WO2019177145A1 - 光沢値算出装置、光沢値測定装置、光沢色の色調定量化装置および光沢値算出方法 - Google Patents

光沢値算出装置、光沢値測定装置、光沢色の色調定量化装置および光沢値算出方法 Download PDF

Info

Publication number
WO2019177145A1
WO2019177145A1 PCT/JP2019/010814 JP2019010814W WO2019177145A1 WO 2019177145 A1 WO2019177145 A1 WO 2019177145A1 JP 2019010814 W JP2019010814 W JP 2019010814W WO 2019177145 A1 WO2019177145 A1 WO 2019177145A1
Authority
WO
WIPO (PCT)
Prior art keywords
gloss value
peak
gloss
lightness
reflection intensity
Prior art date
Application number
PCT/JP2019/010814
Other languages
English (en)
French (fr)
Inventor
拓己 石渡
希志臣 田村
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2020506671A priority Critical patent/JP7235038B2/ja
Priority to CN201980019678.5A priority patent/CN111868508B/zh
Priority to US16/977,317 priority patent/US20210055216A1/en
Priority to EP19766643.1A priority patent/EP3789756A4/en
Publication of WO2019177145A1 publication Critical patent/WO2019177145A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/57Measuring gloss
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials

Definitions

  • the present invention relates to a gloss value calculation device, a gloss value measurement device, a gloss color quantification device, and a gloss value calculation method.
  • the information on the color tone represents the color tone of the image by the numerical values of L * , a *, and b * in the CIE Lab color space and the numerical values of R, G, and B in the RGB color model. Information can be transmitted and shared between the two.
  • Gloss is quantified by the difference or ratio of brightness observed at different reflection angles when measuring light is incident on the image, such as Hunter's contrast gloss, Flop Index and Flip-Flop methods.
  • Patent Document 1 describes a method of grouping image data having approximately the same gloss by performing principal component analysis on parameters such as density obtained by imaging a surface to be measured.
  • Patent Document 2 discloses that the half width and peak value of BRDF are constant when the bidirectional reflectance distribution function (BRDF) of the powder is obtained while changing the incident angle of the measurement light. There is described a method for evaluating whether or not the powder has a peculiar texture (smear) such as a pearl depending on whether or not it falls within the range.
  • Patent Document 3 the ratio (2 ⁇ / H) between the peak width (2 ⁇ ) and the peak height (H) of the reflection intensity-sample rotation angle curve obtained by a goniophotometer is used as the fiber gloss value. Used.
  • the present invention has been made in view of the above problems, and further increases the correlation with the glossiness visually felt by humans.
  • the gloss value calculation method, the apparatus for calculating the gloss value using the method, and the gloss value It is an object of the present invention to provide an apparatus for measuring color, an apparatus for quantifying the color tone of a glossy color using the gloss value calculated by the method, and an apparatus for forming an image using the calculated gloss value .
  • a gloss value calculation apparatus for solving the above-mentioned problem is the brightness or reflection intensity distribution information in the distribution information of the brightness or reflection intensity with respect to the light receiving angle obtained by measuring the reflected light formed by reflecting the measurement light irradiated on the object.
  • a gloss value measuring apparatus for solving the above problems includes a variable angle photometer that measures the radiation intensity of reflected light that is irradiated on an object and reflected by the object at a plurality of different light receiving angles, and the gloss value.
  • a value calculation device for solving the above problems includes a variable angle photometer that measures the radiation intensity of reflected light that is irradiated on an object and reflected by the object at a plurality of different light receiving angles, and the gloss value.
  • a gloss color quantification device for solving the above-described problem is a color space obtained by combining the gloss value calculation device, the gloss value measured by the gloss value measurement device, and the chromaticity of the object.
  • a stimulus value output unit that outputs a stimulus value representing the glossy color of the object.
  • the gloss value calculation method for solving the above-mentioned problem is the lightness or reflection in the distribution information of the lightness or reflection intensity with respect to the light receiving angle obtained by measuring the reflected light formed by reflecting the measurement light irradiated on the object. Calculating the height or area of the intensity peak and the peak spread of the lightness or reflection intensity; calculating the gloss value represented by the ratio of the peak height or area to the peak spread; Have
  • a method for calculating a gloss value a method for calculating a gloss value, a device for calculating a gloss value using the method, a device for measuring a gloss value, and a method for calculating the gloss value, which have a higher correlation with the gloss feeling visually perceived by a person.
  • An apparatus for quantifying the color tone of a glossy color using the gloss value obtained, and an apparatus for forming an image using the calculated gloss value are provided.
  • FIG. 1 is a block diagram showing an outline of a gloss value measuring apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for measuring the gloss value of a sample using the gloss value measuring apparatus according to the first embodiment of the present invention.
  • FIG. 3 shows an example of a graph in which the horizontal axis represents the light reception angle ( ⁇ ) and the vertical axis represents the lightness (L * ), which represents the distribution information created by the distribution information creation unit in the first embodiment of the present invention. It is.
  • FIG. 4 is a graph showing how the function is fitted to the graph shown in FIG. FIG.
  • FIG. 5A is a schematic diagram showing a state in which a part of incident light incident on an object becomes specularly reflected light, and the other part becomes diffusely reflected light
  • FIG. 5B shows the state of FIG. 5A in FIG.
  • FIG. 6 is a flowchart of a method for measuring the gloss value of a sample using the gloss value measuring apparatus according to the second embodiment of the present invention.
  • FIG. 7 is a block diagram showing an outline of a color tone quantifying apparatus according to the third embodiment of the present invention.
  • FIG. 8 is a conceptual diagram showing a color space obtained with the third embodiment of the present invention, with chromaticity and glossiness as coordinate axes.
  • FIG. 1 is a block diagram showing an outline of a gloss value measuring apparatus 100 according to the first embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for measuring the gloss value of a sample using the gloss value measuring apparatus 100 according to the first embodiment.
  • the gloss value measuring device 100 includes a variable angle photometer 110, a gloss value calculating device 120, and a display device 130.
  • the gloss value measuring apparatus 100 is, for example, a CPU (Central Processing Unit) as a processor, a storage medium such as a ROM (Read Only Memory) storing a control program, and a work such as a RAM (Random Access Memory). And a communication circuit.
  • the function of the gloss value measuring apparatus 100 is realized by the CPU executing a control program.
  • At least a part of the program for executing the processing by the gloss value measuring apparatus 100 is stored in the server, but at least a part of the program may be stored in the cloud server.
  • the goniophotometer 110 measures the radiant intensity of the reflected light formed by the measurement light incident on the region having a certain color tone in the sample and reflected by the region at a plurality of different light receiving angles (step S110).
  • the goniophotometer 110 includes a stage on which a sample is placed, a light source that emits measurement light, an optical system that irradiates the sample placed on the stage with measurement light emitted from the light source, and a sample that is placed on the stage.
  • a light receiver (not shown) that measures the radiation intensity of the reflected light that is irradiated and reflected by the sample is provided.
  • the goniophotometer 110 changes the angle at which the sample is irradiated with the measuring light while rotating the stage on which the sample is placed, or changes the angle of the light receiver with respect to the sample placed on the stage.
  • the radiant intensity of the reflected light with respect to the measuring light incident at a constant incident angle is measured at a plurality of different light receiving angles.
  • the radiant intensity of the reflected light may be measured in a two-dimensional distribution of light reception angles (such as an angle [deg] and a plane angle [rad]), or a three-dimensional distribution of light reception angles (a solid angle [st] and square degrees). [Deg 2 ] etc.).
  • the angle at which the measurement light is incident on the sample can be set arbitrarily, considering the case of measuring a sample whose Fresnel reflectivity depends on the incident angle, the angle region where the variation in reflectivity due to the incident angle is small even in the above sample It is preferably set from 30 ° to 60 °.
  • the glossy color reflects more of the light incident on the object as a directional regular reflection. Therefore, a large directivity occurs in the spatial distribution of the light reflected and perceived by the glossy color, and it is considered that the influence of this directivity is also great on the color tone of the glossy color that a person feels visually. Specifically, the color tone of glossy color that the person feels visually is affected by the degree of concentration of the brightness or reflection intensity of the reflected light that is concentrated on the regular reflection angle. Therefore, the range of the light receiving angle may be set within a range including at least an angle at which the reflected light regularly reflected by the sample can be received and at least a part of the reflected light diffusely reflected by the sample can be received.
  • the range of the light receiving angle may be about ⁇ 20 ° to 80 °, but even if it is 0 ° to 60 °, it is correlated with the glossiness that humans feel visually. It is possible to calculate a gloss value with improved properties.
  • the interval between a plurality of different light receiving angles may be in a range in which the number of radiation intensities capable of obtaining distribution information for use in processing to be described later can be obtained.
  • variable angle photometer 110 transmits data of the plurality of different light receiving angles and the radiation intensity measured at the light receiving angles to the gloss value calculating device 120 through a communication circuit.
  • a sample that is an object whose gloss value is to be measured has only to be a fixed shape or an indeterminate shape and can reflect at least part of the measurement light, and a molded product having the color tone of the material itself. It may be an image formed product in which a color tone is imparted to the molded body by a color material.
  • the gloss value calculation device 120 includes a processing unit of a distribution information creation unit 122, a peak calculation unit 124, a gloss value calculation unit 126, and an output unit 128.
  • the gloss value calculation device 120 is, for example, a CPU (Central Processing Unit) as a processor, a storage medium such as a ROM (Read Only Memory) storing a control program, and a working memory such as a RAM (Random Access Memory). And a communication circuit.
  • the function of the gloss value calculation device 120 is realized by the CPU executing a control program. At least a part of the program for executing the processing by the gloss value calculation device 120 is stored in the server, but at least a part of the program may be stored in the cloud server.
  • the gloss value calculation device 120 includes a receiving unit that receives a signal transmitted from the goniophotometer 110 and a transmitting unit that transmits a signal generated by the output unit 128 to the display device 130.
  • the distribution information creation unit 122 includes data of a plurality of different light reception angles and radiation intensities measured at the light reception angles, which are transmitted from the goniophotometer 110 and received by the reception unit of the gloss value calculation device 120. In addition, distribution information of brightness or reflection intensity (reflectance or luminance) is created (step S120).
  • the distribution information can be expressed as a graph in which the light reception angle is plotted on the horizontal axis and the brightness or reflection intensity is plotted on the vertical axis.
  • FIG. 3 is an example of a graph representing distribution information created by the distribution information creation unit 122 in the present embodiment, in which the light reception angle ( ⁇ ) is plotted on the horizontal axis and the lightness (L * ) is plotted on the vertical axis.
  • the lightness (L * ) in the CIE 1976 (L * , a * , b * ) color space is used on the vertical axis, but the lightness (L) in the Hunter 1948 L, a, b color space, the CIE 1931 XYZ color space.
  • the Y component value or the like may be used as the brightness on the vertical axis, or the reflection intensity (reflectance or luminance) of the measurement light may be used on the vertical axis.
  • the distribution information creation unit 122 can calculate the brightness and the reflection intensity from the radiation intensity and the intensity of the measurement light by a known method.
  • the distribution information creation unit 122 creates lightness (L * ) distribution information in the CIE 1976 (L * , a * , b * ) color space.
  • the distribution information includes a lightness or reflection intensity peak P derived from the reflected light regularly reflected in the region, and diffused in the region.
  • a base B derived from the reflected light appears.
  • the peak calculation unit 124 calculates the height or area of the lightness or reflection intensity peak P and the spread of the lightness or reflection intensity peak P in the distribution information created by the distribution information creation unit 122 (step S130).
