정밀 예지 보전방법을 제공함에 있다.
또한, 구동부에서 발생할 수 있는 다양한 이상징후를 검색하기 위해 다양한 검출조건을 제시하고, 그 검출조건을 만족하는 경우에 사용자에게 경보함으로, 구동부에서 발생되는 다양한 이상징후를 용이하게 검출할 수 있을 뿐만 아니라, 검출결과에 대한 우수한 신뢰도를 확보할 수 있는 구동부의 정밀 예지 보전방법을 제공함에 있다.
본 발명에 따른 구동부의 정밀 예지 보전방법은 구동부의 정상적인 구동 상태에서 측정한 시간에 따른 에너지 크기의 변화정보를 수집하되, 그 에너지 크기의 변화정보에서 에너지의 크기가 가장 큰 값을 제1피크으로 하고, 상기 제1피크 이후에 에너지의 크기가 가장 큰 값을 제2피크으로 하여 상기 제1피크와 제2피크 사이의 시간 간격 값을 수집하는 제1베이스 정보 수집단계(S10);와, 상기 구동부의 고장이 발행하기 전 상기 구동부의 구동 상태에서 측정한 시간에 따른 에너지 크기의 변화 정보에서 제1피크와 제2피크 사이의 시간 간격 값을 수집하는 제2베이스 정보 수집단계(S20);와, 상기 베이스 정보 수집단계(S10,S20)에서 수집된 정보를 기반으로 제1피크과 제2피크 사이의 시간 간격 값에 대한 경보 상한값과 경보 하한값을 설정하는 설정단계(S30);와, 상기 구동부의 실시간 구동 상태에서 측정한 시간에 따른 에너지 크기의 변화 정보에서 제1피크와 제2피크 사이의 시간 간격 값을 측정하고, 그 측정된 시간 간격 값이 상기 설정단계(S30)에서 설정된 경보 상한값을 초과하거나 경보 하한값 미만이면 상기 구동부를 이상상태로 검출하는 검출단계(S40);로 이루어지되,
상기 구동부의 구동 상태에서 측정한 시간에 따른 에너지 크기의 변화정보에 탐색구간을 설정하고, 그 설정된 탐색구간에서 가장 큰 에너지 값을 제1피크로 추출하며, 상기 구동부를 통해 측정되는 에너지는 상기 구동부 구동에 소모되는 전류, 상기 구동부 구동시 발생되는 진동, 상기 구동부 구동시 발생되는 소음, 상기 구동부 공급전원의 주파수, 상기 구동부의 구동시 구동부의 온도, 습도, 압력 중에서 어느 하나를 선택하여 사용되는 것을 특징으로 한다.
또한, 상기 베이스 정보 수집단계(S10,S20)에서 수집되는 상기 구동부의 시간에 따른 에너지 크기의 변화정보는 제1피크와 제2피크가 포함되는 구동구간이 반복하여 형성되며, 상기 제1베이스 정보 수집단계(S10)에서는 상기 구동부의 정상적인 구동 상태에서 구동구간의 제1피크와 제2피크의 시간 간격 값과 반복적인 다른 구동구간의 시간 간격 값을 서로 연결하여 설정된 단위 시간 간격으로 구동구간 간의 시간 간격 값에 대한 기울기 정보를 수집하며, 상기 제2베이스 정보 수집단계(S20)에서는 상기 구동부의 고장이 발행하기 전 상기 구동부의 구동 상태에서 구동구간의 제1피크와 제2피크의 시간 간격 값과 반복적인 다른 구동구간의 시간 간격 값을 서로 연결하여 설정된 단위 시간 간격으로 구동구간 간의 시간 간격 값에 대한 기울기 정보를 수집하며, 상기 설정단계(S30)에서는 상기 베이스 정보 수집단계(S10,S20)에서 수집된 기울기 정보를 기반으로 설정된 단위 시간에 따른 구동구간 간의 시간 간격 값에 대한 경보 기울기 값을 설정하며, 상기 검출단계(S40)에서는 상기 구동부의 실시간 구동 상태에서 설정된 단위 시간 간격으로 측정되는 구동구간 간의 시간 간격 값에 대한 기울기 값이 상기 설정단계(S30)에서 설정된 경보 기울기 값을 초과하면 상기 구동부의 이상상태로 검출하되, 상기 단위 시간은 적어도 둘 이상의 구동구간을 포함하는 시간으로 설정되는 것을 특징으로 한다.
또한, 상기 베이스 정보 수집단계(S10,S20)에서 수집되는 상기 구동부의 시간에 따른 에너지 크기의 변화정보는 제1피크와 제2피크가 포함되는 구동구간이 반복하여 형성되며, 상기 제1베이스 정보 수집단계(S10)에서는 상기 구동부의 정상적인 구동 상태에서 구동구간의 제1피크의 에너지 값과 반복적인 다른 구동구간의 제1피크의 에너지 값을 서로 연결하여 설정된 단위 시간 간격으로 구동구간 간의 제1피크의 에너지 값에 대한 기울기 정보를 수집하며, 상기 제2베이스 정보 수집단계(S20)에서는 상기 구동부의 고장이 발행하기 전 상기 구동부의 구동 상태에서 구동구간의 제1피크의 에너지 값과 반복적인 다른 구동구간의 제1피크의 에너지 값을 서로 연결하여 설정된 단위 시간 간격으로 구동구간 간의 제1피크의 에너지 값에 대한 기울기 정보를 수집하며, 상기 설정단계(S30)에서는 상기 베이스 정보 수집단계(S10,S20)에서 수집된 기울기 정보를 기반으로 설정된 단위 시간에 따른 구동구간 간의 제1피크의 에너지 값에 대한 경보 기울기 값을 설정하며, 상기 검출단계(S40)에서는 상기 구동부의 실시간 구동 상태에서 설정된 단위 시간 간격으로 측정되는 구동구간 간의 제1피크의 에너지 값에 대한 기울기 값이 상기 설정단계(S30)에서 설정된 경보 기울기 값을 초과하면 상기 구동부의 이상상태로 검출하되, 상기 단위 시간은 적어도 둘 이상의 구동구간을 포함하는 시간으로 설정되는 것을 특징으로 한다.
또한, 상기 베이스 정보 수집단계(S10,S20)에서 수집되는 상기 구동부의 시간에 따른 에너지 크기의 변화정보는 제1피크와 제2피크가 포함되는 구동구간이 반복하여 형성되며, 상기 제1베이스 정보 수집단계(S10)에서는 상기 구동부의 정상적인 구동 상태에서 구동구간의 제2피크의 에너지 값과 반복적인 다른 구동구간의 제2피크의 에너지 값을 서로 연결하여 설정된 단위 시간 간격으로 구동구간 간의 제2피크의 에너지 값에 대한 기울기 정보를 수집하며, 상기 제2베이스 정보 수집단계(S20)에서는 상기 구동부의 고장이 발행하기 전 상기 구동부의 구동 상태에서 구동구간의 제2피크의 에너지 값과 반복적인 다른 구동구간의 제2피크의 에너지 값을 서로 연결하여 설정된 단위 시간 간격으로 구동구간 간의 제2피크의 에너지 값에 대한 기울기 정보를 수집하며, 상기 설정단계(S30)에서는 상기 베이스 정보 수집단계에서 수집된 기울기 정보를 기반으로 설정된 단위 시간에 따른 구동구간 간의 제2피크의 에너지 값에 대한 경보 기울기 값을 설정하며, 상기 검출단계(S40)에서는 상기 구동부의 실시간 구동 상태에서 설정된 단위 시간 간격으로 측정되는 구동구간 간의 제2피크의 에너지 값에 대한 기울기 값이 상기 설정단계에서 설정된 경보 기울기 값을 초과하면 상기 구동부의 이상상태로 검출하되, 상기 단위 시간은 적어도 둘 이상의 구동구간을 포함하는 시간으로 설정되는 것을 특징으로 한다.