  • the height of the peak P may be a value of lightness or reflection intensity at the light receiving angle that is the peak P (peak height in the graph).
  • the above-described spread of the peak P is usually a value considering the height of the base B, for example, the half width is based on the height of the peak P relative to the height of the base B.
  • the height of the peak P is preferably the difference between the brightness or reflection intensity value at the peak P and the brightness or reflection intensity value at the base B. .
  • the area of the peak P is the peak from the base start (the point where the increase rate with respect to the baseline becomes a predetermined level or more) to the base end (the point where the increase rate with respect to the baseline becomes a predetermined level or less). May be the area from the peak start to the peak end (all of these are the points where the brightness or reflection intensity between adjacent peaks is minimized), The area within the range of the half width including the full width at half maximum and the full width at half maximum of the peak P may be used.
  • the spread of the peak P may be a half width including the full width at half maximum and the full width at half maximum of the peak P, and intervals between a plurality of inflection points appearing at different light receiving angles in a mathematical expression obtained by fitting a multi-component function to the distribution information. It is good.
  • the peak calculation unit 124 fits the distribution information as a function to calculate the height or area of the peak P and the spread of the peak P (see FIG. 4).
  • the function may be a continuous function that is usually used for fitting to the shape of a peak in a spectrum, and may be a function such as a Lorentz function, a Gaussian function, a Forked function, or a pseudo Forked function. These functions may be selected according to the shape of the peak P, and a function that fits well with the peak shape. For example, according to the knowledge of the present inventors, when measuring a sample with a strong gloss, the peak obtained is a mountain-like peak shape having a constant skirt shape, so the Lorentz function that fits well to the skirt shape Is preferred.
  • the obtained peak When measuring a sample such as a mirror, the obtained peak has a peak shape close to a bell shape, so it has a Gaussian function that fits well with the bell shape, or an intermediate shape between the Lorentz function and Gaussian function. Forked functions and pseudo-forked functions are preferred.
  • the above function may be a Phong model equation, a Torrance-Sparrow model equation, a Trroadge-Reitz model equation, a Bockman distribution equation of a Cook-Torrance model, etc., used as a bidirectional reflection distribution function (BRDF). .
  • the Lorentz function used in this embodiment is a function represented by the following equation (1).
  • the constant H is the height of the peak P with respect to the base B (value of brightness or reflection intensity)
  • the constant x s is the peak position (usually the regular reflection angle)
  • the constant W is the half width
  • the constant B indicates the height (value of brightness or reflection intensity) of the base B, respectively.
  • the variable x indicates the light receiving angle.
  • the peak calculation unit 124 uses the least square method, the maximum likelihood estimation method, and the like so that the difference between the actually measured distribution information (see FIG. 3) and the fitted function (see FIG. 4) is small. , X s , W and B may be estimated. Further, the constants H, x s , W, and B may be estimated using software built in a commercially available software package such as Solver (registered trademark) possessed by Microsoft Excel (registered trademark).
  • the gloss value calculation unit 126 calculates the gloss value using the height or area of the peak P calculated by the peak calculation unit 124 and the spread of the peak P (step S140).
  • the gloss value is represented by the ratio of the height or area of the peak P to the spread of the peak P.
  • the incident light I incident on the object is a partly specularly reflected light P and the other part is diffusely reflected light B (in FIG. 5A, the specularly reflected light P and diffused light are diffused).
  • the brightness or reflection intensity of the reflected light B is defined as the distance from the point L where the incident light I is incident (the length of the solid arrow indicating the specularly reflected light P and the length of the broken arrow indicating the diffusely reflected light B).
  • 5A is adjusted for ease of understanding, and accurately reflects the lightness or reflection intensity actually measured and calculated.
  • the degree of gloss of an object perceived by an observer is a degree of concentration and distribution of the brightness or reflection intensity of reflected light formed by reflection of light incident on the object concentrated on the regular reflection angle ( It is influenced by the directivity of the spatial distribution.
  • FIG. 5B shows the degree of lightness or reflection intensity of reflected light at the regular reflection angle, which is a measure of the directivity of the spatial distribution, concentrated in the regular reflection angle. This is represented by the ratio of the brightness or the reflection intensity of the regularly reflected light P with respect to the half width W of the peak of the regularly reflected light.
  • the gloss value calculation unit 126 uses the peak height (H), peak half-value width (W), and base height (B) with respect to the base B calculated by the peak calculation unit 124.
  • the value represented by the formula (6) or the formula (7), more preferably the formula (3) or the formula (6) is calculated, and this value is set as the gloss value.
  • x is a constant that is arbitrarily determined.
  • the height of the peak P (H ⁇ B) is an absolute value.
  • the gloss value calculation unit 126 uses the peak height (H) and the peak half-value width (W) with respect to the base B calculated by the peak calculation unit 124, and the following equations (9), (10), Formula (11), Formula (12), Formula (13), Formula (14) or Formula (15), preferably Formula (10), Formula (11), Formula (13) or Formula (14), more preferably The value represented by formula (10) or formula (13) is calculated, and this value is used as the gloss value.
  • the gloss value calculation unit 126 uses the function (f (x)) obtained by fitting the distribution information by the peak calculation unit 124, and the following equations (16), (17), and The value represented by (18), formula (19), formula (20), formula (21) or formula (22) is calculated, and this value is used as the gloss value.
  • a and b are values representing the light receiving angles at both ends of the peak.
  • a can be (x 0 ⁇ W / 2)
  • b can be (x 0 + W / 2)
  • x 0 is the light receiving angle of peak P, typically an angle that results in regular reflection) .
  • W e is the same value as the half width (W).
  • the height (H) of the peak P is integrated to obtain the area of the peak P.
  • the height (H) of the peak P and the height of the base The absolute value of the difference from B) may be integrated to determine the area of the peak P.
  • the gloss value expressed in this way increases as the lightness or reflection intensity of the specularly reflected light P increases, and increases as the light region including the specularly reflected light P having a high lightness or reflection intensity narrows.
  • the gloss value calculation unit 126 may use a value that does not take a logarithm as the gloss value, but the equations (3) to (5), (10) to (12), and (17) to ( 19), a logarithm value for at least one element (such as (H ⁇ B) or (H ⁇ B) / W) constituting the above ratio, or equations (6) to ( 8) At least one element ((H ⁇ B) or (H ⁇ B) constituting the above ratio, as shown in Formula (13) to Formula (15) and Formula (20) to Formula (22)
  • the gloss value a value obtained by raising the power of / W or the like to a power, the correlation with the glossiness visually felt by a person can be further enhanced.
  • the gloss values calculated by the above formulas (6) to (8), formulas (13) to (15), and formulas (20) to (22) are calculated according to Stevens' power law (the human sense is The above correlation has been further improved because it has been re-corrected to approximate human perception by raising the power in accordance with the law of perceiving changes in the amount of stimulation, which is a physical quantity, as an amount proportional to the power) it is conceivable that.
  • the gloss value calculated in this way has a higher correlation with the glossiness that humans feel visually.
  • the height of the peak P is integrated to obtain the area of the peak P, and the peak P is expanded (W).
  • the gloss value is expressed by the ratio of the area of the peak P, the correlation between the gloss value obtained particularly for a low gloss image and the gloss feeling felt by human eyes is further enhanced.
  • the output unit 128 outputs the gloss value calculated by the gloss value calculation unit 126 as a numerical value representing the gloss color of the region (step S150).
  • the output unit 128 converts the numerical value into a signal that can be communicated to a device external to the gloss value calculation device 120.
  • the generated signal is transmitted from the transmission unit included in the gloss value calculation device 120 to the display device 130.
  • the display device 130 is a display device such as a smartphone, a PC, or a TV, and displays an image having a gloss value included in the signal generated by the output unit 128 on the display (step S160).
  • the displayed image includes, for example, an orderer who determines the color tone of an image when creating an image to be used for a label, a package, an announcement printed matter, and the like, and a contractor who creates an image having the determined color tone, Makes it easy to recognize common colors such as the color tone of the image to be expressed.
  • the gloss value having a higher correlation with the gloss feeling visually felt by a person is calculated.
  • the gloss value measuring apparatus according to the second embodiment of the present invention has the same configuration as the gloss value measuring apparatus 100 according to the first embodiment except that the functions of the peak calculating unit 124 and the gloss value calculating unit 126 are different.
  • FIG. 6 is a flowchart of a method for measuring the gloss value of a sample using the gloss value measuring apparatus 100 according to the second embodiment.
  • the peak calculation unit 124 fits distribution information to a function to calculate the height or area of the peak P and the spread of the peak P. At this time, the peak calculation unit 124 fits the distribution information to one function (for example, the Lorentz function), and the least square method and the maximum square so that the deviation between the actually measured distribution information and the fitted function becomes small. Constants H, x s , W, and B are estimated by the likelihood estimation method (step S132).
  • the peak calculation unit 124 evaluates the deviation between the fitted function and the distribution information (step S134). If the deviation is within a predetermined allowable range, the process proceeds to the calculation of the gloss value using the values H, W, and B estimated by the gloss value calculation unit 126 as in the first embodiment. (Step S140). On the other hand, when the deviation is out of the above tolerance, the peak calculation unit 124 fits the distribution information to the two functions, and the deviation between the combined value of the two functions and the fitted function becomes small. As described above, the constants H, x s , W, and B in each function are estimated by the least square method and the maximum likelihood estimation method (step S136). Note that B in each function is adjusted to be the same value. The allowable range can be arbitrarily determined.
  • the correlation coefficient (R 2 ) of the regression line obtained by the least square method or the like is less than 0.98, or is obtained by the chi-square test.
  • the peak calculation unit 124 can fit the distribution information to two functions.
  • Any of the above two functions may be a continuous function that is usually used for fitting to the shape of a peak in a spectrum, and may be a function such as a Lorentz function, a Gaussian function, a Forked function, or a pseudo Forked function.
  • the above two functions may be a combination of different functions such as a combination of a Gaussian function and a Lorentz function.
  • at least the Lorentz function is It is preferable to include a combination.
  • the gloss value calculation unit 126 uses the estimated values H, W, and B in the respective functions obtained by fitting to the above two functions, as in the first embodiment, and the gloss by each function. Calculate the value. Thereafter, the gloss value calculation unit 126 adds the gloss values obtained by the respective functions to obtain the gloss value calculated from the distribution information (step S140a).
  • a is (x 0 ⁇ (W 1 + W 2 ) / 4) and b is (x 0 + (W 1). + W 2 ) / 4) (W 1 represents the full width at half maximum according to the first function, and W 2 represents the full width at half maximum according to the second function).
  • W 1 represents the full width at half maximum according to the first function
  • W 2 represents the full width at half maximum according to the second function.
  • a is (x 0 -W 2/2)
  • b may be a (x 0 + W 2/2 ).
  • the denominator (W) of the equations (16) to (22) can also be set to ((W 1 + W 2 ) / 2).
  • W 2 may be used. Good.
  • the gloss value calculation unit 126 may calculate the gloss value by the following equation (23) in consideration of the respective contributions of the two functions to the appearance of the sample.
  • H 1 and W 1 represent constants H and W estimated from the first function
  • H 2 and W 2 represent constants H and W estimated from the second function, respectively.
  • the constant c 1 is the contribution of the first function
  • the constant c 2 is the contribution of the second function.
  • both c 1 and c 2 may be 1 ⁇ 2, and if the peak height contributes to glossiness, it may be set c 1 and c 2 by the equation (24) and (25).
  • FIG. 7 is a block diagram showing an outline of the color tone quantification apparatus 200 according to the third embodiment of the present invention.
  • the color tone quantification apparatus 200 includes a goniophotometer 110, a gloss value calculation apparatus 120, a display device 130, a colorimeter 140, a chromaticity calculation section 150, and a stimulus value output section 160. Since the variable angle photometer 110, the gloss value calculating device 120, and the display device 130 are the same as the variable angle photometer 110, the gloss value calculating device 120, and the display device 130 according to the first embodiment or the second embodiment, Description of common parts is omitted.
  • the colorimeter 140 receives the reflected light reflected from the area when the measuring light is incident on the area having the certain color tone of the sample whose goniophotometer 110 measures the radiation intensity of the reflected light. Measure the luminous intensity of the received reflected light.
  • Chromaticity colorimeter 140 is obtained is represented by a stimulus value indicating the brightness or components other than the brightness of the color system, CIE1976 (L *, a * , b *) a in the color space * and b *, CIE1976 (L * , u * , v * ) u * and v * in color space, a and b in Hunter1948 L, a, b color space, X component ground and Z component values in CIE1931 XYZ color space, etc.
  • the colorimeter 140 may be a colorimeter based on a spectral colorimetry method or a colorimeter based on a stimulus value direct reading method. Further, as described above, since the light reflected on the object and specularly reflected (hereinafter also simply referred to as “regular reflection component”) greatly contributes to the perception of the glossy color, the colorimeter 140 does not correct the specular color. A colorimeter that obtains chromaticity measured by a method including a reflection component (for example, SCI) is preferable. On the other hand, for example, in a matte-like glossy color, light diffusely reflected upon entering an object (hereinafter also simply referred to as “diffuse reflection component”) also greatly contributes to the perception of the glossy color.
  • specular reflection component for example, SCI
  • the colorimeter 140 is integrated from the viewpoint of increasing the correlation between the value calculated by quantifying the color tone of the gloss value and the color tone of the gloss color visually perceived by the human eye. It is a colorimeter having a sphere or the like and obtaining both chromaticity measured by a method including a regular reflection component and chromaticity measured by a method (for example, SCE) that removes a regular reflection component. More preferred.
  • the colorimeter 140 has an integrating sphere and the brightness and chromaticity measured by a method including a regular reflection component, and the brightness and chromaticity measured by a method that removes the regular reflection component.
  • a colorimeter obtain both, CIE 1976 (L *, a *, b *) to give the L * a lightness in a color space, obtaining a * and b * as chromaticity.
  • the lightness and chromaticity measured by the method including the regular reflection component are L * I , a * I and b * I, and the lightness measured by the method of removing the regular reflection component is used.
  • the chromaticity is L * E , a * E and b * E.
  • the chromaticity calculation unit 150 calculates chromaticity used for displaying on the display device 130 from the chromaticity measured by the colorimeter 140.
  • the chromaticity calculation unit 150 may quantify the chromaticity measured by the colorimeter 140 (chromaticity measured by a method including a regular reflection component or chromaticity measured by a method of removing a regular reflection component) as it is. It is also possible to make corrections for better adaptation to human perception.
  • the color tone of the glossy color can be quantified so that both the color tone perceived for both the high gloss sample and the low gloss sample are accurately represented. That is, a coefficient that takes into account the spatial distribution of the reflected light reflected by the sample with respect to the chromaticity measured by the method including the regular reflection component, specifically, weighting when there are more regular reflection components When the value of is smaller and the diffuse reflection component is larger, weighting is performed with a coefficient that is calculated so that the weighting value is larger. It is considered that a higher effective chromaticity can be calculated.
  • the chromaticity calculation unit 150 has the brightness (L * I ) measured by a method including a regular reflection component, the brightness (L * E ) measured by a method that removes a regular reflection component, and an assumed brightness.
  • the corrected effective chromaticities a * eff and b * eff may be calculated by the following equations (26) and (27). Note that the value of L * max can be set to 100.
  • the chromaticity calculation unit 150 may calculate the peak heights H 1 and H 2 and the base height B (provided that the peak P is high) with respect to the base calculated by the peak calculation unit 124 according to the second embodiment from two functions.
  • H is a H estimated by higher becomes function as H 1
  • H the height H of peak P is estimated by the lower becomes the function, and H 2.
  • the corrected effective chromaticity a * eff and b * eff may be calculated.
  • the chromaticity calculation unit 150 uses the peak spread (W) calculated by the peak calculation unit 124 in the second embodiment or the third embodiment, according to the following equations (30) and (31).
  • the corrected effective chromaticity a * eff and b * eff may be calculated.
  • the average value W ave of W 1 and W 2 is used ( 1 + W ave / 90) may be a coefficient for calculating a * eff and b * eff .
  • the effective chromaticity corrected in this way reflects the influence of the specular reflection component and the diffuse reflection component on the perceived chromaticity, so that the correlation with the glossiness visually felt by humans is further enhanced. Yes.
  • the stimulus value output unit 160 combines the effective chromaticity calculated by the chromaticity calculation unit 150 and the gloss value calculated by the gloss value calculation unit 126 included in the gloss value calculation device 120 to express chromaticity and glossiness as coordinate axes. Are output as a set of stimulus values representing the glossy color of the region in the color space.
  • the stimulus value output unit 160 converts the numerical value into a signal communicable with the display device 130.
  • the stimulus value output unit 160 uses the chromaticity a * and b * calculated by the chromaticity calculation unit 150 or the effective chromaticity a * eff and b * eff as a stimulation value indicating chromaticity, and gloss Tristimulus values in the color space are calculated using the gloss value calculated by the value calculation unit 126 as a stimulus value indicating glossiness.
  • FIG. 8 is a conceptual diagram showing a color space having the chromaticity and glossiness as coordinate axes.
  • metallic luster having different color tones for example, blue gold 310, red gold 320, and gold extinction 330
  • tones having different stimulus values for example, blue gold 310, red gold 320, and gold extinction 330
  • the stimulus value output unit 160 generates a signal including information on glossy colors for reproducing the image having the tristimulus values on a display device.
  • the generated signal is transmitted from the stimulus value output unit 160 to the display device 130.
  • the distribution information is created by the gloss value calculation device, but the distribution information is created by a goniophotometer, and the gloss value calculation device is based on the distribution information created by the goniophotometer.
  • the height and spread of the peak may be calculated.
  • the calculated gloss value or tristimulus value in the color space can be used as reference information for forming an image having the gloss value or tristimulus value on paper, plastic, metal, glass, fabric, or the like.
  • Test 1 A total of 10 silver images with different gloss feelings were prepared: two silver images with low gloss, three silver images with medium gloss, and five silver images with high gloss.
  • Each image was cut into a size of 15 mm ⁇ 50 mm.
  • a sufficiently strong white cardboard cut to a size of 50 mm ⁇ 50 mm was used as a substrate, and the cut image was pasted on this substrate to prepare 10 gloss value measurement method samples.
  • each gloss value measurement method sample with incident light at an incident angle of 45 ° while changing the light receiving angle.
  • the reflection intensity of ⁇ 20 ° to 80 ° is increased in steps of 5 ° in the range of ⁇ 20 ° to 0 °, in steps of 2 ° in the range of 0 ° to 30 °, and in steps of 1 ° in the range of 30 ° to 60 °. Measurements were made in 2 ° increments in the range of 60 to 80 °.
  • the reflectance was calculated from the obtained reflection intensity at each light receiving angle, and a spatial distribution profile of reflection indicating the relationship between the light receiving angle and the reflectance was obtained.
  • the shape of the spatial distribution profile of the obtained reflection was fitted to one Lorentz function, and the peak height relative to the base B (H) was obtained by the least square method and Solver (registered trademark) of Microsoft Excel (registered trademark). ), The half width (W) of the peak, and the height (B) of the base.
  • Test 2 The reflection intensity obtained at the respective light receiving angle, CIE 1976 (L *, a *, b *) in terms of lightness (L *) in the color space, the values of lightness (L *) in place of the reflectance
  • the gloss value of each gloss value measurement method sample was calculated in the same manner as in Test 1 except that it was used.
  • Test 3 Fit the shape of the spatial distribution profile to two Lorentz functions, constants H and W estimated from the first function, H 1 and W 1, and constants H and W estimated from the second function H 2 and W 2 were substituted into the following formula (23) to obtain the gloss value of each gloss value measurement method sample. Note that c 1 and c 2 were both halved.
  • Test 4 The gloss value of each gloss value measurement method sample was the same as in Test 3, except that the peak height (H), peak half width (W), and base height (B) were substituted into Equation (3). Was calculated.
  • Test 5 The gloss value was calculated by the method described in Patent Document 3.
  • the shape of the spatial distribution profile was fitted to one Gaussian function to obtain a spatial distribution profile of reflection, and from the obtained peak height (H) and half-value width W, W /
  • the gloss value of each gloss value measurement method sample was calculated in the same manner as in Test 1 except that the value of H was calculated to obtain the gloss value of each gloss value measurement method sample.
  • Test 6 Hunter's contrast gloss was determined.
  • each gloss value measurement method sample was changed to 45 for each sample while changing the light receiving angle.
  • the incident light is irradiated at an incident angle of °, and the reflection intensities at 45 ° and 0 ° are measured, and the respective reflection intensities are measured with the lightness (L * ) in the CIE 1976 (L * , a * , b * ) color space.
  • Test 7 The gloss value by Flop Index was determined.
  • each gloss value measurement method sample was changed to 45 for each sample while changing the light receiving angle.
  • the incident light is irradiated at an incident angle of °, and the reflection intensities at 30 °, 0 °, and -65 ° are measured, and the respective reflection intensities are measured in the CIE 1976 (L * , a * , b * ) color space. Converted to (L * ).
  • each gloss value is obtained by the following equation (32).
  • the gloss value of the measurement method sample was calculated.
  • Test 8 The gloss value was determined by the Flip-Flop method.
  • each gloss value measurement method sample was changed to 45 for each sample while changing the light receiving angle.
  • the incident light is irradiated at an incident angle of °, and the reflection intensities at 25 ° and 75 ° are measured, and the respective reflection intensities are measured as the brightness (L * ) in the CIE 1976 (L * , a * , b * ) color space.
  • Each image was cut into a size of 30 mm ⁇ 30 mm.
  • a white mat paper cut to a size of 30 mm ⁇ 30 mm was used as a substrate, and the cut image was pasted on the substrate.
  • This sensitivity value measurement method chip was affixed to ASONE: Laboran Pack, screw tube (No. 7) to prepare a sensitivity value measurement method sample.
  • Magnitude estimation method was used to quantify the sensory quantity. Specifically, the samples of the sensitivity test were shown to the subject under the D50 light source in the standard light source device (Judge II) installed in a room where the lighting was turned off and sunlight did not enter. The value obtained by scoring between 0 and 10 was taken as the sensitivity gloss value.
  • Evaluation A graph was prepared by plotting the sensitivity gloss value on the horizontal axis and the gloss value obtained in any of Test 1 to Test 8 on the vertical axis, and the correlation coefficient (R 2 ) of the regression line was determined. The results are shown in Table 1.
  • the gloss value As the gloss value, the gloss value calculated using the formula (3) and the gloss value calculated using the following formula (16) are used in the same manner as in the test 4, the sensitivity gloss value is represented on the horizontal axis, and the formula is represented on the vertical axis. A graph plotting the gloss values obtained using (3) or formula (16) was created, and the correlation coefficient (R 2 ) of the regression line was determined. The results are shown in Table 2.
  • the present invention there is provided a gloss quantification method that further increases the correlation with the glossiness that humans feel visually.
  • the present invention is expected to facilitate the transmission and sharing of information about glossy colors, such as in the printing and advertising industries.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本発明は、人が目視で感じる光沢感との相関性をより高めた光沢値の算出方を用いて光沢値を算出する装置を提供することを目的とする。上記目的を達成するための本発明は、光沢値算出装置に関する。上記光沢値算出装置は、物体に照射した測定光が反射してなる反射光を測定して得られる受光角度に対する明度または反射強度の分布情報を用いて、前記分布情報における明度または反射強度のピークの高さおよび広がりを求めるピーク算出部と、前記ピークの広がりに対する前記ピークの高さの割合によって表される光沢値を算出する光沢値算出部と、を有する。