또한, 상기 구동구간은 설정되는 오프셋(off set) 값을 상기 구동부의 에너지 값이 초과하여 넘어가는 점을 시작점으로 하고 상기 오프셋 값 미만으로 내려가는 점을 끝점으로 하여 상기 시작점과 끝점까지 구간을 상기 구동구간으로 설정하여 반복적인 상기 구동구간을 추출하거나, 상기 구동부의 시간에 따른 에너지 크기의 변화정보를 설정된 시간 간격에 따라 강제 구획하고, 그 구획된 구간을 상기 구동구간으로 설정하여 반복적인 상기 구동구간을 추출하도록 하는 것을 특징으로 한다.
또한, 상기 제1베이스 정보 수집단계(S10)에서는 상기 구동부의 정상적인 구동 상태에서 제1피크의 에너지 값과 제2피크의 에너지 값에 대한 정보를 각각 수집하며, 상기 제2베이스 정보 수집단계(S20)에서는 상기 구동부의 고장이 발행하기 전 상기 구동부의 구동 상태에서 제1피크의 에너지 값과 제2피크의 에너지 값에 대한 정보를 각각 수집하며, 상기 설정단계(S30)에서는 상기 베이스 정보 수집단계(S10,S20)에서 수집된 정보를 기반으로 제1피크 및 제2피크의 에너지 값에 대한 경보 상한값과 경보 하한값을 각각 설정하며, 상기 검출단계(S40)에서는 상기 구동부의 실시간 구동 상태에서 측정한 시간에 따른 에너지 크기의 변화 정보에서 제1피크 또는 제2피크 에너지 값이 상기 설정단계(S30)에서 설정한 제1피크 또는 제2피크의 경보 상한값을 초과하거나 경보 하한값 미만이면 상기 구동부를 이상상태로 검출하도록 하는 것을 특징으로 한다.
본 발명에 따른 구동부의 정밀 예지 보전방법에 의하면, 정상적인 상태의 구동부 구동정보와 고장이 발생하기 전의 구동부 구동정보에서 제1피크와 제2피크 사이의 시간 간격 값을 측정 수집하고, 그 수집된 정보를 기반으로 시간 간격 값에 대한 경보 상한값과 하한값 및 경보 기울기 값을 설정하여 구동부의 구동을 통해 실시간으로 수집되는 시간 간격 값과 기울기 값을 경보 상한값과 하한값 및 경보 기울기 값과 대비하여 구동부의 이상징후가 의심되는 조건이 만족되면 경보하여 적합한 시기에 구동부의 정비 및 교체를 수행할 수 있도록 유도하여 구동부의 고장으로 인한 막대한 손실을 미연에 예방할 수 있는 효과가 있다.
또한, 구동부에서 발생할 수 있는 다양한 이상징후를 검색하기 위해 다양한 검출조건을 제시하고, 그 검출조건을 만족하는 경우에 사용자에게 경보함으로, 구동부에서 발생되는 다양한 이상징후를 용이하게 검출할 수 있을 뿐만 아니라, 검출결과에 대한 우수한 신뢰도를 확보할 수 있는 효과가 있다.
도 1은 본 발명의 실시예에 따른 구동부의 정밀 예지 보전방법의 블럭도
도 2와 도 3은 구동부의 실시간 구동 상태에서 측정한 제1피크와 제2피크 사이의 시간 간격 값을 기반으로 구동부의 이상상태를 검출하는 도면
도 4는 구동부의 피크 구간을 탐색구간으로 설정한 도면
도 5는 구동부의 정속 구간을 탐색구간으로 설정한 도면
도 6은 구동구간의 제1피크와 제2피크 사이의 시간 간격 값을 도시한 도면
도 7은 도 6에 도시된 시간 간격 값을 수치로 나타낸 도면
도 8은 도 7에 도시된 시간 간격 값에 대한 기울기 값을 추출하는 도면
도 9는 단위 시간 간격으로 측정되는 구동구간 간의 시간 간격 값의 평균 기울기 값을 추출하는 도면
도 10은 구동과 휴지가 반복되는 구동부로부터 구동구간을 추출하는 도면
도 11은 연속 구동되는 구동부로부터 구동구간을 추출하는 도면
도 12는 구동부의 반복적인 구동구간에서 제1피크 값을 추출하는 도면
도 13은 도 12에서 추출된 제1피크 값에 대한 기울기 값을 추출하는 도면
도 14는 단위시간 간격으로 측정되는 구동구간 간의 제1피크 값의 평균 기울기 값을 추출하는 도면
도 15는 구동부의 반복적인 구동구간에서 제2피크 값을 추출하는 도면
도 16은 도 15에서 추출된 제2피크 값에 대한 기울기 값을 추출하는 도면
도 17은 단위시간 간격으로 측정되는 구동구간 간의 제2피크 값의 평균 기울기 값을 추출하는 도면
도 18과 19는 구동부의 실시간 구동 상태에서 측정한 제1피크와 제2피크 값을 기반으로 구동부의 이상상태를 검출하는 도면
〈도면의 주요부분에 대한 부호의 설명〉
S10. 제1베이스 정보 수집단계
S20. 제2베이스 정보 수집단계
S30. 설정단계
S40. 검출단계
100. 구동부의 정밀 예지 보전방법
본 발명은 구동부의 정밀 예지 보전방법에 관한 것으로, 그 구성은 상기 구동부의 정상적인 구동 상태에서 측정한 시간에 따른 에너지 크기의 변화정보를 수집하되, 그 에너지 크기의 변화정보에서 에너지의 크기가 가장 큰 값을 제1피크으로 하고, 상기 제1피크 이후에 에너지의 크기가 가장 큰 값을 제2피크으로 하여 상기 제1피크와 제2피크 사이의 시간 간격 값을 수집하는 제1베이스 정보 수집단계(S10);와, 상기 구동부의 고장이 발행하기 전 상기 구동부의 구동 상태에서 측정한 시간에 따른 에너지 크기의 변화 정보에서 제1피크와 제2피크 사이의 시간 간격 값을 수집하는 제2베이스 정보 수집단계(S20);와, 상기 베이스 정보 수집단계(S10,S20)에서 수집된 정보를 기반으로 제1피크과 제2피크 사이의 시간 간격 값에 대한 경보 상한값과 경보 하한값을 설정하는 설정단계(S30);와, 상기 구동부의 실시간 구동 상태에서 측정한 시간에 따른 에너지 크기의 변화 정보에서 제1피크와 제2피크 사이의 시간 간격 값을 측정하고, 그 측정된 시간 간격 값이 상기 설정단계(S30)에서 설정된 경보 상한값을 초과하거나 경보 하한값 미만이면 상기 구동부를 이상상태로 검출하는 검출단계(S40);로 이루어지는 것을 특징으로 하는 것이다.