Description

光沢値算出装置、光沢値測定装置、光沢色の色調定量化装置および光沢値算出方法
 本発明は、光沢値算出装置、光沢値測定装置、光沢色の色調定量化装置および光沢値算出方法に関する。
 ラベル、パッケージおよび公告印刷物などに用いる画像を作製するときは、画像の色調などを決定する発注者と、決定された色調を有する画像を作製する受注者と、の間で、表現しようとする画像の色調などを共通して認識できることが望ましい。たとえば、色調に関する情報は、CIE Lab色空間におけるL、aおよびbの数値、およびRGBカラーモデルにおけるR、GおよびBなどの数値によって、画像の色調などを表現して、上記各関与者の間で情報を伝達し共有することができる。
 金属光沢を有する画像を作製しようとするときは、光沢についても同様に各関与者の間で情報を伝達し共有することが望まれる。
 光沢を数値化する方法として、Hunterの対比光沢度、Flop IndexおよびFlip-Flop法などの、画像に測定光を入射したときに異なる反射角において観測される明度の差または比によって光沢を数値化する方法が提案されている。また、特許文献1には、被測定面を撮像して得られる濃度などのパラメータを主成分分析して、光沢が同程度の画像データをグループ化する方法が記載されている。また、特許文献2には、測定光の入射角度を変化させながら粉体の双方向反射率分布関数(Bidirectional Reflectance Distribution Function:BRDF)を求めたときの、BRDFの半値幅およびピーク値が一定の範囲内に納まるか否かによって、当該粉体が、真珠のような特有の質感(にじみ)を有するか否かを評価する方法が記載されている。また、特許文献3では、変角光度計により得られる反射強度-試料回転角度曲線のピーク幅(2σ)とピークの高さ(H)との比(2σ/H)を、繊維の光沢値として用いている。
国際公開第2005/075961号 特開2016-197035号公報 特開2011-162886号公報
 上述したように、光沢を数値化するための様々な方法が提案されている。しかし、これらいずれの方法も、得られた光沢値と人が目視で感じた光沢感との相関性がさほど高くなく、得られた光沢値によって人が目視で感じる光沢感を十分に表現できているとはいえなかった。
 本発明は、上記課題に鑑みなされたものであり、人が目視で感じる光沢感との相関性をより高めた、光沢値の算出方法、当該方法を用いて光沢値を算出する装置および光沢値を測定する装置、当該方法により算出された光沢値を用いて光沢色の色調を定量化する装置、ならびに算出された光沢値を用いて画像を形成する装置を提供することを、その目的とする。
 上記課題を解決するための光沢値算出装置は、物体に照射した測定光が反射してなる反射光を測定して得られる受光角度に対する明度または反射強度の分布情報における、上記明度または反射強度のピークの高さまたは面積、および前記明度または反射強度のピークの広がりを求めるピーク算出部と、上記ピークの広がりに対する上記ピークの高さまたは面積の割合によって表される光沢値を算出する光沢値算出部と、を有する。
 また、上記課題を解決するための光沢値測定装置は、物体に照射されて上記物体で反射してなる反射光の放射強度を互いに異なる複数の受光角度において測定する変角光度計と、上記光沢値算出装置と、を有する。
 また、上記課題を解決するための光沢色の色調定量化装置は、上記光沢値算出装置と、上記光沢値測定装置が測定した光沢値と、上記物体の色度と、を組み合わせて、色空間における上記物体の光沢色を表す刺激値として出力する刺激値出力部と、を有する。
 また、上記課題を解決するための光沢値算出方法は、物体に照射した測定光が反射してなる反射光を測定して得られる受光角度に対する明度または反射強度の分布情報における、上記明度または反射強度のピークの高さまたは面積、および前記明度または反射強度のピークの広がりを求める工程と、上記ピークの広がりに対する上記ピークの高さまたは面積の割合によって表される光沢値を算出する工程と、を有する。
 本発明により、人が目視で感じる光沢感との相関性をより高めた、光沢値の算出方法、当該方法を用いて光沢値を算出する装置および光沢値を測定する装置、当該方法により算出された光沢値を用いて光沢色の色調を定量化する装置、ならびに算出された光沢値を用いて画像を形成する装置が提供される。
図1は、本発明の第1の実施形態に関する光沢値測定装置の概要を示すブロック図である。 図2は、本発明の第1の実施形態に関する光沢値測定装置を用いて試料の光沢値を測定する方法のフローチャートである。 図3は、本発明の第1の実施形態において分布情報作成部が作成する分布情報を表した、横軸に受光角度(θ)を、縦軸に明度(L)をプロットしたグラフの一例である。 図4は、図3に示すグラフに関数をフィッティングさせた様子を示すグラフである。 図5Aは、物体に入射した入射光の一部が正反射した光となり、他の一部が拡散反射した光となる様子を示す模式図であり、図5Bは、図5Aの様子を図4において説明するグラフである。 図6は、本発明の第2の実施形態に関する光沢値測定装置を用いて試料の光沢値を測定する方法のフローチャートである。 図7は、本発明の第3の実施形態に関する色調定量化装置の概要を示すブロック図である。 図8は、本発明の第3の実施形態で得られる、色度および光沢感を座標軸とした色空間を示す概念図である。
 [第1の実施形態]
 図1は、本発明の第1の実施形態に関する、光沢値測定装置100の概要を示すブロック図である。図2は、第1の実施形態における、光沢値測定装置100を用いて試料の光沢値を測定する方法のフローチャートである。
 光沢値測定装置100は、変角光度計110、光沢値算出装置120、および表示装置130を有する。
 なお、光沢値測定装置100は、図示しないが、たとえば、プロセッサとしてのCPU(Central Processing Unit)、制御プログラムを格納したROM(Read Only Memory)などの記憶媒体、RAM(Random Access Memory)などの作業用メモリ、および通信回路を備える。この場合、光沢値測定装置100の機能は、CPUが制御プログラムを実行することにより実現される。光沢値測定装置100による処理を実行するためのプログラムの少なくとも一部はサーバに保存されているが、上記プログラムの少なくとも一部はクラウドサーバに保存されていてもよい。
 変角光度計110は、試料のうち一定の色調を有する領域に入射させた測定光が上記領域で反射してなる反射光の放射強度を、異なる複数の受光角度で測定する(工程S110)。変角光度計110は、試料を載置するステージ、測定光を出射する光源、光源が出射した測定光をステージに載置された試料に照射する光学系、およびステージに載置された試料に照射されて上記試料で反射してなる反射光の放射強度を測定する受光器(いずれも不図示)を有する。変角光度計110は、試料が載置されたステージを回転させつつ測定光を試料に照射する角度を上記回転に同期して変化させたり、ステージに載置された試料に対する受光器の角度を変化させたりして、一定の入射角で入射させた測定光に対する上記反射光の放射強度を、異なる複数の受光角度で測定する。上記反射光の放射強度は、受光角度の二次元分布(角度[deg]および平面角[rad]など)において測定してもよいし、受光角度の三次元分布(立体角[st]および平方度[deg]など)において測定してもよい。
 測定光を試料に入射させる角度は任意に設定できるが、フレネル反射率が入射角に依存するような試料を測定する場合を考慮すると、上記試料においても入射角による反射率の変動が小さい角度領域である、30°以上60°以下から設定されることが好ましい。
 一般の色と比較して、光沢色は、物体に入射した光のうち、より多くを指向的な正反射として反射する。そのため、光沢色で反射されて知覚される光の空間分布には大きな指向性が生じ、人が目視で感じる光沢色の色調にはこの指向性の影響も大きいと考えられる。具体的には、上記人が目視で感じる光沢色の色調は、反射光の明度または反射強度の、正反射する角度へ集中して分布する度合いに影響される。そのため、受光角度の範囲は、少なくとも試料で正反射した反射光を受光でき、かつ、試料で拡散反射した反射光の少なくとも一部を受光できる角度が含まれる範囲で設定すればよい。たとえば、受光角度の範囲は、入射角が45°である場合、-20°~80°程度であればよいが、0°~60°であっても、人が目視で感じる光沢感との相関性がより高められた光沢値を算出することが可能である。異なる複数の受光角度間の間隔は、後述する処理に用いるための分布情報を得ることができる数の放射強度が得られる範囲であればよい。
 変角光度計110は、上記異なる複数の受光角度と、当該受光角度で測定した放射強度と、のデータを、通信回路を通じて光沢値算出装置120に送信する。
 光沢値を測定される物体である試料は、一定の形状を有するものまたは不定形であり、測定光の少なくとも一部を反射させることができるものであればよく、素材そのものの色調を有する成形品であってもよいし、色材により成形体に色調を付与された画像形成物であってもよい。
 光沢値算出装置120は、分布情報作成部122、ピーク算出部124、光沢値算出部126および出力部128の処理部を有する。光沢値算出装置120は、図示しないが、たとえば、プロセッサとしてのCPU(Central Processing Unit)、制御プログラムを格納したROM(Read Only Memory)などの記憶媒体、RAM(Random Access Memory)などの作業用メモリ、および通信回路を備える。この場合、光沢値算出装置120の機能は、CPUが制御プログラムを実行することにより実現される。光沢値算出装置120による処理を実行するためのプログラムの少なくとも一部はサーバに保存されているが、上記プログラムの少なくとも一部はクラウドサーバに保存されていてもよい。また、光沢値算出装置120は、図示しないが、変角光度計110から送信された信号を受信する受信部、および出力部128が生成した信号を表示装置130に送信する送信部、を備える。
 分布情報作成部122は、変角光度計110から送信されて光沢値算出装置120が有する受信部が受信した、異なる複数の受光角度と、当該受光角度で測定した放射強度と、のデータをもとに、明度または反射強度(反射率もしくは輝度)の分布情報を作成する(工程S120)。
 上記分布情報は、たとえば、横軸に受光角度を、縦軸に明度または反射強度をプロットしたグラフとして表すことができる。
 図3は、本実施形態において分布情報作成部122が作成する分布情報を表した、横軸に受光角度(θ)を、縦軸に明度(L)をプロットしたグラフの一例である。図3では縦軸にCIE 1976 (L,a,b)色空間における明度(L)を用いているが、Hunter1948 L,a,b色空間における明度(L)、CIE1931 XYZ色空間におけるY成分値などを明度として縦軸に用いてもよいし、測定光の反射強度(反射率または輝度)を縦軸に用いてもよい。これらのうち、人が目視で感じる光沢感との相関性をより高める観点からは、CIE 1976 (L,a,b)色空間における明度(L)などの、人の知覚に適合するよう補正された心理メトリック量により明度を表した値を用いることが好ましい。分布情報作成部122は、これらの明度および反射強度を、上記放射強度および測定光の強度から、公知の方法により算出することができる。
 本実施形態では、分布情報作成部122は、CIE 1976 (L,a,b)色空間における明度(L)の分布情報を作成する。
 測定光を照射した試料の領域が光沢を有するとき、図3に示すように、分布情報には、上記領域で正反射した反射光に由来する明度または反射強度のピークP、および上記領域で拡散反射した反射光に由来するベースBが現れる。
 ピーク算出部124は、分布情報作成部122が作成した分布情報における、明度または反射強度のピークPの高さまたは面積、および明度または反射強度のピークPの広がりを算出する(工程S130)。
 ピークPの高さは、ピークPとなる受光角度における明度または反射強度の値(グラフにおけるピークの高さ)としてもよい。ただし、上述したピークPの広がりは、たとえば半値幅はベースBの高さに対するピークPの高さを基準にするなど、ベースBの高さを考慮した値になるのが通常である。そのため、ピークPの広がりとの整合をとる観点から、ピークPの高さは、ピークPにおける明度または反射強度の値と、ベースBにおける明度または反射強度の値と、の差とすることが好ましい。
 ピークPの面積は、ベーススタート(ベースラインに対する増加率が所定のレベル以上になる点である。)からベースエンド(ベースラインに対する増加率が所定のレベル以下になる点である。)までのピークの面積であってもよいし、ピークスタートからピークエンドまで(これらはいずれも、隣接するピークとの間の明度または反射強度が最小となる点である。)の面積であってもよいし、ピークPの半値半幅および半値全幅を含む半値幅の範囲内の面積であってもよい。
 ピークPの広がりは、ピークPの半値半幅および半値全幅を含む半値幅としてもよく、分布情報に多成分関数をフィッティングして得られる数式における、異なる受光角度に現れる複数の変曲点間の間隔としてもよい。
 本実施形態において、ピーク算出部124は、上記分布情報を関数にフィッティングして、ピークPの高さまたは面積、およびピークPの広がりを算出する(図4参照)。上記関数は、スペクトルにおけるピークの形状にフィッティングさせるために通常用いられる連続関数であればよく、たとえばローレンツ関数、ガウス関数、フォークト関数および疑似フォークト関数などの関数とすることができる。これらの関数は、ピークPの形状に応じて当該ピーク形状によく適合する関数を選択すればよい。たとえば、本発明者らの知見によれば、光沢感が強い試料を測定するときは、得られるピークは一定の裾形状を有する山なりのピーク形状となるため、裾形状までよく適合するローレンツ関数が好ましい。なお、鏡などのような試料を測定するときは、得られるピークは釣鐘形状に近いピーク形状となるため、釣鐘形状によく適合するガウス関数、またはローレンツ関数とガウス関数との中間の形状を有するフォークト関数および疑似フォークト関数が好ましい。なお、上記関数は、双方向反射分布関数(BRDF)として用いられる、Phongモデルの式、Torrance-Sparrowモデルの式、Trowbridge-Reitzモデルの式、およびCook-TorranceモデルのBeckman分布の式などでもよい。
 本実施形態で使用するローレンツ関数は、以下の式(1)で表される関数である。
Figure JPOXMLDOC01-appb-M000001
 式(1)において、定数HはベースBに対するピークPの高さ(明度または反射強度の値)を、定数xはピーク位置(通常は正反射角度)を、定数Wは半値幅を、定数BはベースBの高さ(明度または反射強度の値)を、それぞれ示す。また、式(1)において、変数xは受光角度を示す。
 ピーク算出部124は、実測された分布情報(図3参照)と、フィッティングされた関数(図4参照)と、のずれが小さくなるように、最小二乗法および最尤推定法などで、定数H、x、WおよびBを推定すればよい。また、マイクロソフト社製エクセル(登録商標)が有するソルバー(登録商標)などの、市販ソフトウェアパッケージに内蔵されているソフトウェアを用いて定数H、x、WおよびBを推定してもよい。
 光沢値算出部126は、ピーク算出部124が算出したピークPの高さまたは面積、およびピークPの広がりを用いて、光沢値を算出する(工程S140)。
 本実施形態において、光沢値は、ピークPの広がりに対する、ピークPの高さまたは面積の割合によって表される。図5Aに示すように、物体に入射した入射光Iは、一部が正反射した光Pとなり、他の一部が拡散反射した光Bとなる(図5Aでは、正反射した光Pおよび拡散反射した光Bの明度または反射強度を、入射光Iが入射した地点Lからの距離(正反射した光Pを示す実線の矢印の長さおよび拡散反射した光Bを示す破線の矢印の長さ)で示す。なお、図5Aにおける光Pおよび光Bの明度または反射強度は、理解を容易にするため調整しており、実際に測定されて算出される明度または反射強度を正確には反映していない。)。上述したように、観察者によって知覚される物体の光沢の程度は、当該物体に入射した光が反射してなる反射光の明度または反射強度の、正反射する角度へ集中して分布する度合い(空間分布の指向性)に影響される。
 本実施形態では、上記空間分布の指向性を示す尺度である、上記正反射する角度への反射光の明度または反射強度が正反射する角度へ集中して分布する度合いを、図5Bに示す、正反射した反射光のピークの半値幅Wに対する、正反射した反射光Pの明度または反射強度の割合により、表す。
 たとえば、本実施形態において、光沢値算出部126は、ピーク算出部124が算出したベースBに対するピークの高さ(H)、ピークの半値幅(W)およびベースの高さ(B)を用いて、以下の式(2)、式(3)、式(4)、式(5)、式(6)、式(7)または式(8)、好ましくは式(3)、式(4)、式(6)または式(7)、より好ましくは式(3)または式(6)で表される値を算出し、この値を光沢値とする。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 式(6)~式(8)において、xは任意に定められる定数である。また、式(2)~式(8)において、ピークPの高さ(H-B)は、絶対値である。
 あるいは、光沢値算出部126は、ピーク算出部124が算出したベースBに対するピークの高さ(H)およびピークの半値幅(W)を用いて、以下の式(9)、式(10)、式(11)、式(12)、式(13)、式(14)または式(15)、好ましくは式(10)、式(11)、式(13)または式(14)、より好ましくは式(10)または式(13)で表される値を算出し、この値を光沢値とする。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 
 式(13)~式(15)において、xは任意に定められる定数である。
 あるいは、本実施形態において、光沢値算出部126は、ピーク算出部124が上記分布情報をフィッティングした関数(f(x))をもとに、以下の式(16)、式(17)、式(18)、式(19)、式(20)、式(21)または式(22)、で表される値を算出し、この値を光沢値とする。
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
 なお、式(16)~式(22)において、aおよびbはピークの両端部における受光角度を表す値である。たとえば、aは(x-W/2)、bは(x+W/2)とすることができる(xはピークPの受光角度であり、典型的には正反射となる角度である。)。また、本実施形態においては、式(16)~式(22)において、Wは半値幅(W)と同じ値である。また、式(16)~式(22)において、ピークPの高さ(H)を積分して、ピークPの面積を求めているが、ピークPの高さ(H)とベースの高さ(B)との差の絶対値を積分して、ピークPの面積を求めてもよい。
 このようにして表される光沢値は、正反射した光Pの明度または反射強度が高いほど高くなり、正反射した光Pを含む明度または反射強度が強い光の領域が狭いほど高くなる。なお、光沢値算出部126は、対数をとらない値を光沢値としてもよいが、式(3)~式(5)、式(10)~式(12)、および式(17)~式(19)に示すように、上記割合を構成する少なくとも1つの要素((H-B)や、(H-B)/Wなど)に対して対数をとった値、または式(6)~式(8)、式(13)~式(15)、および式(20)~式(22)に示すように、上記割合を構成する少なくとも1つの要素((H-B)や、(H-B)/Wなど)をべき乗した値、を光沢値とすることで、人が目視で感じる光沢感との相関性がより高められる。
 上記式(3)~式(5)、式(10)~式(12)、および式(17)~式(19)により算出される光沢値は、Weber-Fechnerの法則(人の感覚は、物理量である刺激量の変化を、その対数に比例した量として知覚する、という法則)に則り、対数をとることで人の知覚に近似するよう再補正されたため、上記相関性がより高まったものと考えられる。また、上記式(6)~式(8)、式(13)~式(15)、および式(20)~式(22)により算出される光沢値は、Stevensのべき法則(人の感覚は、物理量である刺激量の変化を、そのべき乗に比例した量として知覚する、という法則)に則り、べき乗することで人の知覚に近似するよう再補正されたため、上記相関性がより高まったものと考えられる。
 後述する実施例で実証されるように、このようにして算出された光沢値は、人が目視で感じる光沢感との相関性がより高められている。
 また、後述する実施例で実証されるように、式(16)~式(22)のように、ピークPの高さを積分してピークPの面積を求め、ピークPの広がり(W)に対するピークPの面積の割合によって光沢値を表すと、特に低光沢の画像に対して求めた光沢値の、人が目視で感じる光沢感との相関性がより高められている。
 出力部128は、光沢値算出部126が算出した光沢値を、上記領域の光沢色を表す数値として出力する(工程S150)。また、出力部128は、上記数値を、光沢値算出装置120の外部の機器に通信可能な信号に変換する。生成された信号は、光沢値算出装置120が有する送信部から、表示装置130に送信される。
 表示装置130は、スマートフォン、PC、TVなどの表示装置であって、出力部128が生成した信号に含まれる光沢値を有する画像をディスプレイに表示する(工程S160)。表示された画像は、たとえば、ラベル、パッケージおよび公告印刷物などに用いる画像を作製するときなどに、画像の色調などを決定する発注者と、決定された色調を有する画像を作製する受注者と、の間での、表現しようとする画像の色調などの共通認識を容易にする。
 このように、本実施形態によれば、人が目視で感じる光沢感との相関性がより高められた光沢値が算出される。
 [第2の実施形態]
 本発明の第2の実施形態に関する光沢値測定装置は、ピーク算出部124および光沢値算出部126の機能が異なる以外は、上記第1の実施形態に関する光沢値測定装置100と同様の構成を有する。図6は、第2の実施形態における、光沢値測定装置100を用いて試料の光沢値を測定する方法のフローチャートである。
 本実施形態においても、ピーク算出部124は、分布情報を関数にフィッティングして、ピークPの高さまたは面積、およびピークPの広がりを算出する。このとき、ピーク算出部124は、1つの関数(たとえばローレンツ関数)に分布情報をフィッティングさせ、実測された分布情報と、フィッティングされた関数と、のずれが小さくなるように、最小二乗法および最尤推定法などで、定数H、x、WおよびBを推定する(工程S132)。
 その後、ピーク算出部124は、フィッティングされた関数と、分布情報と、のずれを評価する(工程S134)。ずれが予め定められた許容範囲であるならば、処理は、第1の実施形態と同様に、光沢値算出部126による推定された値H、WおよびBを用いた光沢値の算出に移行する(工程S140)。一方で、ずれが上記許容から外れているときは、ピーク算出部124は、分布情報を2つの関数にフィッティングさせて、2つの関数の合成値と、フィッティングされた関数と、のずれが小さくなるように、最小二乗法および最尤推定法などで、それぞれの関数における定数H、x、WおよびBを推定する(工程S136)。なお、それぞれの関数におけるBは同一の値になるように調整する。上記許容範囲は、任意に定めることができる。たとえば、上記フィッティングされた関数および分布情報をプロットしたグラフにおいて、最小二乗法などで求められる、回帰直線の相関係数(R)が0.98未満であるときや、カイ二乗検定により求められるp値が一定以上であるときなどは、ピーク算出部124は、分布情報を2つの関数にフィッティングさせることができる。
 上記2つの関数は、いずれもスペクトルにおけるピークの形状にフィッティングさせるために通常用いられる連続関数であればよく、たとえばローレンツ関数、ガウス関数、フォークト関数および疑似フォークト関数などの関数とすることができる。上記2つの関数は、ガウス関数とローレンツ関数との組み合わせなどのように、異なる関数の組み合わせとしてもよいが、拡散反射した光によるベースBの領域まで十分に反映させる観点からは、少なくともローレンツ関数を含む組み合わせとすることが好ましい。
 光沢値算出部126は、上記2つの関数へのフィッティングにより求められた、それぞれの関数における推定された値H、WおよびBを用いて、第1の実施形態と同様に、それぞれの関数による光沢値を算出する。その後、光沢値算出部126は、上記それぞれの関数による光沢値を合算して、上記分布情報から算出された光沢値とする(工程S140a)。
 なお、本実施形態において、式(16)~式(22)によって光沢値を求めるときは、aは(x-(W+W)/4)、bは(x+(W+W)/4)とすることができる(Wは第1の関数による半値幅、Wは第2の関数による半値幅を、それぞれ表す。)。ただし、計算の簡略化のため、一方の関数の半値幅を用いて、aは(x-W/2)、bは(x+W/2)としてもよい。同様に、式(16)~式(22)の分母(W)も、((W+W)/2)とすることができるが、計算の簡略化のため、Wを用いてもよい。 
 あるいは、光沢値算出部126は、試料の見え方に対する2つの関数のそれぞれの寄与分を考慮して、以下の式(23)によって光沢値を算出してもよい。
Figure JPOXMLDOC01-appb-M000023
 式(23)において、HおよびWは第1の関数から推定された定数HおよびWを、HおよびWは第2の関数から推定された定数HおよびWを、それぞれ表す。定数cは第1の関数の寄与分であり、定数cは第2の関数の寄与分である。たとえば、第1の関数および第2の関数の寄与分を等価とみなして、cおよびcをいずれも1/2としてもよいし、ピークの高さが光沢感に寄与するとして、以下の式(24)および式(25)のようにcおよびcを設定してもよい。
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000025
 なお、式(23)においても、第1の実施形態と同様に、上記割合を構成する少なくとも1つの要素に対して対数をとった値、上記割合を構成する少なくとも1つの要素をべき乗した値、あるいは対数もべき乗もしない値、のいずれを光沢値としてもよい。
 このように、2つの関数へのフィッティングを行うことで、関数へのフィッティングにより得られた値と分布情報とのずれをより小さくし、分布情報の内容(特にはピークPからベースBにかけての裾の形状)を、算出される光沢値により精密に反映させることができる。
 そのため、本実施形態によれば、人が目視で感じる光沢感との相関性がより高められた光沢値を得ることができる。
 [第3の実施形態]
 図7は、本発明の第3の実施形態に関する、色調定量化装置200の概要を示すブロック図である。色調定量化装置200は、変角光度計110、光沢値算出装置120、表示装置130、測色計140、色度算出部150および刺激値出力部160を有する。変角光度計110、光沢値算出装置120および表示装置130は、第1の実施形態または第2の実施形態に関する変角光度計110、光沢値算出装置120および表示装置130と同様であるので、共通する部分の説明は省略する。
 測色計140は、変角光度計110が反射光の放射強度を測定する試料の、上記一定の色調を有する領域に測定光を入射させたときに、上記領域で反射した反射光を受光し、受光された反射光の光度を測定する。
 測色計140が得る色度は、表色系のうち明度または輝度以外の成分を示す刺激値で表され、CIE1976 (L,a,b)色空間におけるaおよびb、CIE1976 (L,u,v)色空間におけるuおよびv、Hunter1948 L,a,b色空間におけるaおよびb、CIE1931 XYZ色空間におけるX成分地およびZ成分値などのクロマネッティクス指数により表されることができる。これらのうち、人が目視で感じる光沢感との相関性をより高める観点からは、CIE 1976 (L,a,b)色空間におけるaおよびbなどの、人の知覚に適合するよう補正された心理メトリック量により色度を表した値を用いることが好ましい。