본 발명의 바람직한 실시예에 따른 구동부의 정밀 예지 보전방법을 첨부된 도면에 의거하여 상세히 설명한다. 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 공지 기능 및 구성에 대한 상세한 기술은 생략한다.
도 1 내지 도 19는 본 발명의 실시예에 따른 구동부의 정밀 예지 보전방법을 도시한 것으로, 도 1은 본 발명의 실시예에 따른 구동부의 정밀 예지 보전방법의 블럭도를, 도 2와 도 3은 구동부의 실시간 구동 상태에서 측정한 제1피크와 제2피크 사이의 시간 간격 값을 기반으로 구동부의 이상상태를 검출하는 도면을, 도 4는 구동부의 피크 구간을 탐색구간으로 설정한 도면을, 도 5는 구동부의 정속 구간을 탐색구간으로 설정한 도면을, 도 6은 구동구간의 제1피크와 제2피크 사이의 시간 간격 값을 도시한 도면을, 도 7은 도 6에 도시된 시간 간격 값을 수치로 나타낸 도면을, 도 8은 도 7에 도시된 시간 간격 값에 대한 기울기 값을 추출하는 도면을, 도 9는 단위 시간 간격으로 측정되는 구동구간 간의 시간 간격 값의 평균 기울기 값을 추출하는 도면을, 도 10은 구동과 휴지가 반복되는 구동부로부터 구동구간을 추출하는 도면을, 도 11은 연속 구동되는 구동부로부터 구동구간을 추출하는 도면을, 도 12는 구동부의 반복적인 구동구간에서 제1피크 값을 추출하는 도면을, 도 13은 도 12에서 추출된 제1피크 값에 대한 기울기 값을 추출하는 도면을, 도 14는 단위시간 간격으로 측정되는 구동구간 간의 제1피크 값의 평균 기울기 값을 추출하는 도면을, 도 15는 구동부의 반복적인 구동구간에서 제2피크 값을 추출하는 도면을, 도 16은 도 15에서 추출된 제2피크 값에 대한 기울기 값을 추출하는 도면을, 도 17은 단위시간 간격으로 측정되는 구동구간 간의 제2피크 값의 평균 기울기 값을 추출하는 도면을, 도 18과 도 19는 구동부의 실시간 구동 상태에서 측정한 제1피크와 제2피크 값을 기반으로 구동부의 이상상태를 검출하는 도면을 각각 나타낸 것이다.
도 1에 도시한 바와 같이, 본 발명의 실시예에 따른 구동부의 정밀 예지 보전방법(100)은 제1베이스 정보 수집단계(S10)와, 제2베이스 정보 수집단계(S20)와, 설정단계(S30)와, 검출단계(S40)를 포함하고 있다.
상기 제1베이스 정보 수집단계(S10)는 구동부의 정상적인 구동 상태에서 측정한 시간에 따른 에너지 크기의 변화정보를 수집하되, 그 에너지 크기의 변화정보에서 에너지의 크기가 가장 큰 값을 제1피크(first peak)로 하고, 상기 제1피크 이후에 에너지의 크기가 가장 큰 값을 제2피크(second peak)로 하여 상기 제1피크와 제2피크 사이의 시간 간격 값(peak interval)을 수집하는 단계이다.
여기서, 상기 구동부의 구동 상태에서 측정한 시간에 따른 에너지 크기의 변화정보에 탐색구간을 임의로 설정하고, 그 설정된 탐색구간에서 가장 큰 에너지 값을 제1피크로 추출하도록 한다. 따라서 상기 탐색구간 이후의 가장 큰 에너지 값이 자연스럽게 제2피크로 추출된다.
상기와 같은 탐색구간은 후설될 상기 제2베이스 정보 수집단계(S20)와 검출단계(S40)에서 동일한 구간을 설정되어 제1피크가 추출되도록 함은 물론이다.
한편, 상기와 같이 탐색구간을 임의로 설정하여 제1피크를 추출하는 이유에 대해서는 아래에서 상세히 설명하도록 한다.
상기와 같이 수집되는 정보는 후설될 상기 설정단계(S30) 및 검출단계(S40)에서 구동부의 이상징후를 검출하기 위해 설정되는 다양한 경보 값의 기반이 된다.
한편, 상기 구동부를 통해 측정되는 에너지는 상기 구동부 구동에 소모되는 전류, 상기 구동부 구동시 발생되는 진동, 상기 구동부 구동시 발생되는 소음, 상기 구동부 공급전원의 주파수, 상기 구동부의 구동시 구동부의 온도, 습도, 압력 중에서 어느 하나가 선택되어 사용되나, 이러한 종류로 한정하여 사용하는 것은 물론 아니다.
상기 제2베이스 정보 수집단계(S20)는 상기 구동부의 고장이 발행하기 전 상기 구동부의 구동 상태에서 측정한 시간에 따른 에너지 크기의 변화 정보에서 제1피크와 제2피크 사이의 시간 간격 값을 수집하는 단계이다.
이렇게 수집되는 정보 역시 상기 제1베이스 정보 수집단계(S10)에서 수집되는 정보와 같이 상기 설정단계(S30) 및 검출단계(S40)에서 구동부의 이상징후를 검출하기 위해 설정되는 다양한 경보 값의 기반이 된다.
상기 설정단계(S30)는 상기 베이스 정보 수집단계(S10,S20)에서 수집된 정보를 기반으로 제1피크과 제2피크 사이의 시간 간격 값에 대한 경보 상한값(alarm upper limit)과 경보 하한값(alarm lower limit)을 설정하는 단계이다.
즉, 제1피크와 제2피크 사이의 시간 간격 값에 대한 경보 상한값 및 하한값은 상기 베이스 정보 수집단계(S10,S20)에서 장기간 수집된 정보를 기반으로 상기 구동부의 고장이 발생하기 전에 상기 구동부의 시간 간격 값이 비정상적으로 변화되는 값, 즉 상기 구동부의 열화, 노후, 이물질의 걸림에 의한 부하 등의 상황에서 상기 구동부의 시간 간격 값이 비정상적으로 변화되는 값을 기반으로 설정하게 됨은 물론이다.