 測色計140は、分光測色方法による測色計でもよいし、刺激値直読方法による測色計でもよい。また、上述したように、光沢色の知覚には、物体に入射して正反射した光(以下、単に「正反射成分」ともいう。)が大きく寄与することから、測色計140は、正反射成分を含む方式(たとえばSCI)で測色された色度を得る測色計であることが好ましい。一方で、たとえばマット様の光沢色では、物体に入射して拡散反射した光(以下、単に「拡散反射成分」ともいう。)も、光沢色の知覚に大きく寄与する。そのため、マット様の光沢色などについても、光沢値の色調を定量化して算出される値と人が目視で感じる光沢色の色調との相関性を高める観点からは、測色計140は、積分球などを有して、正反射成分を含む方式で測色された色度および正反射成分を除去する方式(たとえばSCE)で測色された色度の双方を得る測色計であることがより好ましい。
 本実施形態では、測色計140は、積分球を有する、正反射成分を含む方式で測色された明度および色度、ならびに正反射成分を除去する方式で測色された明度および色度の双方を得る測色計であり、CIE 1976 (L,a,b)色空間におけるLを明度として得、aおよびbを色度として得る。なお、以下、本実施形態において正反射成分を含む方式で測色された明度および色度をL 、a およびb とし、正反射成分を除去する方式で測色された明度および色度をL 、a およびb とする。
 色度算出部150は、測色計140が測定した色度から、表示装置130に表示するために用いる色度を算出する。色度算出部150は、測色計140が測定した色度(正反射成分を含む方式で測定された色度または正反射成分を除去する方式で測定された色度)をそのまま定量化してもよいし、人の知覚により適合させるための補正をしてもよい。
 上記補正をする場合、光沢の低い試料については、拡散反射成分に含まれている上記色相情報を考慮できるように、上記正反射成分を含む方式で測色された色度を補正することで、光沢が高い試料および光沢が低い試料の双方について知覚される色調をともに精度よく表すように、光沢色の色調を定量化できると考えられる。つまり、正反射成分を含む方式で測色された色度に対して、上記試料で反射してなる反射光の空間分布を考慮した係数、具体的には、正反射成分がより多いときは重み付けの値がより小さくなり、拡散反射成分がより多いときは重み付けの値がより大きくなるように算出された係数、で重み付けをすることで、人が目視で感じる光沢色の色調との相関性がより高まった有効色度を算出できると考えられる。
 たとえば、色度算出部150は、正反射成分を含む方式で測定された明度(L )、正反射成分を除去する方式で測定された明度(L )、および想定される明度の最大値(L max)を用いてを用いて、以下の式(26)および式(27)により、補正された有効色度a effおよびb effを算出してもよい。なお、L maxの値は、100とすることができる。
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
 あるいは、色度算出部150は、第2の実施形態におけるピーク算出部124が2つの関数から算出したベースに対するピークの高さHおよびHならびにベースの高さB(ただし、ピークPの高さHがより高くなる関数により推定されるHをHとし、ピークPの高さHがより低くなる関数により推定されるHを、Hとする。)を用いて、以下の式(28)および式(29)により、補正された有効色度a effおよびb effを算出してもよい。
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000029
 あるいは、色度算出部150は、第2の実施形態または第3の実施形態におけるピーク算出部124が算出したピークの広がり(W)を用いて、以下の式(30)および式(31)により、補正された有効色度a effおよびb effを算出してもよい。
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000031
 なお、第2の実施形態のように、ピーク算出部124が2つの関数からそれぞれピークの広がりWおよびWを算出したときは、WおよびWの平均値Waveを用いて、(1+Wave/90)をa effおよびb effを算出するための係数としてもよい。
 このように補正された有効色度は、正反射成分および拡散反射成分が知覚される色度に与える影響が反映されているため、人が目視で感じる光沢感との相関性がより高められている。
 刺激値出力部160は、色度算出部150が算出した有効色度と、光沢値算出装置120が有する光沢値算出部126が算出した光沢値と、を組み合わせて、色度および光沢感を座標軸とした色空間における上記領域の光沢色を表す刺激値の組として出力する。また、刺激値出力部160は、上記数値を、表示装置130に通信可能な信号に変換する。
 具体的には、刺激値出力部160は、色度算出部150が算出した色度aおよびb、または有効色度a effおよびb effを、色度を示す刺激値とし、光沢値算出部126が算出した光沢値を、光沢感を示す刺激値として、上記色空間における三刺激値を算出する。
 図8は、上記色度および光沢感を座標軸とした色空間を示す概念図である。この色空間において、異なる色調を有する金属光沢(たとえば青金310、赤金320および消金330)は、互いに異なる刺激値を有する色調として表される。
 また、刺激値出力部160は、上記三刺激値を有する画像を表示装置に再現するための、光沢色に関する情報を含む信号を生成する。生成された信号は、刺激値出力部160から、表示装置130に送信される。 
 [その他の実施形態]
 なお、上記各実施形態は、何れも本発明を実施するにあたっての具体化の一例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。
 たとえば、上記各実施形態では、光沢値算出装置で分布情報を作成しているが、変角光度計で分布情報を作成し、光沢値算出装置は変角光度計が作成した分布情報をもとにピークの高さおよび広がりを算出してもよい。
 また、上記算出された光沢値または色空間における三刺激値は、紙、プラスチック、金属、ガラスおよび布帛などにおいて当該光沢値または三刺激値を有する画像を形成ための参照情報として用いることができる。
 以下、本発明の具体的な実施例を比較例とともに説明するが、本発明はこれらに限定されるものではない。
 [実験1]
 1.光沢値の測定
 1-1.試験1
 光沢が低い2枚の銀色の画像、光沢が中程度の3枚の銀色の画像、および光沢が高い5枚の銀色の画像、の合計10枚の光沢感が異なる銀色の画像を用意した。
 それぞれの画像を15mm×50mmのサイズに裁断した。50mm×50mmのサイズに裁断した十分に強直な白色の厚紙を基板とし、この基板上に、上記裁断した画像を貼り付けて、10個の光沢値測定法サンプルを作製した。
 変角光度計(株式会社村上色彩技術研究所製、製品名GCMS-4)を用いて、受光角度を変化させながら、それぞれの光沢値測定法サンプルに45°の入射角で入射光を照射して、-20°~80°の反射強度を、-20°から0°の範囲では5°刻み、0°から30°の範囲では2°刻み、30°から60°の範囲では1°刻み、60から80°の範囲では2°刻みに測定した。それぞれの受光角度における得られた反射強度から反射率を算出して、受光角度と反射率との関係を示す、反射の空間分布プロフィールを得た。
 得られた反射の空間分布プロフィールの形状を、1つのローレンツ関数にフィッティングさせ、最小二乗法およびマイクロソフト社製エクセル(登録商標)が有するソルバー(登録商標)により、ベースBに対するピークの高さ(H)、ピークの半値幅(W)、およびベースの高さ(B)を求めた。
 得られたピークの高さ(H)、ピークの半値幅(W)およびベースの高さ(B)を式(2)に代入して、それぞれの光沢値測定法サンプルの光沢値とした。
Figure JPOXMLDOC01-appb-M000032
 1-2.試験2
 それぞれの受光角度における得られた反射強度を、CIE 1976 (L,a,b)色空間における明度(L)に換算して、反射率のかわりに明度(L)の値を用いた以外は試験1と同様にして、それぞれの光沢値測定法サンプルの光沢値を算出した。
 1-3.試験3
 空間分布プロフィールの形状を2つのローレンツ関数にフィッティングさせて、第1の関数から推定された定数HおよびWであるHおよびWと、第2の関数から推定された定数HおよびWであるHおよびWと、を以下の式(23)に代入して、それぞれの光沢値測定法サンプルの光沢値とした。なお、cおよびcはいずれも1/2とした。
Figure JPOXMLDOC01-appb-M000033
 1-4.試験4
 ピークの高さ(H)、ピークの半値幅(W)およびベースの高さ(B)を式(3)に代入した以外は試験3と同様にして、それぞれの光沢値測定法サンプルの光沢値を算出した。
Figure JPOXMLDOC01-appb-M000034
 1-5.試験5
 特許文献3に記載の方法で、光沢値を算出した。
 具体的には、空間分布プロフィールの形状を、1つのガウス関数にフィッティングさせて反射の空間分布プロフィールを得たこと、ならびに、得られたピークの高さ(H)および半値幅Wから、W/Hの値を算出して、それぞれの光沢値測定法サンプルの光沢値としたこと、以外は試験1と同様にして、それぞれの光沢値測定法サンプルの光沢値を算出した。
 1-6.試験6
 Hunterの対比光沢度を求めた。
 具体的には、試験1において、変角光度計(株式会社村上色彩技術研究所社製、製品名GCMS-4)を用いて、受光角度を変化させながら、それぞれの光沢値測定法サンプルに45°の入射角で入射光を照射して、45°および0°における反射強度を測定し、それぞれの反射強度を、CIE 1976 (L,a,b)色空間における明度(L)に換算した。
 得られた45°における明度(L 45)と、0°における明度(L )と、から(L 45/L )を算出して、それぞれの光沢値測定法サンプルの光沢値とした。
 1-7.試験7
 Flop Indexによる光沢値を求めた。
 具体的には、試験1において、変角光度計(株式会社村上色彩技術研究所社製、製品名GCMS-4)を用いて、受光角度を変化させながら、それぞれの光沢値測定法サンプルに45°の入射角で入射光を照射して、30°、0°および-65°における反射強度を測定し、それぞれの反射強度を、CIE 1976 (L,a,b)色空間における明度(L)に換算した。
 得られた30°における明度(L 30)と、0°における明度(L )と、-65における明度(L -65)と、から以下の式(32)により、それぞれの光沢値測定法サンプルの光沢値を算出した。
Figure JPOXMLDOC01-appb-M000035
 1-8.試験8
 Flip-Flop法による光沢値を求めた。
 具体的には、試験1において、変角光度計(株式会社村上色彩技術研究所社製、製品名GCMS-4)を用いて、受光角度を変化させながら、それぞれの光沢値測定法サンプルに45°の入射角で入射光を照射して、25°および75°における反射強度を測定し、それぞれの反射強度を、CIE 1976 (L,a,b)色空間における明度(L)に換算した。
 得られた25°における明度(L 25)と、75°における明度(L 75)と、と、から(L 25-L 75)を算出して、それぞれの光沢値測定法サンプルの光沢値とした。
 2.感覚量の測定
 光沢値の測定に用いたものと同じ、光沢感が異なる銀色の画像を10枚用意した。
 それぞれの画像を30mm×30mmのサイズに裁断した。30mm×30mmのサイズに裁断した白色のマット紙を基板とし、この基板上に、上記裁断した画像を貼り付けた。さらに、中心に15mm×15mmのサイズの正方形の穴が開いた30mm×30mmのサイズのマット紙を被せて貼り付け、感性値測定法チップを作製した。この感性値測定法チップを、アズワン:ラボランパック、スクリュー管(No7)に貼り付けて、感性値測定法サンプルを作製した。
 20代、30代および40代の男女2名ずつ、合計12人により感性試験を行った。
 感覚量の数値化にはマグニチュード推定法を用いた。具体的には、照明が消され、太陽光の入らない部屋に設置された標準光源装置(Judge II)内のD50光源下で感性試験用サンプルを被験者に見せて、10種のサンプルの金属感を0~10の間で得点付けさせて得られた値を感性光沢値とした。
 3.評価
 横軸に感性光沢値を、縦軸に試験1~試験8のいずれかで得られた光沢値をプロットしたグラフを作成し、回帰直線の相関係数(R)を求めた。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000036
 表1より、本発明の各実施形態による光沢値は、人が目視で感じる光沢感との相関性がより高められていることがわかる。
 [実験2]
 低光沢領域における光沢値の相関性を検証するため、試験1において感性光沢値が7以下となった5つのサンプルと、追加した低光沢のサンプルと、の6つのサンプルを用いて実験1と同様の試験を行った。
 光沢値として、試験4と同様に式(3)を用いて算出した光沢値と、以下の式(16)を用いて算出した光沢値を用い、横軸に感性光沢値を、縦軸に式(3)または式(16)を用いて得られた光沢値をプロットしたグラフを作成し、回帰直線の相関係数(R)を求めた。結果を表2に示す。
Figure JPOXMLDOC01-appb-M000037
Figure JPOXMLDOC01-appb-T000038
 表2より、特に低光沢のサンプルに対しては、ピークの広がりに対するピークの面積の割合によって表される光沢値のほうが、人が目視で感じる光沢感との相関性がより高められていることがわかる。
 本出願は、2018年3月16日出願の日本国出願番号2018-049575号に基づく優先権を主張する出願であり、当該出願の特許請求の範囲、明細書および図面に記載された内容は本出願に援用される。
 本発明によれば、人が目視で感じる光沢感との相関性をより高めた、光沢の定量化方法が提供される。そのため、本発明は、印刷および広告業界などにおける、光沢色についての情報の伝達および共有を容易にすることが期待される。
 100 光沢値測定装置
 110 変角光度計
 120 光沢値算出装置
 122 分布情報作成部
 124 ピーク算出部
 126 光沢値算出部
 128 出力部
 130 表示装置
 140 測色計
 150 色度算出部
 160 刺激値出力部
 200 色調定量化装置
 310 青金
 320 赤金
 330 消金