상기 검출단계(S40)는 상기 구동부의 실시간 구동 상태에서 측정한 시간에 따른 에너지 크기의 변화 정보에서 제1피크와 제2피크 사이의 시간 간격 값을 측정하고, 그 측정된 시간 간격 값이 상기 설정단계(S30)에서 설정된 경보 상한값을 초과하거나 경보 하한값 미만이면 상기 구동부를 이상상태로 검출하는 단계이다.
즉, 도 2에 도시된 바와 같이 상기 구동부의 실시간 구동 상태에서 측정한 제1피크와 제2피크 사이의 시간 간격 값이 경보 상한값을 초과하는 경우, 또는 도 3에 도시된 바와 같이 상기 구동부의 실시간 구동 상태에서 측정한 제1피크와 제2피크 사이의 시간 간격 값이 경보 하한값 미만으로 형성되는 경우에는 상기 구동부를 이상상태로 검출 경보하여 상기 구동부의 고장이 발생하기 전에 미리 교체나 수리 등의 관리를 수행하여 상기 구동부의 고장으로 설비의 가동이 중단되어 발생하는 경제적 손실을 미연에 방지할 수 있도록 한다.
한편, 상기 구동부의 에너지를 상기 구동부의 작동에 소모되는 전류로 가정하여 보면, 통상적으로 구동부의 구동이 시작되는 시점에는 높은 전류의 사용이 요구되어 상기 구동부의 에너지 크기가 최대치로 형성되는데 이러한 구간을 피크 구간으로 보고, 상기 구동부가 안정화되어 일정한 범위의 에너지 값이 연속적으로 유지되는데 이러한 구간을 정속구간으로 볼 수 있다.
본 발명의 구동부의 정밀 예지 보전방법(100)에서는 기본적으로 탐색 구간을 피크 구간으로 설정하여 피크 구간에서 제1피크를 추출하고, 정속구간에서 제2피크를 추출하여 각 구간의 최고 에너지 값 사이의 시간 간격 값을 수집 비교하여 구동부의 상태를 예지하도록 하는데,
상기 구동부가 사용되는 환경, 조건 등을 고려하여 상기 탐색 구간을 임의의 특정 구간의 범위로 설정할 수 있으며, 이러한 탐색 구간의 임의 설정으로 다양한 조건으로 구동부의 상태를 검출할 수 있으므로 상기 구동부의 보다 정밀한 예지 보전을 수행할 수 있다.
일 예로, 상기 구동부가 피크 구간에서 정밀한 예지 보전이 요구되는 경우에는, 도 4에 도시된 바와 같이 탐색 구간을 피크 구간 내부에 일정 범위로 설정하여 제1피크와 제2피크를 모두 피크 구간에서 추출하여 상기 구동부의 상태를 검출할 수 있으며, 상기 구동부가 정속 구간에서 정밀한 예지 보전이 요구되는 경우에는, 도 5에 도시된 바와 같이 탐색 구간을 정속 구간 내부에 일정 범위로 설정하여 제1피크와 제2피크를 모두 정속 구간에서 추출하여 상기 구동부의 상태를 검출하도록 설정할 수 있다.
또한, 상기 베이스 정보 수집단계(S10,S20)에서 수집되는 상기 구동부의 시간에 따른 에너지 크기의 변화정보는 제1피크와 제2피크가 포함되는 구동구간이 반복하여 형성되며,
상기 제1베이스 정보 수집단계(S10)에서는 상기 구동부의 정상적인 구동 상태에서 구동구간의 제1피크와 제2피크의 시간 간격 값과 반복적인 다른 구동구간의 시간 간격 값을 서로 연결하여 구동구간 간의 시간 간격 값에 대한 기울기 정보를 수집하며,
상기 제2베이스 정보 수집단계(S20)에서는 상기 구동부의 고장이 발행하기 전 상기 구동부의 구동 상태에서 구동구간의 제1피크와 제2피크의 시간 간격 값과 반복적인 다른 구동구간의 시간 간격 값을 서로 연결하여 구동구간 간의 시간 간격 값에 대한 기울기 정보를 수집하며,
상기 설정단계(S30)에서는 상기 베이스 정보 수집단계(S10,S20)에서 수집된 기울기 정보를 기반으로 구동구간 간의 시간 간격 값에 대한 경보 기울기 값을 설정하며,
상기 검출단계(S40)에서는 상기 구동부의 실시간 구동 상태에서 설정되는 단위 시간 간격으로 측정되는 구동구간 간의 시간 간격 값에 대한 평균 기울기 값이 상기 설정단계(S30)에서 설정된 경보 기울기 값을 초과하면 상기 구동부의 이상상태로 검출하되, 상기 단위 시간은 적어도 둘 이상의 구동구간이 포함되도록 시간으로 설정된다.
즉, 상기 제1베이스 정보 수집단계(S10)에서는 도 6에 도시된 바와 같이 상기 구동부의 반복적인 구동구간에서 각각 제1피크와 제2피크 사이의 시간 간격 값을 수집하고, 그 각각의 구동구간이 갖는 시간 간격 값을 시간에 따라 나타내되, 설명의 편의를 위해 반복적인 상기 구동구간을 순차적으로 제1구동구간, 제2구동구간, … 제n구동구간으로 정하면, 도 7에 도시된 바와 같이 나타낼 수 있다.
그런 후, 도 8에 도시된 바와 같이 상기 구동구간들의 시간 간격 값을 서로 연결하면 소정의 기울기 값을 획득할 수 있으며, 이러한 기울기 값은 기울기가 상승하는 상승 기울기 값(양수)과 기울기가 하강하는 하강 기울기 값(음수)으로 구분할 수 있지만 모두 절대값으로 기울기 값을 수치화하여 수집한다.
이렇게 수집되는 기울기 값에 대한 정보는 상기 구동부가 정상 상태에서 안정적으로 구동되는 정보로 인지한다.
상기 제2베이스 정보 수집단계(S20)에서는 상기 제1베이스 정보 수집단계(S10)와 동일한 방식으로 상기 구동부의 고장이 발생하기 전 상기 구동부의 구동구간 간의 시간 간격 값에 대한 기울기 정보를 수집하며, 상기 설정단계(S30)에서는 상기 베이스 정보 수집단계(S10,S20)에서 수집된 기울기 정보를 기반으로 구동구간 간의 시간 간격 값에 대한 경보 기울기 값을 설정하게 된다.
따라서 상기 검출단계(S40)는 도 9에 도시된 바와 같이 상기 구동부의 실시간 구동 상태에서 설정되는 단위 시간 간격으로 측정되는 구동구간 간의 시간 간격 값을 연결한 평균 기울기 값이 상기 설정단계(S30)에서 설정된 경보 기울기 값을 초과하면 상기 구동부의 이상상태로 검출하도록 한다.
여기서, 상기 단위 시간은 적어도 둘 이상의 구동구간이 포함되도록 상기 설정단계(S30)에서 설정하는 시간으로, 상기 구동부의 구동조건, 주변환경 등을 고려하여 적게는 수초로 많게는 일, 월, 년 등의 단위로 설정할 수 있다.
또한, 상기 구동구간은 상기 설정단계(S30)에서 설정되는 오프셋(off set) 값을 상기 구동부의 에너지 값이 초과하여 넘어가는 점을 시작점으로 하고 상기 오프셋 값 미만으로 내려가는 점을 끝점으로 하여 상기 시작점과 끝점까지 구간을 상기 구동구간으로 설정하여, 도 10에 도시된 바와 같이 구동과 휴지가 반복적으로 수행되는 상기 구동부로부터 반복되는 구동구간을 명확하게 추출할 수 있어 상기 구동부의 용이한 예지 보전을 유도할 수 있다.
더욱이, 도 10에 도시된 바와 같이 상기 오프셋 값의 설정을 통해 상기 구동부가 휴지시 완전 정지가 이루어지지 않는 경우에도 상기 구동부의 에너지 값이 상기 오프셋 값 미만으로 떨어지는 점을 끝점으로 상기 구동부의 구동구간을 강제 추출할 수 있어 다양한 구동조건을 갖는 구동부의 용이한 예지 보전이 이루어지도록 유도할 수 있다.
또한, 상기 구동구간은 상기 구동부의 시간에 따른 에너지 크기의 변화정보를 설정된 시간 간격에 따라 강제 구획하고, 그 구획된 구간을 상기 구동구간으로 설정하여 반복적인 상기 구동구간을 추출할 수 있다.
즉, 도 11에 도시된 바와 같이 상기 구동부가 한번 구동되면 휴지 없이 연속적으로 구동하는 경우에 반복적인 구동구간을 추출할 수 없으므로 상기 설정단계(S30)에서 설정된 시간 간격에 따라 정속 구간을 강제 구획하여 다수의 구동구간으로 추출하여 다양한 구동 조건을 갖는 상기 구동부의 용이한 예지 보전이 수행되도록 유도할 수 있다.
여기서, 상기 오프셋 값이나 시간 간격 설정을 통해 상기 구동부의 구동구간을 추출하는 방식은 아래에서 설명할 상기 구동부의 예지 보전 방식에서도 함께 적용 사용될 수 있음은 물론이다.
또한, 상기 베이스 정보 수집단계(S10,S20)에서 수집되는 상기 구동부의 시간에 따른 에너지 크기의 변화정보는 제1피크와 제2피크가 포함되는 구동구간이 반복하여 형성되며,
상기 제1베이스 정보 수집단계(S10)에서는 상기 구동부의 정상적인 구동 상태에서 구동구간의 제1피크의 에너지 값과 반복적인 다른 구동구간의 제1피크의 에너지 값을 서로 연결하여 구동구간 간의 제1피크의 에너지 값에 대한 기울기 정보를 수집하며,
상기 제2베이스 정보 수집단계(S20)에서는 상기 구동부의 고장이 발행하기 전 상기 구동부의 구동 상태에서 구동구간의 제1피크의 에너지 값과 반복적인 다른 구동구간의 제1피크의 에너지 값을 서로 연결하여 구동구간 간의 제1피크의 에너지 값에 대한 기울기 정보를 수집하며,
상기 설정단계(S30)에서는 상기 베이스 정보 수집단계(S10,S20)에서 수집된 기울기 정보를 기반으로 구동구간 간의 제1피크의 에너지 값에 대한 경보 기울기 값을 설정하며,
상기 검출단계(S40)에서는 상기 구동부의 실시간 구동 상태에서 설정된 단위 시간 간격으로 측정되는 구동구간 간의 제1피크의 에너지 값에 대한 평균 기울기 값이 상기 설정단계(S30)에서 설정된 경보 기울기 값을 초과하면 상기 구동부의 이상상태로 검출하되, 상기 단위 시간은 적어도 둘 이상의 구동구간을 포함하는 시간으로 설정되도록 한다.
즉, 도 12에 도시된 바와 같이 상기 제1베이스 정보 수집단계(S10)에서는 상기 구동부의 반복적인 구동구간에서 구동구간의 제1피크 에너지 값과 다른 구동구간의 제1피크 에너지 값을 수집하되, 설명의 편의를 위해 반복적인 상기 구동구간을 순차적으로 제1구동구간, 제2구동구간, … 제n구동구간으로 정하면, 도 13에 도시된 바와 같이 반복적인 구동구간의 제1피크 에너지 값을 나타낼 수 있다.
그런 후, 도 13에 도시된 바와 같이 상기 구동구간들의 제1피크 에너지 값을 서로 연결하면 소정의 기울기 값을 획득할 수 있으며, 이러한 기울기 값은 기울기가 상승하는 상승 기울기 값(양수)과 기울기가 하강하는 하강 기울기 값(음수)으로 구분할 수 있지만 모두 절대값으로 기울기 값을 수치화하여 수집한다.
이렇게 수집되는 기울기 값에 대한 정보는 상기 구동부가 정상 상태에서 안정적으로 구동되는 정보로 인지한다.
상기 제2베이스 정보 수집단계(S20)에서는 상기 제1베이스 정보 수집단계(S10)와 동일한 방식으로 상기 구동부의 고장이 발생하기 전 상기 구동부의 구동구간 간의 제1피크 에너지 값에 대한 기울기 정보를 수집하며, 상기 설정단계(S30)에서는 상기 베이스 정보 수집단계(S10,S20)에서 수집된 기울기 정보를 기반으로 구동구간 간의 제1피크 에너지 값에 대한 경보 기울기 값을 설정하게 된다.
따라서, 도 14에 도시된 바와 같이 상기 검출단계(S40)는 상기 구동부의 실시간 구동 상태에서 설정되는 단위 시간 간격으로 측정되는 구동구간 간의 제1피크 에너지 값을 연결한 평균 기울기 값이 상기 설정단계(S30)에서 설정된 경보 기울기 값을 초과하면 상기 구동부의 이상상태로 검출하도록 한다.
여기서, 상기 단위 시간은 적어도 둘 이상의 구동구간이 포함되도록 상기 설정단계(S30)에서 설정하는 시간으로, 상기 구동부의 구동조건, 주변환경 등을 고려하여 적게는 수초로 많게는 일, 월, 년 등의 단위로 설정할 수 있다.
또한, 상기 베이스 정보 수집단계(S10,S20)에서 수집되는 상기 구동부의 시간에 따른 에너지 크기의 변화정보는 제1피크와 제2피크가 포함되는 구동구간이 반복하여 형성되며,
상기 제1베이스 정보 수집단계(S10)에서는 상기 구동부의 정상적인 구동 상태에서 구동구간의 제2피크의 에너지 값과 반복적인 다른 구동구간의 제2피크의 에너지 값을 서로 연결하여 구동구간 간의 제2피크의 에너지 값에 대한 기울기 정보를 수집하며,
상기 제2베이스 정보 수집단계(S20)에서는 상기 구동부의 고장이 발행하기 전 상기 구동부의 구동 상태에서 구동구간의 제2피크의 에너지 값과 반복적인 다른 구동구간의 제2피크의 에너지 값을 서로 연결하여 구동구간 간의 제2피크의 에너지 값에 대한 기울기 정보를 수집하며,