Claims (13)

  1.  物体に照射した測定光が反射してなる反射光を測定して得られる受光角度に対する明度または反射強度の分布情報における、前記明度または反射強度のピークの高さまたは面積、および前記明度または反射強度のピークの広がりを求めるピーク算出部と、
     前記ピークの広がりに対する前記ピークの高さまたは面積の割合によって表される光沢値を算出する光沢値算出部と、
     を有する、光沢値算出装置。
  2.  前記ピーク算出部は、前記分布情報における前記ピークの半値幅(W)を前記明度または反射強度のピークの広がりとする、請求項1に記載の光沢値算出装置。
  3.  前記ピーク算出部は、前記分布情報におけるピークの高さ(H)、またはピークの高さ(H)とベースの高さ(B)との差分、を前記明度または反射強度のピークの高さとする、請求項1または2に記載の光沢値算出装置。
  4.  前記ピーク算出部は、前記分布情報を関数にフィッティングして、前記明度または反射強度のピークの高さまたは面積、および前記明度または反射強度のピークの広がりを求める、請求項1~3のいずれか1項に記載の光沢値算出装置。
  5.  前記ピーク算出部は、前記分布情報を複数の前記関数にフィッティングして、前記明度または反射強度のピークの高さまたは面積、および前記明度または反射強度のピークの広がりを求める、請求項4に記載の光沢値算出装置。
  6.  前記関数は、ローレンツ関数、ガウス関数、フォークト関数および疑似フォークト関数からなる群から選択されるひとつの関数である、請求項4または5に記載の光沢値算出装置。
  7.  前記分布情報は、前記受光角度に対する、心理メトリック量により表した明度の分布を示す情報である、請求項1~6のいずれか1項に記載の光沢値算出装置。
  8.  前記光沢値算出部は、前記ピークの広がりに対する前記ピークの面積の割合によって表される光沢値を算出する、請求項1~7のいずれか1項に記載の光沢値算出装置。
  9.  前記光沢値算出部は、前記ピークの広がりに対する前記ピークの高さまたは面積の割合であり、前記割合を構成する少なくとも1つの要素に対して対数をとるか、またはべき乗することで得られた割合を、前記光沢値とする、請求項1~8のいずれか1項に記載の光沢値算出装置。
  10.  前記算出された光沢値を有する画像を表示装置に再現するための信号を生成する出力部を有する、請求項1~9のいずれか1項に記載の光沢値算出装置。
  11.  物体に照射されて前記物体で反射してなる反射光の放射強度を互いに異なる複数の受光角度において測定する変角光度計と、
     請求項1~10のいずれか1項に記載の光沢値算出装置と、
     を有する光沢値測定装置。
  12.  請求項1~10のいずれか1項に記載の光沢値算出装置と、
     前記光沢値測定装置が測定した光沢値と、前記物体の色度と、を組み合わせて、色空間における前記物体の光沢色を表す刺激値として出力する刺激値出力部と、
     を有する、光沢色の色調定量化装置。
  13.  物体に照射した測定光が反射してなる反射光を測定して得られる受光角度に対する明度または反射強度の分布情報における、前記明度または反射強度のピークの高さまたは面積、および前記明度または反射強度のピークの広がりを求める工程と、
     前記ピークの広がりに対する前記ピークの高さまたは面積の割合によって表される光沢値を算出する工程と、
     を有する、光沢値算出方法。
PCT/JP2019/010814 2018-03-16 2019-03-15 光沢値算出装置、光沢値測定装置、光沢色の色調定量化装置および光沢値算出方法 WO2019177145A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020506671A JP7235038B2 (ja) 2018-03-16 2019-03-15 光沢値算出装置、光沢値測定装置、光沢色の色調定量化装置および光沢値算出方法
CN201980019678.5A CN111868508B (zh) 2018-03-16 2019-03-15 光泽值计算装置、光泽值测量装置、以及光泽值计算方法
US16/977,317 US20210055216A1 (en) 2018-03-16 2019-03-15 Gloss Value Calculating Device, Gloss Value Measuring Device, Color Tone Quantifying Device For Glossy Color, And Gloss Value Calculating Method
EP19766643.1A EP3789756A4 (en) 2018-03-16 2019-03-15 GLOSS VALUE CALCULATION DEVICE, GLOSS VALUE MEASURING DEVICE, HUE QUANTIFYING DEVICE FOR GLOSS COLOR AND GLOSS VALUE CALCULATION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018049575 2018-03-16
JP2018-049575 2018-03-16