상기 설정단계(S30)에서는 상기 베이스 정보 수집단계에서 수집된 기울기 정보를 기반으로 구동구간 간의 제2피크의 에너지 값에 대한 경보 기울기 값을 설정하며,
상기 검출단계(S40)에서는 상기 구동부의 실시간 구동 상태에서 설정된 단위 시간 간격으로 측정되는 구동구간 간의 제2피크의 에너지 값에 대한 평균 기울기 값이 상기 설정단계(S30)에서 설정된 경보 기울기 값을 초과하면 상기 구동부의 이상상태로 검출하되, 상기 단위 시간은 적어도 둘 이상의 구동구간을 포함하는 시간으로 설정되도록 한다.
즉, 도 15에 도시된 바와 같이 상기 제1베이스 정보 수집단계(S10)에서는 상기 구동부의 반복적인 구동구간에서 구동구간의 제2피크 에너지 값과 다른 구동구간의 제2피크 에너지 값을 수집하되, 설명의 편의를 위해 반복적인 상기 구동구간을 순차적으로 제1구동구간, 제2구동구간, … 제n구동구간으로 정하면, 도 16에 도시된 바와 같이 나타낼 수 있다.
그런 후, 도 16에 도시된 바와 같이 상기 구동구간들의 제2피크 에너지 값을 서로 연결하면 소정의 기울기 값을 획득할 수 있으며, 이러한 기울기 값은 기울기가 상승하는 상승 기울기 값(양수)과 기울기가 하강하는 하강 기울기 값(음수)으로 구분할 수 있지만 모두 절대값으로 기울기 값을 수치화하여 수집한다.
이렇게 수집되는 기울기 값에 대한 정보는 상기 구동부가 정상 상태에서 안정적으로 구동되는 정보로 인지한다.
상기 제2베이스 정보 수집단계(S20)에서는 상기 제1베이스 정보 수집단계(S10)와 동일한 방식으로 상기 구동부의 고장이 발생하기 전 상기 구동부의 구동구간 간의 제2피크 에너지 값에 대한 기울기 정보를 수집하며, 상기 설정단계(S30)에서는 상기 베이스 정보 수집단계(S10,S20)에서 수집된 기울기 정보를 기반으로 구동구간 간의 제2피크 에너지 값에 대한 경보 기울기 값을 설정하게 된다.
따라서, 도 17에 도시된 바와 같이 상기 검출단계(S40)는 상기 구동부의 실시간 구동 상태에서 설정되는 단위 시간 간격으로 측정되는 구동구간 간의 제2피크 에너지 값을 연결한 평균 기울기 값이 상기 설정단계(S30)에서 설정된 경보 기울기 값을 초과하면 상기 구동부의 이상상태로 검출하도록 한다.
여기서, 상기 단위 시간은 적어도 둘 이상의 구동구간이 포함되도록 상기 설정단계(S30)에서 설정하는 시간으로, 상기 구동부의 구동조건, 주변환경 등을 고려하여 적게는 수초로 많게는 일, 월, 년 등의 단위로 설정할 수 있다.
또한, 상기 제1베이스 정보 수집단계(S10)에서는 상기 구동부의 정상적인 구동 상태에서 제1피크의 에너지 값과 제2피크의 에너지 값에 대한 정보를 각각 수집하며,
상기 제2베이스 정보 수집단계(S20)에서는 상기 구동부의 고장이 발행하기 전 상기 구동부의 구동 상태에서 제1피크의 에너지 값과 제2피크의 에너지 값에 대한 정보를 각각 수집하며,
상기 설정단계(S30)에서는 상기 베이스 정보 수집단계(S10,S20)에서 수집된 정보를 기반으로 제1피크 및 제2피크의 에너지 값에 대한 경보 상한값과 경보 하한값을 각각 설정하며,
상기 검출단계(S40)에서는 상기 구동부의 실시간 구동 상태에서 측정한 시간에 따른 에너지 크기의 변화 정보에서 제1피크 또는 제2피크 에너지 값이 상기 설정단계(S30)에서 설정한 제1피크 또는 제2피크의 경보 상한값을 초과하거나 경보 하한값 미만이면 상기 구동부를 이상상태로 검출하도록 하도록 한다.
즉, 도 18과 도 19에 도시된 바와 같이 상기 구동부를 구동하는 과정에서 제1피크의 에너지 값 또는 제2피크의 에너지 값이 설정된 경보 상한값을 초과하거나 경보 하한값 미만으로 형성되는 경우에는 상기 구동부를 이상상태로 검출하여 상기 구동부의 고장이 발생하기 전에 미리 교체나 수리 등의 관리를 수행하여 상기 구동부의 고장으로 설비의 가동이 중단되어 발생하는 경제적 손실을 미연에 방지하도록 한다.
상기와 같은 과정으로 구동부의 이상징후를 검출하는 본 발명의 구동부의 정밀 예지 보전방법(100)은 정상적인 상태의 구동부 구동정보와 고장이 발생하기 전의 구동부 구동정보에서 제1피크와 제2피크 사이의 시간 간격 값을 측정 수집하고, 그 수집된 정보를 기반으로 시간 간격 값에 대한 경보 상한값과 하한값 및 경보 기울기 값을 설정하여 구동부의 구동을 통해 실시간으로 수집되는 시간 간격 값과 기울기 값을 경보 상한값과 하한값 및 경보 기울기 값과 대비하여 구동부의 이상징후가 의심되는 조건이 만족되면 경보하여 적합한 시기에 구동부의 정비 및 교체를 수행할 수 있도록 유도하여 구동부의 고장으로 인한 막대한 손실을 미연에 예방할 수 있는 효과가 있다.
또한, 구동부에서 발생할 수 있는 다양한 이상징후를 검색하기 위해 다양한 검출조건을 제시하고, 그 검출조건을 만족하는 경우에 사용자에게 경보함으로, 구동부에서 발생되는 다양한 이상징후를 용이하게 검출할 수 있을 뿐만 아니라, 검출결과에 대한 우수한 신뢰도를 확보할 수 있는 효과가 있다.
한편, 본 발명의 실시예에 따른 구동부의 정밀 예지 보전방법(100)은 구동부의 에너지 값을 수집, 검출, 대비, 경보할 수 있는 각종 전자기기와 프로그램 등의 조합을 통해 구현할 수 있음은 물론이다.
본 발명은 첨부된 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것으로 상술한 실시예에 한정되지 않으며, 당해 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 실시예가 가능하다는 점을 이해할 수 있을 것이다. 또한, 본 발명의 사상을 해치지 않는 범위 내에서 당업자에 의한 변형이 가능함은 물론이다. 따라서, 본 발명에서 권리를 청구하는 범위는 상세한 설명의 범위 내로 정해지는 것이 아니라 후술되는 청구범위와 이의 기술적 사상에 의해 한정될 것이다.