Publications (1)

Publication Number Publication Date
WO2019177145A1 true WO2019177145A1 (ja) 2019-09-19

Family

ID=67907348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010814 WO2019177145A1 (ja) 2018-03-16 2019-03-15 光沢値算出装置、光沢値測定装置、光沢色の色調定量化装置および光沢値算出方法

Country Status (5)

Country Link
US (1) US20210055216A1 (ja)
EP (1) EP3789756A4 (ja)
JP (1) JP7235038B2 (ja)
CN (1) CN111868508B (ja)
WO (1) WO2019177145A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021139650A (ja) * 2020-03-02 2021-09-16 マツダ株式会社 照り評価装置および該方法
JP7452313B2 (ja) 2020-07-30 2024-03-19 コニカミノルタ株式会社 変角特性の取得方法、画像処理方法、画像表示方法、変角特性の取得装置、および変角特性の取得条件決定プログラム

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03170810A (ja) * 1989-11-30 1991-07-24 Yokogawa Electric Corp 非接触式で光沢度と平滑度を測定する分析計
GB2277148A (en) * 1993-04-07 1994-10-19 James William Feather Goniophotometer
JPH11142331A (ja) * 1997-11-12 1999-05-28 Shinju Kagaku Kenkyusho:Kk 真珠光沢度測定方法
WO2005075961A1 (ja) 2004-02-03 2005-08-18 Kansai Paint Co., Ltd. 光輝感評価方法および光輝感評価装置
JP2006261820A (ja) * 2005-03-15 2006-09-28 Fuji Xerox Co Ltd 撮像装置、画像形成装置および質感読取方法
JP2006266763A (ja) * 2005-03-22 2006-10-05 Canon Inc 評価方法及びその装置
JP2010243353A (ja) * 2009-04-07 2010-10-28 Ricoh Co Ltd 光沢感評価方法、光沢感評価装置、該装置を有する画像評価装置、画像評価方法および該方法を実行するためのプログラム
JP2011162886A (ja) 2010-02-05 2011-08-25 Toray Ind Inc ポリエステル短繊維織物
JP2014232098A (ja) * 2013-04-30 2014-12-11 日本精工株式会社 標的物質捕捉装置及び標的物質検出装置
JP2015049691A (ja) * 2013-08-30 2015-03-16 本田技研工業株式会社 意匠層データ作成装置及び方法並びに意匠シュミレーション装置
JP2015068813A (ja) * 2013-10-01 2015-04-13 キヤノン株式会社 メタリック感の評価方法及び評価装置
JP2016197035A (ja) 2015-04-02 2016-11-24 株式会社ナリス化粧品 粉体のスクリーニング方法
JP2018049575A (ja) 2016-09-20 2018-03-29 株式会社mokha 位置情報検証システム及び検証方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61145436A (ja) * 1984-12-19 1986-07-03 Nippon Paint Co Ltd 塗膜外観性状評価方法および装置
JPS61230045A (ja) * 1985-04-05 1986-10-14 Teizo Aida 映像のボケの度合による曲面物体の光沢比較法
US5974160A (en) * 1993-10-26 1999-10-26 Asahi Kasei Kogyo Kabushiki Kaisha Measuring method and apparatus of gloss irregularity and printing unevenness
US6509964B2 (en) * 2001-05-15 2003-01-21 Amt Inc. Multi-beam apparatus for measuring surface quality
JP4797593B2 (ja) * 2005-03-10 2011-10-19 富士ゼロックス株式会社 光沢測定装置及びプログラム
JP5578018B2 (ja) * 2010-10-22 2014-08-27 株式会社ニコン 光沢度の測定方法及び測定装置
JP2014077664A (ja) * 2012-10-09 2014-05-01 Ricoh Co Ltd 光沢性評価方法及び光沢性評価装置
DE102014105746C5 (de) * 2013-12-05 2020-12-24 Sick Ag Optoelektronischer Sensor und Verfahren zur Erfassung glänzender Objekte
JP6076934B2 (ja) * 2014-03-26 2017-02-08 富士フイルム株式会社 光沢度測定方法及び装置
CN104949925B (zh) * 2015-05-21 2019-02-26 浙江科技学院 珍珠分级方法
CN105699397B (zh) * 2016-03-24 2018-10-19 南京农业大学 一种苹果表面光泽度检测方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03170810A (ja) * 1989-11-30 1991-07-24 Yokogawa Electric Corp 非接触式で光沢度と平滑度を測定する分析計
GB2277148A (en) * 1993-04-07 1994-10-19 James William Feather Goniophotometer
JPH11142331A (ja) * 1997-11-12 1999-05-28 Shinju Kagaku Kenkyusho:Kk 真珠光沢度測定方法
WO2005075961A1 (ja) 2004-02-03 2005-08-18 Kansai Paint Co., Ltd. 光輝感評価方法および光輝感評価装置
JP2006261820A (ja) * 2005-03-15 2006-09-28 Fuji Xerox Co Ltd 撮像装置、画像形成装置および質感読取方法
JP2006266763A (ja) * 2005-03-22 2006-10-05 Canon Inc 評価方法及びその装置
JP2010243353A (ja) * 2009-04-07 2010-10-28 Ricoh Co Ltd 光沢感評価方法、光沢感評価装置、該装置を有する画像評価装置、画像評価方法および該方法を実行するためのプログラム
JP2011162886A (ja) 2010-02-05 2011-08-25 Toray Ind Inc ポリエステル短繊維織物
JP2014232098A (ja) * 2013-04-30 2014-12-11 日本精工株式会社 標的物質捕捉装置及び標的物質検出装置
JP2015049691A (ja) * 2013-08-30 2015-03-16 本田技研工業株式会社 意匠層データ作成装置及び方法並びに意匠シュミレーション装置
JP2015068813A (ja) * 2013-10-01 2015-04-13 キヤノン株式会社 メタリック感の評価方法及び評価装置
JP2016197035A (ja) 2015-04-02 2016-11-24 株式会社ナリス化粧品 粉体のスクリーニング方法
JP2018049575A (ja) 2016-09-20 2018-03-29 株式会社mokha 位置情報検証システム及び検証方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3789756A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021139650A (ja) * 2020-03-02 2021-09-16 マツダ株式会社 照り評価装置および該方法
JP7367563B2 (ja) 2020-03-02 2023-10-24 マツダ株式会社 照り評価装置および該方法
JP7452313B2 (ja) 2020-07-30 2024-03-19 コニカミノルタ株式会社 変角特性の取得方法、画像処理方法、画像表示方法、変角特性の取得装置、および変角特性の取得条件決定プログラム

Also Published As

Publication number Publication date
JPWO2019177145A1 (ja) 2021-03-18
CN111868508A (zh) 2020-10-30
EP3789756A4 (en) 2021-04-28
EP3789756A1 (en) 2021-03-10
CN111868508B (zh) 2024-04-16
US20210055216A1 (en) 2021-02-25
JP7235038B2 (ja) 2023-03-08

Similar Documents

Publication Publication Date Title
US9823130B2 (en) Multi-angle spectral imaging measurement method and apparatus
Mendoza et al. Calibrated color measurements of agricultural foods using image analysis
Hatcher et al. Developments in the use of image analysis for the assessment of oriental noodle appearance and colour
CN103808666A (zh) 用于捕捉测量物体的视觉印象的手持式测量装置
CN102124723B (zh) 在屏幕上真实再现颜色的方法和装置
JP5851461B2 (ja) 意匠層データ作成装置及び方法並びに意匠シュミレーション装置
JP6907766B2 (ja) 計測装置および計測システム
WO2019177145A1 (ja) 光沢値算出装置、光沢値測定装置、光沢色の色調定量化装置および光沢値算出方法
JP2014077664A (ja) 光沢性評価方法及び光沢性評価装置
JP2004317131A (ja) 光沢評価方法および装置
JP7235039B2 (ja) 光沢色の色調定量化装置、光沢色の色調測定装置および光沢色の色調定量化方法
WO2014002135A1 (ja) トーン定義式生成方法、トーン種別判別方法、任意のトーンに対応するマンセル値を算出する方法、画像形成方法、インターフェース画面表示装置
JP7409014B2 (ja) 表示装置
Zdravkovic Ganzfeld
JPH05273042A (ja) 空間反射光の状態測定装置
JP4254543B2 (ja) 意匠開発支援装置及び支援方法
Samadzadegan et al. Color-Printed Gloss: relating measurements to perception
Nagai et al. Do specular highlights and the daylight locus act as cues for estimating illumination color from a single object?
Brill Galaxy Color Magnitude Diagram
Chen Goniophotometer
Valberg et al. Ganglion Cells
Milković et al. INTENSITY EVALUATION OF THE SPREADING AND SIMULTANEOUS CONTRAST EFFECTS BASED ON THE DOTTED WHITE'S SAMPLES.
Minz et al. Advances in Color Measurement of Food Products
JP2004286672A (ja) メタリック塗膜の有するメタリック感の評価方法
Ishii et al. Reproducing 3D prints on monitor by relative-glossiness matching technique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19766643

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020506671

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019766643

Country of ref document: EP