Claims (6)

  1. 각종 설비에 사용되는 구동부의 예지 보전방법에 있어서,
    상기 구동부의 정상적인 구동 상태에서 측정한 시간에 따른 에너지 크기의 변화정보를 수집하되, 그 에너지 크기의 변화정보에서 에너지의 크기가 가장 큰 값을 제1피크(first peak)로 하고, 상기 제1피크 이후에 에너지의 크기가 가장 큰 값을 제2피크(second peak)로 하여 상기 제1피크와 제2피크 사이의 시간 간격 값(peak interval)을 수집하는 제1베이스 정보 수집단계(S10);
    상기 구동부의 고장이 발행하기 전 상기 구동부의 구동 상태에서 측정한 시간에 따른 에너지 크기의 변화 정보에서 제1피크와 제2피크 사이의 시간 간격 값을 수집하는 제2베이스 정보 수집단계(S20);
    상기 베이스 정보 수집단계(S10,S20)에서 수집된 정보를 기반으로 제1피크과 제2피크 사이의 시간 간격 값에 대한 경보 상한값(alarm upper limit)과 경보 하한값(alarm lower limit)을 설정하는 설정단계(S30); 및
    상기 구동부의 실시간 구동 상태에서 측정한 시간에 따른 에너지 크기의 변화 정보에서 제1피크와 제2피크 사이의 시간 간격 값을 측정하고, 그 측정된 시간 간격 값이 상기 설정단계(S30)에서 설정된 경보 상한값을 초과하거나 경보 하한값 미만이면 상기 구동부를 이상상태로 검출하는 검출단계(S40);로 이루어지되,
    상기 구동부의 구동 상태에서 측정한 시간에 따른 에너지 크기의 변화정보에 탐색구간을 설정하고, 그 설정된 탐색구간에서 가장 큰 에너지 값을 제1피크로 추출하며,
    상기 구동부를 통해 측정되는 에너지는 상기 구동부 구동에 소모되는 전류, 상기 구동부 구동시 발생되는 진동, 상기 구동부 구동시 발생되는 소음, 상기 구동부 공급전원의 주파수, 상기 구동부의 구동시 구동부의 온도, 습도, 압력 중에서 어느 하나를 선택하여 사용되는 것을 특징으로 하는 구동부의 정밀 예지 보전방법.
  2. 제 1 항에 있어서,
    상기 베이스 정보 수집단계(S10,S20)에서 수집되는 상기 구동부의 시간에 따른 에너지 크기의 변화정보는 제1피크와 제2피크가 포함되는 구동구간이 반복하여 형성되며,
    상기 제1베이스 정보 수집단계(S10)에서는 상기 구동부의 정상적인 구동 상태에서 구동구간의 제1피크와 제2피크의 시간 간격 값과 반복적인 다른 구동구간의 시간 간격 값을 서로 연결하여 구동구간 간의 시간 간격 값에 대한 기울기 정보를 수집하며,
    상기 제2베이스 정보 수집단계(S20)에서는 상기 구동부의 고장이 발행하기 전 상기 구동부의 구동 상태에서 구동구간의 제1피크와 제2피크의 시간 간격 값과 반복적인 다른 구동구간의 시간 간격 값을 서로 연결하여 구동구간 간의 시간 간격 값에 대한 기울기 정보를 수집하며,
    상기 설정단계(S30)에서는 상기 베이스 정보 수집단계(S10,S20)에서 수집된 기울기 정보를 기반으로 구동구간 간의 시간 간격 값에 대한 경보 기울기 값을 설정하며,
    상기 검출단계(S40)에서는 상기 구동부의 실시간 구동 상태에서 설정된 단위 시간 간격으로 측정되는 구동구간 간의 시간 간격 값에 대한 평균 기울기 값이 상기 설정단계(S30)에서 설정된 경보 기울기 값을 초과하면 상기 구동부의 이상상태로 검출하되,
    상기 단위 시간은 적어도 둘 이상의 구동구간을 포함하는 시간으로 설정되는 것을 특징으로 하는 구동부의 정밀 예지 보전방법.
  3. 제 1 항에 있어서,
    상기 베이스 정보 수집단계(S10,S20)에서 수집되는 상기 구동부의 시간에 따른 에너지 크기의 변화정보는 제1피크와 제2피크가 포함되는 구동구간이 반복하여 형성되며,
    상기 제1베이스 정보 수집단계(S10)에서는 상기 구동부의 정상적인 구동 상태에서 구동구간의 제1피크의 에너지 값과 반복적인 다른 구동구간의 제1피크의 에너지 값을 서로 연결하여 구동구간 간의 제1피크의 에너지 값에 대한 기울기 정보를 수집하며,
    상기 제2베이스 정보 수집단계(S20)에서는 상기 구동부의 고장이 발행하기 전 상기 구동부의 구동 상태에서 구동구간의 제1피크의 에너지 값과 반복적인 다른 구동구간의 제1피크의 에너지 값을 서로 연결하여 구동구간 간의 제1피크의 에너지 값에 대한 기울기 정보를 수집하며,
    상기 설정단계(S30)에서는 상기 베이스 정보 수집단계(S10,S20)에서 수집된 기울기 정보를 기반으로 구동구간 간의 제1피크의 에너지 값에 대한 경보 기울기 값을 설정하며,
    상기 검출단계(S40)에서는 상기 구동부의 실시간 구동 상태에서 설정된 단위 시간 간격으로 측정되는 구동구간 간의 제1피크의 에너지 값에 대한 평균 기울기 값이 상기 설정단계(S30)에서 설정된 경보 기울기 값을 초과하면 상기 구동부의 이상상태로 검출하되,
    상기 단위 시간은 적어도 둘 이상의 구동구간을 포함하는 시간으로 설정되는 것을 특징으로 하는 구동부의 정밀 예지 보전방법.
  4. 제 1 항에 있어서,
    상기 베이스 정보 수집단계(S10,S20)에서 수집되는 상기 구동부의 시간에 따른 에너지 크기의 변화정보는 제1피크와 제2피크가 포함되는 구동구간이 반복하여 형성되며,
    상기 제1베이스 정보 수집단계(S10)에서는 상기 구동부의 정상적인 구동 상태에서 구동구간의 제2피크의 에너지 값과 반복적인 다른 구동구간의 제2피크의 에너지 값을 서로 연결하여 구동구간 간의 제2피크의 에너지 값에 대한 기울기 정보를 수집하며,
    상기 제2베이스 정보 수집단계(S20)에서는 상기 구동부의 고장이 발행하기 전 상기 구동부의 구동 상태에서 구동구간의 제2피크의 에너지 값과 반복적인 다른 구동구간의 제2피크의 에너지 값을 서로 연결하여 구동구간 간의 제2피크의 에너지 값에 대한 기울기 정보를 수집하며,
    상기 설정단계(S30)에서는 상기 베이스 정보 수집단계(S10,S20)에서 수집된 기울기 정보를 기반으로 구동구간 간의 제2피크의 에너지 값에 대한 경보 기울기 값을 설정하며,
    상기 검출단계(S40)에서는 상기 구동부의 실시간 구동 상태에서 설정된 단위 시간 간격으로 측정되는 구동구간 간의 제2피크의 에너지 값에 대한 평균 기울기 값이 상기 설정단계(S30)에서 설정된 경보 기울기 값을 초과하면 상기 구동부의 이상상태로 검출하되,
    상기 단위 시간은 적어도 둘 이상의 구동구간을 포함하는 시간으로 설정되는 것을 특징으로 하는 구동부의 정밀 예지 보전방법.
  5. 제 2 항 내지 제 4 항 중에서 선택되는 어느 한 항에 있어서,
    상기 구동구간은 설정되는 오프셋(off set) 값을 상기 구동부의 에너지 값이 초과하여 넘어가는 점을 시작점으로 하고 상기 오프셋 값 미만으로 내려가는 점을 끝점으로 하여 상기 시작점과 끝점까지 구간을 상기 구동구간으로 설정하여 반복적인 상기 구동구간을 추출하거나,
    상기 구동부의 시간에 따른 에너지 크기의 변화정보를 설정된 시간 간격에 따라 강제 구획하고, 그 구획된 구간을 상기 구동구간으로 설정하여 반복적인 상기 구동구간을 추출하도록 하는 것을 특징으로 하는 것을 특징으로 하는 구동부의 정밀 예지 보전방법.
  6. 제 1 항에 있어서,
    상기 제1베이스 정보 수집단계(S10)에서는 상기 구동부의 정상적인 구동 상태에서 측정한 시간에 따른 에너지 크기의 변화정보에서 제1피크의 에너지 값과 제2피크의 에너지 값에 대한 정보를 각각 수집하며,
    상기 제2베이스 정보 수집단계(S20)에서는 상기 구동부의 고장이 발행하기 전 상기 구동부의 구동 상태에서 측정한 시간에 따른 에너지 크기의 변화정보에서 제1피크의 에너지 값과 제2피크의 에너지 값에 대한 정보를 각각 수집하며,
    상기 설정단계(S30)에서는 상기 베이스 정보 수집단계(S10,S20)에서 수집된 정보를 기반으로 제1피크 및 제2피크의 에너지 값에 대한 경보 상한값과 경보 하한값을 각각 설정하며,
    상기 검출단계(S40)에서는 상기 구동부의 실시간 구동 상태에서 측정한 시간에 따른 에너지 크기의 변화 정보에서 제1피크 또는 제2피크 에너지 값이 상기 설정단계(S30)에서 설정한 제1피크 또는 제2피크의 경보 상한값을 초과하거나 경보 하한값 미만이면 상기 구동부를 이상상태로 검출하도록 하는 것을 특징으로 하는 구동부의 정밀 예지 보전방법.
PCT/KR2018/015266 2018-03-14 2018-12-04 구동부의 정밀 예지 보전방법 WO2019177232A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880091107.8A CN111837081B (zh) 2018-03-14 2018-12-04 一种对驱动部的精准预维护方法
US17/018,428 US10962967B2 (en) 2018-03-14 2020-09-11 Precise predictive maintenance method for driving unit based on interval between peaks

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0029565 2018-03-14
KR1020180029565A KR102103152B1 (ko) 2018-03-14 2018-03-14 구동부의 정밀 예지 보전방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/018,428 Continuation US10962967B2 (en) 2018-03-14 2020-09-11 Precise predictive maintenance method for driving unit based on interval between peaks

Publications (1)

Publication Number Publication Date
WO2019177232A1 true WO2019177232A1 (ko) 2019-09-19

Family

ID=67907150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015266 WO2019177232A1 (ko) 2018-03-14 2018-12-04 구동부의 정밀 예지 보전방법

Country Status (4)

Country Link
US (1) US10962967B2 (ko)
KR (1) KR102103152B1 (ko)
CN (1) CN111837081B (ko)
WO (1) WO2019177232A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102316510B1 (ko) * 2019-10-15 2021-10-22 (주)아이티공간 분포도를 통한 기기의 예지 보전방법
KR102316520B1 (ko) * 2019-10-15 2021-10-22 (주)아이티공간 분포도를 통한 기기의 건전성 지수 검출방법
KR102316496B1 (ko) * 2019-10-15 2021-10-22 (주)아이티공간 분포도를 통한 기기의 예지 보전방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003280707A (ja) * 2002-03-22 2003-10-02 Toyoda Mach Works Ltd 工作機械の異常診断装置、異常診断方法及び異常診断プログラム
KR20110072123A (ko) * 2009-12-22 2011-06-29 현대중공업 주식회사 설비 구동부 고장 감시 장치
KR101139922B1 (ko) * 2010-05-24 2012-04-30 박래경 씨엔씨머신의 모니터링 장치
KR101643599B1 (ko) * 2015-07-15 2016-07-28 (주)아이티공간 차체 조립 라인의 구동부 모니터링 방법 및 그 장치
KR20170054675A (ko) * 2015-11-10 2017-05-18 현대자동차주식회사 모터 구속 감지에 기반한 차량 모터 제어 방법 및 그를 위한 장치 및 시스템

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9608953D0 (en) * 1996-04-29 1996-07-03 Pulp Paper Res Inst Automatic control loop monitoring and diagnostics
US5922963A (en) * 1997-06-13 1999-07-13 Csi Technology, Inc. Determining narrowband envelope alarm limit based on machine vibration spectra
US5875420A (en) * 1997-06-13 1999-02-23 Csi Technology, Inc. Determining machine operating conditioning based on severity of vibration spectra deviation from an acceptable state
US8914300B2 (en) * 2001-08-10 2014-12-16 Rockwell Automation Technologies, Inc. System and method for dynamic multi-objective optimization of machine selection, integration and utilization
JP2007172150A (ja) * 2005-12-20 2007-07-05 Honda Motor Co Ltd 産業機械の故障診断方法
JP4844165B2 (ja) * 2006-02-24 2011-12-28 三菱電機ビルテクノサービス株式会社 エレベータの異常検出装置
EP2344854A1 (en) * 2008-10-30 2011-07-20 ABB Research Ltd. A method and a device for detecting abnormal changes in play in a transmission unit of a movable mechanical unit
JP5782930B2 (ja) * 2010-09-16 2015-09-24 株式会社リコー 負荷異常検知装置、画像形成装置、負荷異常検知プログラム、及び負荷異常検知プログラムを格納したコンピュータ読み取り可能な記録媒体
JP2012137386A (ja) * 2010-12-27 2012-07-19 Toshiba Mitsubishi-Electric Industrial System Corp 電動機の予防保全装置
JP4832609B1 (ja) * 2011-06-22 2011-12-07 株式会社日立エンジニアリング・アンド・サービス 異常予兆診断装置および異常予兆診断方法
US9582598B2 (en) * 2011-07-05 2017-02-28 Visa International Service Association Hybrid applications utilizing distributed models and views apparatuses, methods and systems
EP2769098B1 (en) * 2011-10-21 2017-12-06 Fresenius Vial SAS Peristaltic pump for pumping a liquid and method for operating a peristaltic pump
CN102565634B (zh) * 2012-01-10 2014-04-02 广东电网公司电力科学研究院 一种基于传递函数法的电力电缆故障定位方法
CN103016181A (zh) * 2012-11-19 2013-04-03 奇瑞汽车股份有限公司 一种油轨压力信号的采集和监测方法
EP2991235A1 (en) * 2014-08-28 2016-03-02 Thomson Licensing Method of monitoring and corresponding electronic device, computer readable program product and computer readable storage medium
CN104596564B (zh) * 2015-02-04 2017-03-15 中国工程物理研究院化工材料研究所 传感器故障判断的系统及方法
KR101830036B1 (ko) * 2017-11-13 2018-02-19 (주)아이티공간 엘리베이터 구동부의 예지 보전방법
US10311703B1 (en) * 2018-02-09 2019-06-04 Computational Systems, Inc. Detection of spikes and faults in vibration trend data

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003280707A (ja) * 2002-03-22 2003-10-02 Toyoda Mach Works Ltd 工作機械の異常診断装置、異常診断方法及び異常診断プログラム
KR20110072123A (ko) * 2009-12-22 2011-06-29 현대중공업 주식회사 설비 구동부 고장 감시 장치
KR101139922B1 (ko) * 2010-05-24 2012-04-30 박래경 씨엔씨머신의 모니터링 장치
KR101643599B1 (ko) * 2015-07-15 2016-07-28 (주)아이티공간 차체 조립 라인의 구동부 모니터링 방법 및 그 장치
KR20170054675A (ko) * 2015-11-10 2017-05-18 현대자동차주식회사 모터 구속 감지에 기반한 차량 모터 제어 방법 및 그를 위한 장치 및 시스템

Also Published As

Publication number Publication date
CN111837081A (zh) 2020-10-27
KR102103152B1 (ko) 2020-04-22
US10962967B2 (en) 2021-03-30
US20200409348A1 (en) 2020-12-31
KR20190108265A (ko) 2019-09-24
CN111837081B (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
WO2019177233A1 (ko) 구동부의 정밀 예지 보전방법
WO2019031683A1 (ko) 구동부의 정밀 예지 보전방법
WO2019177241A1 (ko) 구동부의 정밀 예지 보전방법
WO2019177239A1 (ko) 구동부의 정밀 예지 보전방법
WO2019177236A1 (ko) 구동부의 정밀 예지 보전방법
WO2019177232A1 (ko) 구동부의 정밀 예지 보전방법
WO2017010821A1 (ko) 차체 조립 라인의 구동부 모니터링 방법 및 그 장치
WO2019177238A1 (ko) 구동부의 정밀 예지 보전방법
WO2019031682A1 (ko) 구동부의 정밀 예지 보전방법
WO2019177237A1 (ko) 구동부의 정밀 예지 보전방법
WO2019177240A1 (ko) 구동부의 정밀 예지 보전방법
WO2021075842A1 (ko) 분포도를 통한 기기의 예지 보전방법
WO2021075855A1 (ko) 분포도를 통한 기기의 예지 보전방법
WO2021075845A1 (ko) 분포도를 통한 기기의 예지 보전방법
WO2019177234A1 (ko) 구동부의 정밀 예지 보전방법
WO2019177235A1 (ko) 구동부의 정밀 예지 보전방법
WO2023033567A1 (ko) 피크에 대한 각도를 통한 기기의 예지 보전방법
WO2020262781A1 (ko) 제어 출력신호를 통한 기기의 건전성 지수 검출방법
WO2020262842A2 (ko) 제어 출력신호를 통한 기기의 예지 보전방법
WO2023277387A1 (ko) 피크에 대한 정속 정의를 통한 기기의 예지 보전방법
WO2023277388A1 (ko) 면적에 대한 정속 정의를 통한 기기의 예지 보전방법
WO2023277544A1 (ko) 시간에 대한 정속 정의를 통한 기기의 예지 보전방법
WO2020262843A1 (ko) 제어 출력신호를 통한 기기의 예지 보전방법
WO2023075173A1 (ko) 삼상 종행 피크를 이용한 기기의 건전성 지수 검출방법
WO2023075174A1 (ko) 삼상 종행 피크를 이용한 기기의 예지 보전방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909472

Country of ref document: EP

Kind code of ref document: A1